The effect of variable elastic topologies on the structure of ocu orientation maps. Miguel Á. Carreira-Perpiñán and Geoffrey J. Goo Dept. of Neuroscience, Georgetown Univ. Medical Center, Washingto

roduction

Elastic net-type models currently give the best match with experimental data regarding the

match with experimental data regarding the		Orientation polar map				
columns. However, the standard elastic net	Cortical interaction	$\frac{\beta}{\alpha} = 1$	$\frac{\beta}{\alpha} = 10$	$\frac{\beta}{\alpha} = 100$	$\frac{\beta}{\alpha} = 1000$	$\frac{\beta}{\alpha} = 1$
model assumes a particular form of cortical in- teraction, and the effect on the resulting maps of varying this form has not been explored. Here we show that using different forms can have	1st-order (0,−1,1)					
important consequences for map development and structure.	2nd-order (1, -2, 1)	k = 0.001 (frame 41)	k = 0.01	K= 0.01		
C The elastic net model		K = 0.001 (frame 41)	K = 0.01	K = 0.01	K = 0.001	ĸ
The elastic net minimises an energy function <i>E</i> which trades of coverage and continuity: $E\left(\{\mathbf{y}_m\}_{m=1}^M, K\right) = -\alpha K \sum_{m=1}^N \log \sum_{m=1}^M e^{-\frac{1}{2}\left\ \frac{\mathbf{x}_m - \mathbf{y}_m}{K}\right\ ^2} + \frac{\beta}{2} \left\ \mathbf{D}\mathbf{Y}^T\right\ ^2$	3rd-order $\frac{1}{2}(-1, 2, 0, -2, 1)$	K = 0.01 (frame 4)	K = 0.01	K = 0.01	K=0.01	K
$\underbrace{n=1}_{\text{coverage term}} \underbrace{n=1}_{\text{continuity term}}$ (receptive fields) (cortical interaction)	4th-order (1, -4, 6, -4, 1)					
 x: Feature points y, Y: Cortical receptive field locations 			Ос	ular domina	nce	
K:Receptive field width $\begin{cases} annealed: slowly reduced \\ nonannealed: kept constant \\ \\ \end{tabular}$ α, β :Weighting of coverage and continuity terms \\ \\ \end{tabular}D:Generalised definition of continuity (or cortical interaction):	<i>1st-order</i> (0,−1,1)	K = 0.001 (frame 41)		K= 0.01		K
TypeStencilEffec. cortical interaction61st order $(0, -1, 1)$ All-excitatory1st order $(1, -2, 1)$ Mexican hat2nd order $\frac{1}{2}(-1, 2, 0, -2, 1)$ -2 3rd order $\frac{1}{2}(-1, -4, 6, -4, 1)$ -2	2nd-order (1, -2, 1)	K = 0.01 (trame 4)			κ = 0.01	K
3 Fourier analysis of cortical	3rd-order $\frac{1}{2}(-1, 2, 0, -2, 1)$					
interaction term		K = 0.001 (frame 41)				
For a continuous 1D net, the interaction term is a filtering or convolu- tion. In the Fourier domain (x: cortical location, z: frequency):	4th-order $(1, -4, 6, -4, 1)$					
cortical interaction term = $\int \mathbf{D}y ^2 dx$						

 $= \int |\mathcal{F}(\mathbf{D}y)|^2 dz$

Since the types of interaction D above are band-pass filters, minimising the interaction term results in suppressing the frequencies in that band. Besides, the higher interaction order, the higher the maximum frequency allowed.

• Higher-order cortical interactions give narrower columns.

2D net: ocularity + orientation + **2D** retinotopy

Effect of the continuity term on map structure (with annealing)

Summary of results

- very low: all interaction types behave similarly
- $\frac{p}{\alpha}$: \langle high: wider columns
 - very high: prevents segregation for 1st-order.

Previous studies considered only the 1st-order interaction with very low $\frac{\beta}{\alpha}$.

1st-order: mostly away from ocular dominance borders • Pinwheel location:) order > 1: many on ocular dominance borders. • With annealing, initial maps arise with a specific stripe width that remains fixed. • Without annealing, the initial stripes widen and there is pinwheel annihilation. • The 3rd-order interaction can show discretisation artifacts.

ular dominance and odhill. on, DC. 475.21					
5 1D net: ocularity + With annealing 1st-order $(0, -1, 1)$	1D retinotopy Without annealing 2nd-order $(1, -2, 1)$				
$\frac{2nd-order}{(1,-2,1)}$					
$\mathbf{K} = 0.0010719 (trame 10)$					
$-\Delta \Delta \Delta \Delta \Delta \Delta \Delta \Delta$					

- With annealing, the development sequence is:
- 1. Net unselective to ocularity.
- 2. Initial wave appears (bifurcation of energy function).
- 3. Final state is a set of stripes.

The 2nd-order interaction enforces smoother transitions between ocularity values (observe rounded corners) than the 1st-order one (observe sharp corners). • Without annealing, there exists loop elimination for a range of values of K for cortical interactions of order > 1 (cf. pinwheel annihilation).

• For very small $\frac{\beta}{2}$ all interaction types give a similar map structure.

Conclusions

- More general forms of cortical interaction can be introduced into the elastic net.
- Map structure and development is sensitive to the type of cortical interaction.
- Quantitative analysis of these differences is in progress.
- This provides additional flexibility for the algorithm to account for differences between species, and between different regions of V1.