Cook’s Theorem: SAT is NP-complete.

- SAT in NP:
 Given F, c, where c is a setting of values (True/False) for the variables of F:

 Output the value of F under the setting given by c.

 This can be carried out in polynomial time: given a formula F and a setting of its variables, just substitute the values for each variable and then evaluate each connective one-by-one, from the inside out.

 Moreover, if F is satisfiable, then there is some value of c that will make this verifier output yes (when $c = a$ setting that makes F true); and if F is not satisfiable, then this verifier will output no for every possible value of c (since no setting makes F true).

The same reasoning shows that Circuit-SAT, CNF-SAT and 3SAT also belong to NP.

- SAT is NP-hard (main idea):
 Let D be any problem in NP. By definition, there is a polytime verifier $V(x, c)$ for D. This polytime verifier can be implemented as a circuit with input gates representing the values of x and c. For any input x for D, we can hard-code the value of x into this circuit in such a way that there is a value of the certificate for which the verifier outputs yes iff there is some setting of the input gates corresponding to c that make the circuit output 1. It’s possible to show that this transformation can be carried out in polynomial time (as a function of the size of x), and it’s also possible to show that this circuit can then be translated into a formula in CNF (in polytime) such that settings of the circuit’s input gates correspond to settings of the formula’s variables.

This shows that Circuit-SAT, SAT, and CNF-SAT are all NP-hard.

NP-completeness examples:

VERTEX-COVER: \{ $< G, k > : G$ is a graph that contains a vertex cover of size k, i.e. a set C of k vertices such that each edge of G has at least one endpoint in C \}

VERTEX-COVER (VC) is NPC:

- VC in NP: Given G, k, c, we can verify in polytime that c represents a vertex cover of size k in G.

- VC is NP-hard: 3SAT ≤$_p$ VC.

 Given $F = (a_1 \lor b_1 \lor c_1) \land \cdots \land (a_r \lor b_r \lor c_r)$, where $a_i, b_i, c_i \in \{x_1, \sim x_1, x_2, \sim x_2, \cdots, x_s, \sim x_s\}$, construct $G = (V, E)$ and k such that F satisfiable iff G contains vertex cover of size k, as follows:

 \[k = s + 2r \]

 \[V = \{ a_1, b_1, c_1, \cdots, a_r, b_r, c_r, x_1, \sim x_1, \cdots, x_s, \sim x_s \} \]

 \[E = \{ (x_i, \sim x_i) : 1 \leq i \leq s \} \cup \{ (a_i, b_i), (b_i, c_i), (c_i, a_i) : 1 \leq i \leq r \} \cup \{ (l, x) : l = a_i \text{ or } b_i \text{ or } c_i, \text{ and } x = x_j \text{ or } \sim x_j \text{ corresponding to } l \} \]

 For example, if $F = (x_1 \lor \sim x_2 \lor \sim x_4) \land (\sim x_2 \lor \sim x_3 \lor x_1) \land (\sim x_3 \lor x_4 \lor \sim x_2)$, then $a_1 = x_1, b_1 = \sim x_2, c_1 = \sim x_4, a_2 = x_2, b_2 = \sim x_3, c_2 = x_1, a_3 = \sim x_3, b_3 = x_4, c_3 = \sim x_2$ so

 \[k = 4 + 2 \times 3 = 10 \]

 \[V = \{ a_1, b_1, c_1, a_2, b_2, c_2, a_3, b_3, c_3, x_1, \sim x_1, x_2, \sim x_2, x_3, \sim x_3, x_4, \sim x_4 \} \]

 \[E = \{ (x_1, \sim x_1), (x_2, \sim x_2), (x_3, \sim x_3), (x_4, \sim x_4), (a_1, b_1), (b_1, c_1), (c_1, a_1), (a_1, x_1), (b_1, \sim x_2), (c_1, \sim x_4), (a_2, b_2), (b_2, c_2), (c_2, a_2), (a_2, x_2), (b_2, \sim x_3), (c_2, x_1), (a_3, b_3), (b_3, c_3), (c_3, a_3), (a_3, \sim x_3), (b_3, x_4), (c_3, \sim x_2) \} \]
Clearly, construction can be done in polytime (with one scan of \(F \)).

Also, if \(F \) is satisfiable, then there is an assignment of truth values that make at least one literal in each clause true. Pick a cover \(C \) as follows: for each variable, \(C \) contains \(x_i \) or \(\sim x_i \), whichever is true under the truth assignment; for each clause, \(C \) contains every literal except one that’s true (pick arbitrarily if more than one true literal). \(C \) contains exactly \(s + 2r \) vertices and is a cover: all edges \((x_i, \sim x_i)\) are covered; all edges in clause triangles are covered (because we picked two vertices from each triangle); all edges between “clauses” and “variables” are covered (two from inside triangle, one from true literal for that clause).

Finally if \(G \) contains a cover \(C \) of size \(k = s + 2r \), \(C \) must contain at least one of \(x_i \) or \(\sim x_i \) for each \(i \) (because of edges \((x_i, \sim x_i)\)) and at least two of \(a_i, b_i, c_i \) for each \(i \) (because of triangle), so only way for \(C \) to have size \(s + 2r \) is to contain exactly one of \(x_i \) or \(\sim x_i \) and exactly two of \(a_i, b_i, c_i \), for each \(i \). Since \(C \) covers all edges with only two vertices per triangle, the third vertex in each triangle must have its “outside” edge covered because of \(x_i \) or \(\sim x_i \). If we set literals according to choices of \(x_i \) or \(\sim x_i \) in \(C \), this will make formula \(F \) true: at least one literal will be true in each clause (because at least one edge from “variables” to “clauses” is covered by the variable in \(C \)).

SUBSET-SUM: Given a set of positive integers \(S \) and a positive integer target \(t \), is there some subset \(S' \) of \(S \) whose sum is exactly \(t \), i.e., \(\sum_{x \in S'} x = t \)?

SUBSET-SUM (SS) is NPC:

- SS is in NP because it takes polytime to verify that the certificate represents a subset of \(S \) whose sum is \(t \)

 1- check if all items in the certificate \(c \) is in \(S \).
 2- check if sum of the items in \(c \) is \(t \).

- SS is NP-hard because \(3\text{SAT} \leq_p \text{SS} \):

 Given formula \(F = (a_1 \lor b_1 \lor c_1) \land \cdots \land (a_r \lor b_r \lor c_r) \) where \(a_i, b_i, c_i \in \{x_1, \sim x_1, \ldots, x_s, \sim x_s\} \), construct numbers as follows:

 - For \(j = 1, \ldots, s \):
 number \(x_j = 1 \) followed by \(s - j \) 0s followed by \(r \) digits where \(k\)-th next digit equals 1 if \(x_j \) appears in clause \(C_k \), 0 otherwise;
 number \(\sim x_j = 1 \) followed by \(s - j \) 0s followed by \(r \) digits where \(k\)-th next digit equals 1 if \(\sim x_j \) appears in clause \(C_k \), 0 otherwise.

 - For \(j = 1, \ldots, r \):
 number \(C_j = 1 \) followed by \(r - j \) 0s and
 number \(D_j = 2 \) followed by \(r - j \) 0s.

 - Target \(t = s \) 1s followed by \(r \) 4s.

Clearly, this can be constructed in polytime.

Example of reduction for \(F = (x_1 \lor \sim x_2 \lor \sim x_4) \land (x_2 \lor \sim x_3 \lor x_1) \land (\sim x_3 \lor x_4 \lor \sim x_2) \):

So the numbers are:
If \(F \) is satisfiable, then there is a setting of variables such that each clause of \(F \) contains at least one true literal. Consider the subset \(S' = \{ \text{numbers that correspond to true literals} \} \). By construction, \(\sum_{x \in S'} x = s \) is followed by \(r \) digits, each one of which is either 1, 2, or 3 (because each clause contains at least one true literal). This means it is possible to add suitable numbers from \(\{ C_1, D_1, \ldots, C_r, D_r \} \) so that the last \(r \) digits of the sum are equal to 4, i.e., there is a subset \(S' \) such that \(\sum_{x \in S'} x = t \).

If there is a subset \(S' \) of \(S \) such that \(\sum_{x \in S'} x = t \), then \(S' \) must contain exactly one of \(\{ x_j, \sim x_j \} \) for \(j = 1, \ldots, n \), because that is the only way for the numbers in \(S' \) to add to the target (with a 1 in the first \(s \) digits). Then, \(F \) is satisfied by setting each variable according to the numbers in \(S' \): for each clause \(j \), the corresponding digit in the target is equal to 4 but the numbers \(C_j \) and \(D_j \) together only add up to 3 in that digit; this means that the selection of numbers in \(S' \) must include some literal with a 1 in \(t \).

Template for proofs of NP-completeness: To show \(A \) is NPC, prove that

- \(A \) in NP: Describe a polytime verifier for \(A \).
 “Given \((x, c) \), check \(c \) has correct format and properties...”
Argue that verifier runs in polytime and that \(x \) is a yes-instance iff verifier outputs “yes” for some \(c \).

Note that all problems in NP we’ve seen so far have a similar structure to their definition: “the answer for object \(A \) is Yes iff there is some related object \(B \) such that some property holds about \(A \) and \(B \)” –
for example, for CLIQUE: “the answer for undirected graphs G and integers k is Yes iff there is a subset of vertices C that forms a k-clique in G”. For all such problems, the verifier will also have a common structure: “on input (A, c), check that c encodes an object B and that A and B have the required property”. Because of the way these decision problems are defined, this guarantees (A, c) is accepted for some c iff A is a yes-instance. All that remains is to ensure checking property of A, B can be done in polytime.

- A is NP-hard: Show $B \leq_P A$ for some NP-hard problem B.
 “Given x, construct y_x as follows: ...”
 Argue that construction can be carried out in polytime and that x yes-instance iff y_x yes-instance (often by showing x yes-instance $\Rightarrow y_x$ yes-instance and y_x yes-instance $\Rightarrow x$ yes-instance)
 In more detail, this involves:
 - starting with arbitrary input y for B (i.e., without making any assumption about whether y is a yes-instance or a no-instance),
 - describing explicit construction of specific input x_y for A,
 - arguing construction can be carried out in polytime,
 - arguing if y is a yes-instance, then so is x_y,
 - arguing if x_y is a yes-instance, then so was y (or equivalently, if y is a no-instance, then so is x_y).

 Watch last step! Argument starts from x_y constructed earlier (not from arbitrary input x for A), and relates it to arbitrary y that x_y was constructed from.

Traps to watch out for:
- Direction of reduction: must start from arbitrary input x for B (cannot place any restrictions on input; reduction must work with all possible inputs) and explicitly construct specific input y_x for A.
- “Reduction” that does something different for yes-instances vs. no-instances: this would involve telling the difference, which can’t be done in polytime when B is NP-hard.

Some NP-Complete problems: