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Abstract

Continuous latent variable models (cLVMs) are probabilistic models that represent a distribution in a
high-dimensional Euclidean space using a small number of continuous, latent variables. This thesis explores,
theoretically and practically, the ability of cLVMs for dimensionality reduction and sequential data reconstruc-
tion.

The first part of the thesis reviews and extends the theory of cLVMs: definition in terms of a prior distribu-
tion in latent space, a mapping to data space and a noise model; maximum likelihood parameter estimation with
an expectation-maximisation (EM) algorithm; specific cLVMs (factor analysis, principal component analysis
(PCA), independent component analysis, independent factor analysis and the generative topographic mapping
(GTM)); mixtures of cLVMs; identifiability, interpretability and visualisation; and derivation of mappings for
dimensionality reduction and reconstruction and their properties, such as continuity, for each cLVM. We
extend GTM to diagonal noise and give a corresponding EM algorithm.

We also describe a discrete LVM for binary data, Bernoulli mixtures, widely used in practice. We show
that their log-likelihood surface has no singularities, unlike other mixture models, which makes EM estimation
practical; and that their theoretical non-identifiability is rarely realised in actual estimates, which makes them
interpretable.

The second part deals with dimensionality reduction. We define the problem and give an extensive, critical
review of nonprobabilistic methods for it: linear methods (PCA, projection pursuit), nonlinear autoassoci-
ators, kernel methods, local dimensionality reduction, principal curves, vector quantisation methods (elastic
net, self-organising map) and multidimensional scaling methods. We then empirically evaluate, in terms of
reconstruction error, computation time and visualisation, several latent-variable methods for dimensionality
reduction of binary electropalatographic (EPG) data: PCA, factor analysis, mixtures of factor analysers, GTM
and Bernoulli mixtures. We compare these methods with earlier, nonadaptive EPG data reduction methods
and derive 2D maps of EPG sequences for use in speech research and therapy.

The last part of this thesis proposes a new method for missing data reconstruction of sequential data that
includes as particular case the inversion of many-to-one mappings. We define the problem, distinguish it from
inverse problems, and show when both coincide. The method is based on multiple pointwise reconstruction and
constraint optimisation. Multiple pointwise reconstruction uses a Gaussian mixture joint density model for the
data, conveniently implemented with a nonlinear cLVM (GTM). The modes of the conditional distribution
of missing values given present values at each point in the sequence represent local candidate reconstructions.
A global sequence reconstruction is obtained by efficiently optimising a constraint, such as continuity or
smoothness, with dynamic programming. We give a probabilistic interpretation of the method. We derive
two algorithms for exhaustive mode finding in Gaussian mixtures, based on gradient-quadratic search and
fixed-point search, respectively; as well as estimates of error bars for each mode and a measure of distribution
sparseness. We discuss the advantages of the method over previous work based on the conditional mean or
on universal mapping approximators (including ensembles and recurrent networks), conditional distribution
estimation, vector quantisation and statistical analysis of missing data. We study the performance of the
method with synthetic data (a toy example and an inverse kinematics problem) and real data (mapping
between EPG and acoustic data). We describe the possible application of the method to several well-known
reconstruction or inversion problems: decoding of neural population activity for hippocampal place cells;
wind field retrieval from scatterometer data; inverse kinematics and dynamics of a redundant manipulator;
acoustic-to-articulatory mapping; audiovisual mappings for speech recognition; and recognition of occluded
speech.

Keywords: continuous latent variable models, generative models, generative topographic mapping (GTM),
identifiability, Bernoulli mixtures, electropalatography, dimensionality reduction, inverse problems, missing
data reconstruction, sequential data reconstruction, mapping inversion, conditional distribution, mode finding,
continuity constraints, distribution sparseness, universal mapping approximators, vector quantisation, inverse
kinematics, acoustic-to-articulatory mapping.



Preface

Some chapters of this thesis are largely self-contained and can be read without regard to the rest of the thesis,
particularly chapter 8 (mode finding in Gaussian mixtures) and also chapters 2 (continuous latent variable
models) and 4 (dimensionality reduction with non-probabilistic models). I have tried to keep the notation
over the whole thesis as uniform as possible, sometimes at the expense of usual conventions in other fields.
I encourage the reader to turn to the notation list and glossary in case of doubt. Occasionally, I have also
included examples to illustrate the meaning and significance of the ideas presented, because the abstract,
generic character of pattern recognition models and algorithms can sometimes give the impression of lacking
practical applicability. Most figures should be readable when printed in black and white except perhaps some
of those in chapters 9 and 10.

As I wrote this thesis, in particular the painstaking literature reviews, I have had many times the impression
that any idea that at first seemed very new and original was actually a reelaboration of a previously known
idea (although perhaps not well known). The contributions of this thesis are no exception. The fact that the
development of new ideas depends so heavily on all the previous, inherited ideas and the relative smallness of
the individual contributions make it difficult, in my opinion, to claim sole authorship of a new idea. Newton
may have stood upon the shoulders of giants, but nowadays scientists are more like ants standing upon an
anthill.

By a caprice of fortune, I am writing these lines the 20th anniversary of the infamous coup d’etat of 23-F in
Madrid, which tried to end the then very young Spanish democracy that had succeeded Franco’s dictatorship.
I still remember the unusually deserted streets that afternoon.

I have no control on the future use (if any) by others of the ideas of this dissertation, but I hope they will
only be used towards peaceful ends.

Miguel Á. Carreira-Perpiñán
Washington, D.C. February 23, 2001
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• M. Á. Carreira-Perpiñán and S. Renals. A latent variable modelling approach to the acoustic-to-
articulatory mapping problem. In J. J. Ohala, Y. Hasegawa, M. Ohala, D. Granville, and A. C. Bailey,
editors, Proc. of the 14th International Congress of Phonetic Sciences (ICPhS’99), pages 2013–2016, San
Francisco, USA, Aug. 1–7 1999.
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• M. Á. Carreira-Perpiñán and S. Renals. Experimental evaluation of latent variable models for dimen-
sionality reduction. In M. Niranjan, editor, Proc. of the 1998 IEEE Signal Processing Society Workshop
on Neural Networks for Signal Processing (NNSP98), pages 165–173, Cambridge, UK, Sept. 1998.
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Notation

Generally, we denote scalars in italics (m, x, α), vectors in lowercase boldface (x, µ), matrices in uppercase
boldface (A, Λ) and sets in uppercase calligraphic (X ) or blackboard face (R). We will use the notation p(x)
to mean either the probability that a discrete random variable X takes the value x, Pr [X = x], or the density
of a continuous random variable X at the value x, unless the context would make the notation ambiguous.
Further definitions are given below in alphabetical order. In exceptional cases, some of these definitions may
be overriden.

def
= By definition equal to.
′ (prime) It usually indicates a new variable related by some transformation to an old variable, e.g.

t′ = At. It can also mean the derivative of a function.
|·| The absolute value of a real number or the determinant of a matrix.

‖·‖ or ‖·‖2 The Euclidean, or sum of squares, or L2 norm: ‖t‖22
def
=
∑D
d=1 x

2
d; or, for a density p:

‖p‖22
def
=
∫
p2(t) dt = Ep(t) {p(t)}.

‖·‖∞ The maximum norm: ‖t‖∞
def
= maxd=1,...,D{|xd|}.

bxc The closest integer smaller or equal than x.
dxe The closest integer greater or equal than x.

〈p, q〉 Scalar product of densities p, q: 〈p, q〉 def
=
∫
p(t)q(t) dt.

1 = (1, 1, . . . , 1)T A vector of ones of the relevant dimension.
AT The transpose of matrix A.
A+ The pseudoinverse of matrix A.
B(p) A (multivariate) Bernoulli distribution of parameter p.
C A continuity constraint.
CDR D-hypercube centred in the origin with side 2R: CD

R = {x ∈ RD : ‖x‖∞ ≤ R} = [−R,R]D

(for the hollow hypercube replace ≤ by =).
D Dimension of the data space T . Index variable: d = 1, . . . , D.
d(x,y) A distance between vectors x and y (e.g. the Euclidean distance).
D (p‖q) The Kullback-Leibler distance (or directed divergence, or relative entropy) from p to q,

D (p‖q) def
= Ep

{

ln p(x)
q(x)

}

, where p and q are probability mass or density functions.

δij , δ(x) The Dirac delta function for discrete variables i and j, and for (multivariate) continuous
variable x, respectively.

δnm In multidimensional scaling, the pairwise proximity between items n and m (e.g. the dis-
tance between data points tn and tm).

∆(x,y) A discrete derivative or gradient of some objective function.
diag (A) The “diag” operator sets all the off-diagonal elements of a matrix to zero.
diag (λ1, . . . , λD) A diagonal matrix with λ1, . . . , λD in the diagonal.
ε A small positive value: 0 < ε� 1.
e Zero-mean random variable added to another random variable to represent an error.

Ep(t) {f(t)} Mean of f(t) with respect to the distribution of t: Ep(t) {f(t)} def
=
∫

f(t)p(t) dt.
F Number of basis functions in the latent space for GTM. Index variable: f = 1, . . . , F .
φ, Φ The pdf and cdf of the univariate normal distribution.
F A continuous function of the experimental conditions variables z.
F A smoothness constraint.
F{·} The Fourier transform. Also, the feature space in kernel PCA.
f The reconstruction mapping from latent or reduced-dimension representation space X to

data space T .
f ◦ g The composition of functions f and g, f(g(·)).
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F The dimensionality reduction mapping from data space T to latent or reduced-dimension
representation space X .

g A forward mapping, i.e., a univalued mapping with a multivalued inverse. A forward
mapping typically expresses a causal relation.

g, g(t) Gradient vector (of the density p(t) with respect to the independent variable t).

h(p) Differential entropy of density p: h(p)
def
= E {− ln p} = −

∫
p(t) ln p(t) dt.

H, H(t) Hessian matrix (of the density p(t) with respect to the independent variable t).
HD Half-space of RD: HD = {x ∈ RD : xD ≥ 0}.
I A projection pursuit index.

IM(x) Indicator function, IM(x) =

{

1 x ∈M
0 otherwise

.

ID D ×D identity matrix.

im f , imA The image or range space of a mapping f or matrix A, respectively: im f
def
= {t ∈ T : t =

f(x) for some x ∈ X} = f(X ).
K Number of samples of a Monte Carlo approximation of an integral (in particular, number

of latent grid points for GTM). Index variable: k = 1, . . . ,K.

kerA The kernel or null space of a matrix A: kerA
def
= {x ∈ X : Ax = 0}.

L Dimension of the latent space X . Index variable: l = 1, . . . , L.

L(x) The logarithm of the density p(x), L(x)
def
= ln p(x).

L(Θ) The log-likelihood function (of some density model given a certain sample) of parameters
Θ = θ1, θ2, . . .

L2 The space of square-integrable functions.

Ln norm The norm ‖t‖n
def
=
(
∑D
d=1 |t|

n
d

)1/n

; or, for a density p: ‖p‖n
def
=
(∫
pn(t) dt

)1/n
=

(
Ep(t)

{
pn−1(t)

})1/n
.

M Number of components of a mixture model. Index variable: m = 1, . . . ,M .
µ Location parameter of a model. Also, centroid or mean vector or reference vector in data

space for mixture models, vector quantisation and Kohonen’s self-organising maps.
N Number of points of a data set {tn}Nn=1. Index variable: n = 1, . . . , N .
ND(µ,Σ) D-dimensional normal distribution of mean µ and covariance matrix Σ.
N, R The sets of natural and real numbers, respectively. By convention, N does not include zero.
P, M Sets of indices for present and missing variables, respectively.
σ(x) = 1

1+e−x Sigmoid function.

S Sample covariance matrix of a data set {tn}Nn=1: S
def
= 1

N

∑N
n=1 (tn − t)(tn − t)T .

Σ Covariance matrix parameter of a model.
t D-dimensional data variable.

t Sample mean of a data set {tn}Nn=1: t
def
= 1

N

∑N
n=1 tn.

τ Iteration index (e.g. for EM algorithms); time.
tP → tM tM as a function of tP .
{tn}Nn=1 Set of N vectors not necessarily in sequence.
{t(n)}Nn=1 Set of N vectors in (temporal) sequence.
T Data space. Also, the input space in kernel PCA.
θ A parameter of a model; a threshold value.
Θ The parameters of a model, Θ = θ1, θ2, . . .
tr (A) Trace of the matrix A.
UD(R) D-dimensional uniform distribution over the hyperrectangle R, e.g. U(a, b) for the interval

[a, b].
x L-dimensional latent variable.
X Latent space.
z Experimental conditions variables.
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Glossary

ASR Automatic speech recognition.
BCM Bienenstock-Cooper-Munro model of neuron selectivity.
branch A submanifold of the trace of a forward function g where g is invertible (one-to-one).
CART Classification and regression trees.
cdf Cumulative distribution function.
EMA Electromagnetic articulography.
EPG Electropalatography.
FA Factor analysis.
FIR Finite impulse response (filter).
ICA Independent component analysis.
iid Independent identically distributed.
IFA Independent factor analysis.
GMM Gaussian mixture model.
GTM Generative topographic mapping.
HMM Hidden Markov model.
IPA International Phonetic Association.
LPC Linear predictive coding.
LSP Line spectra pairs (a type of features extracted from the speech waveform).
MAP Maximum a posteriori Probability.
MAR Missing at random.
MARS Multivariate adaptive regression splines.
MCAR Missing completely at random.
MDS Multidimensional scaling.
MFCC Mel-frequency cepstral coefficients (a type of features extracted from the speech waveform).
ML Maximum likelihood.
MLP Multilayer perceptron.
PCA Principal component analysis.
pdf Probability density function.
phonemic vs
phonetic
transcription

A phoneme is an abstract unit or category of the phonetic system of a language and cor-
responds to several speech sounds which are perceived to be a single distinctive sound in
the language but which are phonetically different (e.g. allophones, as the velar

�����
of ‘cool’

and the palatal
�����

of ‘keel’). Conventionally, phonemic transcriptions are enclosed between
slashes while phonetic transcriptions are enclosed between square brackets, such as

�����
	 ������������
and � ������
	 ���������������� , respectively, for the word ‘phonetics’.

PLP Perceptual linear predictive coefficients (a type of features extracted from the speech wave-
form).

RBF Radial basis function: g(x) = k
(

‖x−a‖
b

)

with centre a, smoothing factor b and kernel function

k (integrable, with integral different from 0, e.g. Gaussian).
ridge function g(x) = σ(aTx + b) with direction a, threshold b and nonlinearity σ (typically sigmoid, e.g.

the logistic function).
RMS Root mean square (error).
shuffled A data set {tn}Nn=1 where the indices n = 1, . . . , N have been randomly permuted, so that any

correlation based on the ordering of the original data (e.g. proximity of consecutive points)
has been destroyed.
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sigmoid Function σ : R→ R with limx→−∞ σ(x) = 0 and limx→+∞ σ(x) = 1, e.g. the logistic function

f(x)
def
= 1

1+e−x .

SOM Self-organising map.
TIMIT Texas Instruments and MIT acoustic phonetic database.
UMA Universal mapping approximator.
VCV Vowel-consonant-vowel cluster.
WER Word error rate (percentage of words in the reference transcript that an ASR system incor-

rectly reported: insertions, substitutions and deletions).
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Chapter 1

Introduction

This thesis deals with the application of continuous latent variable models—a general, powerful class of proba-
bilistic models—to two important pattern recognition problems: dimensionality reduction and sequential data
reconstruction. The theoretical and practical investigation of each of these three issues, the model class and
the two problems, makes up each of the three parts that the thesis consists of.

Dimensionality reduction is the process by which we represent a system that appears as having several
degrees of freedom using a smaller number of degrees of freedom. For example, the position of an aeroplane
with respect to the centre of the Earth is a three-dimensional vector (x, y, z), but we can conveniently represent
it with only two variables, latitude and longitude, and consider all radial variation as noise. In a statistical
learning or pattern recognition approach, such representation is not deduced by analysis but inferred or learned
from observed data from the system: positions (x, y, z) where the plane has been observed, in our case.
Continuous latent variable models are able to represent such a change of coordinates (the low-dimensional
region where the aeroplane is constrained to be), to account for the amount in which the aeroplane can
deviate out of that region (the noise) and to determine how likely each part of the region is to contain the
aeroplane. Dimensionality reduction has applications such as feature extraction, visualisation and exploratory
data analysis. Sequential data reconstruction consists of, given a sequence of vectors where there are some
values that have gone missing, filling in those values to recover the original sequence. For the example of the
aeroplane, imagine the pilot transmits its position (x, y, z) at regular intervals but that occasionally some of
the xs or ys or zs do not reach the receiver due to interference. Can we recover the aeroplane trajectory? This
is the problem of missing data reconstruction for sequential data.
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In part I (chapters 2–3) we review and extend the theory of latent variable mod-
els. Chapter 2 concentrates on continuous latent variable models. These are parametric
probabilistic models that represent a distribution in a high-dimensional Euclidean space
using a small number of continuous, latent variables. Their aim is, given observed high-
dimensional data, to find a low-dimensional manifold (a coordinate transformation) where
the data would live if there was no noise, and to model the noise itself. This is achieved
by the three components that define a continuous latent variable model: a prior distribu-
tion in the latent space, a smooth mapping from latent to data space and a noise model.
Choosing functional forms for these gives specific latent variable models; for example, a
linear mapping and normal prior and noise give the well-known factor analysis model.

Unfortunately, not every choice leads to models that can be handled analytically and to convenient algorithms
for parameter estimation. This is due to the difficulty of integrating functions of many variables. We discuss
what choices are feasible and then describe all known types of latent variable models: factor analysis, principal
component analysis, independent component analysis, independent factor analysis and the generative topo-
graphic mapping (GTM). Maximum likelihood parameter estimation of latent variable models can usually
be done with an EM algorithm, whose simplicity and monotonic convergence makes it very convenient. We
show how to construct and estimate finite mixtures of latent variable models and their relation to Gaussian
mixtures. We discuss the interpretability of the latent variables; the identifiability of each specific latent vari-
able model, i.e., whether different parameter estimates correspond to identical observed distributions; and the
issue of visualising the latent variable representation. We then turn to dimensionality reduction with latent
variable models. A dimensionality reduction mapping can be defined from observed to latent variables via
Bayes’ theorem; we discuss, for every latent variable model as well as for mixtures of them, some properties
of this mapping, including its continuity and why it is not the inverse of the mapping from latent to observed
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space. Finally, we illustrate several of the previous concepts with a worked example of a latent variable model.
We complement the chapter with appendices giving details on some mathematical properties of latent variable
models; and we extend the GTM model to diagonal noise and give a corresponding EM algorithm. Such a
model is useful when the observed variables have different local scales of dispersion, which cannot be accounted
for by sphering the data.
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In chapter 3 we consider a discrete latent variable model that we use in chapter 5:
finite mixtures of multivariate Bernoulli distributions. This model, widely used for binary
data, is non-identifiable (different values for the parameters can give rise to exactly the
same distribution), which casts doubts upon the interpretability of parameter estimates—
since they may not be unique. We give empirical evidence, with synthetic and real data,
that the theoretical non-identifiability of Bernoulli mixtures is rarely realised in actual
estimates, which can then be confidently interpreted. We also show that—unlike for other
mixture models—the log-likelihood surface of Bernoulli mixtures has no singularities of
infinite value and therefore that EM estimation is practical, always converging to a proper
maximum likelihood estimate (chapters 5 and 9 show how singularities do affect the estimation of mixtures of
factor analysers and Gaussian mixtures, respectively).

Part II (chapters 4–5) deals with dimensionality reduction. Chapter 4 is an extensive,
critical review of nonprobabilistic dimensionality reduction methods, that we compare to
latent variable models. We first define the problem of dimensionality reduction, propose
a classification of dimensionality reduction problems, show how the geometry of high-
dimensional Euclidean spaces gives rise to the curse of the dimensionality and discuss how
the concept of intrinsic dimension of a sample is based on a-priori expectations. We then
review linear methods (PCA, projection pursuit), nonlinear autoassociators, kernel meth-

ods, local dimensionality reduction, principal curves, vector quantisation methods (elastic net, self-organising
map) and multidimensional scaling methods (based on straight-line or geodetic distances). We close the chapter
with a digression on dimensionality reduction with discrete variables.
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In chapter 5 we empirically evaluate, in terms of reconstruction error, computation
time and visualisation, several latent-variable methods for dimensionality reduction of
electropalatographic (EPG) data, which are binary vectors: PCA, factor analysis, mix-
tures of factor analysers, GTM and Bernoulli mixtures. We compare the results of these
methods with those of earlier, nonadaptive EPG data reduction methods and derive two-
dimensional maps that can be used for the analysis of EPG sequences in speech research
and therapy. We also show that the intrinsic dimensionality of the EPG data may be quite
lower than that suggested by earlier studies.
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Part III (chapters 6–10) of the thesis proposes a new method for missing data recon-
struction of sequential data inspired by latent variable models. Missing data reconstruction
is a very general problem that includes as special cases mapping approximation (regres-
sion) and mapping inversion (of many-to-one mappings). The latter is not generally the
same as what are properly called inverse problems. Chapter 6 is devoted to briefly re-
viewing inverse problem theory and its methods (Bayesian and nonprobabilistic), to relate
Bayesian inverse problem theory to latent variable models and to examine when an inverse
problem is reducible to a mapping inversion problem.

PSfrag replacements
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Chapter 7 defines the problem of data reconstruction of a sequence, describes the
method proposed and discusses related methods. The phenomenon of missing data hap-
pens when, in a sequence of real-valued vectors, some components of some vectors are
unobserved, deleted or somehow unavailable. For example, in regression the predictor
variables are always present and the response ones always missing. The problem is then
to fill in the missing values so that the resulting sequence is as close to the original one
as possible. The difficulty is that, at a given vector, the present values usually do not
uniquely determine the missing ones; but, if the variation of the vectors along the se-
quence is continuous, neighbouring vectors are constrained to be close and this can be
used to determine the missing data. This suggests the two ideas on which the proposed
method is based: multiple pointwise reconstruction and constraint optimisation. Multiple
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pointwise reconstruction consists of finding the values of the missing variables that are compatible with the
values of the present variables, and results in a set of candidate reconstructions for each vector in the sequence;
in other words, it represents multivalued mappings. We propose the use of the modes of the conditional distri-
bution of the missing variables given the present ones as such local candidate reconstructions. We investigate
how to quantify the sparseness of a conditional distribution: the degree to which the conditioned-on variables
determine the values of the other variables. The flexible construction of arbitrary conditional distributions
requires a joint density model for the data. We implement the joint density model with a continuous latent
variable model (GTM) that results in a Gaussian mixture: this allows multimodal conditional distributions
(corresponding to multivalued mappings) which can be efficiently computed. Once we have the candidate
reconstructions of each vector in the sequence, a global sequence reconstruction is obtained by optimising
a continuity constraint using dynamic programming. We show how to extend the constraint to several di-
mensions (e.g. a continuous field rather than a continuous sequence) and to other constraint types, such as
smoothness; and we give a probabilistic interpretation of the method.

We describe the possible future application of the method to several well-known reconstruction or inver-
sion problems: decoding of neural population activity for hippocampal place cells; wind field retrieval from
scatterometer data; inverse kinematics and dynamics of a redundant manipulator; the acoustic-to-articulatory
mapping; audiovisual mappings for speech recognition; and recognition of occluded speech.

Several of the basic ideas of our method, or related ideas, have been used in different contexts earlier in
the literature and so we give a careful review of such approaches, comparing them to ours. They include work
based on the conditional mean or on universal mapping approximators (including ensembles and recurrent
networks), conditional distribution estimation, vector quantisation and statistical analysis of missing data.

Our multiple pointwise reconstruction approach requires finding all the modes of a
Gaussian mixture. This problem is solved in chapter 8 for a subclass of Gaussian mixtures.
We derive two mode-finding algorithms based on gradient-quadratic search and fixed-point
search, respectively, as well as estimates of the error bars for each mode, based on a
normal approximation with the local Hessian. Apart from their use in our reconstruction
method, these algorithms are generally applicable to other problems, such as clustering
(e.g. determination of subclustering within galaxy systems) or Bayesian analysis (scrutiny

of the posterior modes). The mode-finding algorithms mildly rely on the conjecture that the number of modes
of a Gaussian mixture (of the subclass mentioned) is at most the number of components in the mixture and
that the modes lie in the convex hull of the components. We prove this conjecture for a very particular case
only; the general case remains unproven. The chapter is complemented with a mathematical appendix which
gives, among other results, bounds for the gradient, Hessian and entropy of a Gaussian mixture.
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The next two chapters evaluate the performance of our method and of other methods,
notably the conditional mean and neural networks. Chapter 9 uses two synthetic-data,
low-dimensional examples of forward mappings with multivalued inverses: a toy problem,
which allows the visualisation of the behaviour of the method; and an inverse kinematics
problem for a two-link, planar robot arm (a prototypical case of mapping inversion).
The method is shown to recover the original sequence even when many of the values are
missing, whether the underlying mapping is one-to-one or one-to-many (which causes the
other methods to fail). The examples also show the sensitivity, for regression problems, of
the method to a nonsmooth joint density model.

Chapter 10 evaluates the method with real, high-dimensional data: the mapping be-
tween acoustic waveform and EPG frames. This problem is related to the acoustic-to-
articulatory mapping problem of speech research, which we review, emphasising its po-
tential role in improving automatic speech recognition. We show the difference between
the acoustic-EPG mapping and the acoustic-to-articulatory mapping. The experimental
results confirm that the method works well for arbitrary missing data patterns but is
sensitive to the density model quality for regression problems. We also give computation

times for the reconstruction.
The main ideas and contributions of the thesis are summarised in chapter 11, which also suggests directions

for further research.

❦
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Part I

Theory of continuous latent variable
models and Bernoulli mixtures
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Chapter 2

The continuous latent variable
modelling formalism

This chapter gives the theoretical basis for continuous latent variable models. Section 2.1 defines intuitively
the concept of latent variable models and gives a brief historical introduction to them. Section 2.2 uses a simple
example, inspired by the mechanics of a mobile point, to justify and explain latent variables. Section 2.3 gives
a more rigorous definition, which we will use throughout this thesis. Section 2.6 describes the most important
specific continuous latent variable models and section 2.7 defines mixtures of continuous latent variable models.
The chapter discusses other important topics, including parameter estimation, identifiability, interpretability
and marginalisation in high dimensions. Section 2.9 on dimensionality reduction will be the basis for part II
of the thesis. Section 2.10 very briefly mentions some applications of continuous latent variable models for
dimensionality reduction. Section 2.11 shows a worked example of a simple continuous latent variable model.
Section 2.12 give some complementary mathematical results, in particular the derivation of a diagonal noise
GTM model and of its EM algorithm.

2.1 Introduction and historical overview of latent variable models

Latent variable models are probabilistic models that try to explain a (relatively) high-dimensional process in
terms of a few degrees of freedom. Historically, the idea of latent variables arose primarily from psychometrics,
beginning with the g factor of Spearman (1904) and continuing with other psychologists such as Thomson,
Thurstone and Burt, who were investigating the mental ability of children as suggested by the correlation and
covariance matrices from cognitive tests variables. This eventually led to the development of factor analysis.
Principal component analysis, traditionally not considered a latent variable model, was first thought of by
Pearson (1901) and developed as a multivariate technique by Hotelling (1933). Latent structure analysis,
corresponding to models where the latent variables are categorical, originated with Lazarsfeld and Henry
(1968) as a tool for sociological analysis and had a separate development from factor analysis until recently.
Bartholomew (1987) gives more historical details and references.

The statistics literature classifies latent variable models according to the metric (continuous) or categorical
(discrete) character of the variables involved, as table 2.1 shows. Also, in a broad sense many probabilistic
models commonly used in machine learning can be considered as latent variable models inasmuch as they
include probability distributions for variables which are not observed: mixture models (where the variable
which indexes the components is a latent variable), hidden Markov models (the state sequence is unobserved),

This chapter is an extended version of references Carreira-Perpiñán (1996, 1997).

Observed variables
Metrical Categorical

Metrical Factor analysis Latent trait analysis
Latent

variables Categorical
Latent profile analysis Latent class analysis

Analysis of mixtures

Table 2.1: Classification of latent variable models (adapted from Bartholomew, 1987).
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Helmholtz machines (Dayan et al., 1995) (the activations of each unit), elastic nets (Durbin et al., 1989) (the
tour knots), etc. In this chapter we will concentrate exclusively on latent variable models where both the
latent and the observed variables are continuous (although much of the general treatment applies to discrete
variables too), going much further than the linear-normal model of factor analysis. In some points discrete
variables will appear as a result of a Monte Carlo discretisation. The latent class model where the observed
variables are binary and there is a single discrete latent variable corresponds to the mixture of multivariate
Bernoulli distributions, which is discussed in chapter 3 and used in chapter 5.

In this work, we follow (with minor variations) the theoretical framework currently accepted in statistics for
latent variable models, for which two good references are Everitt (1984) and Bartholomew (1987). However,
these works do not include any of the more recent latent variable models such as GTM, ICA or IFA, and they
do not discuss issues of importance in machine learning, such as the continuity of the dimensionality reduction
mapping or the mixtures of continuous latent variable models. The work of MacKay (1995a) on density
networks, which is the name he uses for nonlinear latent variable models, was pioneering in the introduction of
the latent variable model framework to the machine learning community (in spite of an odd choice of journal).

The traditional treatment of latent variable models in the statistics literature is (Krzanowski, 1988):

1. formulate model (independence and distributional assumptions)

2. estimate parameters (by maximum likelihood)

3. test hypotheses about the parameters

which perhaps explains why most of the statistical research on latent variables has remained in the linear-
normal model of factor analysis (with a few exceptions, e.g. the use of polynomial rather than linear functions;
Etezadi-Amoli and McDonald, 1983; McDonald, 1985): rigorous analysis of nonlinear models is very difficult.
Interesting developments concerning new models and learning algorithms have appeared in the literature of
statistical pattern recognition in the 1990s, as the rest of this chapter will show.

Traditionally, most applications of latent variables have been in psychology and the social sciences, where
hypothesised latent variables such as intelligence, verbal ability or social class are believed to exist; they have
been less used in the natural sciences, where often most variables are measurable (Krzanowski, 1988, p. 502).
This latter statement is not admissible under the generative point of view exposed in sections 2.2 and 2.3,
whereby the processes of measurement and stochastic variation (noise) can make a physical system appear
more high-dimensional than it really is. In fact, factor analysis has been applied to a number of “natural
science” problems (e.g. in botany, biology, geology or engineering) as well as other kinds of latent variable
models recently developed, such as the application of GTM to dimensionality reduction of electropalatographic
data (Carreira-Perpiñán and Renals, 1998a) or of ICA to the removal of artifacts in electroencephalographic
recordings (Makeig et al., 1997). Besides that, the most popular technique for dimensionality reduction,
principal component analysis, has recently been recast in the form of a particular kind of factor analysis—thus
as a latent variable model.

Whether the latent variables revealed can or cannot be interpreted (a delicate issue discussed in sec-
tion 2.8.1), latent variable models are a powerful tool for data analysis when the intrinsic dimensionality of
the problem is smaller than the apparent one and they are specially suited for dimensionality reduction and
missing data reconstruction—as this thesis will try to demonstrate.

2.2 Physical interpretation of the latent variable model formalism

In this section we give a physical flavour to the generative view of latent variables. This generative view will
be properly defined in section 2.3 and should be compared to the physical interpretation given below.

2.2.1 An example: eclipsing spectroscopic binary star

We will introduce the idea of latent variables through an example from astronomy, that of eclipsing spectroscopic
binary stars (Roy, 1978). A binary system is a pair of stars that describe orbits about their common centre of
mass, the two components being gravitationally bound together. An eclipsing spectroscopic binary is viewed
as a single star because the components are so close that they cannot be resolved in a telescope, but its double
nature can be revealed in several ways:

• If the orbit plane contains or is close to the line of sight, the components will totally or partially eclipse
each other, which results in regular diminutions in the binary star’s brightness.
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• The Doppler effect1 of the orbital velocities of the components produces shifts to red and blue on the
spectral lines of the binary star.

A well-known example of this kind of star system is Algol (β Per), which is actually a ternary system.
We will consider a simplified model of eclipsing spectroscopic binary star, in which one star (the primary

star) is much more massive than the other, thus remaining practically stationary in the centre-of-mass system.
The secondary star follows an elliptical orbit around the primary one, which is located at one of the foci.
Figures 2.1 and 2.2 show the trajectory of the secondary star and the basic form of the variation with the
polar angle θ (true anomaly) of:

• The radial velocity vr of the secondary star (i.e., the projection of the velocity vector along the line
of sight from the Earth), to which the spectrum shift is proportional. We are assuming a stationary
observer in Earth, so that the measured radial velocity must be corrected for the Earth’s orbital motion
about the Sun.

• The combined brightness B.

We would like to provide a scenario which, though idealised, is very close to an experimental situation that
an astronomer could find. Thus, we are ignoring complicated effects, such as the facts that: the shape of both
stars can be far from spherical, as they can fill their lobes (bounded by the Roche limit); the stars do not
have uniform brightness across their discs, but decreasing towards the limb (limb darkening); the relativistic
advance of the periastron with time; the perturbation due to third bodies; etc. Thus, the true theoretical
curve for the brightness will not be piecewise linear and the actual curve will vary from one binary system to
another, but it will always conserve the form indicated in fig. 2.2: a periodic curve with two falls corresponding
to the eclipses. Similarly, the spectral shift will be a periodic oscillating function.

Now, an astronomer could collect a number of paired measurements (B, vr) and construct with them
brightness and radial velocity (or spectrum) curves such as those of fig. 2.2 (although perhaps replacing
the true anomaly θ by a more natural variable in this case, such as the time t at which the measurement
was collected). Detailed analysis of the brightness and spectrum curves under the laws of Kepler can provide
knowledge of the eccentricity and inclination of the orbit, the major semiaxis, the radii, masses and luminosities
of the stars, etc.

The knowledge of the astronomer that all measured variables (B and vr) depend on a single variable, the
true anomaly θ, is implicit. That is, given θ, the configuration of the binary system is completely defined and
so are the values of all the variables we could measure: B, vr, even r, etc.

Now let us suppose that we have such a collection of measurements but that we do not know anything about
the underlying model that generated them, i.e., we do not know that the observed brightness and spectral shifts
are (indirectly) governed by Kepler’s law. Let us consider the following question: could it be possible that,
although we are measuring two variables each time we observe the system, just one variable (not necessarily B
or vr) would be enough to determine the configuration of the system completely?2 More concisely: could the
number of degrees of freedom of the binary system be smaller than the number of variables that we measure
from it?

As we discuss in section 4.4, this is a very difficult question to answer if the measurements are corrupted by
noise or if each measurement consists of more than about 3 variables. But if we plotted the collection of pairs
(B, vr) in a plane coordinate system, with each variable being associated with one axis, we would observe the
following fact (fig. 2.3 left): the points do not fall all over the plane, spanning an extensional (two-dimensional)
area, but fall on a curve (dotted in the figure). If we accept that our instruments are imperfect, so that each
point is slightly off the position where it should be, we would observe a situation like that of fig. 2.3 right: the
points now occupy an extensional area (several oval patches), but it is apparent that the region over which the
measurements fall is still a curve. This gives away the fact that the system has only one degree of freedom,
however many different, apparently unrelated variables we want to measure from it. In this example, the
intrinsic dimensionality of the binary system is one but we measure two variables.

Accepting that the intrinsic dimensionality of a system is smaller than the number of variables that we
measure from it, the latent variable framework allows the construction of a generative model for the system.

1If a source emitting radiation has a velocity v relative to the observer, the received radiation that normally has a wavelength

λ when the velocity relative to the observer is 0 will have a measured wavelength λ′ with λ′−λ
λ

= v
c
, where c is the speed of light

and the source is approaching for v < 0 and receding for v > 0. Thus, the Doppler shift is defined as ∆λ
λ

= v
c
, being positive for

red shift and negative for blue shift.
2Of course we could argue that two variables could not be enough to determine the system configuration completely, but we

will suppose that this is not the case.
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anomaly θ for the binary system of fig. 2.1. The units of the vertical axis of the graph have been normalised
by a multiplying factor, so that only the shape of the curves is important. The brightness curve assumes that
the secondary star has a very small radius compared to that of the primary one.
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Figure 2.3: Plots of a number of measurements (B, vr) in a coordinate system where the brightness goes in
abscissas and the radial velocity in ordinates. The left graph corresponds to an ideal, noiseless measuring
device: the measurements fall exactly on a curve. Due to the discontinuity of the brightness B, the curve
in (B, vr) space consists of several disconnected segments. The right graph corresponds to a real, noisy
measuring device: the measurements still fall approximately on a curve, but now span a truly two-dimensional
area. Again, due to the discontinuity of the brightness B, we observe several patches.

This generative model can, under certain circumstances, mimic the behaviour of the system inasmuch as it is
a black box that generates data.

2.2.2 Physical interpretation of latent variables: measurement and noise

We can give a physical interpretation to the latent variable model formalism, to be defined more rigorously
in section 2.3. Consider a (physical) system governed by L independent variables (or degrees of freedom)
x1, . . . , xL, which we can represent as an L-dimensional vector x = (x1, . . . , xL)T taking values in a certain
subset S of RL, called latent or state space (we will consider only continuous variables). That is, every state of
the system is given by a particular vector x in state space S. The variables x1, . . . , xL can be called generalised
coordinates in classical mechanics or quantum numbers in quantum mechanics. In our example of the eclipsing
spectroscopic binary star, the latent or state space is given by the variable θ varying continuously in the [−π, π]
interval3.

The intrinsic dimensionality L of the system is unknown to the observer, who designs an experimental setup
that allows to obtain one observation of the physical system by measuring a fixed number D of variables on
it. Usually the number of observed variables D will be bigger (perhaps much bigger) than the true number of
degrees of freedom L, because the observer needs to capture as much information from the system as possible.
Any measured variable must be a function of the latent variables, so that we can represent the operation
of obtaining one observation from the system by a measurement mapping f : S ⊂ RL −→ M ⊂ RD. We
will assume that the measurement mapping f is nonsingular4, so that the observed variables will span an
L-dimensional manifold M = f(S) in RD; this manifold will be nonlinear in general. We refer to RD as data
or observed space. In our example of the eclipsing spectroscopic binary star, the observed variables would be
the brightness B and the radial velocity vr (or the spectral shift ∆λ), which span a nonlinear one-dimensional
manifold in R2, i.e., a plane curve. That is, if we plotted each observation in a two-dimensional coordinate
system, with one axis being the brightness B and the other one the radial velocity vr, all the points would fall
on a curve instead of filling the plane or a two-dimensional region of it. This would make apparent the true
dimensionality of the system (or, to be more strict, a lower bound of the true dimensionality).

Another set of observed variables, not measurable in practice for an eclipsing spectroscopic binary star,
could be the x and y coordinates of the position vector of the secondary star drawn from the primary star (or

3One could argue that the state of the system is specified by the position variable θ and the velocity (ṙ, θ̇), but for our example
both ṙ and θ̇ are a function of θ.

4We say that a mapping f is nonsingular if the dimension of the image of f is equal to the dimension of its domain: dimS =
dim f(S). If f is linear, this means that the matrix associated with f is full-rank, or equivalently, that the image variables are
linearly independent. If f is nonlinear, its Jacobian must be full-rank. See section A.7 for a discussion of L-manifolds in RD.
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Figure 2.4: Differential displacement of a mobile point in plane polar coordinates (r, θ).

the polar coordinates (r, θ)!), which span precisely the elliptical orbit of figure 2.1. Yet another set of observed
variables could be obtained by taking a picture of the binary system (again not possible practically for our
example) and digitising it at N ×N pixels; thus, D = N 2 could be made as large as desired, but the intrinsic
dimension of the data, equal to the dimension of the generating process, would always be 1.

The mapping f describes an ideal measurement process, in which each point in latent space is exactly
mapped onto a point in the L-dimensional manifoldM in observed space. Thus, it would be possible to invert
f and, for any point in M, recover its corresponding point in latent space (again assuming that L < D and
that f is invertible): f−1 : M ∈ RD −→ S ∈ RL. However, a real measurement process will introduce an
error so that, for a latent point x, the observer will measure a point f(x) + e in data space, where e ∈ RD

is the error. The nature of this error is stochastic, i.e., repeated measurements of the system being in the
same state would give different points in data space, even though the mapped point would be the same. The
measurement error will hide to some extent the true, low-dimensional nature of the data, transforming the
L-dimensional manifold M into a D-dimensional region in data space. The higher the error level, the more
distortion M will suffer. It is customary to refer to this error as noise. We can assume that it follows a
certain probability law, prescribed by a density function p(t|x), which gives the probability that latent point
x will be observed as data point t; we call this the noise model. The distribution of the noise will usually be a
relatively generic, symmetric, zero-mean distribution, such as a normal N (f(x),Σ), but any other distribution
is acceptable if there is a reason for it (e.g. if one suspects that the error is systematic, a skewed distribution
will be necessary).

2.2.3 Probabilities and trajectories

Here we analyse the probability distribution associated with planar movement5. This is an example intended
to show how complex probability distributions of latent variables can arise even in a simple situation.

Assume we have a curve C parameterised by a certain variable θ; in this section, we will consider plane
polar coordinates (r, θ) with r(θ) ≥ 0 and −π ≤ θ ≤ π. We assume that any point of the curve C has a
unique corresponding value of the variable θ, i.e., that r(θ) is invertible. We assume that a moving object is
following the curve C with a certain instantaneous velocity of modulus v(θ) ≥ 0 at each point (r(θ), θ). Given
r(θ) and v(θ), we want to find a function p(θ) that gives at each point the probability density of finding the
moving object at that point, i.e., the probability density of seeing the point under a given polar angle θ. That
is, if we took a number of pictures of the object, we would find it more often in those parts of the curve
where the velocity is small, or in those values of the variable θ for which the trajectory r(θ) varies quickly.
Then, p(θ) dθ is, by definition of probability density function, the probability that the object is in the interval
(θ, θ+ dθ). This probability will be proportional to the time dt that the object takes to move from (r(θ), θ) to
(r(θ + dθ), θ + dθ): p(θ) dθ ∝ dt. Assuming that the velocity is constant during the infinitesimal time interval
dt, the arc length corresponding to the displacement dr will be ds = v dt, where ds = |dr| and dr = d |r|
(see fig. 2.4). From the figure, we have ds =

√

(dr)2 + (r dθ)2, where dr = d |r| is the variation in the radial

5Naturally, movement is not the only reason why probability distributions can appear in physics.
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Figure 2.5: Examples of trajectories and the distributions generated by them. Each row represents a choice
of the moduli of the radius vector r(θ) and the velocity v(θ) as functions of the polar angle θ, and each choice
produces a certain probability distribution p(θ) of finding a mobile point at a certain polar angle θ. For each
row, the figure on the left shows the trajectory (r(θ), θ) in polar coordinates for −π ≤ θ ≤ π (thick line) and
the graph on the right the form of the functions r(θ) (dashed line), v(θ) (dotted line) and p(θ) (solid line). All
rows assume constant velocity modulus v except the first one, which assumes the Keplerian velocity (2.2).
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direction and r dθ the variation in the tangential one. Then:

p(θ) ∝ dt

dθ
=

1

v

ds

dθ
=

1

v

√
(
dr

dθ

)2

+ r2 =
1

v

√

ṙ2 + r2. (2.1)

This function must be normalised dividing by
∫

1
v

√
ṙ2 + r2 dθ, the integral extended over the domain of θ. We

can see from eq. (2.1) that the probability of finding the object in an interval (θ, θ + dθ) will be higher when:

• its velocity v(θ) is small there, or

• the distance to the origin r(θ) is high, or

• the trajectory varies quickly in the interval (θ, θ + dθ), i.e., the radial velocity ṙ is large;

all in accordance with intuition. The trajectories for which the probability density is constant, when the point
moves uniformly in θ-space, are given by the solutions r(θ), v(θ) of the differential equation k2v2 = r2 + ṙ2

for k ∈ R+. For example, for constant velocity this equation has two different solutions (where R = kv is a
positive constant):

• r = R, i.e., a circle centred at the origin;

• r2 + ṙ2 = R2 ⇒ r = R |sin(θ − θ0)|, i.e., a circle passing through the origin.

For the familiar case of closed-orbit Keplerian movement of a two-body problem, the moduli of the radius
vector and the velocity vary as a function of the polar angle θ as follows:

r(θ) =
a(1− ε2)
1 + ε cos θ

v(θ) =

√

µ

(
2

r
− 1

a

)

. (2.2)

That is, the trajectory is an ellipse of eccentricity 0 ≤ ε < 1 and major semiaxis a with a focus in the origin
and µ = G(M + m), where G is the gravitational constant and M and m the masses of both bodies (Roy,
1978). According to the law of areas (Kepler’s second law), the area swept by the radius vector per unit
time is constant, i.e.,

∣
∣ r×dr
dt

∣
∣ = constant (from fig. 2.4,

∣
∣ 1
2r× dr

∣
∣ is the area of the triangle OPQ). Expanding

r = rur and dr = dr ur + r dθ uθ in the radial and tangential directions we obtain r2 dθ
dt = constant. From here

and from the fact that p(θ) ∝ dt
dθ we obtain p(θ) ∝ r2. The same result can be obtained by substituting the

expressions for v and r from eq. (2.2) into eq. (2.1). Taking into account the following integral (Gradshteyn
and Ryzhik, 1994):

∫ π

−π

dθ

(1 + ε cos θ)2
=

2π

(1− ε2)3/2 ,

the exact expression for p(θ) turns out to be:

p(θ) =
(1− ε2)3/2

2π

1

(1 + ε cos θ)2
=

r2

2πa2
√

1− ε2
.

Figure 2.5 shows the trajectory and the form of the variation of r, v and p with θ for the example of
Keplerian closed movement and for other trajectories for constant velocity. Observe how many different forms
the distribution p(θ) can take, all physically possible, even for this simple example of planar movement. If we
consider θ as a latent variable and the point coordinates (x, y) (for example) as observed variables, then p(θ)
will be the prior distribution in latent space, as defined in section 2.3. Therefore, the distribution in latent
space can be very complex, contrasting with the simple prior distributions of the latent variable models of
section 2.6 (all of which are either normal of uniform, except for ICA). See sections 2.3.2 and 2.8 for a further
discussion of this issue.

2.3 Generative modelling using continuous latent variables

In latent variable modelling the assumption is that the observed high-dimensional data is generated from an
underlying low-dimensional process. The high dimensionality arises for several reasons, including stochastic
variation and the measurement process. The objective is to learn the low dimensional generating process
(defined by a small number of latent or hidden variables) along with a noise model, rather than directly
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Figure 2.6: Schematic of a continuous latent variable model with a 3-dimensional data space and a 2-
dimensional latent space.

learning a dimensionality reducing mapping. We will consider that the latent variables are mapped by a fixed
transformation into a higher-dimension observed space (measurement procedure) and noise is added there
(stochastic variation). In contrast with this generative, bottom-up point of view, statisticians often consider
latent variable models from an explanatory, top-down point of view (Bartholomew, 1987): given the empirical
correlation between the observed variables, the mission of the latent variables is to explain those correlations
via the axiom of local independence (explained in section 2.3.1); i.e., given an observed distribution, find a
combination of latent distribution and noise model that approximates it well.

We will consider that both the observed and the latent variables are continuous. Call T ⊆ RD the D-
dimensional data or observed space6. Consider an unknown distribution p(t) in data space, for t ∈ T , of
which we only see a sample {tn}Nn=1 ⊂ T . In latent variable modelling we assume that the distribution in data
space T is actually due to a small number L < D of latent variables acting in combination. We refer to this
L-dimensional space as the latent space X ⊆ RL.

Thus, a point x in latent space X is generated according to a prior distribution p(x) and it is mapped onto
data space T by a smooth, nonsingular mapping f : X → T . BecauseM = f(X ) is an L-dimensional manifold
in T , in order to extend it to the whole D-dimensional data space we define a distribution p(t|x) = p(t|f(x))
on T , called the noise or error model. Figure 2.6 illustrates the idea of latent variable models.

The joint probability density function in the product space T ×X is p(t,x) and integrating over the latent
space gives the marginal distribution in data space:

p(t) =

∫

X
p(t,x) dx =

∫

X
p(t|x)p(x) dx. (2.3)

This is called the fundamental equation of latent variable models by Bartholomew (1984). Thus, a
model is essentially a specification of p(x) and p(t|x)—the specification of the mapping f can be absorbed
into that of p(t|x). The only empirical evidence available concerns p(t) through the sample {tn}Nn=1 and so
the only constraint on p(x) and p(t|x), apart from the need to be nonnegative and integrate to 1, is given by
eq. (2.3). In general, there are many combinations of p(x) and p(t|x) that can satisfy (2.3) for a given p(t).

Eq. (2.3) can also be seen as a continuous mixture model (Everitt and Hand, 1981), with the latent variable
x “indexing” continuously the mixture component. In fact, any density function can be considered as a mixture
density where extra variables have been integrated over.

Eq. (2.3) (or, for that matter, any marginalisation) can also be seen as a particular case of a Fredholm
integral equation of the first kind. A Fredholm integral equation of the first kind (in one dimension) has the
form:

f(t) =

∫ ∞

−∞
K(t, x)g(x) dx

6In the statistical literature the variables in the data space are usually called manifest variables.
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where the function K(t, x) is called the kernel and both K and f are known while g is unknown. If all
functions are probability densities and specifically K(t, x) ≡ p(t|x) we obtain eq. (2.3). Note the similarity of
the Fredholm integral equation with a matrix equation f = Kg, whose solution is g = K−1f . In fact, most
inverse problems (to which chapter 6 is dedicated) are Fredholm integral equations of the first kind. Press
et al. (1992, chapter 18) contains a brief discussion of numerical methods for Fredholm and Volterra integral
equations and further references.

2.3.1 Noise model: the axiom of local independence

If the latent variables are to be efficient in representing faithfully the observed variables, we should expect
that, given a value for the latent variables, the values of any group of observed variables are independent of the
values of any other group of observed variables. Otherwise, the chosen latent variables would not completely
explain the correlations between the observed variables and further latent variables would be necessary. Thus,
for all d, e ∈ {1, . . . , D},

p(td|te,x) = p(td|x)⇒ p(td, te|x) = p(td|te,x)p(te|x) = p(td|x)p(te|x)

and we obtain that the distribution of the observed variables conditioned on the latent variables, or the noise
model, is factorial (the subindex in pd emphasises that the component distributions pd(td|x) need not be the
same):

p(t|x)
def
=

D∏

d=1

pd(td|x). (2.4)

That is, for some L ≤ D, the observed variables are conditionally independent given the latent variables. This
is usually called the axiom of local (or conditional) independence (Bartholomew, 1984; Everitt, 1984). It
will prove very convenient in section 7.12.3 because choosing factorial noise models simplifies the calculations
of conditional distributions considerably.

It should be noted that, rather than an assumption, the axiom of local independence is a definition of what
it means to have fully explained the joint distribution of the observed variables in terms of the latent ones.
The aim is to find the smallest number of latent variables L ≤ D for which it holds (it does, trivially, for
L = D by taking xd ≡ td, provided that (2.3) is satisfied). However, in practice one will need to try several
values of L and select the best one.

Thus said, there have been some suggestions of models that violate the axiom of linear independence.
One example has been proposed for the output distribution of a hidden Markov model: Gopinath et al. (1998)
model the output distribution of state s as a factor analyser with nondiagonal covariance matrix ΣT = UΨsU

T

where Ψs is diagonal and U is an orthogonal matrix shared among states. It is not clear why this constrained
covariance model should have any advantage over other parameter-tying methods (Young, 1996) or over using
a mixture of factor analysers as output distribution (Saul and Rahim, 2000b).

The graphical model (Jensen, 1996; Jordan, 1998; Pearl, 1988; Whittaker, 1990) representing the local
independence is shown in fig. 2.7 (left). Fig. 2.7 (right) shows the graphical model for a latent variable model
with D = 5 and L = 2.

Regarding the actual choice of the functional form of the noise model p(t|f(x)), it seems reasonable to use
a density function with the following properties:
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2 and
µ and Σ are the mean and covariance matrix, respectively, of the mixture, computed as in section 8.7.

• It is centred at f(x), which would be the only possible point in the absence of noise:

∀x ∈ X : E {t|x} = f(x). (2.5)

This is a relaxed form of the self-consistency condition (4.2) of principal curves.

• It decays gradually as the distance to f(x) increases, according to some parameter related to the noise
covariance. However, it need not be symmetric around f(x).

• It assigns nonzero density to every point in the observed space, for two reasons:

– No region of the observed space should have null probability unless knowledge about the problem
at hand dictates otherwise.

– Noise models which have a distribution with finite support (i.e., assigning nonnull probability only
to points inside a finite neighbourhood of the centre, f(x)) make very difficult to compute the data
distribution, p(t). This is so because the integration in latent space (2.3) to compute p(t) for a
given observed point t is restricted to those latent points x for which the neighbourhood of f(x)
contains t (so that p(t|x) > 0).

• It should have a diagonal covariance matrix to account for different scales in the different observed
variables t1, . . . , tD. This latter aspect cannot be overcome in general by sphering the data and using an
isotropic noise model, because if the data has clusters, the intercluster distances affect the covariances;
fig. 2.8 illustrates this with a simple example. The same happens if the data manifold is nonlinear. For
cases where the dispersion attains orders of magnitude, a logarithmic transformation may be helpful.

In all the specific latent variable models discussed in section 2.6 (except ICA, which assumes no noise
in its standard formulation) a normal noise model is assumed (thus symmetric), whose covariance matrix is
either diagonal (factor analysis, IFA) or spherical (PCA, GTM). This is primarily due to the mathematical
tractability of the multivariate normal distribution with respect to linear combinations, marginalisation and
conditioning and its closure with respect to those operations—which simplifies the computation of integral (2.3)
and the derivation of an EM algorithm for parameter estimation. It also adds flexibility to the model, since
p(t) ends up being a Gaussian mixture, which is a universal density approximator7 (although the model itself
may not be; see below). Yet another justification comes from the central limit theorem: if the noise is due to

7However, for mixtures the shape of each component is not crucial for density approximation, as is well known from kernel
density estimation (Titterington et al., 1985; Scott, 1992), as long as there is a high enough number of components. Most localised
kernels (decreasing from the central point) give rise to universal density approximators.
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the combined additive action of a number of uncontrolled variables of finite variance, then its distribution will
be asymptotically normal.

However, one disadvantage of the normal distribution is that its tails decay very rapidly, which reduces
robustness against outliers: the presence of a small percentage of outliers in the training set can lead to
significantly poor parameter estimates (Huber, 1981). Besides, many natural distributions have been proven
to have long tails and would be better modelled by, say, a Student-t distribution or by infinite-variance members
of the Lévy family8, such as the Cauchy (or Lorentzian) distribution (Casti, 1997; Shlesinger et al., 1995).
Another potential disadvantage of the normal distribution is its symmetry around the mean, when the noise is
skewed. Skewed multivariate distributions may be obtained as normal mixtures or as multivariate extensions
of univariate skewed distributions9, but in both cases the analytical treatment may become very complicated—
even if the axiom of local independence is followed, in which case a product of univariate skewed distributions
may be used.

It should be noted that the noise may depend on the point in latent space (or on the point in data space).
For example, in the binary system of section 2.2.1, the noise in the apastron area (point A in fig. 2.1) may
be smaller than in the periastron area and its surroundings (points C to K) due to the interference with the
central star. If, say, a normal noise model N (f(x),Ψ) is assumed, then its covariance Ψ should be a function of
x too: Ψ = Ψ(x) (fig. 2.9). However, this would require implementing Ψ(x) via some function approximator
(e.g. a multilayer perceptron) and the mathematical treatment becomes very complicated. None of the models
described in section 2.6 implement a noise model dependent on x, and therefore none of them would be able to
represent a data distribution such as the one depicted in fig. 2.9. For example, GTM could probably capture
the mapping f but would only find an average value for the noise covariance, thus missing the data density. In
principle one could think that GTM could approximate any smooth density function, since the data density
has the same form as a kernel estimator: eq. (2.8) or eq. (2.43) where the components are spherical Gaussian
kernels of width, or smoothing parameter, σ. However, in the kernel estimator the kernel centres are free to
move in data space while in GTM they are constrained by the mapping f . Therefore, GTM is not a universal
density approximator.

In latent variable models that use a constant noise model and a sampled latent space, like GTM, another
disadvantage appears. The observed space distribution is a mixture in which all components have the same
noise model, but are located at different places in observed space, as in eq. (2.8). Since the width of each
component is the same, those areas of observed space that have low probability (few samples) will be assigned
few, widely separated components compared to high-probability areas. As a result, the density estimate in
those low-probability areas will not be smooth, presenting a characteristic ripple that gives rise to spurious
modes, as discussed in section 7.9.1. This phenomenon is well-known in kernel density estimation with fixed-
width kernels (Silverman, 1986, pp. 17–18) and is particularly noticeable in the tails of the distribution being
approximated.

2.3.1.1 Latent variable models and principal curves

Hastie and Stuetzle (1989) define principal curves (reviewed in section 4.8) as smooth curves (or, in general,
manifolds) that pass through the middle of a data set and satisfy the self-consistence condition (4.2), which
we reproduce here for convenience:

∀x ∈ X : E {t|F(t) = x} = f(x) (4.2)

where the projection or dimensionality reduction mapping F : t ∈ T −→ X is defined as the point in X whose
image by f is closest to t in the Euclidean distance in T . Ignoring boundary effects, F−1(x) (the points in T
projecting on x) will be a subset of the manifold orthogonal to M = f(X ) at f(x), as fig. 2.10 shows.

8The Lévy, or stable, family of probability distributions (Feller, 1971, sec. VI.1–3) is defined as F{PN (x)} def
= F{e−N|x|β},

where F is the Fourier transform of the probability PN (x) for N-step addition of random variables and β ∈ (0, 2). Closed-forms
for the pdf are only known in a few cases. All its members have an infinite variance and are scale invariant. The case β = 1 gives a
Cauchy distribution and the limit case β = 2 gives the Gaussian distribution. The addition of N Lévy-distributed random variables
follows a Lévy distribution. Lévy’s theorem states that the addition of a number of random variables follows asymptotically a
Lévy distribution (the Gaussian distribution if all the random variables have finite variance).

9Few useful multivariate extensions of nonnormal distributions exist. One such extension may be the multivariate skew-normal
distribution SN (Σ, α) discussed by Azzalini and Capitanio (1999), with density:

p(t)
def
= 2φD(t;Σ)Φ(αT t) t ∈ R

D

where φD is the D-variate pdf of the normal distribution with zero mean and covariance Σ, Φ is the univariate cdf of the standard
normal distribution N (0, 1) and the parameter α ∈ RD partly regulates the skewness, with α = 0 giving the symmetric N (0,Σ).
This extension has some interesting properties, such as the fact that its marginal distributions are skew-normal too.
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(of dimension L = 2) and the normal space at f(x), in which F−1(x), the set of data points projecting on a
latent point x, is contained. M is self-consistent if E {t|F(t) = x} = f(x) for any x ∈ X .
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We can see that the principal curve self-consistency condition (4.2) is more restrictive than condition (2.5)
(verified by unbiased latent variable models) in that the expectation is restricted to the set F−1(x) rather than
to the whole data space T . In other words, the (unbiased) latent variable model condition (2.5) means that
p(t|x) is centred at f(x) for any x ∈ X , whereas the principal curves self-consistency condition (4.2) means
that p(t|x) restricted to the points in T projecting onto x (which is a subset of the normal hyperplane to M
at f(x)) is centred at f(x) for any x ∈ X .

Clearly then, redefining self-consistency as condition (2.5) and considering both t and x as random variables
turns the principal curve into a latent variable model. This is what Tibshirani (1992) did, seeking to eliminate
the bias intrinsic to the standard definition of principal curves. He then approached the estimation problem
as nonparametric estimation of a continuous mixture (section 2.5.2) and, by assuming a diagonal normal
distribution for p(t|f(x)), reduced it to EM estimation of a Gaussian mixture. As mentioned in section 2.5.2,
this has the disadvantage of defining the principal curve f only through a finite collection of points in X rather
than as a smooth function defined for all points in X .

Under a generative view, such as that adopted for latent variable models (section 2.3), the self-consistency
condition (4.2) is unnatural, since it means that for a point that has been generated in latent space and mapped
onto a data space point t, the error added to t must be “clever” enough to perturb the point t in a direction
orthogonal to the manifold M at t and do so with mean zero! This only seems possible in the trivial case
where the tangent manifold is constant in direction, i.e., the principal curve has curvature zero. This is the
case of the principal component subspaces and normal distributions, in which case latent variable models and
principal curves coincide.

2.3.2 Prior distribution in latent space: interpretability

Given any prior distribution px(x) of the L latent variables x, it is always possible to find an invertible
transformation g to an alternative set of L latent variables y = (y1, . . . , yL) = g(x) having another desired
distribution py(y):

X g−→ Y f ′−→ T
f

The mapping from the new latent space onto the data space becomes f ′ = f ◦g−1, i.e., t = f(x) = f(g−1(y)) =

f ′(y) and the new prior distribution of the y variables becomes py = px |Jg|−1
, where Jg

def
=
(
∂gl

∂xk

)

is the

Jacobian of the transformation g. That is, given a space X with a distribution px, to transform it into a space
Y with a distribution py we apply10 an invertible mapping g : X → Y of Jacobian |Jg| = px

py
. For example, if

x are independently and normally distributed, transforming yl = exl for l = 1, . . . , L means that yl follow a
log-normal distribution.

Thus, fixing the functional form of the prior distribution in latent space is a convention rather than an
assumption11. However, doing so requires being able to select f and pd(t|x) from a broad class of functions so
that eq. (2.3) still holds. GTM (section 2.6.5) is a good example: while it keeps the prior p(x) simple (discrete
uniform), its mapping f is a generalised linear model (which has universal approximation capabilities).

In particular, we can choose the latent variables to be independent12 and identically distributed, px(x)
def
=

∏L
l=1 p(xl). Unfortunately, while this is a particularly simple and symmetric choice for prior distribution in

latent space, it does not necessarily simplify the calculation of the difficult L-dimensional integral (2.3), which
is a major shortcoming of the latent variable modelling framework (see section 2.4).

We coincide with Bartholomew (1985) that the latent variables must be seen as constructs designed to
simplify and summarise the observed variables, without having to look for an interpretation for them (which
may exist in some cases anyway): all possible combinations of p(x) and p(t|x) are equally valid as long as they
satisfy eq. (2.3). Thus, we do not need to go into the issue of the interpretation of the latent variables, which
has plagued the statistical literature for a very long time without reaching a general consensus.

Another issue is the topology of the true data manifold. For the one-dimensional example of figure 2.13,
the data manifold is a closed curve (an ellipse). Thus, modelling it with a latent space that has the topology
of an open curve (e.g. an interval of the Cartesian coordinate x) will lead to a discontinuity where both ends of

10Unfortunately, this is terribly complicated in practice, since solving the nonlinear system of partial differential equations∣
∣
∣

∂y

∂x

∣
∣
∣ = px

py
to obtain y = g(x) will be impossible except in very simple cases.

11The choice of a prior distribution in the latent space is completely different from, and much simpler than, the well-known
problem of Bayesian analysis of choosing a noninformative prior distribution for the parameters of a model (mentioned in sec-
tion 6.2.3.2)

12When g is linear and y1, . . . , yL are independent, this is exactly the objective of independent component analysis (section 2.6.3).
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the curve join: it is impossible to have a continuous mapping between spaces with different topological charac-
teristics without having singularities, e.g. mapping a circle onto a line. A representation using a periodic latent
variable is required13 (e.g. the polar angle θ). Although some techniques exist for Gaussian mixture modelling
of periodic variables (Bishop and Nabney, 1996), all the latent variable models considered in section 2.6 assume
non-periodic latent variables.

A flexible and powerful representation of the prior distribution can be obtained with a mixture:

p(x)
def
=

M∑

m=1

p(m)p(x|m)

which keeps the marginalisation in data space (2.3) analytically tractable (if the component marginals are):

p(t) =

∫

X
p(t|x)p(x) dx =

M∑

m=1

p(m)

∫

X
p(t|x)p(x|m) dx. (2.6)

By making the latent space distribution more complex we can have a simpler mapping f . The independent
factor analysis model of Attias (1999), discussed in section 2.6.4, uses this idea, where p(x) is a product of
Gaussian mixtures, the mapping is linear and the noise model is normal.

2.3.3 Smooth mapping from latent onto data space: preservation of topographic
structure

In section 2.3 we required the mapping f : X → T to be smooth, that is, continuous and differentiable. There
are two reasons for this:

• Continuity: this, by definition, will guarantee that points which lie close to each other in the latent
space will be mapped onto points which will be close to each other in data space. In the context of
Kohonen maps and similar algorithms for dimensionality reduction this is called topology or topography
preservation (although quantifying this topography preservation is difficult; Bauer and Pawelzik, 1992;
Martinetz and Schulten, 1994; Kohonen, 1995; Bezdek and Pal, 1995; Goodhill and Sejnowski, 1997;
Villmann et al., 1997; Bauer et al., 1999). It expresses the essential requirement that a continuous
trajectory followed by a point in latent space will generate a continuous trajectory in data space (without
abrupt jumps). The question of whether the dimensionality reduction mapping from data space onto
latent space is continuous will be dealt with in section 2.9.2.

• (Piecewise) differentiability: this is more of a practical requirement in order to be able to use derivative-
based optimisation methods, such as gradient descent.

The more general the class of functions from which we can pick f is (expressed through its parameters), the
more flexible the latent variable model is (in that more data space distributions p(t) can be constructed for
a given prior p(x), eq. (2.3)), but also the more complex the mathematical treatment becomes and the more
local optima appear. The quality of the local optima found for models which are very flexible can be dreadful,
as that shown in fig. 2.13 for GTM. The problem of local optima is very serious since it affects all local
optimisation methods, i.e., methods that start somewhere in parameter space and move towards a nearby
optimum, such as the EM algorithm and gradient or Newton methods. The only way for such methods to find
a good optimum is to start them from many different locations, but this really does not guarantee any good
results.

In section 2.3 we also required the mapping f to be nonsingular (as defined in section 2.2.2). This is to
ensure that the manifold M = f(X ) has the same dimension as the latent space X ; otherwise we would be
wasting latent variables.

2.4 The problem of the marginalisation in high dimensions

The latent variable framework is very general, accomodating arbitrary mappings and probability distributions.
However, this presents insurmountable mathematical and computational difficulties—particularly in the ana-
lytical evaluation of integral (2.3) but also when maximising the log-likelihood (2.9)—so that the actual choice

13It is not enough that a curve self-intersects, as it nearly happens in plot A of fig. 2.13: the almost coincident end points f(x1)
and f(xK) of the model manifold correspond to the widely separated end latent grid points x1 and xK .
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is limited. In fact, the only14 tractable case in arbitrary dimensions seems to be when both the prior in latent
space p(x) and the noise model p(t|x) are Gaussian (or mixtures of Gaussians) and the mapping f linear; or
when p(x) is a mixture of Dirac deltas (as a result of Monte Carlo sampling) and the mapping is nonlinear; or
when p(t|x) is a Dirac delta15. Combinations of these give the specific latent variable models of section 2.6.

Conditioning or marginalising a multivariate distribution, such as the joint distribution p(t,x) of eq. (2.3),
requires the evaluation of an integral in several dimensions of the form:

I(u) =

∫

V
f(u,v)p(v) dv u ∈ U ⊆ RU , v ∈ V ⊆ RV . (2.7)

This integral cannot be evaluated analytically for most forms of the function f and the distribution p(v). In
this case, a conceptually simple but computationally expensive workaround is to approximate it by Monte
Carlo integration, as MacKay (1995a) suggested. For the case (2.7) this means sampling K times in the space

V from p(v) and approximating I(u) ≈ 1
K

∑K
k=1 f(u,vk), with an error of order 1/

√
K (Press et al., 1992,

section 7.6). However, the sample size K in a space of V dimensions grows exponentially with V , as does
the hypervolume of the V -dimensional region (this is basically the curse of the dimensionality, discussed in
section 4.3). This severely limits the practical use of Monte Carlo methods. However, it should be noted that
K is not a parameter of the model (it does not take part in the estimation) and so increasing it does not
produce overfitting.

For eq. (2.3) Monte Carlo sampling yields

p(t) ≈ 1

K

K∑

k=1

p(t|xk) (2.8)

with {xk}Kk=1 drawn from p(x). GTM (section 2.6.5) uses this method with a uniform p(x). For the log-
likelihood gradient ∇ΘL of eq. (2.10) Monte Carlo sampling yields

∇ΘL(Θ) ≈
N∑

n=1

∑K
k=1∇Θp(tn|xk,Θ)
∑K
k=1 p(tn|xk,Θ)

.

The aim of integral (2.3) is not to obtain the numerical value of p(t) at a given t, but to obtain an analytical
expression for p(t) dependent on the parameters Θ (section 2.5). This is so because to estimate the model
parameters (e.g. by an EM algorithm) we generally need to be able to take the derivative of p(t|Θ) with
respect to Θ.

2.5 Parameter estimation

The prior in latent space p(x), the smooth mapping f and the noise model p(t|x) are all equipped with
parameters16 which we collectively call Θ. Once their functional forms are fixed, we have freedom to set the
parameters to those values that agree best with the data sample. These parameters are optimised, typically
to maximise the likelihood of the observed data given the parameters, p(tn|Θ). This approach has the well-
known problems of overfitting and model selection and could be overcome by a Bayesian treatment. In a
Bayesian treatment, a prior distribution is placed on the parameters and all subsequent inferences are done
by marginalising over the parameters:

p(t,x) =

∫

p(t,x|Θ)p(Θ) dΘ

where p(Θ) is the prior parameter distribution or the posterior parameter distribution after having seen some
data {tn}Nn=1. However, this adds an extra degree of intractability to that of eq. (2.3) and approximations
are required. For example, there is current interest in approximate Bayesian inference using Markov chain

14One might think that using uniform distributions may simplify the mathematics. However, while they do simplify the
expression of the integrand in (2.3), they complicate the integration region, preventing further treatment for any kind of mapping
(Carreira-Perpiñán, 1997).

15This is the zero-noise case, which is not interesting since data space points not in f(X ) receive zero density (although the
standard formulation of ICA has zero noise).

16Strictly, the dimensionality L of the latent space is also a parameter of the latent variable model, but we will consider it fixed
to some value, due to the practical difficulty of optimising it jointly with the other parameters.
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Monte Carlo methods (Besag and Green, 1993; Brooks, 1998; Gilks et al., 1996; Neal, 1993) and variational
methods (Jordan et al., 1999), and this has been applied to some latent variable models, such as principal
component analysis (Bishop, 1999) and mixtures of factor analysers (Ghahramani and Beal, 2000; Utsugi and
Kumagai, 2001). However, these are still preliminary results and the potential gain of using the Bayesian
treatment (notably the autodetection of the optimal number of latent variables and mixture components) may
not warrant the enormous complication of the computations, at least in high dimensions. In this thesis we will
only consider maximum likelihood estimation unless indicated otherwise.

The log-likelihood of the parameters given the sample {tn}Nn=1 is (assuming t1, . . . , tN independent and
identically distributed random variables):

L(Θ)
def
= ln p(t1, . . . , tN |Θ) = ln

N∏

n=1

p(tn|Θ) =

N∑

n=1

ln p(tn|Θ) (2.9)

which is to be maximised under the maximum likelihood criterion for parameter estimation. This will provide
with a set of values for the parameters, Θ∗ = arg maxΘ L(Θ), corresponding to a (local) maximum of the
log-likelihood. The log-likelihood value L(Θ∗) allows the comparison of any two latent variable models (or,
in general, any two probability models), however different these may be (although from a Bayesian point of
view, in addition to their likelihood, one should take into account a prior distribution for the parameters and
the evidence for the model; MacKay, 1995b).

One maximisation strategy is to find the stationary points of the log-likelihood (2.9):

∇ΘL(Θ) =
N∑

n=1

1

p(tn|Θ)
∇Θp(tn|Θ) = 0 (2.10)

but maximum likelihood optimisation is often carried out using an EM algorithm (Dempster et al., 1977;
McLachlan and Krishnan, 1997), which is usually simpler and is guaranteed to increase the log-likelihood
monotonically. In the EM approach to latent variable models, the latent variables {xn}Nn=1 (one per data
point) are considered missing17. If their values were known, estimation of the parameters (e.g. the Λ matrix
in eq. (2.14)) would be straightforward by least squares. However, for a given data point tn we do not know
the value of xn that generated it. The EM algorithm operates in two steps which are repeated alternatively
until convergence:

E step computes the expectation of the complete data log-likelihood with respect to the current posterior
distribution p(xn|tn,Θ(τ)) (i.e., using the current parameter values), traditionally notated Q(Θ|Θ(τ)):

Q(Θ|Θ(τ))
def
=

N∑

n=1

Ep(xn|tn,Θ(τ)) {Ln,complete(Θ)} where Ln,complete(Θ)
def
= ln p(tn,xn|Θ).

Thus, we average over the missing latent variables {xn}Nn=1, effectively filling in their unknown values.
Computing Ln,complete(Θ) is possible because the joint distribution p(t,x|Θ) is known for the latent
variable model in question.

M step determines new parameter values Θ(τ+1) that maximise the expected complete-data log-likelihood:

Θ(τ+1) = arg max
Θ

Q(Θ|Θ(τ)).

This increases the log-likelihood L(Θ) unless it is already at a local maximum.

The standard EM algorithm has some disadvantages:

• It is a batch algorithm. However, by interpreting EM as an alternating maximisation of a negative
free-energy-like function (Neal and Hinton, 1998), it is possible to derive online EM algorithms, suitable
for online learning (e.g. in sequential tasks, where the data come one at a time).

• Its slow convergence after the first few steps, which are usually quite effective. Also, the greater the
proportion of missing information, the slower the rate of convergence of EM (Dempster et al., 1977).
However, methods for accelerating it are available; see, for example, Meng and van Dyk (1997), McLach-
lan and Krishnan (1997) and references therein.

17Depending on the model, additional missing variables may have to be introduced. For example, the component labels for
mixture models.
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Despite these shortcomings, EM usually remains the best choice for parameter estimation thanks to its relia-
bility.

For a general choice of prior in latent space, mapping between latent and data space and noise model the
log-likelihood surface can have many local maxima of varying height. In some cases, some or all of those
maxima are equivalent, in the sense that the model produces the same distribution (and therefore the same
log-likelihood value at all the maxima), i.e., the model is not identifiable (section 2.8). This is often due to
symmetries of the parameter space, such as permutations (e.g. PCA) or general rotations of the parameters
(e.g. factor analysis). In those cases, the procedure to follow is to find a first maximum likelihood estimate of
the parameters (in general, by some suitable optimisation method, e.g. EM, although sometimes an analytical
solution is available, as for PCA) and then possibly apply a transformation to them to take them to a canonical
form satisfying a certain criterion (e.g. varimax rotation in factor analysis).

2.5.1 Relation of maximum likelihood with other estimation criteria

Least squares Using the least-squares reconstruction error as objective function for parameter estimation
gives in general different estimates as the maximum likelihood criterion, although the latter usually results
in a low reconstruction error. If we consider the unobserved values {xn}Nn=1 as fixed parameters rather than
random variables and assume that the noise model is normal with isotropic known variance, then a penalised
maximum likelihood criterion results in

N∑

n=1

‖tn − f(xn)‖2 + penalty term on f

which coincides with the spline-related definition of principal curves given by Hastie and Stuetzle (1989),
mentioned in section 4.8.

Kullback-Leibler distance For N →∞, the normalised log-likelihood of Θ converges in probability to its
expectation by the law of large numbers:

LN (Θ)
def
=

1

N

N∑

n=1

ln p(tn|Θ)
P−→ L∞(Θ)

def
= Ept {ln p(t|Θ)}

=

∫

T
pt(t) ln p(t|Θ) dt = −h(pt)−D(pt‖p(·|Θ))

(2.11)

for any Θ. Since the entropy of the data distribution h(pt) does not depend on the parameters Θ, maximising
the log-likelihood is asymptotically equivalent to minimising the Kullback-Leibler distance to the data density.

2.5.2 Relation with nonparametric estimation of continuous mixtures

As mentioned in section 2.3, the fundamental equation (2.3) can be interpreted as a continuous mixture model
for t, where x is the mixing variable. Assume that the functional form of p(t|x) is known and depends on f(x)
and on parameters θ(x). The log-likelihood of this model is (call px the density of the mixing variable x):

L(px, f ,θ)
def
=

N∑

n=1

ln

∫

X
p(tn|f(x),θ(x))p(x) dx.

Results from the theory of mixtures (Laird, 1978; Lindsay, 1983) dictate that for fixed f and θ the nonpara-
metric maximum likelihood estimate for p(x) uniquely exists and is discrete with at most N support points
(where N is the sample size). Denote these support points by {xm}Mm=1 ⊂ X where M ≤ N . This results then
in

p(t;Θ) =
M∑

m=1

pmp(t|fm,θm) (2.12)

where Θ
def
= {pm, fm,θm}Mm=1 contains the values of f , θ and px at the M unknown support points:

fm
def
= f(xm) θm

def
= θ(xm) pm

def
= p(xm).

22



Model
Prior in latent

space p(x)
Mapping f

x→ t
Noise model

p(t|x)
Density in observed

space p(t)

Factor analysis (FA) N (0, I) linear
diagonal
normal

constrained
Gaussian

Principal component
analysis (PCA)

N (0, I) linear
spherical
normal

constrained
Gaussian

Independent component
analysis (ICA)

unknown
but factorised

linear Dirac delta depends

Independent factor
analysis (IFA)

product of 1D
Gaussian mixtures

linear normal
constrained

Gaussian mixture
Generative topographic
mapping (GTM)

discrete
uniform

generalised
linear model

spherical
normal

constrained
Gaussian mixture

Table 2.2: Summary of specific continuous latent variable models.

So we end up with a parametric finite mixture model of M components and parameters Θ which must be
estimated from the sample {xn}Nn=1: {pm} are the mixing proportions and, for each component m, fm and
θm could be (for example) location and covariance parameters. Note that the log-likelihood is not a function
of the support points {xm}Mm=1, but only of Θ. An obvious choice of optimisation algorithm would be EM
(Redner and Walker, 1984; McLachlan and Krishnan, 1997).

The nonparametric approach to parameter estimation in latent variable models has an important disadvan-
tage: it only finds the values of f and px at the support points. To obtain their values at other, intermediate,
points—which is necessary to perform dimensionality reduction and reconstruction (section 2.9)—they must
be smoothed or interpolated using the known values, {fm}Mm=1 for f and {pm}Mm=1 for px. This is as hard
a problem as the original one of estimating f parametrically. A less important disadvantage is that of the
singularities of the log-likelihood due to the use of separate parameters for each component: if fm becomes
equal to some data point tn, then if its variance parameter θm → 0 then L → ∞. This requires regularising
the model.

Although the expression for p(t) in eq. (2.12) looks similar to the one obtained by Monte Carlo sampling
of the latent space, eq. (2.8), there is an important difference: the Monte Carlo method preserves a parametric
form for the mapping f , which the nonparametric method has lost.

Knowing that the number of support points is at most N is not useful in practice, since fitting a mixture
of more than N components (each with separate parameters) to N data points would result in overfitting as
well as being computationally expensive.

2.6 Specific latent variable models

A latent variable model is specified by the functional forms of:

• the prior in latent space p(x)

• the smooth mapping f : X → T from latent space to data space

• the noise model in data space p(t|x)

all of which are equipped with parameters (as before, we omit them for clarity). As mentioned in section 2.4,
analytically tractable models can be obtained by clever combinations of (mixtures of) normal distributions
with linear mappings or mixtures of Dirac deltas with nonlinear mappings.

We describe here several well-known specific latent variable models. Table 2.2 gives a summary of them.
In all cases the parameters of the model may be estimated using the EM algorithm (in the case of PCA, an
analytical solution is known as well). In all cases T ≡ RD and X ≡ RL except for GTM, which uses a discrete
prior latent space.

Latent variable models can be classified as linear and nonlinear according to the corresponding character
of the mapping f . We call a latent variable model normal when both the prior in latent space and the noise
model are normal. Thus, factor analysis and principal component analysis (defined below) are linear-normal
latent variable models.
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2.6.1 Factor analysis (FA)

Factor analysis18 (Bartholomew, 1987; Everitt, 1984) uses a Gaussian distributed prior and noise model, and
a linear mapping from data space to latent space. Specifically:

• The latent space prior p(x) is unit normal:

x
def∼ N (0, I) (2.13)

although there exist varieties of factor analysis where these factors are correlated. The latent variables
x are often referred to as the factors.

• The mapping f is linear:

f(x)
def
= Λx + µ. (2.14)

The columns of the D×L matrix Λ are referred to as the factor loadings. We assume rank (Λ) = L, i.e.,
linearly independent factors.

• The data space noise model is normal centred at f(x) with diagonal covariance matrix Ψ:

t|x def∼ N (f(x),Ψ). (2.15)

The D diagonal elements of Ψ are referred to as the uniquenesses.

The marginal distribution in data space can be computed analytically and it turns out to be normal with a
constrained covariance matrix (theorems 2.12.1 and A.3.1(iv)):

t ∼ N (µ,ΛΛT + Ψ). (2.16)

The posterior in latent space is also normal:

x|t ∼ N
(

A(t− µ), (I + ΛTΨ−1Λ)−1
)

(2.17)

A = ΛT (ΛΛT + Ψ)−1 = (I + ΛTΨ−1Λ)−1ΛTΨ−1. (2.18)

The reduced-dimension representative (defined in section 2.9.1) is taken as the posterior mean (coinciding with
the mode) and is usually referred to as the Thomson scores:

F(t)
def
= E {x|t} = A(t− µ). (2.19)

The dimensionality reduction mapping F is linear and therefore smooth. As discussed in section 2.9.1.1, factor
analysis with Thomson scores does not satisfy the condition that F◦ f be the identity, because AΛ 6= I, except
in the zero-noise limit.

If we apply an invertible linear transformation g with matrix R to the factors x to obtain a new set of
factors y = Rx, the prior distribution p(y) is still normal (theorem A.3.1(i)), y ∼ N (0,RRT ), and the new
mapping becomes t = f ′(y) = f(g−1(y)) = ΛR−1y + µ (section 2.3.2). That is, the new factor loadings
become Λ′ = ΛR−1. If R is an orthogonal matrix, i.e., R−1 = RT , the new factors y will still be independent
and Ψ′ = Ψ diagonal; this is called an orthogonal rotation of the factors in the literature of factor analysis.
If R is an arbitrary nonsingular matrix, the new factors y will not be independent anymore; this is called
an oblique rotation of the factors. Thus, from all the factor loadings matrices Λ, we are free to choose that
which is easiest to interpret according to some criterion, e.g. by varimax rotation19. However, we insist that,
provided that the model p(t) remains the same, all transformations—orthogonal or oblique—are equally valid.
Section 2.8.1 further discusses this issue.

The log-likelihood of the parameters20 Θ = {Λ,Ψ,µ} is obtained as the log-likelihood of a normal distri-
bution N (µ,Σ) of covariance Σ = ΛΛT + Ψ:

L(Λ,Ψ) = −N
2

(
D ln 2π + ln |Σ|+ tr

(
SΣ−1

))
(2.20)

18Our Matlab implementation of factor analysis (EM algorithm, Rao’s algorithm, scores, χ2-test, etc.) and varimax rotation is
freely available in the Internet (see appendix C).

19Varimax rotation (Kaiser, 1958) finds an orthogonal rotation of the factors such that, for each new factor, the loadings are
either very large or very small (in absolute value). The resulting rotated matrix Λ′ has many values clamped to (almost) 0, that
is, each factor involves only a few of the original variables. This simplifies factor interpretation.

20The maximum likelihood estimate of the location parameter µ is the sample mean t. If the covariance matrix of p(t) in
eq. (2.16) was unconstrained, the problem would be that of fitting a normal distribution N (µ,Σ) to the sample {tn}N

n=1. In this
case, the maximum likelihood estimates for µ and Σ would be the natural ones: the sample mean t and the sample covariance
matrix S, respectively (Mardia et al., 1979).
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where S
def
= 1

N

∑N
n=1 (tn − t)(tn − t)T is the sample covariance matrix and t

def
= 1

N

∑N
n=1 tn the sample mean.

The log-likelihood gradient is:

∂L
∂Λ

= −N(Σ−1(I− SΣ−1)Λ)
∂L
∂Ψ

= −N
2

diag
(
Σ−1(I− SΣ−1)

)
.

The log-likelihood has infinite equivalent maxima resulting from orthogonal rotation of the factors. Apart
from these, it is not clear whether the log-likelihood has a unique global maximum or there exist suboptimal
ones. In theory, different local maxima are possible and should be due to an underconstrained model (e.g. a
small sample), but there does not seem to be any evidence in the factor analysis literature about the frequency
of multiple local maxima with actual data. Rubin and Thayer (1982), Bentler and Tanaka (1983) and Rubin
and Thayer (1983) give an interesting discussion about this21.

The parameters of a factor analysis model may be estimated using an EM algorithm (Rubin and Thayer,
1982):

E step: This requires computing the moments:

E {x|tn} = A(τ)(tn − µ)

E
{
xxT |tn

}
= I−A(τ)Λ(τ) + A(τ)(tn − µ)(tn − µ)T (A(τ))T

for each data point tn given the current parameter values Λ(τ) and Ψ(τ).

M step: This results in the following update equations for the factor loadings Λ and uniquenesses Ψ:

Λ(τ+1) =

(
N∑

n=1

tn E {x|tn}T
)(

N∑

n=1

E
{
xxT |tn

}T

)−1

Ψ(τ+1) =
1

N
diag

(
N∑

n=1

tn tTn −Λ(τ+1) E
{
x|tn

}
tTn

)

where the updated moments are used and the “diag” operator sets all the off-diagonal elements of a
matrix to zero.

The location parameter µ is estimated by the sample mean, and does not need to take part in the EM
algorithm.

Apart from EM, there are a number of other methods for maximum likelihood parameter estimation for
factor analysis, such as the methods of Jöreskog (1967)22 or Rao (Morrison, 1990, pp. 357–362). Also, in
common with other probabilistic models, factor analysis may be implemented using an autoencoder network,
with weights implementing a recognition and a generative model: a special case of the Helmholtz machine
having two layers of linear units with Gaussian noise, and trained with the wake-sleep algorithm23 (Neal and
Dayan, 1997).

There are also estimation criteria for factor analysis other than maximum likelihood, e.g. principal factors
(Harman, 1967) or minimum trace factor analysis (Jamshidian and Bentler, 1998).

2.6.2 Principal component analysis (PCA)

Principal component analysis24 (PCA) can be seen as a maximum likelihood factor analysis in which the
uniquenesses are constrained to be equal, that is, Ψ = σ2I is isotropic. This simple fact, already reported
in the early factor analysis literature, seems to have gone unnoticed until Tipping and Bishop (1999b) and
Roweis (1998) recently rediscovered it. Indeed, a number of textbooks and papers (e.g. Krzanowski, 1988,

21Rubin and Thayer (1982), reanalysing an example with 9 observed variables, 4 factors and around 36 free parameters in which
Jöreskog had found a single maximum with the LISREL method, claimed to find several additional maxima of the log-likelihood
using their EM algorithm. By carefully checking the gradient and the Hessian of the log-likelihood at those points, Bentler
and Tanaka (1983) showed that none except Jöreskog’s were really maxima. This is disquieting in view of the large number of
parameters used in pattern recognition applications.

22The method of Jöreskog (1967) is a second-order Fletcher-Powell method. It is also applicable to confirmatory factor analysis,
where some of the loadings have been set to fixed values (usually zero) according to the judgement of the user (Jöreskog, 1969).

23Strictly speaking, Neal and Dayan (1997) give no proof that wake-sleep learning works for factor analysis, only empirical
support that it usually does in some simulations.

24Our Matlab implementation of principal component analysis is freely available in the Internet (see appendix C).
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p. 502 or Hinton et al., 1997, beginning of section III) wrongly quote that “PCA does not propose a model for
the data” as a disadvantage when compared with factor analysis.

The approach of considering an isotropic noise model in factor analysis had already been adopted in
the Young-Whittle factor analysis model (Young, 1940; Whittle, 1952) and its maximum likelihood solution
assuming σ known found analytically (Anderson, 1963; Basilevsky, 1994, pp. 361–363). Lawley (1953) and
Anderson and Rubin (1956) showed that stationary points of the log-likelihood as a function of the loadings
Λ and uniqueness σ2 occur at the value of eq. (2.28), although they did not prove it to be global maximum,
which Tipping and Bishop (1999b) did. In addition to this direct solution, Roweis (1998) and Tipping and
Bishop (1999b) give an EM algorithm for estimating Λ and σ2.

Consider then the factor analysis model of the previous section with an isotropic error model. There exists
a unique (although possibly degenerate, if some eigenvalues are equal) maximum likelihood estimate closely
related to the L principal components of the data25. If the sample covariance matrix is decomposed as S =
UVUT , with V = diag (v1, . . . , vD) containing the eigenvalues (ordered decreasingly) and U = (u1, . . . ,uD)
the associated eigenvectors, then Λ = UL(VL − σ2I)1/2 with UL = (u1, . . . ,uL), VL = diag (v1, . . . , vL) and

σ2 = 1
D−L

∑D
j=L+1 vj . Therefore eqs. (2.13)–(2.19) become:

x
def∼ N (0, I) (2.21)

f(x)
def
= Λx + µ (2.22)

t|x def∼ N (f(x), σ2I) (2.23)

t ∼ N (µ,ΛΛT + σ2I) (2.24)

x|t ∼ N
(
A(t− µ), σ2V−1

L

)
(2.25)

A = V−1
L (VL − σ2I)1/2UT

L (2.26)

F(t)
def
= E {x|t} = A(t− µ) (2.27)

with maximum likelihood estimates:

Λ = UL(VL − σ2I)1/2 σ2 =
1

D − L
D∑

j=L+1

vj . (2.28)

The Thomson scores give F(t) = E {x|t} = A(t− µ), which still does not satisfy the condition that F ◦ f be
the identity, except in the zero-noise limit (σ → 0), as discussed in section 2.9.1.1.

Thus, in the latent variable model scenario PCA does define a probability model. Still, PCA is not usually
constructed as a probability model but as a reconstruction and dimensionality reduction technique, since its
most attractive property is that it is the linear mapping that minimises the least squares reconstruction error
of a sample. We describe this aspect of PCA in section 4.5.

Since the noise model variance σ2 is the same for all observed variables, the directions of the columns of
Λ will be more influenced by the variables that have higher noise—unlike with factor analysis, which should
be able to separate the linear correlations from the noise. The PCA model is then more restricted than the
factor analysis one. However, in many practical situations the directions Λ found by factor analysis and PCA
do not differ much.

The log-likelihood of the estimate (2.28) is26

L(Λ, σ2) = −N
2

(

D(1 + ln 2π) + ln |S|+ (D − L) ln
a

g

)

(2.29)

where a and g are the arithmetic and geometric means of the D − L smallest eigenvalues of the sample
covariance matrix S. Although there is an EM algorithm that finds the L principal components by maximising
the log-likelihood (Tipping and Bishop, 1999b; Roweis, 1998), the fastest way to perform PCA is via numerical
singular value decomposition (Golub and van Loan, 1996; Press et al., 1992).

Again, as in factor analysis, it is possible to orthogonally rotate the latent variables keeping the same
distribution.

25To differentiate it from conventional PCA, where no probabilistic model is explicitly defined and only a linear orthogonal
projection is considered (section 4.5), this latent variable model is called probabilistic PCA by Tipping and Bishop (1999b) and
sensible PCA by Roweis (1998). We do not deem necessary to use and additional, different name for what is essentially the same
thing, so in this thesis we will only use the name PCA and the context will make clear what aspect we mean—probability model
or linear mapping.

26As with factor analysis, the maximum likelihood estimate of the location parameter µ is the sample mean t.
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For a fixed data set, PCA has the property of additivity, insofar that the principal components obtained
using a latent space of dimension L are exactly the same as the ones obtained using a latent space of dimension
L− 1 plus a new, additional principal component. However, this additivity property does not necessarily hold
for either PCA followed by (varimax) rotation or for factor analysis. That is, the factors found by a factor
analysis of order L are, in general, all different from those found by a factor analysis of order L − 1. That
means that one can only talk about the joint collection of L factors (or the linear subspace spanned by them).

2.6.3 Independent component analysis (ICA)

Independent component analysis (ICA) or blind source separation consists of recovering independent sources
given only sensor observations that are unknown linear mixtures of the sources (Comon, 1994; Cardoso, 1998;
Hyvärinen, 1999b; Hyvärinen et al., 2001). Its basic formulation is as follows. Denote the time variable by
τ (continuous or discrete). Call x(τ) ∈ RL the L time-varying source signals27, assumed independent and
zero-mean. Call t(τ) ∈ RD the D data signals, measured without noise and with instantaneous mixing28 (that

is, there is no time delay between source l mixing into channel d). Then t(τ)
def
= Λx(τ), where ΛD×L is the

mixing matrix and D ≥ L (although we will assume D = L in most of this section29). The goal of ICA is,
given a sample {tn}Nn=1 of the sensor outputs, to find a linear transformation AL×D (separating matrix ) of the
sensor signals t that makes the outputs u(τ) = At(τ) = AΛx(τ) as independent as possible. If Λ was known,
A = Λ+ = (ΛTΛ)−1ΛT (assuming rank (Λ) = L) would recover the sources exactly, but Λ is unknown; all
we have is a finite set of realisations of the sensor outputs {tn}Nn=1.

If we take the sources x = (x1, . . . , xL)T as the latent variables and the sensor outputs t = (t1, . . . , tD)T as
the observed variables, ICA can be seen as a latent variable model with the following elements (the dependence
on the time τ is omitted for clarity):

• The prior distribution in latent space X = RL is factorised but unknown: p(x) =
∏L
l=1 pl(xl).

• The mapping between latent and observed space is linear: t = Λx.

• The noise model is a Dirac delta, i.e., the observed variables are generated without noise: p(t|x) =

δ(t−Λx) =
∏D
d=1 δ(td −

∑L
l=1 adlxl). However, we can imagine that noise is an independent source and

segregate it from the other sources.

Therefore, the only free parameter in the latent variable model is the matrix ΛD×L = (λdl) (or AL×D = Λ+ =
(ald)), but it is also necessary to determine the unknown functions {pl(xl)}Ll=1. How to deal with this unknown
prior distribution is what makes ICA different from the other latent variable models discussed here. Ideally one
would learn the functions {pl}Ll=1 nonparametrically, but this is difficult. For practical estimation, all current
methods use a fixed functional form for the latent space prior distribution with or without parameters. A
flexible parametric model of the prior distribution is a Gaussian mixture and this gives rise to the IFA model
of section 2.6.4.

The very effective infomax learning rule of Bell and Sejnowski (1995) is the following online iterative
algorithm:

A(τ+1) = A(τ) + ∆A(τ+1) (2.30)

∆A(τ+1) ∝ ((A(τ))T )−1 + g(u)tT (2.31)

where t is a sensor output, u
def
= A(τ)t, g(u)

def
= (g(u1), . . . , g(uL))T and g(u)

def
=

∂ ln |f ′(u)|
∂u . The choice of the

nonlinear function f : R→ R is critical since it can be proven (see below and Bell and Sejnowski, 1995) that
p(xl) ∝ |f ′(xl)|. That is, f is the one-dimensional cumulative distribution function in latent space and fixing
its form is equivalent to assuming a prior distribution p(xl) for the latent variables (the sources). Taking
g(u) = −2u (or equivalently f = erf) means assuming normally distributed sources, x ∼ N (0, I) (although
with a Dirac-delta noise model), which gives second-order decorrelation only—in which case using factor
analysis would have been enough. The use of a nonlinear function, whose Taylor series expansion has terms of
many orders, may be more sensitive to the right higher-order statistics of the inputs. In practice, a sigmoidal
function is chosen, such as the logistic function. Several forms of the nonlinearity f are summarised in table 2.3.
The computationally simpler nonlinearities, such as the logistic function or the hyperbolic tangent, assume

27Instead of time-varying sources x(τ) one can consider space-varying sources x(x, y), such as images.
28If time delays are considered, the problem is called blind deconvolution rather than blind separation.
29The case D < L (more sources than sensors) is called overcomplete representation and has been advocated because of its

greater robustness to noise, sparsity and flexibility in matching structure in the data (Amari, 1999; Lewicki and Sejnowski, 2000).
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Nonlinearity name f(u) f ′(u) g(u)
def
= ∂

∂u ln |f ′(u)| = f ′′(u)
f ′(u) Kurtosis k4

Logistic 1
1+e−u f(1− f) 1− 2f +

Generalised logistic fp(1− f)r
(
p
f − r

1−f

)

fp(1− f)r
{

+, p, r > 1
−, p, r < 1

Hyperbolic tangent tanhu 1− f 2 −2f +

Generalised tanh 1− |f |r −r |f |r−1
sgn (f)

{
+, r < 2
−, r > 2

e−u
2/2 coshu −u+ tanhu −

Error function erf u 2√
π
e−u

2 −2u 0

Generalised erf e−|u|r −r |u|r−1
sgn (u)

{
+, r < 2
−, r > 2

Arctangent arctanu 1
1+u2 − 2u

1+u2 +∞

cdf of Student’s t
Γ( 1

2 (r+1))√
πrΓ( 1

2 r)

(

1 + u2

r

)− r+1
2 − (r+1)u

u2+r
6
r−4

Table 2.3: Different nonlinearities f and their associated slopes f ′ and functions g for the infomax rule (2.31).
The kurtosis is that of the associated p.d.f. in latent space, p(u) ∝ |f ′(u)|. If f(u) is omitted, it is defined as
∫ u

−∞ f ′(v) dv. f = erf gives the normal distribution and f = arctan the Cauchy one. In all cases p, r > 0.

supergaussian (positive kurtosis) source distributions and thus are not suitable for subgaussian ones. A better
nonlinearity in those cases is the one given by g(u) = −u + tanhu. However, Bell and Sejnowski claim that
most real-world analog signals are supergaussian. Subgaussian source separation is a topic of current research
(e.g. Lee et al., 1999).

The rule (2.31) is nonlocal, requiring a matrix inversion, and thus does not seem biologically plausible.
Being a standard gradient descent, it is also noncovariant: different variables have different units. However,
rescaling the gradient by a metric matrix ATA, we obtain a natural gradient algorithm (Yang and Amari,
1997; Amari and Cichoki, 1998):

∆A ∝ (I + g(u)uT )A (2.32)

which is simpler and converges faster. Batch algorithms are also much faster, such as FastICA (Hyvärinen,
1999a), which is based on a fixed-point iteration.

The rule (2.31), or approximate versions of it, can be justified from several points of view:

Information maximisation In the low noise case, the infomax principle states that if the mutual information
between the inputs t and the outputs y of a processor is maximum, then the output distribution p(y)
is factorial (Linsker, 1989; Nadal and Parga, 1994). Consider a single-layer feedforward neural network

with inputs t = (t1, . . . , tD)T , net inputs u
def
= At and outputs yl

def
= f(ul), l = 1, . . . , L, where AL×D is a

matrix of adjustable parameters and f a fixed invertible (thus monotonic) and differentiable nonlinearity.
Maximising the mutual information I(y, t) by varying the parameters A is equivalent to maximising the
output entropy h(y):

I(y, t)
def
= h(y)− h(y|t)⇒ ∂

∂A
I(y, t) =

∂

∂A
h(y)

because h(y|t) does not depend on A. Taking into account that py(y) = pt(t) |J(t,y)|−1
(where

J(t,y) =
(
∂yl

∂td

)

is the Jacobian of the transformation), p(ul) = p(yl) |f ′(ul)| and h(y)
def
= −Epy {ln py},

we obtain the rule (2.31) with g(u)
def
=

∂ ln |f ′(u)|
∂u .

The maximum entropy is obtained when each yl is distributed uniformly (assuming {yl}Ll=1 are amplitude-
bounded random variables), in which case p(ul) = p(yl) |f ′(ul)| ∝ |f ′(ul)|. That is, f is the c.d.f. of ul.

Finally, observe that the output y of our single-layer neural network is used only for minimising the
mutual information. We are really interested in u, which are the recovered sources.

Maximum likelihood estimation MacKay (1996) shows for the case L = D that the infomax algorithm
can be derived by maximising the log-likelihood of the ICA latent variable model by gradient ascent.
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Let us compute the probability distribution induced in the observed space for the particular case L = D
by marginalising the joint distribution as in eq. (2.3):

p(t) =

∫

X
p(t|x)p(x) dx =

∫

X
δ(t−Λx)p(x) dx = |Λ|−1

p(Λ−1t) = |Λ|−1
L∏

l=1

pl

(
D∑

d=1

λ−1
ld td

)

.

So we get:

as a function of Λ: ln p(t|Λ) = − ln |Λ|+
L∑

l=1

ln pl

(
D∑

d=1

λ−1
ld td

)

as a function of A = Λ−1: ln p(t|A) = ln |A|+
L∑

l=1

ln pl

(
D∑

d=1

aldtd

)

.

Calling u
def
= At and g(u)

def
=
(
d ln p1(u1)

du1
, . . . , d ln pL(uL)

duL

)T

and using the matrix differentiation identi-

ties (A.4) we obtain the gradient of the log-likelihood:

∂

∂λdl
ln p(t|Λ) = −ald − ul

L∑

l′=1

al′dgl′(ul′)

∂

∂ald
ln p(t|Λ) = λdl + gl(ul)td

which coincides with the infomax one, eq. (2.31).

An alternative derivation from a maximum likelihood estimation point of view has been given by Pearl-
mutter and Parra (1996) and Cardoso (1997). Consider a parametric model pΘ(t) for the true sensor
distribution pt(t). Eq. (2.11) shows that maximising the log-likelihood of Θ is equivalent to minimis-
ing the Kullback-Leibler distance to the data density pt(t). Assuming A and Λ invertible, and (a)
since H(pt) is independent of A and (b) the Kullback-Leibler divergence is invariant under invertible
transformations (t = Λx and u = At), maximum likelihood estimation produces:

∆A ∝ ∂L(Θ)

∂A

(a)
= − ∂

∂A
D (pt(t)‖pΘ(t))

(b)
= − ∂

∂A
D(p(x)‖pΘ(u))

which coincides with the infomax rule of eq. (2.31).

Negentropy maximisation and projection pursuit From a projection pursuit point of view (section 4.6),
ICA looks for linear projections where the data become independent. Girolami et al. (1998) show that
negentropy maximisation projection pursuit performs ICA on sub- or supergaussian sources and leads
exactly to the infomax rule (2.31). Negentropy of a distribution of density p is defined as the Kullback-
Leibler divergence between p and the Gaussian distribution pN with the same mean and covariance as
p: D (p‖pN ). It is zero if p is normal and positive otherwise.

Cumulant expansion If u and x are symmetrically distributed and approximately normal, their mutual
information can be approximated using a Gram-Charlier or Edgeworth polynomial expansion (Kendall
and Stuart, 1977) of fourth order in terms of the cumulants (Comon, 1994) and used as objective function
for gradient ascent. However, this method requires more computations than the infomax algorithm and
gives worse separation—an order higher than 4 is necessary to improve separation.

Nonlinear PCA Karhunen and Joutsensalo (1994) show that a neural network trained by least squares to
compute the function Af(At) on prewhitened data can separate signals. Girolami and Fyfe (1999) show
that its cost function is approximately equivalent to that of the cumulants method.

2.6.4 Independent factor analysis (IFA)

Independent factor analysis (Attias, 1998, 1999) uses a factorial Gaussian mixture prior, a linear mapping
from data space to latent space and a normal noise model30. Specifically:

30Similar approaches have also been proposed that use mixture models for the source density: Pearlmutter and Parra (1996)
(mixture of logistic densities, gradient descent) and Moulines et al. (1997) and Xu et al. (1998) (Gaussian mixture, EM algorithm).
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• Each latent variable is modelled independently of the others as a mixture of Ml one-dimensional Gaus-
sians:

p(x)
def
=

L∏

l=1

pl(xl) pl(xl)
def
=

Ml∑

ml=1

p(ml)p(xl|ml) xl|ml
def∼ N (µl,ml

, vl,ml
). (2.33)

Thus the latent space prior p(x) is a product of one-dimensional Gaussian mixtures, which results in a
mixture of L-dimensional diagonal Gaussians but with constrained means and covariance matrices (since
a general mixture of diagonal Gaussians need not be factorised):

p(x) =
∑

m

p(m)p(x|m)







m
def
= (m1, . . . ,mL)

p(m) =
∏L
l=1 p(ml)

x|m def∼ N (µm,Vm) with

{

µm

def
= (µ1,m1

, . . . , µL,mL
)T

Vm
def
= diag (v1,m1

, . . . , vL,mL
) .

(2.34)

The summation over m includes all combinations of tuples m = (m1, . . . ,mL) where ml = 1, . . . ,Ml for
each l = 1, . . . , L.

• The mapping f is linear (the data space distribution is assumed zero-mean, which can be obtained by
centring the data sample before fitting the model):

f(x)
def
= Λx. (2.35)

We assume rank (Λ) = L.

• The data space noise model is normal centred at f(x) with covariance matrix Φ:

t|x def∼ N (f(x),Φ). (2.36)

Thus, factor analysis (and PCA) is a particular case of IFA where Φ is diagonal and each pl(xl) is N (0, 1).
The marginal distribution in data space can be computed analytically and turns out to be a constrained

mixture of Gaussians (eq. (2.6) and theorems 2.12.1 and A.3.1(iv)):

p(t) =
∑

m

p(m)p(t|m) t|m def∼ N (Λµm,ΛVmΛT + Φ). (2.37)

The posterior in latent space is also a mixture of Gaussians:

p(x|t) =
∑

m

p(m|t)p(x|m, t)







p(m|t) = p(t|m)p(m)
∑

m′ p(t|m′)p(m′)

(x|m, t)
def∼ N (νm,t,Σm)

{

Σm
def
= (ΛTΦ−1Λ + V−1

m )−1

νm,t
def
= Σm(ΛTΦ−1t + V−1

m µm).

(2.38)

The reduced-dimension representative can be taken as the posterior mean, which is simple to compute (and it
need be computed in each iteration of the EM algorithm):

F(t)
def
= E {x|t} =

∑

m

p(m|t)νm,t. (2.39)

Since the posterior (2.38) can be asymmetric or multimodal, one could take its mode instead (which could
be computed iteratively with the algorithms of chapter 8). In the limit of zero noise, the reduced-dimension
representative can be taken as the projection via the pseudoinverse Λ+ = (ΛTΛ)−1ΛT , as in ICA.

Attias (1999) gives an EM algorithm for IFA. Taking the limit Φ→ 0 in it results in an EM algorithm for
PCA, as presented by Tipping and Bishop (1999b) and Roweis (1998). Attias (1999) also gives an EM and a
generalised EM algorithm for noiseless IFA (Φ = 0). The latter results in a combination of a rule similar to
the infomax rule (2.31) for updating the mixing matrix and update rules for the Gaussian mixture parameters
similar to those of the standard EM algorithm for a Gaussian mixture. That is, it combines separating the
sources x1, . . . , xL with learning their densities.

Again, a major disadvantage of the IFA model is that the number of parameters grows exponentially with
the dimensionality of the latent space: the prior distribution for the latent variables includes

∏L
l=1 (2Ml − 1)

parameters, which is O(eL). Attias (1999) proposes a variational approximation of the EM algorithm that
reduces the number of operations—but the number of parameters remains O(eL).
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2.6.5 The generative topographic mapping (GTM)

The generative topographic mapping (GTM) (Bishop, Svensén, and Williams, 1998b) is a nonlinear latent
variable model which has been proposed as a principled alternative to self-organising feature maps (Kohonen,
1995). Specifically:

• The L-dimensional latent space X is discrete31. The prior in latent space, p(x), is discrete uniform,
assigning nonzero probability only to the points {xk}Kk=1 ⊂ RL, usually arranged in a regular grid (for
visualisation purposes):

p(x)
def
=

1

K

K∑

k=1

δ(x− xk). (2.40)

This discrete prior can be seen as a fixed approximation of a continuous, uniform distribution in a
hyperrectagle of RL (see section 2.4 on Monte Carlo sampling).

• The mapping f is a generalised linear model:

f(x)
def
= Wφ(x), (2.41)

where W is a D × F matrix and φ an F × 1 vector of fixed basis functions.

• The noise model p(t|x) is an isotropic normal centred at f(x):

t|x def∼ N (f(x), σ2I). (2.42)

The marginal distribution in data space is a constrained mixture of Gaussians (in the sense that the Gaussian
centres cannot move independently, but only by changing the mapping f through W):

p(t) =
1

K

K∑

k=1

p(t|xk), (2.43)

and the posterior in latent space is discrete:

p(xk|t) =
p(t|xk)

∑K
i=1 p(t|xi)

. (2.44)

The reduced-dimension representative can be taken as the posterior mean or the posterior mode, both of
which can be easily computed since the posterior distribution is discrete. The mean and the mode can be
quite different from each other if the posterior distribution is multimodal. The dimensionality reduction
mapping F for the posterior mode is not continuous in general, although it will be approximately continuous if
the posterior distribution (2.44) is unimodal and sharply peaked for most points in data space (section 2.9.2).

The log-likelihood of the parameters Θ = {W, σ2} is

L(W, σ2) =

N∑

n=1

ln
1

K

K∑

k=1

p(tn|xk;W, σ2) =

N∑

n=1

ln
1

K(2πσ2)
D
2

K∑

k=1

e−
1

2σ2 ‖tn−Wφ(xk)‖2

and is known to contain a number of suboptimal maxima (see fig. 2.13 for some examples).
The parameters of a GTM model may be estimated using the EM algorithm:

E step This requires computing the responsibility Rnk = p(xk|tn) of each latent space point xk having
generated point tn using eqs. (2.40)-(2.44) with the current parameter values W(τ) and σ(τ).

M step This results in the following update equations for the parameters W and σ, respectively:

ΦTG(τ)Φ(W(τ+1))T = ΦT (R(τ))TT (2.45a)

(σ(τ+1))2 =
1

ND

K∑

k=1

N∑

n=1

R
(τ)
nk ‖tn − f(xk)‖2 (2.45b)

where Φ
def
= (φ1, . . . ,φK)T , T

def
= (t1, . . . , tN )T , R is an N × K matrix with elements Rnk and G is a

K ×K diagonal matrix with elements gkk =
∑N
n=1Rnk. Solving for W requires (pseudo-)inverting the

matrix ΦTGΦ at each iteration.
31Strictly, the latent space is continuous and p(x) is a density, but we will call it “discrete uniform” for short (see also sections 2.4

and 2.9.2).
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A simple regularised version of GTM to control the mapping f is obtained by placing an isotropic Gaussian

prior distribution of variance λ−1 on the mapping weights W = (wdf ), W|λ def∼ N (0, λ−1I). This leads to a
maximum a posteriori (MAP) estimator:

LMAP(W, σ2) = L(W, σ2)− Nλ

2
‖W‖2 (2.46)

where λ is the regularisation coefficient, ‖W‖2 =
∑D
d=1

∑F
f=1 w

2
df and an additive term independent of W

and σ2 has been omitted. This results in a modified M step of the EM algorithm:

(ΦTG(τ)Φ + λσ2I)(W(τ+1))T = ΦT (R(τ))TT.

An approximate Bayesian treatment of the hyperparameter λ is given by Bishop et al. (1998a) and Utsugi
(2000).

The major shortcoming of GTM is that, being based on (fixed) Monte Carlo sampling of the latent space
mentioned in section 2.4, both the number of latent grid points K and the number of basis functions F required
for the generalised linear model (2.41) grow exponentially with the dimension of the latent space, L. This limits
the practical applicability of GTM to about 2 latent variables. Another shortcoming, shared by most global
methods (i.e., that find an estimate for the whole data space) that are very flexible parameterised models, is
the fact that the EM estimate very often converges to very bad local maxima, as those shown in the lower half
of fig. 2.13; for twisted manifolds, a good maximum can only be reached it starting EM from a small region of
the parameter space.

The density networks of MacKay (1995a) are a model similar to GTM: the mapping f is implemented
by a multilayer perceptron, all the distributions are assumed isotropic Gaussian and a Monte Carlo fixed
sampling is necessary to obtain p(t). The log-likelihood is maximised with a conjugate gradients method. Like
GTM, this approach suffers from the exponential complexity of the Monte Carlo sampling. MacKay applies
density networks to a discrete problem, modelling a protein family. The insight of (Bishop et al., 1998b) is
to implement the mapping f with a generalised linear model, which results in a tractable M step of the EM
algorithm, since only the weights of the linear layer have to be estimated.

GTM pursues a similar goal as Kohonen’s self-organising maps (to adapt a topographical arrangement of
knots to a data distribution) but with the important advantage that it defines a probabilistic model for the
data and dimensionality reduction and reconstruction mappings. Table 4.4 compares succintly both models.

2.6.5.1 Extensions to GTM

Bishop et al. (1998a) propose several extensions to the GTM model:

• A manifold-aligned noise model, where the covariance matrix of the noise model (2.42) is not isotropic
anymore but approximately aligned (depending on the value of η below) with the manifold M = f(X )
locally at each mapped point f(x):

t|x def∼ N (f(x),Σ(x)) Σ(x)
def
= σ2I + η

L∑

l=1

∂f

∂xl

(
∂f

∂xl

)T

where the new hyperparameter η must be adjusted manually and Σ(x) is computed only at the points
{xk}Kk=1. The goal is to ensure that the variance of the noise distribution in directions tangential to
the manifold is never significantly less than the square of the typical distance between neighbouring
points f(xk), so that there is a smooth distribution along the manifold even when the noise variance
perpendicular to the manifold becomes small.

It would seem that this model violates the axiom of local independence (section 2.3.1), since Σ(x) is
not diagonal and so the noise model would not be factorised anymore. However, the model can be
derived from taking the model with factorised axis-aligned noise, but approximating the uniform density
by a grid of Gaussians (rather than deltas) and then linearising the manifold about the centre of each
Gaussian (Chris Williams, pers. comm.).

It remains to be seen whether this approach has any advantages over using a mixture of linear-normal
latent variable models (since each GTM mixture component represents now a local linear subspace).

• Modelling of discrete observed variables by defining a Bernoulli or multinomial noise model depending
on f(x) via a logistic or softmax function, respectively. However, estimation of the parameters via the
EM algorithm is much more difficult, requiring nonlinear optimisation in the M step.
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• A semilinear model where some of the latent variables are discretised and mapped with the generalised
linear model (2.41) as in the standard GTM model and the rest are continuous and mapped linearly.

• An incremental EM algorithm based on the approach of Neal and Hinton (1998).

• Approximate Bayesian inference for the regularisation parameter λ of eq. (2.46), using the Laplace
approximation (MacKay, 1992a), i.e., a local Gaussian approximation at the mode of the posterior
distribution of the parameters W. The Laplace approximation breaks down when the posterior parameter
distribution is multimodal or skewed—a likely situation when training data is scarce (Richardson and
Green, 1997). Utsugi (2000) uses a Gibbs sampler and an ensemble learning method to approximate
Bayesian inference.

• A Gaussian process formulation.

Further extensions by other authors include:

• Marrs and Webb (1999) propose an average generalised unit-speed constraint on f to preserve geodetic
distances in data space (outlined in section 2.8.3).

• We propose a diagonal noise GTM model (dGTM), where the noise model covariance is diagonal rather
than spherical: t|x ∼ N (f(x),Ψ) with Ψ = diag (ψ1, . . . , ψD). In section 2.12.4 we show that the EM
algorithm remains the same except for eq. (2.45b), which becomes D equations:

ψ
(τ+1)
d =

1

N

K∑

k=1

N∑

n=1

R
(τ)
nk (tnd − fd(xk))2 d = 1, . . . , D (2.45b’)

and the responsibilities Rnk depend on Ψ rather than on σ2.

A diagonal noise model is necessary to account for different scales and noise levels in the different data
variables t1, . . . , tD (which in general cannot be overcome by presphering the data, as fig. 2.8 shows).

2.7 Finite mixtures of latent variable models

Finite mixtures (Everitt and Hand, 1981) of latent variable models can be constructed in the usual way as32

p(t)
def
=

M∑

m=1

p(m)p(t|m) (2.47)

where:

• p(t|m), m = 1, . . . ,M are latent variable models based on latent spaces Xm of dimension Lm (not
necessarily equal), i.e.,

p(t|m) =

∫

Xm

p(t,x|m) dx =

∫

Xm

p(t|x,m)p(x|m) dx

where p(x|m) is the prior distribution in the latent space of the mth component, p(t|x,m) its noise
model and fm : Xm → T its mapping from latent space into data space.

• p(m) are the mixing proportions.

The joint density is p(t,x,m) = p(t|x,m)p(x|m)p(m) and the finite mixture distribution can be expressed as
the marginalisation of p(t,x,m) over x and m:

p(t) =

M∑

m=1

∫

Xm

p(t,x,m) dx =

M∑

m=1

p(m)

∫

Xm

p(t|x,m)p(x|m) dx =

M∑

m=1

p(m)p(t|m).

The advantage of finite mixtures of latent variable models is that they can place different latent variable
models in different regions of data space, where each latent variable model models locally the data. This
allows the use of simple local models (e.g. linear-normal, like factor analysis or principal component analysis)
that build a complex global model (piecewise linear-normal). In other words, finite mixtures of latent variable
models combine clustering with dimensionality reduction.

32The IFA model results in a data space distribution (2.37) with the same form as eq. (2.47). But in the IFA model the mixture
takes place in the latent space while here it takes place in the data space.
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2.7.1 Parameter estimation

Once the model is formulated and the functional forms of each latent variable model are fixed, estimation of
the parameters can be done by maximum likelihood. As usual with mixture models, the mixing proportions
are taken as parameters p(m) = πm and included in the estimation process; one parameter πm is not free due

to the constraint
∑M
m=1 πm = 1.

Maximum likelihood estimation can be conveniently accomplished with an EM algorithm, where for each
data point tn the missing information is not only the values of the latent variables xn (as in section 2.5), but
also the index of the mixture component that generated tn:

E step This requires computation of the responsibility Rnm = p(m|tn) of each component m having generated
point tn using Bayes’ theorem:

Rnm =
p(tn|m)p(m)

p(tn)
=

πmp(tn|m)
∑M
m=1 πmp(tn|m)

where p(t|m) is given by the latent variable model with the parameter values of the current iteration.

M step This results in several update equations for the parameters. The update equations for the mixing
proportions are independent of the type of latent variable model used:

π(τ+1)
m =

1

N

N∑

n=1

R(τ)
nmπ

(τ)
m .

The equations for the rest of the parameters (from the individual latent variable models) depend on the specific
functional form of p(t|x,m) and p(x|m), but often they are averages of the usual statistics weighted by the
responsibilities and computed in a specific order.

2.7.2 Examples

Ghahramani and Hinton (1996) construct a mixture of factor analysers where each factor analyser, of Lm
factors, is characterised by two kinds of parameters: the mean vector µm ∈ RLm and the loadings matrix Λm

(containing Lm loading vectors), in addition to the mixing proportion πm. All analysers share a common noise
model diagonal covariance matrix Ψ for simplicity (although this implies a loss of generality). They give an EM
algorithm for estimating the parameters {{πm,µm,Λm}Mm=1,Ψ} by maximum likelihood from a sample. As
with many other mixture models, the log-likelihood surface contains singularities (where the covariance matrix
of a component model tends to zero and the lilkelihood tends to infinity) to which the EM algorithm can be
attracted (see sections 3.2.2 and 5.4.4.1). Hinton et al. (1997) also used a mixture of factor analysers to model
handwritten characters, where each factor analyser was implemented via an autoencoder. McLachlan and Peel
(2000, chapter 8) give an AECM algorithm33 for a mixture of factor analysers where each component has a
different, diagonal covariance matrix Ψm. Utsugi and Kumagai (2001) derive Bayesian estimation algorithms
using a Gibbs sampler and its deterministic approximation for this same model. Ghahramani and Beal (2000)
apply a variational approximation of Bayesian inference to the model of Ghahramani and Hinton (1996) to
automatically determine the optimal number of components M and the local dimensionality of each component
Lm.

Tipping and Bishop (1999a) define mixtures of principal component analysers and give for them
an EM algorithm and a simpler and faster generalised EM algorithm. They show good results in image
compression and handwritten digit recognition applications, although the reconstruction error attained is in
general larger than that attained by a nonprobabilistic mixture of PCAs trained to minimise the reconstruction
error (the VQPCA algorithm of Kambhatla and Leen, 1997, discussed in section 4.7). This is reasonable
since the probabilistic mixture of PCAs is trained to maximise the log-likelihood rather than minimise the
reconstruction error.

A mixture of diagonal Gaussians and a mixture of spherical Gaussians can be seen, as limit cases, as
a mixture of factor analysers with zero factors per component model and a mixture of principal component
analysers with zero principal components per component model, respectively. Thus, Gaussian mixtures explain
the data by assuming that it its exclusively due to noise—without any underlying (linear) structure.

33The alternating expectation conditional-maximisation (AECM) algorithm (Meng and van Dyk, 1997) replaces the M-step of
the EM algorithm by a number of computationally simpler conditional maximisation steps and allows the specification of the
complete data to be different on each such step.
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Bishop and Tipping (1998) use hierarchical mixtures of latent variable models with a two-dimensional
latent space to visualise the structure of a data set at different levels of detail; for example, a first, top level
can show the general cluster structure of the data while a second level can show the internal structure of the
clusters, and so on. The tree structure of the hierarchy can be built iteratively by the user in a top-down way.

Section 4.7 mentions other local models for dimensionality reduction not based on mixtures of latent
variable models.

2.7.3 Comparison with Gaussian mixtures

In general, mixtures of latent variable models whose distribution in data space p(t) results in a Gaussian
mixture (such as mixtures of factor analysers or PCAs) have two advantages over usual mixtures of Gaussian
distributions:

• Each component latent variable model locally models both the (linear) mapping and the noise, rather
than just the covariance.

• They use fewer parameters per component, e.g. D(L + 1) for a factor analyser versus D(D+1)
2 for a

Gaussian (of course, L should not be too small for the model to remain good).

A small number of free parameters requires less computation and less training data (thus reducing the risk of
overfitting when data is scarce). Using an unconstrained Gaussian mixture requires more parameters because
each mixture component has its own covariance matrix. The total number of parameters can be reduced by
one of the following approaches:

• Using diagonal or even spherical components (which still are universal density approximators, as full-
covariance mixtures are; Titterington et al., 1985; Scott, 1992).

• Using parameter tying or sharing (Young, 1996). This method, very popular in the literature of speech
recognition based on hidden Markov models, consists of allocating a pool of parameters, typically covari-
ance matrices, to be shared by several or all the components of the mixture. Thus, several components
may have the same covariance matrix but different means and mixture proportions. However, the training
algorithm—often EM-based—becomes considerably complex and the task of deciding what parameters
to tie is not straightforward.

Exactly what approach (full, diagonal or spherical covariance; and unconstrained, latent variable or parameter-
tied mixture) is more efficient depends on each particular case; “efficient” here means to use as few parameters
as possible to achieve a given performance (such as approximation error, classification error, word error rate,
etc.). Saul and Rahim (2000b) give an EM algorithm for hidden Markov models whose output distribution is a
mixture of factor analysers and show good performance with a reduced number of parameters when compared
with other methods.

2.8 Identifiability, interpretability and visualisation

Identifiability of a class of probabilistic models refers to the existence of a unique characterisation for any
model in that class, i.e., to the fact that no two different values of the model parameters give rise to the same
distribution (Titterington et al., 1985; Everitt and Hand, 1981; McLachlan and Peel, 2000). For example, the
class of finite mixtures of uniform distributions is not identifiable, as a simple counterexample shows. The
following three mixtures produce the same distribution:

PSfrag replacements

t

f(t)

1
6

1
3

−2 −1 0 1 2

f1
def∼ 1

3
U(−1, 1) +

2

3
U(−2, 2) (2.48a)

f2
def∼ 1

2
U(−2, 1) +

1

2
U(−1, 2) (2.48b)

f3
def∼ 1

6
U(−2, 1) +

2

3
U(−1, 1) +

1

6
U(1, 2) (2.48c)

since f1(t) = f2(t) = f3(t) for all t ∈ (−∞,∞).
For a mixture distribution, the parameters include the number of mixture components too. Thus, identifi-

ability is defined formally as follows for mixtures (and, as a particular case, for non-mixture models):
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Definition 2.8.1. A class of finite mixtures parameterised by Θ is said to be identifiable if for any two
members

p(t;Θ)
def
=

M∑

m=1

πmp(t; θm) p(t;Θ∗)
def
=

M∗
∑

m=1

π∗
mp(t; θ

∗
m)

then p(t;Θ) = p(t;Θ∗) for all t ∈ T if and only if M = M∗ and πm = π∗
m and θm = θ∗m for m = 1, . . . ,M

(perhaps with a reordering of the indices). Trivial cases where πm = 0 or θm = θm′ for some m, m′ are
disregarded, being exactly represented by a mixture with fewer components.

Consider the example of equations (2.48). Given a sample {tn}Nn=1 generated from f1, we cannot tell from
which of f1, f2 or f3 it was generated (given the sample alone). Estimating the parameters of a uniform
mixture with two components could end up (approximately) in any of f1 or f2 or not work at all, depending
on the algorithm used, the starting point if it is iterative, etc. The sample could be interpreted as coming from
two populations (in the case of f1 and f2) or from three (in the case of f3). Thus, if we want (1) to be able
to interpret in a unique way the parameters estimated from a sample, and (2) to avoid that the estimation
procedure may break down in case of ill-posedness, then the model class being considered must be identifiable.

However, theoretical identifiability is not the whole story:

• The existence of local, suboptimal maxima of the log-likelihood (or other objective function) makes very
difficult to obtain the global maximum—for example, when estimating a Gaussian mixture or a GTM
model (fig. 2.13).

• Theoretical identifiability does not guarantee practical identifiability, as discussed in section 3.3.3.2.

Non-identifiability often arises with discrete distributions, for the following reason: if there are C categories
we cannot set up more than C − 1 independent equations (because

∑
p(c) = 1) and hence can only determine

C−1 parameters at most. Fortunately, with continuous distributions—the case that concerns us—it is usually
not a problem.

Identifiability is a mathematical property that depends on the choice of model and there are no general
necessary and sufficient conditions for all models. The identifiability of the latent variable models of section 2.6,
if known, is discussed below, while that of finite mixtures of multivariate Bernoulli distributions (which are
used in chapter 5) is discussed separately in section 3.3. A further treatment of the identifiability of mixtures
is given by Titterington et al. (1985).

2.8.1 Interpretability

The factor analysis literature, especially regarding social science applications, has debated the issue of the
interpretability of factors for decades. The problem arises from the fact that factor analysis is non-identifiable
with respect to orthogonal rotations of the factors.

As noticed in section 2.3.2, in an ideal latent variable model we could adjust freely both the latent space
prior distribution pl(x) and the mapping f via an invertible transformation g of the latent space, so that we
could have infinitely many equivalent combinations (pl, f), all giving rise to the same data distribution p(t) in
eq. (2.3). In other words, we could have infinitely many different coordinate systems, each one with its one
interpretation, equally able to explain the data. In more practical latent variable models only some restricted
kinds of indeterminacy will exist (such as orthogonal rotations in factor analysis) but the point remains: there
is no empirical ground to prefer one model over another if both give rise to the same p(t).

The key matter is that the only variables with a real existence are the observed variables and that the
latent variables are sheer mathematical constructs subordinated to explaining the observed ones in a compact
way (Bartholomew, 1987; Everitt, 1984). Therefore, one should not try to reify the latent variables34 or look
too hard for an interpretation of the estimated parameters if the model under consideration belongs to an
non-identifiable class. Also, one should not attribute a causal nature to the latent variables: the generative
view of section 2.3 is just a convenient conceptualisation of the probabilistic latent variable framework.

In contrast, let us mention the technique of principal variables (McCabe, 1984), related to principal
component analysis, whose aim is to select a subset of variables that contain, in some sense, as much information
as possible. The principal variables can be readily interpreted because they are observed variables—unlike the
principal components, which are linear combinations of the observed variables.

34Although in some particular cases this may be possible. For example, Kvalheim (1992) claims that, in chemistry, latent
variables are often interpretable and independently verifiable.
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However, what can be interpretable is the manifold in data space spanned by the mapping from latent
onto data space, M = f(X ). This manifold is invariant under a coordinate change, while the coordinates
themselves (the latent variables) are not. As an example, consider PCA: what reason is there to choose a
particular basis of the hyperplane spanned by the principal components? Besides, sample-based estimates of the
principal components can vary considerably, in particular when the covariance matrix has several eigenvalues
of approximately the same value, since the directions of the associated eigenvectors will be strongly influenced
by the noise. But the subspace spanned by those principal components is still unique and thus identifiable
and interpretable.

Another issue is that often the model assumptions are wrong for the problem under consideration, due to
the nature of the relationship between variables being unknown or to the mathematical impossibility of using
an appropriate but overly complex model. Consider, for example, fitting a principal component analysis to
the data of figure 2.13. Interpretation of the estimated parameters in such a situation may be completely
misleading. Yet another difficulty lies in whether the number of parameters in the model and the way it is
estimated from a data set can lead to overfitting.

Fortunately, in machine learning applications the data is usually of a very high dimensionality and the
relationships between variables is nonlinear, so that more often than not the user does not have strong precon-
ceptions about what the latent variables should be. Besides, as a consequence of the philosophical approach
of statistical machine learning, which pursues to simulate the behaviour of a system, the utility of a model
is related to how well it can extract the structure of a high-dimensional data set—irrespective of whether it
actually matches the true underlying system (always an idealisation anyway) or just mimicks it. Of course,
overfitting remains a difficult problem.

To summarise:

• In the ideal case where we know the model from which the data comes (i.e., we know the number of
latent variables and the functional forms for the prior distribution in latent space, the mapping and the
noise model) and all is necessary is to fit its parameters, we need to check the issues of identifiability
and overfitting.

• If we are guessing the model, apart from the identifiability and overfitting we need to assess the model’s
goodness, which is very difficult in high-dimensional cases when there are nonlinear relationships. For
example, the noise can easily mask nonlinear relationships when using a linear model.

2.8.2 Identifiability of specific latent variable models

2.8.2.1 Factor analysis

From section 2.6.1 we know that:

• If L > 1 then an orthogonal rotation of the factors produces the same data distribution, so that factor
analysis is non-identifiable with respect to orthogonal rotations. If L = 1 then the rotation becomes a
sign reversal, which is irrelevant.

• If we consider a generalised view of factor analysis where the factors are distributed normally but not
necessarily N (0, I), then factor analysis is non-identifiable with respect to any invertible linear transfor-
mation of the factors.

In confirmatory factor analysis, where some elements of the loading matrix Λ are fixed, the rotation indeter-
minacy may disappear. In explanatory factor analysis, where all elements of Λ are free, one usually applies a
restriction to make it identifiable. The most typical one is to choose the factors so that the first factor makes
a maximum contribution to the variance of the observed variables, the second makes a maximum contribution
subject to being uncorrelated with the first one, and so on. This can be shown to be equivalent to choosing Λ
such that ΛTΨ−1Λ is diagonal and has the effect of imposing 1

2L(L− 1) constraints, so that the total number
of free parameters becomes

D
︸︷︷︸

Ψ

+ DL
︸︷︷︸

Λ

+
1

2
L(L− 1)
︸ ︷︷ ︸

constraints

which for consistency must be smaller or equal than the number of elements in the covariance matrix, 1
2D(D+

1), i.e., 1
2 ((D − L)2 − (D + L)) must be positive, which gives an upper bound for the number of factors to be

extracted.
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Since scale changes of the data (t′ = Dt with D diagonal) result in an irrelevant scale change of the factors
and the uniquenesses, the same results are obtained whether using the covariance matrix or the correlation
matrix.

2.8.2.2 PCA

PCA as defined in section 2.6.2 only differs from factor analysis in the noise model and is constrained to produce
the principal components in decreasing order of their associated variance, i.e., ΛT (σ2I)−1Λ is diagonal from
eq. (2.28). Thus, PCA is always identifiable except when several eigenvalues of the sample covariance matrix
are equal, in which case the corresponding eigenvectors (columns of UL) can be rotated orthogonally inside
their own subspace at will.

Unlike with factor analysis, with PCA different results are obtained whether using the covariance matrix
or the correlation matrix because there is a single uniqueness parameter shared by all data variables. PCA
does depend on the scale, so one has to decide whether to sphere the data or not.

2.8.2.3 ICA

Arbitrary scaling, reordering or in general invertible linear mapping of the latent variables (sources) gives
rise to the same observed (sensor) distribution: (Λ,x), (ΛV,V−1x), (ΛP,PTx) and (ΛR,R−1x) all produce
the same distribution p(t) if V is diagonal nonsingular, P is a permutation matrix and R is nonsingular.
However, only scaling and reordering are acceptable indeterminacies, because they do not alter the “waveform
of the signals” or their statistical properties (independence in particular). Thus, it can be proven that the
identifiability of the ICA model (up to reordering and rescaling) is guaranteed if (Tong et al., 1991; Comon,
1994):

• At most one source is distributed normally (since the sum of two normals is itself normal, it would not
possible to separate the individual components in a unique way).

• There are fewer sources than sensors: L ≤ D.

• The mixing matrix is full-rank: rank (Λ) = L.

2.8.2.4 Other latent variable models

To our knowledge, no identifiability results are known for GTM, IFA or mixtures of factor analysers or principal
component analysers—but suboptimal local maxima of the log-likelihood do exist for all of them.

2.8.3 Visualisation

A different matter from interpretability is visualisation of data. While all coordinate systems related by an
invertible map (reparametrisation) are equivalent for dimensionality reduction, some may be more appropriate
than others in that the structure in the data is shown more clearly. Rigid motion transformations (translation,
rotation or reflection) have a trivial effect on visualisation, since our visual system can still recognise the
structure in the data, but invertible transformations that alter the distances between points (distortions) can
both make apparent but also completely mask clusters or other accidents in the data.

It is possible to include constraints in the latent variable model being used to ensure that the interpoint
distances in data space are approximately preserved in the latent space. These constraints affect exclusively
the mapping f . However, if the prior distribution in latent space is not flexible enough to represent a large
class of distributions (and it is not for factor analysis, PCA and GTM, since it is fixed) then by constraining
f we are reducing the class of distributions that the model can approximate.

These distortion constraints are different from the usual smoothness constraints: the latter force the man-
ifold M = f(X ) traced by the function f to be smooth but do not care about the coordinate system (the
parametrisation); they usually bound (in a soft fashion) the second derivative of f . In contrast, the distortion
constraints do not care whether the manifold M is smooth or rough, but force the distances in data space to
be preserved in latent space. How this is done depends on how the distance between two data space points is
defined: as geodetic distance (i.e., following the shortest path between the two points along the data manifold,
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in which case it is appropriate to use a unit-speed parametrisation35 that bounds the first derivative of f) or
as Euclidean distance (i.e., following the straight line segment joining both points freely in the data space,
whether it goes out of the data manifold or not). This consideration enters the realm of distance-preserving
methods and multidimensional scaling, briefly described in section 4.10.

Such distortion constraints can be incorporated as a regularisation term in the log-likelihood or, equiv-
alently, viewed as a prior distribution on the parameters of f . In any case they lead to the appearance of
hyperparameters that control the relative importance of the fitting term (log-likelihood) and the regularisa-
tion term (distortion constraint). Determining good values for the hyperparameters is a well-known problem
that we will meet several times in this thesis, but on which we shall not dwell.

For example, it has been observed that the estimates found by GTM often give a distorted view of the
data due to the latent space stretching like a rubber sheet (Tenenbaum, 1998; Marrs and Webb, 1999). This
metric distortion is revealed by high values of an appropriately defined magnification factor. A magnification
factor M(x) is a scalar function dependent on the latent space point that measures the local distortion at
latent space point x induced by the mapping f : X → T . Bishop et al. (1997b) defined it in the usual sense of
differential geometry as the ratio of hypervolumes in the data space and the latent space, equal to the Jacobian

of the mapping f : M(x;W)
def
= dVT

dVX
= Jf =

√

|KTWTWK| where (K)fl
def
=

∂φf

∂xl
. A value of one for this

magnification factor corresponds to no distortion (although Marrs and Webb (1999) have pointed out that
it can also be one for some distortions; their slightly different definition of the magnification factor is given
below). Marrs and Webb (1999) implement an average generalised unit-speed constraint in GTM’s function f
to preserve geodetic distances:

Ep(t)
{
KTWTWK

}
= IL

which for a one-dimensional latent space (L = 1) reduces to E
{∥
∥ df
dx

∥
∥

2
}

= 1, i.e., a parametrisation of average

unit squared speed. This constraint results in a modified M step of the EM algorithm for GTM, eq. (2.45a).

The results can be evaluated by checking that the magnification factor M(x;W)
def
=
∥
∥KTWTWK− I

∥
∥

2
(a

zero value of which corresponds to no distortion) is small in all points of the latent space.

2.9 Mapping from data onto latent space

2.9.1 Dimensionality reduction and vector reconstruction

In dimensionality reduction (reviewed in chapter 4) we want, given a data point t, to obtain a representative
of it in latent space, x∗ = F(t), for a certain mapping F : T −→ X . The latent variable modelling framework
allows the definition of a natural dimensionality reduction mapping. Once the parameters36 Θ are fixed,
Bayes’ theorem gives the posterior distribution in latent space given a data vector t, i.e., the distribution of
the probability that a point x in latent space was responsible for generating t:

p(x|t) =
p(t|x)p(x)

p(t)
=

p(t|x)p(x)
∫

X p(t|x)p(x) dx
. (2.49)

The latent variable model gives us all this information about x for fixed t. Summarising this distribution
x|t in a single latent space point x∗ results in a reduced-dimension representative37 of t. This defines
a corresponding mapping F from data space onto latent space, so that every data point t is assigned a
representative in latent space, x∗ = F(t). Thus, it can be considered as an inverse mapping of f .

35For a curve f : x ∈ R → RD, a unit-speed parametrisation verifies
∥
∥
∥

df
dx

∥
∥
∥

2
=
∑D

d=1

(
dfd
dx

)2
= 1. Equivalently, the arc length

between two points f(x1) and f(x2) on the curve is
∣
∣
∣
∣
∣

∫ x2

x1

√
∑D

d=1

(
dfd
dx

)2
dx

∣
∣
∣
∣
∣
= |x2 − x1|

so that this parametrisation is also called arc-length parametrisation. It means that a unit step in latent space produces a unit
step along the curve in data space.

36In what follows, we omit the parameters from the formulae for clarity, i.e., p(x|t) really means p(x|t,Θ), and so on.
37Admittedly, reduced-dimension representative of an observed point t is a pedantic denomination, but it points to the two

things we are interested in: that it (1) represents the observed point (2) in latent space. Latent space representative is also
acceptable, although less general. Other, more compact terms have been proposed but we find them unsatisfactory. For example,
cause of an observed point t may attribute to the reduced-dimension representative more than it really is worth (and ring unwanted
bells concerning its interpretation). And the term scores, very popular in statistics, sounds too vague.
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When the posterior distribution p(x|t) is unimodal, defining F as the posterior mean:

F(t)
def
= E {x|t} = Ep(x|t) {x}

is the obvious choice since it is optimal in the least-squares sense (see section 7.3.3). But if p(x|t) may be
multimodal for some points t (as happens with IFA and GTM), then the posterior mean (while still being
the least-squares optimum and defining a continuous mapping) may be inappropriate, since the mean of a
multimodal distribution can be a low-probability point. Defining F as one of the posterior modes (perhaps
the global one):

F(t)
def
= arg max

x∈X
p(x|t)

ensures that the reduced-dimension representative F(t) is a high-probability point, but then which mode
to choose is a problem, and besides F may become discontinuous. These issues are discussed at length in
sections 2.9.2 and 7.3.

If f is injective (the manifold M = f(X ) does not self-intersect) then f is invertible38 on M; i.e., there
exists a function f−1 : M → X such that f−1(t) = x if t = f(x) ∈ M for x ∈ X . But we are interested in
defining a dimensionality reduction mapping F not only for data points inM, but in the whole data space T ,
which we can attain thanks to the noise model, that assigns nonzero probability to a neighbourhood of every
point inM (remarkably, this very essence of the probabilistic modelling implies that in general F◦f 6= identity,
as discussed below). Since dimM < dim T (for dimensionality reduction to make sense) this will mean that
a whole manifold of dimension dim T − dimX = D − L will be mapped onto the same latent space point x:

F−1(x)
def
= {t ∈ T : F(t) = x}. For example, if F is linear with matrix A (assumed full-rank), F(t) = A(t−µ),

then F−1(x) = {t ∈ T : F(t) = A(t − µ) = x} = {µ + Bx} + kerA where B is any matrix that satisfies
BA = I (such as the pseudoinverse of A, A+ = AT (AAT )−1, but there may be others, as section 2.9.1.1

discusses) and kerA
def
= {t ∈ T : At = 0} is the kernel or null-space of the matrix A. F−1(x) has dimension

D − L since dim kerF + dim imF = dim T and dim imF = dimX .
Applying the mapping f to the reduced-dimension representative x = F(t) we obtain the reconstructed

data vector t∗ = f(x∗). Then, the reconstruction error for that point t is defined as d(t, t∗) (or a function of
it) for some suitable distance d in data space and the average reconstruction error for the sample is defined as

Ed = 1
N

∑N
n=1 d(tn, t

∗
n). For example, taking the square of the Euclidean distance, d(t, t∗) = ‖t− t∗‖22, results

in the usual mean squared error criterion E2 = 1
N

∑N
n=1 ‖tn − t∗n‖22. It is unknown what the relationship

between the maximum likelihood criterion and a distance criterion is. While in general they are different,
leading to different estimates of the parameters, in practice maximum likelihood estimation often produces
very good estimates in terms of reconstruction error.

A desirable feature of the dimension reduction mapping F would be to satisfy that F ◦ f be the identity, so
that F(f(x)) = x for any latent space point. That is, that F be the inverse of f in the manifoldM = f(X ) = im f
(the image, or range, space of f). This implies perfect reconstruction of data points inM, since if t = f(x) ∈M,
then the reconstructed point of t is t∗ = f(F(t)) = f(F(f(x))) = f(x) = t. In general, this condition is not
satisfied (as sections 2.9.1.1–2.9.1.3 show) except in the zero-noise limit. In the latter case, the data space
points in T \ f(X ) are unreachable under the model (in the sense that p(t) = 0 for such points) and the
mapping f : X →M is invertible on the image space of X by F (assuming that f is injective, i.e., M = f(X )
does not self-intersect).

The following sections analyse the dimensionality reduction mappings of each specific latent variable model.

2.9.1.1 Linear-normal models (factor analysis and PCA): scores matrix

Consider a general linear-normal model as in the statement of theorem 2.12.1, i.e., x
def∼ NL(µX ,ΣX) in RL,

f(x)
def
= Λx+µT and t|x def∼ ND(f(x),ΣT ) in RD (remember that for factor analysis µX = 0, ΣX = I and ΣT =

Ψ is diagonal and for PCA µX = 0, ΣX = I and ΣT = σ2I is isotropic). Consider the dimensionality reduction

mapping defined by the posterior mean (identical to the posterior mode), F(t)
def
= E {x|t} = A(t− µ) + µX .

The matrix A of eq. (2.58) is called the Thomson scores in the factor analysis literature (eq. (2.18)).
Theorem 2.12.3 shows that the posterior distribution is always narrower than the prior distribution, the
narrower the smaller the noise is.

From eq. (2.57), the condition F ◦ f ≡ identity is equivalent to:

F(f(x)) = A(f(x)− µT ) + Σ̂−1
X Σ−1

X µX = AΛx + Σ̂−1
X Σ−1

X µX = x ∀x ∈ RL

38And even if f is not injective, local invertibility is assured by the inverse function theorem A.6.1, since f is smooth.
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Figure 2.11: Offset of the reduced-dimension representative when using the posterior mean. This example
demonstrates how mapping a latent space point onto data space and back using the posterior mean leads to
a reduced-dimension representative which is different from the original latent space point. The latent variable
model is a factor analysis with one-dimensional latent space and two-dimensional observed space. The latent
space shows its prior distribution p(x) (solid line) centred symmetrically around its mean. A point x0 is
mapped onto data space point t0 = f(x0). Given the noise model p(t|x) ∼ N (f(x),Ψ) alone, other nearby
latent points x−1, x1, etc. could also have generated t0, but less likely than x0 (and symmetrically so as we
move away from t0, as marked, because of the symmetry of p(t0|x)). Each shaded ellipse represents p(t0|xi)
for i ∈ {−2, . . . , 2}. But given the prior distribution in latent space, latent points to the nearby right side of
x0 are more likely a priori than latent points to the left: p(x−2) < p(x−1) < p(x0) < p(x1) < p(x2). Therefore,
the posterior distribution in latent space p(x|t0) ∝ p(t0|x)p(x) (dotted line) is offset towards latent points
which are more likely a priori (towards the prior mean in this example) and thus its centre does not match
the original latent point x0. This offset is inherent to the choice of prior distribution in latent space and noise
model and is therefore unavoidable.
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which implies two conditions:

µX = 0 (2.50a)

AΛ = I. (2.50b)

Condition (2.50a) is readily satisfied by both factor analysis and PCA, and we assume it holds from now on.
As for condition (2.50b), using eqs. (2.58) and (2.59) it becomes:

I = AΛ
(2.58)
= Σ̂−1

X ΛTΣ−1
T Λ

(2.59)
= (Σ−1

X + ΛTΣ−1
T Λ)−1ΛTΣ−1

T Λ⇔ Σ−1
X + ΛTΣ−1

T Λ = ΛTΣ−1
T Λ (2.51)

which is impossible. Therefore no linear-normal latent variable model exists that satisfies E {x|f(x0)} = x0,
in particular factor analysis and PCA. Figure 2.11 explains intuitively this.

Let us analyse when condition (2.50b) holds approximately. This will happen when ΛTΣ−1
T Λ � Σ−1

X or

equivalently when MTΣ−1
T M� I with M

def
= ΛΣ

1/2
X . Since MMT = Σ−ΣT is the covariance associated with

the latent variables and ΣT the covariance associated to the noise, then F◦f ≡ identity will hold approximately
when the covariance of the noise is much smaller than the covariance due to the latent variables. We consider
two limit cases:

• The low noise limit, where

A = Σ̂−1
X ΛTΣ−1

T = (Σ−1
X + ΛTΣ−1

T Λ)−1ΛTΣ−1
T ≈ Â

def
= (ΛTΣ−1

T Λ)−1ΛTΣ−1
T .

The matrix Â is called the Bartlett scores in the factor analysis literature. It can also be derived
from a distribution-free argument as follows: if the mapping from latent to data space is represented as

t = Λx+µT +e where e
def∼ N (0,ΣT ) and the mapping from latent to data space as x∗ = B(t−µ)

(2.55)
=

BΛ(x− µX) + Be, then it can be proven (Bartholomew, 1987, pp. 66–69) that:

Â = arg min
BΛ=I

BΣTBT .

That is, Â is the matrix B satisfying BΛ = I that minimises the residual variance of the reduced-
dimension representative, var {e} = BΣTBT .

In practice there tends to be little difference between Thomson and Bartlett scores, since ΛTΨ−1Λ is
often approximately diagonal and the difference is just a rescaling of the x variables.

• The isotropic zero noise limit, where from corollary 2.12.2 and assuming Λ full-rank:

ΣT = kI and k → 0+ ⇒
{

A→ Λ+ = (ΛTΛ)−1ΛT

x|t→ δ(Λ+(t− µT )).

The matrix Λ+ is the pseudoinverse of Λ. The pseudoinverse is the matrix Λ∗ that minimises
‖I−Λ∗Λ‖22 (Boullion and Odell, 1971); thus, it is the matrix that achieves the least squares recon-
struction error. The Thomson scores are also optimal in the least squares sense, being the mean of the
posterior distribution in latent space. The difference is that the pseudoinverse gives equal importance to
each point x in the latent space, while the Thomson scores weight each value x according to the normal
distribution E {x|t}. Thus, it “pulls” points towards the mean, since p(x|t), being normal, decreases
when going away from its mean. The disagreement of both scores is then due to the Thomson scores
using a joint probability model for x and t and the pseudoinverse using no model.

If the noise tends to zero but not isotropically, then A 9 Λ+ necessarily; e.g. in fig. 2.12 if ΣT =

k
(
S1 0
0 S2

)
with S1 6= S2 and k → 0+ then A, Â → A0

def
= 1

S2λ2
1+S1λ2

2
(S2λ1 S1λ2) which is different from

Λ+ = 1
λ2

1+λ
2
2
(λ1 λ2). However, A0 and Λ+ only differ in how they map points t /∈M because for t ∈M

they are equivalent (since ÂΛ = Λ+Λ = I). Since the points t /∈ M are unreachable in the zero-limit
noise, the difference is irrelevant.

A (Thomson scores) never coincides with Λ+ (pseudoinverse) since it does not satisfy any of the Penrose

conditions (A.1). Â (Bartlett scores) satisfies all of the Penrose conditions except (A.1a) because ΛÂ is
not symmetric in general and so it does not coincide with the pseudoinverse either (although it is a left

weak generalised inverse of Λ; Boullion and Odell, 1971); but Â does coincide with the pseudoinverse in
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Figure 2.12: Different dimensionality reduction mappings for linear-normal models. Using the symbols of

theorem 2.12.1, the numerical values are: µX = 0, ΣX = I, Λ = ( 2
1 ), µT = 0, ΣT =

(
1 0
0 1

4

)

. Therefore µ = 0,

Σ =
(

5 2
2 5

4

)

, A = 1
9 (2 4), Â = 1

8 (2 4) and Λ+ = 1
5 (2 1). The graph shows schematically how the latent space

X = R, with a normal prior distribution x ∼ N (µX ,ΣX) is mapped onto M, inducing a normal distribution
t ∼ N (µ,Σ) (indicated by its unit Mahalanobis ellipse) in T = R2. tTn , tBn and tPn represent the reconstructed

points using A (Thomson scores), Â (Bartlett scores) and Λ+ (pseudoinverse), respectively, for data point tn
(where n = 1, 2, 3). The dimension-reduced representatives are marked on the latent space by the corner of the
solid lines; the dashed lines join the original and reconstructed points. The dashed lines for the pseudoinverse
are parallel with respect to each other and orthogonal to M: ΛΛ+ is an orthogonal projection. The dashed
lines for the Bartlett scores are parallel with respect to each other but not orthogonal toM: ΛÂ is an oblique
projection. The dashed lines for the Thomson scores are not parallel with respect to each other: ΛA is not a
projection.

the particular case where ΣT is isotropic (precisely the case of PCA). As mentioned before, in the isotropic
zero-noise limit all three scores coincide.

Observe that f ◦ F maps an arbitrary point in data space onto the manifold M. However, of A, Â and
Λ+ only Â and Λ+ give rise to projection matrices: oblique ΛÂ and orthogonal ΛΛ+, respectively39.

Table 2.4 summarises the three types of scores and figure 2.12 illustrates the typical situation when all of
them differ.

2.9.1.2 Independent component analysis

Given the discussion of section 2.9.1.1, since in the standard ICA model there is no noise and Λ is full rank, the

dimensionality reduction mapping to use is F(t)
def
= Λ+t = (ΛTΛ)−1ΛT t (i.e., the unmixing matrix A = Λ+

of section 2.6.3), which satisfies F ◦ f ≡ identity.
The goal of ICA is not really dimensionality reduction but separation of linearly mixed sources, which is

attained by the unmixing matrix. Besides, the literature of ICA has mostly been concerned with the case
where the number of sensors is equal to the number of sources, although research of more general situations

39A matrix P which verifies symmetry (P = PT ) and idempotence (P2 = P) is an orthogonal projection matrix. If it only
verifies idempotence but not symmetry then it is an oblique projection matrix.
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Scores name Matrix expression Justification

Thomson A
def
= (Σ−1

X + ΛTΣ−1
T Λ)−1ΛTΣ−1

T Least-squares for linear normal model

Bartlett Â
def
= (ΛTΣ−1

T Λ)−1ΛTΣ−1
T Low-noise limit of A; also distribution-free

Pseudoinverse Λ+ = (ΛTΛ)−1ΛT Isotropic zero-noise limit of A; also model-free
least-squares

Table 2.4: Dimensionality reduction matrices for linear-normal models with the posterior mean.

is progressing. ICA has been successfully applied to a number of blind separation problems, including elimi-
nation of artifacts from electroencephalographic (EEG) data, separation of speech sources (the cocktail party
problem), processing of arrays of radar and sonar signals and restoration of images (see references in Hyvärinen
and Oja, 2000; Hyvärinen et al., 2001).

2.9.1.3 Independent factor analysis

The posterior distribution in latent space for IFA (2.38) is a convex combination of factor analysis-like posterior
probabilities (2.54), so we expect F ◦ f 6= identity except in the zero-noise limit.

2.9.1.4 GTM

We consider two cases for the definition of F:

• Posterior mean, F(t) = E {x|t}. Then:

F(t) = E {x|t} =
K∑

k=1

xkp(xk|t) =
K∑

k=1

xkρk(t)

where

ρk(t) = p(xk|t) =
p(t|xk)p(xk)

p(t)
=

p(t|xk)
∑K
k=1 p(t|xk)

=
e−

1
2σ2 ‖t−f(xk)‖2

∑K
k=1 e

− 1
2σ2 ‖t−f(xk)‖2 ∈ (0, 1).

Thus, F(t) is a point in the convex hull of {xk}Kk=1. Observe that for any k′ ∈ {1, . . . ,K}, ρk(f(xk′)) > 0
for all k = 1, . . . ,K. So F(f(xk′)) 6= xk′ . However, F(f(xk′)) will be very close to xk′ when the Gaussian
components in data space, centred at {f(xk)}Kk=1, are widely separated with respect to the noise standard
deviation σ, since the tails of the Gaussian fall rapidly and then ρk(f(xk′)) ≈ δk′k (again the zero-noise
limit).

• Posterior mode, F(t) = arg maxx∈X p(x|t): it clearly satisfies F(f(x)) = x for {xk}Kk=1 but not for any
other x ∈ RL \ {xk}Kk=1 (which get mapped onto some xk).

Also, since p(t) is independent of x and p(xk) = 1
K , then arg maxx∈X p(x|t) = arg maxk=1,...,K p(t|xk) =

arg mink=1,...,K ‖t− f(xk)‖, i.e., the latent grid point whose image is closest to t. Thus, the dimension-
ality reduction mapping behaves like vector quantisation in the observed space based on the Euclidean
distance using {f(xk)}Kk=1 as codebook.

2.9.2 Continuity of the dimensionality reduction mapping and regularisation

If the latent variable model has captured the structure of the data appropriately, one would not expect a
multimodal distribution p(x|t), except perhaps if the data manifold is so twisted that it intersects itself or
nearly so. Unfortunately, in practice the manifold M induced in data space can be badly twisted even when
the data manifold is relatively smooth, as fig. 2.13 shows, due to a suboptimal local maximum of the log-
likelihood. In this case, the induced manifold M can retrace itself and give rise to multimodal posterior
distributions in latent space, since the same area of the data manifold is covered by different areas of the
latent space. Regularising the mapping f (from latent to data space) so that highly twisted mappings are
penalised is a possible solution. From a Bayesian point of view this requires introducing a prior distribution on
the mapping parameters controlled by a hyperparameter (as in GTM), but determining good hyperparameter
values is a hard problem (MacKay, 1999).
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The continuity of the dimensionality reduction mapping x = F(t) depends on several factors. If we define F
as the mean of the posterior distribution p(x|t) of eq. (2.49) then F will be continuous by the first fundamental
theorem of calculus (Spivak, 1967, p. 240, Th. 1 and also p. 230, Th. 8), because the mean is defined as an
integral; further, F will be differentiable at every point where p(x|t) is continuous itself (as a function of t).
For example, the dimensionality reduction mappings for factor analysis and PCA are continuous, as is obvious
from the linearity of the function (2.19). But if we define F as the (global) mode of p(x|t), then it may not be
continuous if F can be multimodal, as fig. 2.14 shows. Section 9.2 shows more examples of the discontinuity
of the arg max(·) function.

For GTM, F(t) defined as the posterior mode can be discontinuous, as would happen in the case of
figure 2.13 (right). However, its continuity is likely in practical situations where the posterior distribution is
unimodal and sharply peaked for the majority of the training set data points.

For latent variable models (like GTM) that sample the latent space, the concept of continuity in the latent
space—which is now discretised— becomes blurred if the posterior mode is used (the posterior mean remains
continuous, although it will produce points not in the latent space grid). In this case, discontinuities of the
dimensionality reduction mapping F will manifest themselves as abrupt jumps in the grid (larger than the
distance between two neighbouring latent grid points) when the point in data space changes slightly.

Finally, let us consider the case of a dimensionality reduction mapping defined as the point in the manifold
M which is closest to the data point t; that is, orthogonal projection ot t onto M. This is the approach
followed by the principal curves method. As mentioned in section 4.8, this definition leads to a discontinuous
dimensionality reduction mapping if the manifoldM is nonlinear. But, as discussed earlier, the presence of a
noise model and a prior distribution in latent space preclude the use of an orthogonal projection.

2.9.3 Finite mixtures of latent variable models

We turn now to the subject of dimensionality reduction in finite mixtures of latent variable models. If the di-
mension of all the latent spaces was the same, one could think of using E {x|t} as the latent space representative
of data point t:

p(x|t) =

M∑

m=1

p(x,m|t) =

M∑

m=1

p(m|t)p(x|m, t) =⇒

E {x|t} =

∫

xp(x|t) dx =

∫

x

(
M∑

m=1

p(m|t)p(x|m, t)
)

dx =

M∑

m=1

p(m|t) E {x|m, t}

Figure 2.13 (following page): Twisted manifolds and continuity of the dimensionality reduction mapping. Each
of the plots A to D shows an estimate for a training set of N = 1000 points (t1, t2) generated (with additive
normal noise of variance 0.01) from the Keplerian movement distribution of fig. 2.5 (first row), discussed in
section 2.2.3: a one-dimensional manifold embedded in the plane. In each plot, an unregularised GTM model
was fitted that used K = 21 latent grid points and F = 5 radial basis functions with a standard deviation
s = 1 times their separation. Two different training sets were used, one for plots A, B and another one for
plots C, D. The EM starting point was random for plots A, C and the line of the first principal component for
plots B, D. For each plot, the upper graph shows: the GTM manifold (thick dashed line), the true, elliptical
data manifold (small circles, whose density mimicks the distribution along the data manifold), the K Gaussian
components associated to the latent grid points (eqs. (2.42) and (2.43), with a radius σ; the big, grey circles),
the first principal component of the training set (solid straight line, almost coinciding with the t2 = 0 axis), a
contour plot of the GTM data space distribution pd(t) and the training set (scattered dots). The lower graph
shows explicitly the way the one-dimensional latent space is twisted in two dimensions: the latent space grid is
the horizontal top line, which is mapped onto the GTM data space manifoldM = f(X ) (thick solid line), to be
compared with the true data manifold (thin ellipse). All models have approximately the same log-likelihood L
(except D, which is much worse), but the way the GTM manifold twists itself in data space affects differently
the continuity of the dimensionality reduction mapping F when the posterior mode is used. Model B has
discontinuities in the area marked by the dashed circle in the lower graph due to the latent grid points x20–x21

retracing over x16–x19. Retracing is worse in model C (points x20–x21 retracing over x15–x19 and points x1–x2

over x3–x12) and much worse in model D (with multiple branch-switching). A further discontinuity appears
in all four models (marked by the dashed circle in the lower graph of plot A) due to the mismatch between
the latent space topology (open curve) and the data manifold topology (closed curve).
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Figure 2.14: Discontinuity of the arg max(·) or mode function. The figure shows plots of the function F (t) =

arg maxx h(x, t) where h(x, t)
def
= (1− t)N (x;µ1, σ

2)+ tN (x;µ2, σ
2) for t ∈ [0, 1] and x ∈ (−∞,∞), with µ1 = 0

and µ2 = 1. The left column corresponds to σ = 0.8, so that the two normal functions overlap heavily and
h(x; t) is unimodal for any given t ∈ [0, 1]: F (t) is continuous. The right column corresponds to σ = 0.25, so
that the two normal functions are widely separated and h(x; t) is bimodal for (almost) any given t ∈ [0, 1]:
F (t) is discontinuous. Rows (I)–(V) show, for several values of t, the function h(x; t) and the location of F (t).
Row (VI) shows F (t). Row (VII) shows a 3D view of h(x, t) and, superimposed as a thick line, F (t).
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where E {x|m, t} is the representative in mth latent space proposed by component m, with responsibility
Rm = p(m|t) for having generated t.

However, even if all the latent spaces had the same dimension, they will not necessarily correspond to the
same coordinate systems (e.g. consider the effect of rotating differently several factor spaces of dimension L).
Therefore, when dealing with mixtures of latent variable models, it makes no sense to talk about a single
representative, but about M of them, one for each of the M latent spaces, and averaging these representatives
is meaningless. Alternatively, a reduced-dimension representative can be obtained as the reduced-dimension
representative of the mixture component with the highest responsibility: x∗ = F(t) = x∗

m∗ such that m∗ =
arg maxm p(m|t).

2.9.3.1 Reconstruction

While averaging the reduced-dimension representatives is not possible, it intuitively makes sense to average
the reconstructed vectors (with respect to the responsibilities), because the data space coordinates are the
same for any component:

t∗ =
M∑

m=1

p(m|t)fm(Fm(t)) =
M∑

m=1

p(m|t)t∗m (2.52)

where t∗m = fm(Fm(t)) is the reconstructed vector by the latent variable model of component m. This can be
seen as a nonlinear projection of the original vector t onto the convex hull of {t∗m}Mm=1, which is a subset of
the linear subspace spanned by {t∗m}Mm=1. The projection is nonlinear because even if fm ◦Fm is linear for all
m, the p(m|t) are not. The vectors {t∗m}Mm=1 are not fixed, but depend on the particular input vector t.

2.9.3.2 Classification

For classification purposes, one could assign the data vector t to the most responsible component m∗ =
arg maxm p(m|t) and reconstruct the vector according to that component alone (cf. eq. (2.52)):

t∗ = t∗m∗ . (2.53)

As with latent variable models, the representatives could be computed as some suitable summary value of the
posterior distribution p(x|m∗, t), e.g. the mean, E {x|m∗, t}, or the mode, arg maxm p(x|m∗, t).

As with general mixture models, if for a given data vector no posterior probability is big enough, no
component of the mixture will explain it properly. This may be due to the mixture model being insufficient,
to the data vector lying on the boundary of two (or more) components, or to the data vector itself being an
outlier (or a novel point). In the latter case the point could be rejected if p(t) < θ for a suitable threshold
θ > 0 (which needs to be determined heuristically).

2.9.3.3 Reconstruction in general finite mixtures

We consider again equation (2.47), but where now the components p(t|m) are not latent variable models but
certain arbitrary densities or probability mass functions. For the purposes of reconstruction, each component
must provide with a reconstructed vector as a function of the original data vector t. For a general probability
distribution (without an underlying latent variable model) the best we can do is to choose a value that
summarises the distribution, such as the mean, median or mode. We will call this the prototype of the
distribution, t∗m. Then, the vector reconstructed by the finite mixture distribution will be t∗ =

∑M
m=1 πmt∗m,

as in the finite mixture of latent variable models. Since the {t∗m}Mm=1 are fixed (unlike in reconstruction in
mixtures of latent variable models), this amounts to a sort of weighted vector quantisation using the {t∗m}Mm=1

as codebook vectors (although M will usually be small), which gives poor results. Effectively, this means that
the finite mixture is performing cluster analysis rather than reconstruction or dimensionality reduction.

For example, for a normal distribution N (µ,Σ), the prototype is the parameter µ, which is the mean,

median and mode. For a multivariate Bernoulli distribution B(p), with p(t) =
∏D
d=1 p

td
d (1− pd)1−td , the

prototype can be given by the mean p (which will not be a binary vector in general) or the mode bp + 1
21c

(which is binary). For binary data, a finite mixture of multivariate Bernoulli distributions (withM components)
is called latent class analysis (with M classes), as mentioned in section 2.1.

For fixed {t∗m}Mm=1, the set

{
M∑

m=1

πmt∗m :

M∑

m=1

πm = 1, 0 ≤ πm ≤ 1, m = 1, . . . ,M

}
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is the convex hull of {t∗m}Mm=1, which is a subset of the linear subspace spanned by {t∗m}Mm=1. Hence, this
method of reconstruction is more limited than unrestricted linear reconstruction—and therefore more restricted
than PCA using M components, whatever the individual component distributions are. But even if the original
data vector t lies in the convex hull of {t∗m}Mm=1, the reconstructed vector t∗ will not necessarily be equal to t.

In a responsibility plot, the responsibility vector R(t) = (p(1|t), . . . , p(M |t))T is plotted in the [0, 1]M

hypercube, with each axis corresponding to one component. For the mixture to model the data well, the
points should accumulate near the axes, indicating that for each point, there is always one component clearly
responsible for having generated it. In other words, the distribution p(m|t) should be almost degenerate,

concentrating most of the mass in one value of m. Because
∑M
m=1 p(m|t) = 1 is the equation of a hyperplane

in RM , we can plot the points in the intersection between the hypercube [0, 1]M and that hyperplane, which
meets the coordinate axes at distance +1 from the origin. This region is a line for M = 2 and an equilateral
triangle for M = 3. The mixture will perform well if the projected points fall near the vertices of that region.

2.10 Applications for dimensionality reduction

The traditional types of continuous latent variable models (factor analysis and PCA) have been extensively
used for dimensionality reduction and related problems such as feature extraction or covariance structure
analysis. Examples of such applications can be found in textbooks, e.g. Bartholomew (1987) or Everitt (1984)
for factor analysis and Jolliffe (1986) or Diamantaras and Kung (1996) for PCA. Application of other types of
continuous latent variable models has only started recently. ICA has been widely applied to signal separation
problems, but in general not with the goal of dimensionality reduction, as noted in section 2.9.1.2. A handful
of applications of GTM exist, often as a replacement of a Kohonen self-organising map; we study in detail our
own application of GTM to a dimensionality reduction problem of speech in chapter 5. Also, we are currently
working on the application of continuous latent variable models to a computational neuroscience problem,
cortical map modelling (Swindale, 1996), from the point of view of dimensionality reduction. No applications
of independent factor analysis exist yet.

2.11 A worked example

To concrete some of the abstract concepts discussed in this chapter, we conclude with a textbook-style example.
The example also demonstrates several facts about latent variable models:

• That the marginalisation of the joint probability distribution p(t,x) can be analytically very difficult.

• The effect of varying noise levels in the induced probability distribution in data space p(t), which is
always between two limits:

– No noise: p(t|x)→ δ(f(x))⇒ p(t) =
∫

X p(t|x)p(x) dx→
{

0 t /∈M = f(X )

p(x) t ∈M = f(X ), t = f(x)
.

– Large noise: p(t|x) ≈ constant ∀x⇒ p(t) ≈ p(t|x).

In both limits the utility of the latent space is lost.

We consider a latent variable model with the following characteristics40:

• Latent space of dimension L = 1 and piecewise linear prior distribution pl(x) = 2
a2+b2 |x| on the interval

[−a, b] for a, b ≥ 0.

• Linear mapping from latent onto data space f(x) = ux+ v.

• D-dimensional data space with Gaussian noise model pn(t|x) = N (f(x),Σ).

Thus, the induced distribution in data space pd(t) can be obtained as follows:

pd(t) =

∫ b

−a
pn(t|x)pl(x) dx =

∫ b

−a

1
√

|2πΣ|
e−

1
2 (t−(ux+v))T Σ−1(t−(ux+v)) 2

a2 + b2
|x| dx.

40We notate the prior, noise and data density functions as pl, pn and pd, respectively.
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Figure 2.15: Distributions for the example of section 2.11 and effect of varying noise. The top row shows
the prior pl(x) in latent space (left), a sample of 1000 points and a contour plot of the induced distribution
pd(t) in data space (centre) and a surface plot of pd(t) (right). The manifoldM = f([−a, b]) is linear because
the mapping f is linear, and is represented by the thick solid segment in the centre graphs. Observe how the
maxima of the induced density are close, but do not coincide, with the ends of the segment (represented by
the circular points), due to the noise added. For this example, the actual parameters had the values: a = 1

3 ,
b = 2

3 , u = (−1, 2)T , v = (0, 0)T and Σ = 1
20 I (where I is the identity matrix). The second and third rows

show the effect of very low noise (Σ = 1
2000 I) and very high noise (Σ = 5

4 I), respectively. The “pyramids” in
the second row are visual artifacts produced by the mesh being too coarse.
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Figure 2.16: Models for the example of section 2.11 (from left to right): factor analysis (L = 1 factor),
principal component analysis (L = 1 principal component) and GTM (K = 11 latent grid points, F = 5 radial
basis functions with a standard deviation s = 1 times their separation, EM starting point: the line of the
first principal component). For each model, the thick dashed line corresponds to the manifoldM = f([−a, b])
(which in GTM’s case overlaps the true one, represented by the thick solid segment). The grey circles in GTM’s
graph represent the K Gaussian components associated to the latent grid points (eqs. (2.42) and (2.43), with
a radius σ). The training set contained N = 10 000 points.

Changing variables to A = uTΣ−1u, B = −2(t−v)TΣ−1u, C = (t−v)TΣ−1(t−v), m = −B
2A and σ = A−1/2

we obtain:

pd(t) =
2

a2 + b2
1

√

|2πΣ|

∫ b

−a
|x| e− 1

2 (Ax2+Bx+C) dx =
2

a2 + b2
1

√

|2πΣ|

∫ b

−a
|x| e−

1
2

[

( x−m
σ )

2
+(m

σ )
2−C

]

dx

and, changing again to α = a+m
σ
√

2
, β = b−m

σ
√

2
and γ = m

σ
√

2
, we finally obtain:

pd(t) =
2

a2 + b2
σ2

√

|2πΣ|
eγ

2−C
2

{

−e−α2 − e−β2

+ 2e−γ
2

+ γ
√
π (erf(β)− erf(α) + 2 erf(γ))

}

,

where erf(x) = 2√
π

∫ x

0
e−t

2

dt is the error function, which does not have a closed-form expression. α, β and γ

are functions of t and σ depends on the noise and mapping but not on t.
Figure 2.15 shows the prior in latent space pl(x) and the induced distribution in data space pd(t) for the

true distribution, as well as the effects of low and high noise. Figure 2.16 shows the data space distribution
for factor analysis, principal component analysis and GTM. Figure 2.17 comparatively shows the distribution
in data space along the manifold segment.

Even though for this problem the true manifold in data space is linear, the distribution pd(t) in data
space is not normal because the prior distribution pl(x) in latent space is not normal. Thus, the linear-normal
models (factor analysis and principal component analysis) produce a bad model while GTM models the true
distribution very well. It is interesting to observe that both factor analysis and PCA produce exactly the same
normal distribution pd(t), but while the PCA manifold MPCA is aligned with the Gaussian’s principal axis,
the factor analysis manifold MFA is not. The reasons are:

• In this example, whereD = 2 and L = 1, the number of free parameters for factor analysis is D(L+1) = 4
and for principal component analysis DL+1 = 3. Since the covariance matrix of a bidimensional normal

distribution is determined by only D(D+1)
2 = 3 parameters, both models will account exactly for (and

coincide with) the sample covariance matrix—which is the best they can do. Furthermore, since the
factor analysis model has more parameters than needed—rotation constraints are not possible because
the latent space is one-dimensional—it is undertermined (i.e., non-identifiable): there is an infinite
number of equivalent combinations for the values of Λ and Ψ (one of them being the PCA solution).

• For factor analysis, the uniqueness matrix Ψ is not isotropic in general (except when it coincides with the
PCA solution), as happens for the maximum likelihood estimate found in fig. 2.16, where ψ1 < ψ2. Thus
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Figure 2.17: Distribution in data space along the manifold segment for the true distribution (thick, solid line)
and for each model: factor analysis (dashed line), principal component analysis (dotted line, overlapping with
the factor analysis one) and GTM (solid line, almost overlapping with the true one). The circles correspond
to the location of the segment ends.

the principal axis of the Gaussian is not parallel to the Λ vector of eq. (2.14). For principal component
analysis, the uniqueness matrix σ2I is isotropic and therefore the principal axis of the Gaussian and the
UL vector of section 2.6.2 are parallel.

In high-dimensional situations, where factor analysis is identifiable (up to orthogonal rotations), factor analysis
will be a better model than PCA, as has been discussed by various researchers (e.g. Hinton et al. 1997; Neal and
Dayan 1997). Factor analysis attempts to model the underlying mapping and separately for each variable the
noise, while PCA forces the mapping to be aligned with the sample covariance—but the principal component
is not directed along the mapping if the noise level is high in another direction.

2.12 Mathematical appendix

2.12.1 Linear-normal models

Theorem 2.12.1. Consider random variables x
def∼ NL(µX ,ΣX) in RL and t|x def∼ ND(Λx + µT ,ΣT ) in RD,

for symmetric positive definite matrices ΣX , ΣT , a D × L matrix Λ and vectors µX ∈ RL, µT ∈ RD. Then:

(
t
x

)

∼ ND+L

((
µ

µX

)

,

(
Σ ΛΣX

ΣXΛT ΣX

))

t ∼ ND(µ,Σ) x|t ∼ NL(µ̂X , Σ̂
−1
X ) (2.54)

where

µ = ΛµX + µT (2.55)

Σ = ΣT + ΛΣXΛT = ΣT (ΣT −ΛΣ̂−1
X ΛT )−1ΣT (2.56)

µ̂X = A(t− µ) + µX = A(t− µT ) + Σ̂−1
X Σ−1

X µX (2.57)

A = ΣXΛTΣ−1 = Σ̂−1
X ΛTΣ−1

T (2.58)

Σ̂X = Σ−1
X + ΛTΣ−1

T Λ = Σ−1
X (IL −ΣXΛTΣ−1Λ)−1. (2.59)

Proof. From p(t,x) = p(t|x)p(x) and

p(t|x) = |2πΣT |−1/2
e−

1
2 (t−Λx−µT )T Σ

−1
T (t−Λx−µT )

p(x) = |2πΣX |−1/2
e−

1
2 (x−µX)T Σ

−1
X (x−µX)
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algebraic manipulation gives:

(t−Λx− µT )TΣ−1
T (t−Λx− µT ) + (x− µX)TΣ−1

X (x− µX) =
(
t− µ

µX

)T (
Σ−1
T −Σ−1

T Λ

−ΛTΣ−1
T Σ−1

X + ΛTΣ−1
T Λ

)(
t− µ

µX

)

with µ = ΛµX + µT . Theorem A.1.1(ii) proves

(
Σ−1
T −Σ−1

T Λ

−ΛTΣ−1
T Σ−1

X + ΛTΣ−1
T Λ

)−1

=

(
Σ ΛΣX

ΣXΛT ΣX

)

with Σ = ΣT (ΣT −ΛΣ̂−1
X ΛT )−1ΣT , Σ̂X = Σ−1

X + ΛTΣ−1
T Λ and ΣXΛTΣ−1 = Σ̂−1

X ΛTΣ−1
T . The Sherman-

Morrison-Woodbury formula (A.2) proves first that Σ = ΣT + ΛΣXΛT and then that Σ̂X = Σ−1
X (IL −

ΣXΛTΣ−1Λ)−1. Theorem A.1.1(i) proves that

∣
∣
∣
∣

Σ−1
T −Σ−1

T Λ

−ΛTΣ−1
T Σ−1

X + ΛTΣ−1
T Λ

∣
∣
∣
∣
= |ΣX |−1 |ΣT |−1

and

∣
∣
∣
∣

Σ ΛΣX

ΣXΛT ΣX

∣
∣
∣
∣
= |Σ| |Σ̂X |−1

= |ΣX | |ΣT | .

Finally, theorem A.3.1(iv) and the previous results prove that x|t ∼ N (µ̂X , Σ̂
−1
X ) with µ̂X as defined above.

Corollary 2.12.2 (Isotropic zero-noise limit of theorem 2.12.1). In the same conditions of theo-
rem 2.12.1, when ΣT = kI and k → 0+ then:

(
t
x

)

→ ND+L

((
µ

µX

)

,

(
Σ ΛΣX

ΣXΛT ΣX

))

t→ ND(µ,Σ) x|t→ δL(µ̂X)

where

µ = ΛµX + µT (2.60)

Σ = ΛΣXΛT (2.61)

µ̂X = A(t− µT ) (2.62)

A = A+ = (ΛTΛ)−1Λ (2.63)

Σ̂X →∞. (2.64)

The normal distributions above are degenerate in the space of t: only those data points t ∈ span {Λ} = im f
have nonzero density.

The following theorem proves that, for linear-normal models, the posterior distribution in latent space
x|t ∼ NL(µ̂X , Σ̂

−1
X ) is always narrower than the prior distribution x ∼ NL(µX ,ΣX), the narrower the smaller

the noise is: ΣT → 0⇒ Σ̂−1
X → 0.

Theorem 2.12.3. In the same conditions of theorem 2.12.1,
∣
∣Σ̂−1

X

∣
∣ < |ΣX |.

Proof. We have that:

• ΛTΣ−1
T Λ is positive definite because, for any x 6= 0, xTΛTΣ−1

T Λx = yTΣ−1
T y > 0, since ΣT is positive

definite and y
def
= Λx 6= 0 (since Λ is full-rank).

• ΛTΣ−1
T ΛΣX is positive definite because the product of positive definite matrices is positive definite.

• If B is positive definite then |I + B| > 1, since decomposing spectrally B = UVUT with V > 0 diagonal

and U orthogonal: |I + B| =
∣
∣UUT + UVUT

∣
∣ = |U| |I + V|

∣
∣UT

∣
∣ = |I + V| = ∏L

l=1 (1 + vl) > 1.

Hence |Σ̂X | |ΣX | = |Σ̂XΣX | =
∣
∣
∣I + ΛTΣ−1

T ΛΣX

∣
∣
∣ > 1⇒

∣
∣Σ̂−1

X

∣
∣ < |ΣX |.
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2.12.2 Independence relations

Theorem 2.12.4 (Pairwise local independence). p(titj |x) = p(ti|x)p(tj |x) ∀i, j ∈ {1, . . . , D}.

Proof. Call I = {1, . . . , D} \ {i, j}. Then:

p(titj |x) =

∫

p(t|x) dtI =

∫
∏

d∈{1,...,D}
p(td|x) dtI = p(ti|x)p(tj |x)

∫

p(tI |x) dtI = p(ti|x)p(tj |x)

where we have used the axiom of local independence (2.4).

Definition 2.12.1 and theorems 2.12.5 and 2.12.6 are from Cover and Thomas (1991).

Definition 2.12.1. The random variables X, Y and Z form a Markov chain X → Y → Z in that order if
the conditional distribution of Z depends only on Y and is conditionally independent of X, i.e., p(x, y, z) =
p(x)p(y|x)p(z|y) = p(x, y)p(z|y).

Theorem 2.12.5. X → Y → Z if and only if X and Z are conditionally independent given Y .

Proof. p(x, z|y) = p(x,y,z)
p(y) = p(x,y)p(z|y)

p(y) = p(x|y)p(z|y).

Theorem 2.12.6. If X → Y → Z then:

(i) X → Y → Z ⇒ Z → Y → X.

(ii) I(X;Z) ≤ I(X;Y ): no clever manipulation of the data Y (deterministic or random) can improve the
inferences that can be made from the data, i.e., the information that Y contains about X (data processing
inequality).

(iii) I(X;Y |Z) ≤ I(X;Y ): the dependency of X and Y is decreased, or remains unchanged, by observation
of a downstream random variable Z. Note, though, that I(X;Y |Z) > I(X;Y ) may happen if X, Y and
Z do not form a Markov chain.

Theorem 2.12.7 (Pairwise Markov chains). ti → x→ tj ∀i, j ∈ {1, . . . , D}, i.e., there is a Markov chain
between any two observed variables via the latent ones.

Proof. From theorems 2.12.4 and 2.12.5.

2.12.3 Latent variable models and entropy

The following results are easily proven using theorem 2.12.4 and the information theory results from section A.4.

Theorem 2.12.8.

• I(ti; tj |x) = 0.

• h(ti|tj ,x) = h(ti|x) ∀i, j ∈ {1, . . . , D}.

• h(ti|x) + h(tj |x) = h(ti, tj |x) ∀i, j ∈ {1, . . . , D}.

• h(t|x) =
∑D
d=1 h(td|x).

• h(t,x) = h(t) + h(x|t) = h(x) + h(t|x) = h(x) +
∑D
d=1 h(td|x). If the latent variables are mutually

independent, h(t,x) =
∑L
l=1 h(xl) +

∑D
d=1 h(td|x).

• 0 ≤ I(ti;x|tj) ≤ I(ti; tj) ≤ min (I(ti;x), I(tj ;x)) ≤ min (h(x), h(ti), h(tj)) ∀i, j ∈ {1, . . . , D}.

For models where the prior distribution in latent space has been sampled, p(x) =
∑K
k=1 p(xk)δ(x− xk),

the distributions p(t), p(x|t) and p(tI |tJ ) are finite mixtures, whose entropy cannot be computed analytically.
However, we can give bounds for it.

Theorem 2.12.9. Whether the prior distribution in latent space is continuous or has been sampled, if Ψ is
independent of x and t|x ∼ N (f(x),Ψ), then h(t|x) = 1

2 ln |2πeΨ|.

Proof.
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• Continuous p(x): h(t|x)
def
= −

∫

RL p(x)
∫

RD p(t|x) ln p(t|x) dt dx =
∫

RL p(x) 1
2 ln |2πeΨ| dx = 1

2 ln |2πeΨ|.

• Sampled p(x): h(t|x)
def
= −∑K

k=1 p(xk)
∫

RD p(t|x) ln p(t|x) dt =
∑K
k=1 p(xk)

1
2 ln |2πeΨ| = 1

2 ln |2πeΨ|.

Remark. Although the axiom of local independence prescribes factorised noise models, theorem 2.12.9 holds
even if Ψ is not diagonal.

Theorem 2.12.10 (Entropy for linear-normal models). Consider random variables x ∼ NL(µX ,ΣX)
in RL and t|x ∼ ND(Λx + µT ,ΣT ) in RD, for positive definite matrices ΣX , ΣT , a D × L matrix Λ and
vectors µX ∈ RL, µT ∈ RD. Then, with Σ and Σ̂X given as in theorem 2.12.1:

• h(x) = 1
2 ln |2πeΣX |

• h(t|x) = 1
2 ln |2πeΣT |

• h(t,x) = 1
2 ln (|2πeΣX | |2πeΣT |)

• h(t) = 1
2 ln |2πeΣ| = 1

2 ln
∣
∣
∣2πe(ΣT + ΛΣXΛT )

∣
∣
∣

• h(x|t) = 1
2 ln

∣
∣2πeΣ̂−1

X

∣
∣ = 1

2 ln
(

|2πeΣX | |2πeΣT | |2πeΣ|−1
)

.

Theorem 2.12.11 (Entropy for factor analysis). If x ∼ N (0, IL) and t|x ∼ N (Λx + µ,Ψ) with Ψ
diagonal and independent of x, then:

• h(x) = L
2 ln (2πe)

• h(t|x) = 1
2 ln |2πeΨ|

• h(t,x) = 1
2 ln

(
(2πe)D+L |Ψ|

)

• h(t) = 1
2 ln

(

(2πe)D
∣
∣
∣ΛΛT + Ψ

∣
∣
∣

)

• h(x|t) = 1
2 ln

(

(2πe)L
∣
∣
∣ΛTΨ−1Λ + IL

∣
∣
∣

−1
)

.

Theorem 2.12.12 (Entropy for principal component analysis). If x ∼ N (0, IL) and t|x ∼ N (Λx +
µ, σ2ID) with σ independent of x, then:

• h(x) = L
2 ln (2πe)

• h(t|x) = D
2 ln (2πeσ2)

• h(t,x) = 1
2 ln

(
(2πe)D+Lσ2D

)

• h(t) = 1
2 ln

(

(2πe)D
∣
∣
∣ΛΛT + σ2ID

∣
∣
∣

)

• h(x|t) = 1
2 ln

(

(2πeσ2)L
∣
∣
∣ΛTΛ + σ2IL

∣
∣
∣

−1
)

.

Theorem 2.12.13 (Entropy for GTM). If p(x) = 1
K

∑K
k=1 δ(x− xk) and t|x ∼ N (f(x), σ2ID) with σ

independent of x and f a generalised linear model, then:

• h(x) = lnK

• h(t|x) = D
2 ln (2πeσ2)

• h(t,x) = 1
2 ln

(
K2(2πeσ2)D

)
.

Theorems 2.12.9–2.12.13 show that, for normal noise models with fixed covariance Ψ, the entropy of the
observed variables, h(t), is bounded below by the entropy of the normal distribution of covariance Ψ. This
means that we cannot have a distribution p(t) in observed space which is, loosely speaking, more peaked than
a N (·,Ψ). Since it is to be expected that real distributions will have variable “peakiness” depending on the
region considered, the optimal Ψ will be a compromise between the covariance in areas of large noise and in
areas of small noise. In GTM this could be overcome by having many points in latent space (high K) and a
small covariance Ψ = σ2ID. However, allowing the covariance Ψ to depend on x (like the mean of the noise
model does, f(x)) would be the obvious workaround.
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2.12.4 Diagonal GTM (dGTM)

We give here the details for dGTM, the diagonal noise model for GTM that we proposed in section 2.6.5.1.
First let us fully generalise GTM so that it has diagonal noise dependent on each latent grid point and both
the values of the noise covariance matrix and the values of the prior distribution in latent space are trainable.
Thus

t|x def∼ N (f(x),Ψ(x)) (2.42’)

with Ψ : X → (R+)D and

p(t) =
K∑

k=1

πkp(t|xk)

with πk
def
= p(xk) and Ψk

def
= Ψ(xk) = diag (ψk1, . . . , ψkD). The dependence of p(t|xk) on all the relevant

parameters is not explicitly written for clarity of notation. The EM equations are derived by minimising

N∑

n=1

ln p(tn)− λ
(

K∑

k=1

πk − 1

)

where λ is a Lagrange multiplier that ensures that the values of the prior distribution in latent space add to
one. This gives

π
(τ+1)
k =

1

N

N∑

n=1

p(xk|tn) =
1

N

N∑

n=1

R
(τ)
nk

for the prior distribution in latent space, using the responsibilities Rnk = p(xk|tn), and for the rest of the
parameters we obtain

N∑

n=1

K∑

k=1

Rnk
∂

∂θ
ln p(tn|xk) = 0 (2.65)

where θ represents a parameter wdf or ψkd. Recalling that fd(xk) =
∑F
f=1 wdfφkf where φkf = φf (xk) and

plugging

∂

∂wdf
ln p(tn|xk) =

φkf
ψkd



tnd −
F∑

f ′=1

wdf ′φkf ′



 d = 1, . . . , D f = 1, . . . , F

∂

∂ψkd
ln p(tn|xk) = −1

2

(
1

ψkd
− (tnd − fd(xk))2

ψ2
kd

)

k = 1, . . . ,K d = 1, . . . , D

∂

∂ψkd
ln p(tn|xk′) = 0 if k 6= k′

into (2.65), we obtain a system of D(F +K) equations that, together with the equations for {πk}Kk=1, define
the M step:

K∑

k=1

φkf
ψkd

gkk

F∑

f ′=1

φkf ′wdf ′ =
N∑

n=1

K∑

k=1

φkf
ψkd

Rnktnd d = 1, . . . , D f = 1, . . . , F

ψkd =
1

gkk

N∑

n=1

Rnk(tnd − fd(xk))2 k = 1, . . . ,K d = 1, . . . , D

where gkk
def
=
∑N
n=1Rnk as in section 2.6.5. Solving for {wdf}D,Fd,f=1 is cumbersome, since the first group of

equations cannot be put into a nice matrix equation form. The second group of equations shows that Ψk is a
weighted average of the squared componentwise deviations of the data points from the “reference point” f(xk),
where the weights are given by the responsibilities (normalised over all reference points).

Compared to the standard GTM model, this extended version has K(D+1)−2 more parameters: {πk}K−1
k=1

and {Ψk}Kk=1. Thus, we lose the attractive property that using a large number of latent pointsK (exponentially
dependent on the latent space dimension L) does not increase the number of parameters. Even if the EM
algorithm was straightforward, such a model would require a large training set for stable statistical estimation41

41Note, however, that the standard GTM model does depend on F , the number of radial basis functions needed for the mapping
f , which also depends exponentially on L (but can be kept quite smaller than K without losing approximation power).
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and would be prone to singularity problems (Ψk → 0 for some k), as mentioned in section 2.5.2, among other
places. Defining Ψ(x) as a generalised linear model (as f is, eq. (2.41), and reusing the φ function) eliminates
the direct dependence on K and ensures a smooth variability of the noise variance over the data manifold, but
the resulting M step is unsolvable, as can be readily checked. Also, since f is a universal approximator, it is
not really necessary to make the prior distribution in latent space trainable as well.

Taking into account these considerations, for all k = 1, . . . ,K we keep p(xk) = 1
K constant as in the

standard GTM model and the noise model covariance matrix Ψk = Ψ diagonal constant too. As can easily be
seen by recalculating ∂

∂ψd
ln p(tn|xk), the M step becomes exactly solvable and leads to the following update

equations for the parameters W and Ψ, respectively:

ΦTG(τ)Φ(W(τ+1))T = ΦT (R(τ))TT (2.45a)

ψ
(τ+1)
d =

1

N

K∑

k=1

N∑

n=1

R
(τ)
nk (tnd − fd(xk))2 d = 1, . . . , D (2.45b’)

the first of which is the same one as for the standard GTM model and the second of which has the same
interpretation as before as weighted average of the squared componentwise deviations of the data points from
f(xk). Further modifications can still be done, such as a Gaussian regularisation term on W, eq. (2.46), or a
unit-speed constraint on f , section 2.8.3.

❦
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Chapter 3

Some properties of finite mixtures of
multivariate Bernoulli distributions

The objective of this chapter is to prove some properties of the class of finite mixtures of multivariate Bernoulli
distributions that are used elsewhere in this thesis and to discuss the identifiability of this class of mixtures
and the practical maximum likelihood estimation of its parameters by an EM algorithm.

Finite mixtures of multivariate Bernoulli distributions can be seen as a latent variable model in that the
discrete variable that indexes the components is latent (as opposed to the continuous latent variables considered
in chapter 2). It corresponds to a latent class model (section 2.1). As such, they have been extensively used
in diverse fields (such as bacterial taxonomy) to model a population of binary, multivariate measurements in
terms of a few latent classes. Everitt and Hand (1981) and Gyllenberg et al. (1994) give a number of examples.

3.1 Definition and moments

3.1.1 Multivariate Bernoulli distribution

A D-variate Bernoulli distribution of parameter p = (p1, . . . , pD)T ∈ [0, 1]D, BD(p), is defined as:

p(t;p) =
D∏

d=1

ptdd (1− pd )1−td =
D∏

d=1

p(td|B(pd)) (3.1)

where B(pd) is a Bernoulli distribution of parameter pd, d = 1, . . . , D. Thus, the D-variate Bernoulli distribu-
tion is equivalent to D independent Bernoulli distributions.

Applying the relation cov {t} = E
{
(t− E {t})(t− E {t})T

}
= E

{
ttT
}
− E {t}E {t}T , one obtains the

moments of the D-variate Bernoulli distribution of parameter p:

mean: µ = p (3.2)

covariance: Σ = diag (pd(1− pd)) (3.3)

because the matrix E
{
ttT
}

has elements pdpe in the off-diagonal position (d, e) and pd in the diagonal position
(d, d).

3.1.2 Finite mixture of multivariate Bernoulli distributions

A mixture distribution of M D-variate Bernoulli distributions BD(p1), . . . ,BD(pM ) is defined as:

p
(
t; {πm,pm}Mm=1

)
=

M∑

m=1

πmp(t|m) (3.4)

where the mixing proportions πm satisfy 0 < πm < 1 for m = 1, . . . ,M and
∑M
m=1 πm = 1 (in the case M = 1,

take π1 = 1) and the component distributions are D-variate Bernoulli distributions, t|m ∼ BD(pm). The
parameters {pm}Mm=1 are often called prototypes.

This chapter is mainly based on reference Carreira-Perpiñán and Renals (2000).
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Applying the relation Ep(t){f(t)} =
∑M
m=1 πm Ep(t|m){f(t)} one obtains the moments for the mixture of

M D-variate Bernoulli distributions:

mean: µ =

M∑

m=1

πmµm (3.5)

covariance: Σ =

M∑

m=1

πm Ep(t|m){ttT } − µµT =

M∑

m=1

πm(Σm + µmµTm)− µµT (3.6)

where for m = 1, . . . ,M , µm = pm and Σm = diag (pmd(1− pmd)) are the component means and covariance
matrices, respectively. Expanding Σ one obtains:

(Σ)de =
∑

n>m

πmπn(pmd − pnd)(pme − pne)

(Σ)dd = µd(1− µd).

Observe that Σ is no longer diagonal. Thus a mixture of multivariate Bernoulli distributions can account for
correlations between variables.

3.2 Maximum likelihood parameter estimation

This section shows that the EM algorithm for finite mixtures of multivariate Bernoulli distributions is guaran-
teed to converge to a proper maximum likelihood estimate, owing to a property of the log-likelihood surface.

3.2.1 Lack of proper minima of the log-likelihood surface

We show here that the log-likelihood surface of a finite mixture distribution (not necessarily a mixture of
multivariate Bernoulli distributions) has no proper minima.

For M > 1 integer, let

p(t) =

M∑

m=1

πmp(t|m)

define a finite mixture distribution of M components (Everitt and Hand, 1981). For each m = 1, . . . ,M , πm
are the mixing proportions and p(t|m) the component probability distributions (defined in a D-dimensional
space, continuous or discrete), which are parameterised. The mixing proportions verify 0 < πm < 1 for all

m = 1, . . . ,M and
∑M
m=1 πm = 1. Let Θ refer collectively to all the parameters of the mixture, including the

mixing proportions. Given a sample {tn}Nn=1, the log-likelihood of the parameters Θ is defined as:

L(Θ) =
N∑

n=1

ln p(tn;Θ) =
N∑

n=1

ln

(
M∑

m=1

πmp(tn|m)

)

. (3.7)

Proposition 3.2.1. The log-likelihood surface of a finite mixture distribution has no proper minima.

Proof. Omitting the dependence on the parameters Θ for clarity, it is easily seen that:

∂L
∂πm

=
1

πm

N∑

n=1

p(m|tn)−N m = 1, . . . ,M (3.8)

and

∂2L
∂πm∂πm′

= − 1

πmπm′

N∑

n=1

p(m|tn)p(m′|tn) ≤ 0 m,m′ = 1, . . . ,M (3.9)

where

p(m|tn) =
p(tn|m)p(m)

∑M
m′=1 p(tn|m′)p(m′)

by Bayes’ theorem and the term “−N” in eq. (3.8) results from the constraint
∑M
m=1 πm = 1 introduced in

the log-likelihood via a Lagrange multiplier.
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Therefore, from eq. (3.9), the Hessian H has negative or null components in its diagonal; call one of these
hii. Then, if ei is the ith canonical vector (having all components null except the ith, which is equal to one),
we have eTi Hei = hii ≤ 0 and the Hessian is not definite positive (irrespectively of the sign of the derivatives
with respect to the other parameters of the mixture).

The case where p(m|tn) = 0 for all n and m implies p(tn|m) = 0 for all n and m, by Bayes’ theorem.

Therefore p(tn) =
∑M
m=1 πmp(tn|m) = 0 for all n and L(Θ) = −∞, which is an improper minimum. It can

only happen for distributions that allow p(t|m) to be zero for certain boundary values of the parameters, such
as p = 0 or p = 1 for a Bernoulli distribution of parameter p.

Hence, no stationary point of the log-likelihood is a (proper) minimum.

Example. Consider a mixture of M = 2 univariate Bernoulli distributions (D = 1), as in eq. (3.4). Therefore

p(t|π1, p1, p2) = π1p
t
1(1− p1)

1−t + (1− π1)p
t
2(1− p2)

1−t =

{

π1(1− p1) + (1− π1)(1− p2) if t = 0

π1p1 + (1− π1)p2 if t = 1

with mean
t

def
= Ep(t) {t} = p(t = 1|π1, p1, p2) = π1p1 + (1− π1)p2.

From eq.(3.7), the log-likelihood for a sample of N points (N −N1 zeroes and N1 ones) can be written as:

L(π1, p1, p2) = N

((

1− N1

N

)

ln (1− t) +
N1

N
ln t

)

(3.10)

where N1

N is the sample mean and the model mean t is a function of the parameters (π1, p1 and p2). Thus, the
log-likelihood function (3.10) will be constant on the surface t = π1p1 + (1− π1)p2 = k for any k ∈ [0, 1]. Any
point on that surface corresponds to a model with mean t = k which produces the same distribution, given by
p(t = 0) = 1− k and p(t = 1) = k, due to the non-identifiability of the class of finite mixtures of multivariate
Bernoulli distributions (see section 3.3). By taking the derivative of the log-likelihood function (3.10) with
respect to t we find that its stationary points are the points of the surface t = π1p1 + (1 − π1)p2 = N1

N for
π1, p1, p2 ∈ [0, 1]. By taking the second derivative, we find that they are all maxima, in accordance with
proposition 3.2.1.

Figure 3.1 shows sections of the log-likelihood for constant π1 = 1−π2 in the space p1×p2. The maximum
likelihood surface π1p1 + (1− π1)p2 = N1

N becomes a line segment in the square [0, 1]× [0, 1] and is plotted as
a thick dotted line. Thus, each graph shows a segment of maxima plus two improper minima in the corners
p1 = p2 = 0 or 1⇔ π1p1 + (1− π1)p2 = 0 or 1 (or the whole lines pm = N1

N for the degenerate case πm = 1),
where the log-likelihood goes to −∞.

3.2.2 EM parameter estimation

We assume a fixed number of components M . Maximum likelihood estimation can be achieved by an EM
algorithm. Define π = (π1, . . . , πM )T and P = (p1, . . . ,pM ). As in eq. (3.7), the log-likelihood of the
parameters {π,P} given a sample {tn}Nn=1 is

L(π,P) =

N∑

n=1

ln p(tn;π,P) =

N∑

n=1

ln

(
M∑

m=1

πm

D∏

d=1

ptnd

md(1− pmd)1−tnd

)

(3.11)

and its gradient is easily seen to be

∂L
∂πm

=
1

πm

N∑

n=1

p(m|tn;π,P)−N m = 1, . . . ,M (3.12)

∂L
∂pmd

=
1

pmd(1− pmd)
N∑

n=1

p(m|tn;π,P)(tnd − pmd) m = 1, . . . ,M d = 1, . . . , D (3.13)

where

p(m|tn;π,P) =
p(tn|m;π,P)p(m)

∑M
m′=1 p(tn|m′;π,P)p(m′)

=
πm
∏D
d=1 p

tnd

md(1− pmd)1−tnd

∑M
m′=1 πm′

∏D
d=1 p

tnd

m′d(1− pm′d)
1−tnd

(3.14)
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Figure 3.1: Sections of the log-likelihood hypersurface for constant π1 = 1− π2 for a sample of mean 0.7 and
a mixture of M = 2 univariate Bernoulli distributions. Note the contour lines in the (p1, p2) plane which are
straight lines parallel to the line of maxima, π1p1 +π2p2 = constant (thick dotted line). From left to right and
top to bottom, the value of π1 is 0, 0.1, 0.3, 0.5, 0.8 and 1.
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are the posterior probabilities (or responsibilities) that component m generated data point tn. The term

“−N” in eq. (3.12) results from the constraint
∑M
m=1 πm = 1 introduced in the log-likelihood via a Lagrange

multiplier.
Derivation of the EM algorithm1 for finite mixtures of multivariate Bernoulli distributions is straightforward

(Wolfe, 1970; Everitt and Hand, 1981). We give here the basic equations:

• E step: computation of the responsibilities using equation (3.14) from the current parameter estimates
{π(τ),P(τ)} at iteration τ , p(m|tn;π(τ),P(τ)).

• M step: reestimation of {π(τ+1),P(τ+1)}:

π(τ+1)
m =

1

N

N∑

n=1

p(m|tn;π(τ),P(τ)) p(τ+1)
m =

1

Nπ
(τ+1)
m

N∑

n=1

p(m|tn;π(τ),P(τ))tn. (3.15)

The sequence of parameters obtained for τ = 0, 1, 2, . . . by iterating between the E and M steps from any start-
ing point {π(0),P(0)} produces a monotonically increasing sequence of values for the log-likelihood (Dempster
et al., 1977).

A common problem of estimation in mixture distributions is that of singularities, that is, points in parameter
space whose log-likelihood tends to positive infinity (e.g. a mixture of Gaussians in which one of the components
is located on a data point and its variance tends to zero, thereby becoming a Dirac delta). Such singularities
are undesirable because they give rise to degenerate distributions. Fortunately, the log-likelihood surface of a
finite mixture of multivariate Bernoulli distributions has no singularities of value +∞ (although it does have
singularities of value −∞). The reason is that both the log-likelihood (3.11) and its gradient (3.12)–(3.13)
are bounded above in the whole parameter space, including its boundaries2. This means that estimation by
the above EM algorithm from any nonpathological starting point, which is always possible by choosing pmd in
(0, 1), will always lead to a proper stationary point of the log-likelihood.

3.2.3 Stationary points of the log-likelihood

From proposition 3.2.1, no stationary point of the log-likelihood is a minimum. Besides, at any stationary
point of the log-likelihood, equations (3.15) hold, so that we have

Ep(t){t} =
M∑

m=1

πm Ep(t|m){t} =
M∑

m=1

πmpm =
M∑

m=1

1

N

N∑

n=1

p(m|tn)tn =
1

N

N∑

n=1

tn = t

and so the mean of the mixture coincides with the sample mean at any stationary point. The converse does
not hold generally.

The point in parameter space where pm = t for all m = 1, . . . ,M and any distribution of the mixing
proportions πm is a stationary point of the log-likelihood, because p(tn|m) =

∏D
d=1 t

tnd

d (1− td )(1−tnd) is
independent of m and therefore p(m|tn) = πm and the gradient is zero there. This point is equivalent to
a single multivariate Bernoulli distribution, and should be avoided because experience shows that its log-
likelihood,

L({πm,pm = t}Mm=1) = N ln

D∏

d=1

t
td
d (1− td )1−td

is much smaller than that of other local maxima (an intuitive fact since the mixture is trivial). A starting
point of the EM algorithm in which pm is the same for all components (e.g. the apparently innocuous starting
point pmd = 1/2 for all m and d) will lead to the mentioned trivial mixture after one EM iteration for any
original distribution of the πm. Our experiments showed that random starting points in (0, 1) were less prone
to leading to trivial mixtures.

1Our Matlab implementation of EM training of Bernoulli mixtures is freely available in the Internet (see appendix C).
2When pmd → 0 for some m, d, the log-likelihood gradient in equation (3.13) remains bounded above, because for each n,

either tnd − pmd → k1pmd (if tnd = 0) or p(m|tn) ∝ p(tn|m) → k2pmd (if tnd = 1), where k1 and k2 are constants. Similarly
happens with the case pmd → 1. Therefore the log-likelihood is differentiable for pmd ∈ [0, 1], except in pathological situations
where |pmd − tnd| = 1 for all m and fixed n: in these cases p(tn|m) = 0 for all m and L({πm,pm}M

m=1) → −∞. Since the EM
algorithm always climbs the log-likelihood surface, it will not be attracted by such singularities.
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Figure 3.2: Parameters of the mixture of M = 8 16-variate Bernoulli distributions used to generate the sample
in section 3.3.2.1. For m = 1, . . . , 8, each 16-dimensional pm vector is represented as a 4 × 4 image in which
the area of each pixel is proportional to the value of its associated pmd parameter; for example, for the leftmost
image, p1d is 0.8 for d ≤ 4 (row 1) and 0.2 for d ≥ 5 (rows 2 to 4).

3.3 Theoretical and practical identifiability

3.3.1 Theoretical non-identifiability

The identifiability of a class of parametric models was defined in section 2.8 and refers to whether different
values of the parameters can give rise to the same model, i.e., the same distribution—a fact that poses problems
to the interpretability of the estimated model. Here we discuss the identifiability of the class of finite mixtures
of multivariate Bernoulli distributions, which we use in chapter 5 to model the electropalatographic patterns,
each of which is a binary vector of dimension 62. We will give empirical support to the fact that, in spite of
the theoretical non-identifiability of this class of mixtures, estimation can still produce meaningful results in
practice, thus lessening the importance of the identifiability problem.

Gyllenberg et al. (1994) prove that the class of finite mixtures of multivariate Bernoulli distributions is
nontrivially non-identifiable3 for all dimensions D. This means that there are many combinations of values of
the parameter tuple Θ = {M, {πm,pm}Mm=1} that produce an identical distribution p(t): there exist at least
two tuples Θ, Θ′ for which p(t|Θ) = p(t|Θ′) ∀t ∈ {0, 1}D. For example, it can be readily verified that the
four mixtures given by the following parameter tuples represent the same distribution (here D = 3):

Θ :
{
M = 1,

{
π1 = 1, p1 = ( 1

2
1
2

1
2 )T
}}

Θ′ :
{
M = 2,

{
π1 = 1

2 , p1 = ( 1
2 0 1

2 )T
}
,
{
π2 = 1

2 , p2 = ( 1
2 1 1

2 )T
}}

Θ′′ :
{
M = 2,

{
π1 = 1

4 , p1 = ( 1
2 0 1

2 )T
}
,
{
π2 = 3

4 , p2 = ( 1
2

2
3

1
2 )T
}}

Θ′′′ :
{
M = 2,

{
π1 = 1

4 , p1 = (1 1
2

1
2 )T
}
,
{
π2 = 3

4 , p2 = ( 1
3

1
2

1
2 )T
}}

.

However, it does not mean that for every parameter tuple Θ there must exist at least one different Θ′

representing the same distribution. Identifiability is a property of the class of mixtures, rather than of a
particular parameter tuple.

Hence, in principle there are many tuples in parameter space that are completely equivalent but that would
give rise to different interpretations (recall that each prototype is supposed to represent a class of the population
of binary vectors). This may also seem an insurmountable difficulty for parameter estimation. However, the
fact that the EM algorithm of section 3.2.2 is guaranteed to converge to a proper maximum likelihood estimate
and the practical studies shown in section 3.3.2 suggest that, given a sample from a mixture of multivariate
Bernoulli distributions, EM maximum likelihood estimates of the parameters can be still interpretable.

3.3.2 Practical identifiability: experimental results

3.3.2.1 Synthetic data

We generated N = 10 000 vectors in a binary space of D = 16 dimensions from a fixed mixture of M = 8 16-
variate Bernoulli distributions, whose parameters are shown in figure 3.2. We call these the original parameters

3As opposed to trivial non-identifiability, which is given by permutations of the mixture components or by coincident component
distributions p(t|m) for several components.
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and denote them with a superscript “o”, e.g. po
m. From the sample alone, 10 maximum likelihood estimates

were found for mixtures of M = 4, M = 8 and M = 10 components. We used the EM algorithm of section 3.2.2
with random starting values of the parameters pmd in the range [ 14 ,

3
4 ], stopping it when the relative change

in log-likelihood was smaller than 10−6. The starting values for the πm parameters were fixed to 1/M , thus
giving each component the same weight at the beginning. The results were as follows4:

• Using the original number of components (M = 8), EM found the original parameters (both pm and πm)
9 out of 10 of the times; the normalised distance between the original and the estimated parameters was
smaller than 0.0013 in those cases and the log-likelihood was −94 990 (to 4 significant digits). However,
the remaining estimate was a suboptimal maximum of the log-likelihood in which two of the components
had the same pm parameter (p5 ≈ p8 ≈ po

5) and a log-likelihood of −95 201. The difference between the
log-likelihood values of the two estimates was of 0.2%.

• Using fewer components than necessary (M = 4) produced an estimate in which each prototype pm
was approximately either one of the original prototypes or a linear combination of several of the original
prototypes (normalised distance smaller than 0.0023). Figure 3.3 shows the situation, for a particular
estimate in which pm ≈ po

m for m = 1, 2, 3 and p4 ≈ 2
3p

o
4 + 1

3p
o
5. As in the previous case, estimates

having different prototypes also had very close log-likelihood values (differing in 0.5%).

• Using more components than necessary (M = 10) always produced the 8 original po
m vectors (normalised

distance smaller than 0.0022) plus 2 extra ones, typically either repeated instances of some of the original
ones or linear combinations of them. The log-likelihood value of each estimate did not differ from any of
the others in more than 0.02%, indicating that once the 8 original prototypes are found, the remaining
ones are largely irrelevant and reflect peculiarities of the sample used.

Experiments performed with other synthetic data sets produced similar results. We propose the following
interpretation of the experimental facts. Given a large sample generated from a known mixture of multivariate
Bernoulli distributions, let us construct another mixture in this way: first, pick up freely the number of compo-
nents M ; then, choose its p1, . . . ,pM prototypes either as some of the original ones or as linear combinations
of them. Then, we claim that, for certain values of the mixing proportions, such a point in parameter space is
very close to a maximum of the log-likelihood surface. However, we do not have theoretical support for this
and we do not have a valid interpretation for the values of the mixing proportions.

The above results also suggest a procedure to follow when estimating an unknown mixture of multivariate
Bernoulli distributions from a sample: choose freely a number of components M and, using EM from random
starting points, find several (say 10) maximum likelihood estimates for it. Inspect the prototypes obtained. If
they look the same for every estimate, then M is probably the right number of components and the estimate
is very close to the true generating distribution. If a fixed group of prototypes appears in each estimate, and
the rest of the prototypes are repetitions of those in the group, then M is probably too big; reduce it and start
again. However, if there are different prototypes in different estimates, then M is probably too small; increase
it and start again.

3.3.2.2 Electropalatographic (EPG) data

We used a subset5 of electropalatography data from the EUR-ACCOR database containing 11 852 different
62-dimensional binary vectors (EPGs), obtained from 12 different utterances by a native English speaker. We

4We quantify the distance between two vectors p, q in the D-dimensional rectangle [0, 1]D with the normalised undirected
distance 1

D
‖p − q‖2

2, where ‖·‖2 is the Euclidean norm. This distance is a real number in [0, 1] which averages to 1/6 for two

uniformly random vectors. Observe that if pd = qd + ε for d = 1, . . . , D then 1
D

‖p − q‖2
2 = |ε| independently of D.

5This is the same kind of data as that used in chapter 5 and we refer the reader to it for a fuller description of the ACCOR
data set and of electropalatography in general.
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Figure 3.4: The 9 prototypes p1, . . . ,p9 for a mixture of M = 9 multivariate Bernoulli distributions trained
with the EPG data set. Each pm vector, consisting of D = 62 values in the range [0, 1], is customarily displayed
as an image resembling the palate: the top row (alveolar part) contains parameters pm1 to pm6 from left to
right, row 2 contains pm7 to pm14, and so on till the bottom row (velar part), always from left to right. The
area of each pixel is proportional to the value of its associated pmd parameter.

estimated the density of its distribution in 62-dimensional binary space using a finite mixture of multivariate
Bernoulli distributions with M = 6 components. A number of estimates were found with the mentioned EM
algorithm. As with the synthetic data set, the starting parameter values were 1/M for the πm parameters
and a random number in

[
1
4 ,

3
4

]
for the parameters pmd, and EM was stopped when the relative change in

log-likelihood was smaller than 10−6. We checked that, at that point, the norm of the gradient of the log-
likelihood was 0 to acceptable precision and that the Hessian was negative definite, indicating that the point
actually corresponded to a maximum. Examination of the parameter values at this point showed that:

• Several different kinds of estimates were found, each kind being characterised by a subset of the prototypes
shown in fig. 3.4 and by specific values for the mixing proportions. Prototypes p1, p2, p5 and p9 appeared
in almost every estimate (the normalised distance between corresponding prototypes did not exceed 0.02),
while p3 and p8 were very common too.

• The log-likelihood of these mixtures was quite close, varying from −138 341 for the combination
{p1,p2,p5,p7,p8,p9} to −141 697 for the combination {p1,p2,p3,p5,p6,p9}.

• Occasionally a prototype was found that could be expressed as a linear combination of some of the
prototypes of fig. 3.4, e.g. 1

2p8 + 1
2p9.

We also found estimates for mixtures of M components, where M varied from 1 to 15. This made apparent
the fact that for M & 9, some prototypes appeared several times (with slight differences) in the same mixture,
which therefore becomes trivial. This suggested selecting M = 9 as the optimum number of components for
this data set6, with typical values for the optimal parameters (both pm and πm) given in fig. 3.4. Considering
a sequence of mixture estimates starting from M = 1 to M = 15, prototypes with high mixture proportions
tended to appear early in the sequence, although at times somewhat distorted due to the interference with
other prototypes. For example, prototype p1 in figure 3.4 was present in all mixtures, while p6 only starts to
appear (very infrequently) for M ≥ 6. However, prototype p9 appears very frequently for M ≥ 4. Also, the
log-likelihood for the data set considered increases with M and reaches a plateau for M ≈ 9 (see fig. 3.5).

An interesting fact is that these prototypes are highly interpretable, corresponding to physically feasible
EPGs and in fact assimilable to well-known quasi-static patterns in EPG studies such as those shown in fig. 5.3
(velar, alveolar, etc.), thus revealing important structure patterns in the data. These prototypes are similar
to those produced by other methods, in particular latent variable models (chapter 5).

6An alternative way to select the critical M is to examine the log-likelihood curves for a validation set.
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Figure 3.5: Log-likelihood of the mixture of multivariate Bernoulli distributions model for the EPG data as a
function of the number of components M . Each value plotted corresponds to an average over 10 independent
estimates and the error bars’ length is equal to 2 standard deviations.

3.3.3 Conclusions

We have shown that, for the class of finite mixtures of multivariate Bernoulli distributions, the EM algorithm
always converges to a proper stationary point of the log-likelihood, provided it is not started from a pathological
point in parameter space (which is always possible). The reasons for this are the absence of singularities of
value +∞ in the log-likelihood surface and the fact that the EM algorithm always climbs that surface. Our
Matlab implementation of the EM algorithm for finite mixtures of multivariate Bernoulli distributions is freely
available in the Internet (see appendix C).

We have given empirical evidence that, for this particular class of finite mixture models, sensible and
interpretable maximum likelihood estimates can be found even though that class of mixtures is not identifiable.
This would suggest that the lack of identifiability might not be important from the practical point of view in
some cases. Section 3.3.3.1 analyses the possible reasons for this with some detail, while section 3.3.3.2 shows
that theoretical identifiability may not imply practical identifiability.

3.3.3.1 Abundance of equivalent parameter tuples

In the first place, the non-identifiability result is not surprising if one considers that a distribution defined over a
discrete domain can be specified by a finite number of equations, one for each point of the domain. In our case,
this means 2D − 1 equations (plus another one linearly dependent with them due to all the equations adding
to one). Since the mixture has MD + M − 1 free parameters (one of the mixing proportions being linearly

dependent on the others), making M larger than 2D

D+1 would yield an underdetermined system of equations
with multiple solutions. However, even for small dimensions D this number is extremely large, and the number
of components employed in practice will be much smaller. We restrict the rest of this discussion to a situation

where the maximum number of components is much smaller than 2D

D+1 , which yields an overdetermined system
(where multiple solutions can still exist).

One reason for the apparent sparseness of the non-identifiability effect may be a low population of equivalent
parameter tuples. Let us call equivalent to two different parameter tuples Θ, Θ′ which produce the same
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distribution. While we know that, for any dimension D, there exist equivalent parameter tuples, this does
not mean that for each parameter tuple Θ there will exist an equivalent, different one Θ′ (always for the case

M � 2D

D+1 ). For example, it is easily seen that for the mixture in D dimensions with parameters given by:

Θ :
{
M = 2,

{
π1 ∈ (0, 1), p1 = (1 1 . . . 1)T

}
,
{
1− π1, p2 = (0 0 . . . 0)T

}}
,

which produces a distribution

p(t|Θ) =







π1, t = (1 1 . . . 1)

1− π1, t = (0 0 . . . 0)

0, otherwise

,

there does not exist any equivalent parameter tuple Θ′ for M < 2D

D+1 (disregarding, as usual, permutations
of mixture components and coincident component distributions). Thus, the actual practical problem of iden-
tifiability is: which parameter tuples Θ have equivalent parameter tuples? Or, considering the partition of
the space of parameter tuples into classes of equivalence (each class of equivalence consisting of all equivalent
parameter tuples): what is the cardinality of each class? This is a difficult question to answer analytically
with generality, but the experimental results suggest that nontrivial equivalence classes (consisting of more
than one element) may be rare, perhaps pathological.

Another reason for the possibility of estimating a sensible parameter tuple seems to be that every estimate
contains some of the original prototypes, and that the original number of components may be selected by
inspection of a collection of maximum likelihood estimates obtained with the EM algorithm (as we did in
section 3.3.2.1). Note that the likelihood function associated with a small sample (compared to the total
number of possible different vectors, usually 2D) need not be maximised by the original mixture.

3.3.3.2 Theoretical identifiability does not guarantee practical identifiability

Finally, let us remark that a reciprocal situation to the one described in this section may also be possible, as
the following example in D = 1 dimension shows. Consider the class of mixtures of normal distributions, which
is known to be identifiable for all dimensions (Everitt and Hand, 1981). That is, no two different mixtures
of that class represent the same distribution: p(x; {πm,µm,Σm}Mm=1) = p(x; {π′

m,µ
′
m,Σ

′
m}M

′

m=1) ∀x ∈ RD

implies M = M ′ and πm = π′
m, µm = µ′

m, Σm = Σ′
m for all m = 1, . . . ,M , perhaps with a reordering of the

indices. Now, let us consider the following two specific mixtures of univariate normal distributions (D = 1):

• The first mixture, f , has two equiprobable components (M = 2), with parameters:

{
M = 2,

{
π1 = 1

2 , µ1 = −1, σ1 = ζ
}
,
{
π2 = 1

2 , µ2 = 1, σ2 = ζ
}}

.

That is, f = π1f1 + π2f2 where f1 ∼ N (µ1, ζ) and f2 ∼ N (µ2, ζ).

• The second mixture, g, is a single normal distribution (M = 1), with parameters:

{M = 1, {π = 1, µ = 0, σ = ξ}} .

ζ and ξ are two positive numbers that control the dispersion of both mixtures. Due to the symmetry of the
parameters, both mixture distributions are even functions of x.

The L2-norm of a real function f(x) is defined as ‖f‖2 =
(∫
f2(x) dx

) 1
2 , where the integral is extended to

the domain of f , (−∞,∞) for the case of a univariate normal. The distance between two functions f and g
can be defined in terms of the L2-norm as ‖f − g‖2. Taking as f and g our two mixtures, respectively, let us
compute the squared distance between them in the L2-norm sense:

‖f − g‖22 =

∫ ∞

−∞
(f(x)− g(x))2 dx

=

∫ ∞

−∞

(
1

4
f2
1 (x) +

1

4
f2
2 (x) +

1

2
f1(x)f2(x) + g2(x)− f1(x)g(x)− f2(x)g(x)

)

dx

=
1

4
I(−1, ζ) +

1

4
I(1, ζ) +

1

2
I(−1, ζ; 1, ζ) + I(0, ξ)− I(−1, ζ; 0, ξ)− I(1, ζ; 0, ξ)

=
1

2
√
π

(

1

2ζ

(

1 + e
− 1

ζ2

)

+
1

ξ
− 2

√
2

√

ζ2 + ξ2
e
− 1

2(ζ2+ξ2)

)

= D(ξ; ζ)
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Figure 3.6: Density plots of two mixtures of univariate normal distributions. Left : two-component mixture
f(x) = π1f1(x) + π2f2(x), where π1 = π2 = 1

2 and f1 ∼ N (µ = −1, σ = 1.5), f2 ∼ N (µ = 1, σ = 1.5)
(component distributions f1 and f2: dotted line; mixture distribution f : solid line). Centre: single-component
mixture g(x) ∼ N (µ = 0, σ = 1.85) (dashed line). Right : both mixture distributions f and g. ‖f‖2 = 0.3928,
‖g‖2 = 0.3905, ‖f − g‖2 = 0.0081.

where we have used the following formulae for the convolution of Gaussians:

I(µ1, σ1;µ2, σ2) =

∫ ∞

−∞
N (x;µ1, σ1)N (x;µ2, σ2) dx =

1
√

2π(σ2
1 + σ2

2)
e
− 1

2

(

µ1−µ2√
σ2
1+σ2

2

)2

I(µ, σ) = I(µ, σ;µ, σ) =
1

2
√
πσ

where N (x;µ, σ) = 1√
2πσ

e−
1
2 (

x−µ
σ )

2

. Likewise, the L2-norms of each mixture are:

‖f‖2 =

√
√
√
√

(

1 + e
− 1

ζ2

)

4
√
πζ

‖g‖2 =
1

√

2
√
πξ
.

Note that
lim

ζ,ξ→∞
D(ξ; ζ) = 0 lim

ξ→0+

ζ>0

D(ξ; ζ) =∞ lim
ξ→∞
ζ>0

D(ξ; ζ) = ‖f‖22 > 0.

Thus, that distance can be made as small as desired by making both ζ and ξ large enough. But we do not
need to go to pathological situations. It is easy to see that, given ζ, D has a minimum in (0,∞) as a function
of ξ (i.e., there is a best L2-approximation from g to f for every ζ). The case ζ = 1.5 and ξ = 1.85 corresponds
to one of these minima. It is depicted in fig. 3.6 and shows how close, in the L2-norm sense, the two mixtures
can get. In this case, the L2-distance is just 0.0081, which is about 50 times smaller than the L2-norm of any
of the mixtures.

This implies that a sample of enormous size will be necessary to tell f from g in terms of likelihood of the
parameters, which means that in practice they may become indistinguishable. That is, it would be difficult
on the grounds of a given sample to determine whether the sample was generated by a single normal process
g or by a combination of two different normal processes f1 and f2.

Thus, theoretical identifiability7 does not guarantee practical identifiability and interpretation problems
may still arise with samples of limited size.

❦

7Not just of the class of normal distributions, but probably of other classes of mixtures which are identifiable in theory, specially
if they have the property of universal approximation (Titterington et al., 1985; Scott, 1992).
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Part II

Dimensionality reduction
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Chapter 4

Dimensionality reduction

This chapter introduces and defines the problem of dimensionality reduction, discusses the topics of the curse
of the dimensionality and the intrinsic dimensionality and then surveys non-probabilistic methods for dimen-
sionality reduction, that is, methods that do not define a probabilistic model for the data. These include linear
methods (PCA, projection pursuit), nonlinear autoassociators, kernel methods, local dimensionality reduction,
principal curves, vector quantisation methods (elastic net, self-organising map) and multidimensional scaling
methods. One of these methods (the elastic net) does define a probabilistic model but not a continuous di-
mensionality reduction mapping. If one is interested in stochastically modelling the dimensionality reduction
mapping then the natural choice are latent variable models, discussed in chapter 2. We close the chapter with
a summary and with some thoughts on dimensionality reduction with discrete variables.

4.1 Introduction

Consider an application in which a system processes data in the form of a collection of real-valued vectors:
speech signals, images, etc. Suppose that the system is only effective if the dimension of each individual
vector—the number of components of the vector—is not too high, where high depends on the particular
application. The problem of dimensionality reduction appears when the data are in fact of a higher dimension
than tolerated. For example, take the following typical cases:

• A face recognition/classification system based on m× n greyscale images which, by row concatenation,
can be transformed into mn-dimensional real vectors. In practice, one could have images of m = n = 256,
or 65536-dimensional vectors; if, say, a multilayer perceptron was to be used as the classification system,
the number of weights would be exceedingly large and would require an enormous training set to avoid
overfitting. Therefore we need to reduce the dimension. While a crude solution in this case would be to
simply scale down the images to a manageable size, more elaborate approaches exist.

• A statistical analysis of a multivariate population. Typically there will be a few variables and the analyst
is interested in finding clusters or other structure of the population and/or interpreting the variables.
To that aim, it is quite convenient to visualise the data, which requires reducing its dimensionality to 2
or 3.

Therefore, in a number of occasions it can be useful or even necessary to first reduce the dimensionality of
the data to a manageable size, keeping as much of the original information as possible, and then feed the
reduced-dimension data into the system. Figure 4.1 summarises this situation, showing the dimensionality
reduction as a preprocessing stage in the whole system.

More generally, whenever the intrinsic dimensionality of a data set is smaller than the actual one, dimen-
sionality reduction can bring an improved understanding of the data apart from a computational advantage.
Dimensionality reduction can also be seen as a feature extraction or coding procedure, or in general as a
representation in a different coordinate system. This is the basis for the definition given in section 4.2.

4.1.1 Classes of dimensionality reduction problems

We attempt here a rough classification of the dimensionality reduction problems:

This chapter is an extended version of reference Carreira-Perpiñán (1996).
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Figure 4.1: The dimensionality reduction problem. A given processing system is only effective with vector
data of not more than a certain dimension, so data of higher dimension must be reduced before being fed into
the system.

• Hard dimensionality reduction problems, in which the data have dimensionality ranging from hundreds
to perhaps hundreds of thousands of components, and usually a drastic reduction (possibly of orders of
magnitude) is sought. The components are often repeated measures of a certain magnitude in different
points of space or in different instants of time. In this class we would find pattern recognition and
classification problems involving images (e.g. face recognition, character recognition, etc.) or speech (e.g.
auditory models).

• Soft dimensionality reduction problems, in which the data is not too high-dimensional (less than a few
tens of components), and the reduction not very drastic. Typically, the components are observed or
measured values of different variables, which have a straightforward interpretation. Most statistical
analyses in fields like social sciences, psychology, etc. fall in this class.

• Visualisation problems, in which the data does not normally have a very high dimension in absolute
terms, but we need to reduce it to 2 or 3 in order to plot it. Several representation techniques (reviewed
by Scott, 1992) exist that allow to visualise up to about 5-dimensional data sets, using colours, rotation,
stereography, glyphs or other devices, but they lack the appeal of a simple plot; a well-known one is the
grand tour (Asimov, 1985). Chernoff faces (Chernoff, 1973) allow even a few more dimensions, but are
difficult to interpret and do not produce a spatial view of the data.

If we allow the time variable in, we find two further categories: static dimensionality reduction and time-
dependent dimensionality reduction. The latter could possibly be useful for vector time series, such as video
sequences or continuous speech. We deal here only with static dimensionality reduction.

4.2 Definition of the problem of dimensionality reduction

Suppose we have a sample {tn}Nn=1 of D-dimensional vectors lying in a data space T (usually RD or a subset
of it1). The fundamental assumption that justifies the dimensionality reduction is that the sample actually
lies, at least approximately, on a manifold2 (nonlinear in general) of smaller dimension than the data space.
The goal of dimensionality reduction is to find a representation of that manifold (a coordinate system) that
will allow to project the data vectors on it and obtain a low-dimensional, compact representation of the data.

Formally, dimensionality reduction consists of the following problem: given a sample {tn}Nn=1 ⊂ T , find:

• A space X of dimension L (typically RL or a subset of it).

• A dimensionality reduction mapping F:

F : T −→ X
t 7→ x = F(t).

As in section 2.9.1, we call x the reduced-dimension representative of t.

• A smooth, nonsingular3 reconstruction mapping f :

f : X −→ M ⊂ T
x 7→ t = F(x).

1As in chapter 2, we restrict ourselves to continuous variables.
2Section A.7 gives a formal definition of L-manifolds and coordinate systems.
3The reasons for requiring that the reconstruction mapping be smooth and nonsingular are the same as in chapter 2: to ensure

that the domain and range have the same dimension (nonsingular) and to preserve the topographic structure of the domain
(continuity). Piecewise smooth functions would be acceptable too.
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Figure 4.2: The dimensionality reduction mapping F (dashed lines) and the reconstruction mapping f (dotted
lines) need not verify F ◦ f = identity.

Such that:

• L < D is as small as possible.

• The following condition is satisfied:

The manifold M def
= f(X ) approximately contains all the sample points: {tn}Nn=1

⊂∼ M. (DR)

This condition can be restated in a different way:

The reconstruction error of the sample is small. (DR′)

The reconstruction error of the sample is defined as Ed({tn}Nn=1)
def
=
∑N
n=1 d(tn, t

∗
n) where t∗n

def
= f(F(tn))

is the reconstructed vector for point tn and d is a suitable distance in the space T (e.g. the Euclidean
distance in RD).

Conditions (DR) and (DR′) are not equivalent: (DR′) implies (DR) but not vice versa. This is because, for a
given manifoldM = f(X ) ⊂ T , F ◦ f need not be the identity mapping, as fig. 4.2 shows. Thus, it is possible
that {tn}Nn=1 ⊂M, i.e., for each tn there exists a point xn ∈ X with f(xn) = tn, but F(tn) 6= xn. Therefore

t∗n
def
= f(F(tn)) 6= tn and Ed({tn}Nn=1) may be large. This is not an arbitrary argument: the dimensionality

reduction mappings derived from latent variable models are of this kind, due to the existence of a probability
distribution on the space X and of a noise model, as described in section 2.9.

Due to the dimensionality mismatch between X and T , there will be a whole submanifold of dimension

D − L in T that will be mapped onto the same point in X , i.e., F−1(x)
def
= {t ∈ T : F(t) = x} will be

a submanifold of dimension D − L, as discussed in section 2.9.1. For the example of fig. 4.2, F−1(x) is the
vertical line passing through the point t = (x 0)T .

The election of the coordinate system for a given manifold is not unique. For example, in figure 4.3
a one-dimensional nonlinear manifold in R3 (a curve), namely a spiral of radius R and step s, is parame-

terised in terms of the dimensionless parameter x: M def
= {t ∈ R3 : t = f(x), x ∈ [xA, xB ]} for f(x)

def
=

(R sin 2πx,R cos 2πx, sx)T . We could reparameterise the manifold in terms of the arc length λ between points

tA
def
= f(xA) and tB

def
= f(xB):

λ
def
=

∫ tB

tA

√
(
dt1
dx

)2

+

(
dt2
dx

)2

+

(
dt3
dx

)2

dx =
√

(2πR)2 + s2(xB − xA).
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Figure 4.3: An example of coordinate representation of a one-dimensional manifold M in R3 (a curve): the
segment of spiral M = {t ∈ R3 : t = f(x), x ∈ [xA, xB ]} for f(x) = (R sin 2πx,R cos 2πx, sx)T .

Yet another parameterisation would be in terms of the angle θ = 2πx, etc. Another example are the Cartesian,
spherical and cylindrical systems in R3. Any coordinate system is in principle acceptable, although some may
be more appropriate than others for certain problems. Also, constraints on the problem may make the choice
of coordinates unique. For example, in PCA the basis vectors are constrained to be orthonormal and ordered
according to variance, which makes the choice of basis vectors unique (except when the data covariance matrix
has multiple eigenvalues).

4.3 The curse of the dimensionality

The term curse of the dimensionality4, coined by Bellman (1961), refers to the fact that, in the absence of
simplifying assumptions, the sample size needed to estimate a function of several variables to a given degree
of accuracy (i.e., to get a reasonably low-variance estimate) grows exponentially with the number of variables.

A related fact, responsible for the curse of the dimensionality, is the empty space phenomenon (Scott and
Thompson, 1983): high-dimensional spaces are inherently sparse. For example, the probability that a point
distributed uniformly in the unit 10-dimensional sphere falls at a distance of 0.9 or less from the centre is only
0.35. This is a difficult problem in multivariate density estimation, as regions of relatively very low density can
contain a considerable part of the distribution, whereas regions of apparently high density can be completely
devoid of observations in a sample of moderate size (Silverman, 1986). For example, for a one-dimensional
standard normal N (0, 1), 70% of the mass is at points contained in a sphere of radius one standard deviation
(i.e., the [−1, 1] interval); for a 10-dimensional N (0, I), that same (hyper)sphere contains only 0.02% of the
mass and one has to take a radius of more than 3 standard deviations to contain 70%. Therefore, and contrarily
to our intuition, in high-dimensional distributions the tails are much more important than in one-dimensional
ones.

The curse of the dimensionality has the following consequence for density estimation: since most density
estimation methods are based on some local average of the neighbouring observations (Silverman, 1986), in
order to find enough neighbours in high-dimensional spaces, the neighbourhood has to reach out farther and
the locality is lost. Another problem caused by the curse of the dimensionality is that, if there are linear
correlations in the data (a very likely situation in high dimensions), the optimal mean integrated squared error
when estimating the data density will be very large even if the sample size is arbitrarily large (Scott, 1992).

4As a philosophical aside, it is interesting that the curse of the dimensionality appears implicitly in Francis Bacon’s inductive
method. Bacon introduced the idea of induction in 1620 in his Novum Organum as a response to deduction, which Aristotle
had formalised in his Organum. In Bacon’s inductive method, the task of the scientist would be to derive laws of nature by
carefully constructing tables containing the experimental data. Each line in a table would correspond to a combination of values
of the variables having an influence on the phenomenon observed and the presence or absence of that phenomenon (a kind of
binary classification problem in our days!), or the degree to which the phenomenon manifested itself (multivariate regression!).
Given the combinatorial explosion of the table size, acknowledged by Bacon, it is not surprising that the method was never
implemented—although its merit resides in the introduction of the concept of induction rather than in the method.
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However, it is important to remark that the curse of the dimensionality is governed not by the dimensionality
D of the data space T , but by the intrinsic dimensionality L of the data. Or, more precisely, by the dimension
L of the space X which the dimensionality reduction method is imposing. This is because the sample size
required really depends on the volume of hyperspace occupied by the manifold being modelled, of dimension
L, not on the higher-dimension space where it is embedded: thus the sample size grows as O(eL). An example
of this are latent variable models based on Monte Carlo sampling of the latent space (section 2.4), such as
GTM.

Due to the fundamental character of the curse of the dimensionality, all dimensionality reduction methods
(particularly the more general ones) are affected by it to some extent through the number of parameters that
need to be estimated.

4.3.1 The geometry of high-dimensional spaces

The geometry of high-dimensional spaces provides a few surprises related to the curse of the dimensionality.
Although, in fact, one should say that the surprises are in the usual, intuitive low-dimensional cases of 1 to 3
dimensions, when compared to the general (asymptotic) case of higher dimensions. We illustrate now some of
these intriguing results for the case of the Euclidean space RD. First note that:

• The volume of the D-hypersphere of radius R is V (SDR ) = V (SD1 )RD with dimension-dependent constant

V (SD1 ) =
πD/2

Γ(D2 + 1)

where Γ(x) is the gamma function.

• The volume of the D-hypercube of side 2R is V (CD
R ) = V (CD1 )RD with dimension-dependent constant

V (CD1 ) = 2D.

Both volumes depend exponentially on the linear size of the object, but the constants are very different.
This has as an interesting consequence a distortion of the space. Consider the following situations in the limit
of high dimensions:

Sphere inscribed in a hypercube (Scott, 1992): the ratio of the volume of the hypersphere to the volume
of the hypercube is

V (SD1 )

V (CD1 )
=

πD/2

2DΓ(D2 + 1)
−−−−→
D→∞

0.

That is, with increasing dimension the volume of the hypercube concentrates on its corners and the
centre becomes less important. Table 4.1 and figure 4.4 show the volumes V (SD1 ), V (CD1 ) and the ratio
between them for several dimensions.

Hypervolume of a thin shell (Wegman, 1990): consider the volume between two concentric spheric shells
of respective radii R and R(1− ε), with ε small. Then the ratio

V (SDR )− V (SDR(1−ε))

V (SDR )
= 1− (1− ε)D −−−−→

D→∞
1.

Hence, virtually all the content of a hypersphere is concentrated close to its surface, which is only a
(D − 1)-dimensional manifold (see section A.7). Thus, for data distributed uniformly over both the
hypersphere and the hypercube, most of the data fall near the boundary and edges of the volume. This
example illustrates one important aspect of the curse of the dimensionality mentioned earlier. Figure 4.4
illustrates this point for ε = 0.1.

Tail probability of the multivariate normal (Scott, 1992): the preceding examples make it clear that
most (spherical) neighbourhoods of data distributed uniformly over a hypercube in high dimensions will
be empty. In the case of the standard D-dimensional normal distribution, the equiprobable contours are
hyperspheres. The probability that a point is within a contour of density ε times the value at the mode,
or, equivalently, inside a hypersphere of radius

√
−2 ln ε, is:

Pr
[

‖x‖2 ≤ −2 ln ε
]

= Pr
[
χ2
D ≤ −2 ln ε

]
(4.1)
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D 1 2 3 4 · · · 10

V (SD1 ) 2 π 4
3π

π2

2 · · · π5

120 ≈ 2.55

V (CD1 ) 2 4 8 16 · · · 1024

V (SD
1 )

V (CD
1 )

1 π
4

π
6

π2

32 · · · π5

122880 ≈ 0.0025

Table 4.1: Volumes of unit D-hypersphere and D-hypercube.
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Figure 4.4: Dependence of several geometric quantities with the dimension (only natural numbers D = 1, 2, . . .
are meaningful). See the main text for an explanation.

because if t = (t1, . . . , tD) is distributed as a standard normal, then xi, i = 1, . . . , D are univariate

standard normal and ‖t‖2 =
∑D
d=1 t

2
d is distributed as a χ2 distribution with D degrees of freedom.

Equation 4.1 gives the probability that a random point will not fall in the tails, i.e., that it will fall in the
medium- to high-density region. Figure 4.4 shows this probability for ε = 0.01 (a radius of 3 standard
deviations) and several dimensions: notice how around D = 5 the probability mass of a multivariate
normal begins a rapid migration into the extreme tails. In very high dimensions the entire sample will
be in the tails!

Diagonals in hyperspace (Scott, 1992): consider the hypercube [−1, 1]D and let any of the diagonal vec-
tors from the centre to a corner be denoted by v. Then v is one of the 2D vectors of the form
(±1,±1, . . . ,±1)T . The angle between a diagonal vector v and a coordinate axis ed is given by

cos θD =
ved

‖v‖ ‖ed‖
=
±1√
D
−−−−→
D→∞

0.

Thus, the diagonals are nearly orthogonal to all coordinate axes for large D.

Pairwise scatter diagrams essentially project the multivariate data onto all the 2-dimensional coordinate
planes. Hence, any data cluster lying near a diagonal in hyperspace will be mapped into the origin in
every paired scatterplot, while a cluster along a coordinate axis will be visible in some plot. Thus the
choice of coordinate systems is critical in data analysis: 1- or 2-dimensional intuition is valuable but not
infallible when continuing on to higher dimensions.
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4.4 The intrinsic dimension of a sample

Consider a certain phenomenon governed by L independent variables. In practice, this phenomenon will actu-
ally appear as having (perhaps many) more degrees of freedom due to the influence of a variety of uncontrolled
factors: noise, imperfection in the measurement system, addition of irrelevant variables, etc. However, pro-
vided this influence is not too strong as to completely mask the original structure, in principle we should be
able to “filter” it out and recover the original variables or an equivalent set of them. We define the intrinsic
dimension5 of a phenomenon as the number of independent variables that explain satisfactorily that phenom-
enon. From a geometrical point of view, the intrinsic dimensionality would be the dimension L of the manifold
that approximately embeds the sample data in a D-dimensional Euclidean space (D > L). The vagueness of
the words satisfactory and approximately is intended, since the intrinsic dimensionality of a sample depends
on the criteria that the user applies to the particular problem at hand, such as smoothness of the manifold,
effect of noise, etc. A priori a discrete sample has dimension zero, but it is possible to make a manifold of any
dimension pass through it. So the sample may have dimension one according to one criterion, dimension two
according to a different one and so on. For example, in fig. 4.5 a one-dimensional manifold (the dotted curve)
is forced to interpolate a set of points which naturally would seem to lie on a two-dimensional manifold (the
shaded area). Thus, the problem of inferring the intrinsic dimensionality of a sample is ill-posed and requires
of prior information to be solved.

The determination of the intrinsic dimensionality of a process given a sample of it is central to the problem
of dimensionality reduction, because knowing it would eliminate the possibility of over- or underfitting. All
the dimensionality reduction methods discussed in this thesis take the intrinsic dimensionality as a parameter
to be given by the user; a trial-and-error process is necessary to obtain a satisfactory value for it (aided by
model selection techniques such as cross-validation). In some practical applications, domain information may
give insight into the intrinsic dimensionality. For probabilistic methods, such as latent variable models, a
Bayesian approach can help to determine the intrinsic dimensionality. For example, one could consider the
intrinsic dimensionality L as a trainable parameter over which a prior distribution is placed, perhaps uniform in
{1, 2, . . . , D} (to reflect lack of information), or perhaps decreasing monotonically with increasing dimension
(to favour the reduction of dimensionality). The posterior mode of the intrinsic dimensionality given the
data sample could be chosen as the optimal dimensionality if a single value is desired (although, strictly,
inferences should use the posterior parameter distribution, including L, rather than a single value). This has
the problem that the rest of the parameters depend on L. A possible strategy is the use of a hierarchical prior
model, as Richardson and Green (1997) have done to learn the number of components (and the rest of the
parameters) of a finite mixture. Another possibility is to use the automatic relevance determination (ARD)
framework (MacKay, 1995b), as Bishop (1999) has proposed for the probabilistic PCA and PCA mixture
models described in sections 2.6.2 and 2.7. Although the computations involved in the Bayesian approach are
very complicated and no exact treatment is possible even for the simplest models, this is a promising research
direction.

Finally, we show two unusual cases of manifolds. First consider the sample in figure 4.6. Without further
information one could say that it corresponds to a two-dimensional manifold on the left side and to a one-
dimensional manifold on the right side (whatever that may mean). It actually corresponds to a one-dimensional
distribution with variable noise (much higher on the left side), obtained from a speech enhancement application
analysed by Xie and van Compernolle (1996). They consider that the observed noisy speech Y is due to
independent noise E corrupting the clean speech S additively in the spectral (log) domain, with S and E

distributed normally in a frame basis. Thus 10
Y
10 = 10

S
10 + 10

E
10 or y = s + e, where y, s and e are the

log-magnitudes of the observed speech, clean speech and noise, respectively, and s and e follow a log-normal
distribution. Fig. 4.6 shows a synthetically generated sample where S ∼ N (µ = 10, σ = 17) and E ∼ N (µ =
0, σ = 3). The solid line corresponds to the minimum mean squared error estimate, the posterior mean E {s|y}.

The second case may be unlikely to arise in a practical problem, but nonetheless it has a theoretical interest.
Figure 4.7 shows the first 5 approximations to a space-filling curve, the Hilbert curve. While each curve is
one-dimensional, it can be proven that the limit to which this sequence of curves converges exists and is the
square: a two-dimensional manifold. That is, a space-filling curve is a continuous map of an interval of the real
line on a rectangle of R2 or some other higher-dimensional manifold. Other fractal curves, such as the Koch
snowflake curve, have even a non-integral (Hausdorff) dimension between 1 and 2 (Barnsley, 1988; Peitgen
et al., 1992).

5We will not attempt to define formally the concept of dimension, for which, in fact, many different mathematical definitions
exist, each one trying to capture some desirable properties of the notion of dimension: topological dimension, covering dimension,
Hausdorff dimension, fractal dimension. . . For our purposes, an intuitive idea of the concept of dimension will be enough. Falconer
(1990) has more details about the definition of dimension.
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Figure 4.5: Curve or surface?
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Figure 4.6: What is the intrinsic dimensionality of this sample? (adapted from Xie and van Compernolle, 1996
with permission from Elsevier Science).

Figure 4.7: First 5 curves of the Hilbert space-filling curve sequence.
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Figure 4.8: Bidimensional, normal point cloud with its principal components.

Generally, we know from set theory that we can map invertibly and continuously RD into R or any interval
of R, i.e., card

(
RD
)

= card (R) = card ((0, 1)) = c for any D ∈ N (Rotman and Kneebone, 1966); for example,
using the diagonal Cantor construction: given t ∈ RD, write each of its components t1, . . . , tD as a binary
expansion (which can be done in a unique way) and interleave the expansions to obtain the binary expansion
of a number in R. In principle, this would allow to find a nonlinear continuous mapping from RD into R

preserving all information: exact reduction of any dimensionality to L = 1! Of course, due to the finite
precision of computers this is of no practical application, and even if it was possible, such a procedure would
not help to understand the intrinsic dimensionality in the sense mentioned earlier. RD and R may have the
same cardinal, but they do not have the same dimension.

4.5 Principal component analysis

Principal component analysis (PCA) (Jackson, 1991; Jolliffe, 1986) is possibly the dimensionality reduction
technique most widely used in practice, perhaps due to its conceptual simplicity, its analytical properties and
the fact that relatively efficient algorithms (of polynomial complexity) exist for its computation. In signal
processing it is known as the Karhunen-Loève transform.

Traditionally, PCA has been considered as a distribution-free linear dimensionality reduction technique, and
that is the point of view that we follow in this section. However, it can be also seen as the maximum likelihood
estimate of a specific latent variable model. We describe the probabilistic view of PCA in section 2.6.2.

Let us consider a sample {tn}Nn=1 in RD with mean t
def
= 1

N

∑N
n=1 tn and covariance matrix Σ

def
=

1
N

∑N
n=1 (tn − t)(tn − t)T . The matrix Σ is symmetric semidefinite positive and admits a spectral decom-

position
Σ = UΛUT

with U = (u1, . . . ,uD) orthogonal, Λ = diag (λ1, . . . , λD) and λd ≥ 0, d = 1, . . . , D. ud is the normalised
eigenvector of Σ associated with eigenvalue λd. The principal component transformation x = UT (t − t)
yields a reference system in which the sample has mean 0 and diagonal covariance matrix Λ containing the
eigenvalues of Σ: the variables are now uncorrelated. Figure 4.8 shows an example. In this new reference
system one can discard the variables with small variance, i.e., project on the subspace spanned by the first L
principal components, and obtain a good approximation (the best linear one in the least squares sense) to the
original sample: x = UT

L(t− t) with UL = (u1, . . . ,uL).
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The key property of principal component analysis is that it attains the best dimensionality reduction linear
map t ∈ RD −→ x ∈ RL in the senses of:

• maximal variance in the projected space subject to orthonormality (Hotelling, 1933):

max
AT A=I

{

tr

(

1

N

N∑

n=1

xxT

)}

=

L∑

l=1

λl with x
def
= AT (t− t), attained at A = UL

• L2-norm, or least squared sum of errors of the reconstructed data (Pearson, 1901):

min
A

{
N∑

n=1

‖t− t∗‖2
}

= N

L∑

l=1

λl with t∗
def
= AAT (t− t), attained at A = UL

• maximal mutual information (assuming the data vectors t are distributed normally) between the original
vectors t and their projections x (Kapur, 1989, pp. 502–504; Cover and Thomas, 1991):

max
A
{I(t;x)} =

1

2
ln

(
L∏

l=1

2πeλl

)

with x
def
= AT (t− t), attained at A = UL

where λ1 > · · · > λL are the first L eigenvalues of the covariance matrix.
Geometrically, the hyperplane spanned by the first L principal components is the regression hyperplane

that minimises the orthogonal distances to the data. In this sense, PCA is a symmetric regression approach,
as opposed to standard linear regression, which points one component as response variable and the rest as
predictors. In fact, the principal component subspace is a principal manifold in the sense of section 4.8.

The first principal components are often used as starting points for other algorithms, such as projection
pursuit regression, principal curves, Kohonen’s maps or the generalised topographic mapping. PCA is also
useful as a first, coarse dimensionality reduction stage where a lot of unnecessary directions of negligible vari-
ance are discarded, particularly in very high-dimensional data (for example, when each data vector represents
a bitmapped image or a sampled time-varying curve).

A number of numerical techniques exist for finding all or the first few eigenvalues and eigenvectors of
a square, symmetric, semidefinite positive matrix (the covariance matrix) in time O(D3): singular value
decomposition, Cholesky decomposition, etc. (Wilkinson, 1965; Golub and van Loan, 1996; Press et al., 1992).
When the covariance matrix, of orderD×D, is too large to be explicitly computed one could use neural network
techniques (section 4.5.1), some of which do not require more memory space other than the one needed for
the data vectors and the principal components themselves. Unfortunately, these techniques (usually based on
a gradient descent method) are much slower than traditional methods.

PCA can also be computed from the N × N scalar-product matrix 1
NTTT , where T

def
= (t1, . . . , tN )T

(assuming centred vectors to simplify the notation). This is because 1
NTTT has the same nonzero eigenvalues

as Σ = 1
NTTT, as can be seen from the singular value decomposition of T:

T = VSUT ⇒
{

TTT = VSSTVT

TTT = USTSUT

where UD×D and VN×N are orthogonal and SN×D has the singular values along its diagonal and zeroes
elsewhere. The nonzero eigenvalues of TTT and TTT are the squared singular values. Using the scalar-
product matrix instead of the covariance matrix is faster when the number of data points is smaller than the
dimensionality, N < D, as is often the case in image processing applications, such as face recognition (Sirovich
and Kirby, 1987). This is one of the bases of the kernel PCA method described in section 4.5.4.

The disadvantage of PCA is that it is only able to find a linear subspace and thus cannot deal properly
with data lying on nonlinear manifolds. When the data is clustered, it can be more convenient to apply PCA
locally (section 4.7).

The number of principal components to keep is a tricky question. Some rules of thumb are applied in
practice, usually based on the scree plot (plot of the cumulative eigenvalue sum versus the number of compo-
nents), such as to eliminate components whose eigenvalues are smaller than a fraction of the mean eigenvalue,
or to keep as many as necessary to explain a certain fraction of the total variance, or to find where the curve
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Figure 4.9: Two examples of neural networks able to perform a principal component analysis of its training
set: left, a linear autoassociator, trained by backpropagation; right, the APEX network, with Hebbian weights
W and anti-Hebbian, decorrelating weights C. In both cases, the number of hidden units determines how
many principal components are kept.

changes its slope abruptly (Jolliffe, 1986). From a statistical goodness of fit point of view, one can also test6 the
hypothesis that the data covariance can be explained by the principal components (H0) against the alternative
that the covariance is unconstrained (H1), although this procedure does not really tell when to stop adding
components (Bartholomew, 1987, pp. 46–47 or Everitt, 1984, pp. 21–22).

The fact is that if the scree plot does not have a sharp decrease at some cutoff number of eigenvalues7, it
is very likely that the data cannot be modelled with a few linear variables, in which case it seems pointless to
try hard to obtain the “right” number of eigenvalues and let alone to interpret them (see also section 2.8.1):
the model is just wrong. For linear reconstruction purposes PCA is a legitimate technique and the number of
eigenvalues L to use can be determined objectively from

∑L
l=1 λl/

∑D
l=1 λl ≤ 0.9 (for 10% error, say). As such

its use is recommended for (preliminary) feature extraction.
Estimating the intrinsic dimensionality of a data sample using PCA will result in a larger dimensionality

than the real one if the data lies on a nonlinear manifold (e.g. a circle is a one-dimensional manifold but
it cannot be embedded in a one-dimensional linear manifold). It is also clear that the number of nonzero
eigenvalues of the data covariance matrix (with respect to some threshold) gives an upper bound for the
intrinsic dimensionality.

4.5.1 Principal component analysis networks

There exist several neural network architectures capable to extract principal components, some of which are
represented in fig. 4.9. They can be classified in:

• Autoassociators (also called autoencoders or bottleneck networks), which are linear two-layer perceptrons
withD inputs, L hidden units andD outputs, trained to replicate the input in the output layer minimising
the squared sum of errors, typically with backpropagation. Bourlard and Kamp (1988) and Baldi and
Hornik (1989) showed that this network finds a basis of the subspace spanned by the first L principal
components, not necessarily coincident with them.

• Networks based on Oja’s rule (Oja, 1992) with some kind of decorrelating device, e.g. the network of
Földiák (1989), the APEX network of Kung et al. (1994) or the generalised Hebbian algorithm of Sanger
(1989).

Diamantaras and Kung (1996) review PCA networks in detail.

6This test was originally developed for factor analysis, but it can be readily extended to PCA via its interpretation as a latent
variable model (section 2.6.2).

7Also, consider K eigenvalues of slowly decreasing value: λi ≥ λi+1 ≥ · · · ≥ λi+K−1. They determine a slightly elongated
K-dimensional ellipsoid with semiaxes of lengths

√
λi, . . . ,

√
λi+K−1 in the K-dimensional subspace defined by their associated

eigenvectors. Any direction in that subspace will have a variance in [λi+K−1, λi] and thus all directions in that subspace (not just
along the eigenvectors) are approximately equivalent (in the extreme case where λi = · · · = λi+K−1 they define a hypersphere
and all directions are strictly equivalent).
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4.5.2 Nonlinear autoassociators

An obvious extension to linear autoassociators is the inclusion of nonlinear activation functions and several
layers (see fig. 4.10). The representation obtained in the unit activations of one of the hidden layers (with
L < D units) can be taken as the reduced-dimension representative (the middle layer in the figure). This
defines a dimensionality reduction mapping F and a reconstruction mapping f (sometimes called recognition
and generative mappings, respectively). As in the linear case, the net is trained to replicate its input at the
output layer in the least-squares sense by backpropagation or other method. Given their conceptual simplicity
and the appeal of the idea of “squashing the input through a bottleneck,” nonlinear autoassociators were used
for dimensionality reduction quite early, e.g. by Saund (1989), Fleming and Cottrell (1990), Kramer (1991) or
DeMers and Cottrell (1993), among others.

Bourlard and Kamp (1988) show that nonlinear autoassociators with only one hidden layer are no better
than linear ones, i.e., than PCA. But clearly, nonlinear autoassociators with three hidden layers (as in fig. 4.10)
must have, at least potentially, superior ability than linear ones for dimensionality reduction, since both F
and f become universal approximators (Scarselli and Tsoi, 1998). Indeed, they have outperformed PCA
in some applications. Malthouse (1998) cites several of them, particularly in chemometrics, where nonlinear
autoassociators were popularised by Kramer (1991). Surprisingly, the approach has not been widely accepted as
a dimensionality reduction method. Several reasons have been proposed for this from an empirical perspective:

• Nonlinear autoassociators are very slow to train. Rögnvaldsson (1994) has offered the following explana-
tion for this: the risk that the Hessian of the error function of a multilayer perceptron is ill-conditioned
grows with the number of layers. An ill-conditioned Hessian makes the error surface very flat and learning
becomes very slow both with backpropagation and with second-order methods.

• Training with various local optimisers (e.g. gradient descent, conjugate gradient descent, stochastic
gradient descent or a quasi-Newton method) very often results in local minima with a higher error than
PCA (Kambhatla and Leen, 1997). Using neuronal spike trains data, Fotheringhame and Baddeley
(1997) observed backpropagation to be slow and unreliable, while conjugate gradient descent worked
better than PCA with synthetic data but not with real data.

• Several researchers, e.g. Fleming and Cottrell (1990), have observed that, at the end of the training
(with backpropagation), the unit activations often concentrate on the linear region of the nonlinearity
and therefore there is little difference with PCA networks.

These reasons seem to point to deficiencies in the optimisation algorithm rather than in the class of represen-
tations attainable. That is, a nonlinear autoassociator is potentially able to represent complex manifolds, but,
for most initial values of the parameters, a local optimiser will end in a bad local minimum rather than in one
of the good ones.

Some theoretical results are known for nonlinear autoassociators. Both the dimensionality reduction map-
ping F and the reconstruction mapping f are continuous if the unit nonlinearities are continuous (as is often
the case, e.g. with the sigmoid). Malthouse (1998) uses this fact to show that nonlinear autoassociators can
approximate neither self-intersecting manifolds nor discontinuous manifolds. He also notices that they can-
not implement a dimensionality reduction mapping based on orthogonal projection on the closest point of
the manifold (as does happen with principal curves, section 4.8): this would lead to a discontinuity in the
dimensionality reduction mapping for those data points which are equidistant from different points of the
hidden-layer manifold.

Nonlinear autoassociators have had some empirical success in other kinds of pattern recognition problems.
Wiles et al. (1996) report finding good solutions to the travelling salesman problem8, while Japkowicz et al.
(2000) claim better performance than with linear autoassociators for classification in nonlinear multimodal
domains.

4.5.3 Other linear transformations

Here we mention other usual linear transformations of the data, their relation to PCA and their effect on the

covariance matrix. Consider again the sample {tn}Nn=1 in RD with mean t
def
= 1

N

∑N
n=1 tn and covariance matrix

Σ
def
= 1

N

∑N
n=1 (tn − t)(tn − t)T . Let AD×L = (a1, . . . ,aL) with al ∈ RD a set of L projection directions.

8Dimensionality reduction here is conceptualised as going from the D-dimensional map of D cities (coded as 1-of-D) to a
one-dimensional ordered list in which neighboring cities are listed close together.
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Figure 4.10: Nonlinear autoassociator, implemented as a four-layer nonlinear perceptron where L < D and

t∗
def
= f(F(t)).

Transformation f t′ = f(t) t
′

Σ′ U′ u′ Λ′ λ′

Translation t + d t + d Σ U same Λ same

Rotation Rt Rt RΣRT RU rotated Λ same

Axis scaling Dt Dt DΣD 6= 6= 6= 6=
Uniform axis scaling at at a2Σ U same a2Λ scaled

Affine at + d at + d a2Σ U same a2Λ scaled

Centring t− t 0 Σ U same Λ same

PCA UT (t− t) 0 Λ I {ed}Dd=1 Λ same

Sphering Σ−1/2(t− t) 0 I I {ed}Dd=1 I 1

Table 4.2: Transformation of the covariance matrix under transformations on the sample. t is the sample mean
and Σ the sample covariance, with spectral decomposition UΛUT . a ∈ R−{0}, d ∈ RD, D = diag (d1, . . . , dD)
is diagonal, R is orthogonal, ed is the unit vector in the direction of td, the primes denote the new entity after
the transformation f and the symbol 6= is used to indicate that the subsequent transformation is complex (not
obviously related to f).

Centring is a procedure by which we translate the sample so that its mean is at the origin: t′ = t−t⇒ t
′
= 0.

Centring is inherited by any set of projections: E {t} = 0⇒ E
{
AT t

}
= AT E {t} = 0.

Scaling achieves unit variance in each axis by dividing componentwise by its standard deviation σd
def
=
√

(Σ)dd:
t′ = diag

(
σ−1

1 , . . . , σ−1
D

)
t⇒ (Σ′)dd = 1 ∀d = 1, . . . , D.

Sphering is an affine transformation that converts the covariance matrix (of the centred sample) into a
unit variance matrix, thus destroying all the first- and second-order information of the sample: t′ =
Σ−1/2(t− t)⇒ t

′
= 0 and Σ′ = I, where9 Σ−1/2 = Λ−1/2UT . Sphering is inherited by any orthogonal

set of projections: E {t} = 0 and cov {t} = I ⇒ cov
{
AT t

}
= E

{
(AT t)(AT t)T

}
= AT E

{
ttT
}
A =

ATA = I.

PCA is another affine transformation that converts the covariance matrix (of the centred sample) into a
diagonal matrix, thus decorrelating the variables but preserving the variance information: t′ = UT (t−
t)⇒ t

′
= 0, Σ′ = Λ.

PCA and sphering are both translation and rotation invariant, i.e., applying a translation and a rotation to
the data and then performing PCA or sphering produces the same results as performing them on the original
data. Table 4.2 summarises the effect of linear transformations on the covariance matrix.

9Σ−1/2 is defined as a matrix B such that BT B = Σ and so any matrix B′ = RB with R orthogonal is also valid. Canonically,
we can take Σ−1/2 = Λ−1/2UT .
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4.5.4 Kernel PCA

Kernel PCA (Schölkopf et al., 1998) is an unsupervised feature extraction method closely related to PCA10

that, given a data set {tn}Nn=1 contained in an input space T ⊂ RD, extracts up to max(N,D) features from
a vector t ∈ T . It is based on the following ideas:

• Carrying out PCA on the dot-product matrix of the data points, as mentioned in section 4.5, which is
an N ×N symmetric matrix of rank smaller or equal than min(N,D).

• Nonlinearly mapping input vectors to a high-dimensional feature space F , Φ : T −→ F , where standard
PCA is performed—this requires dot products in F . Each component of Φ will be a particular real
function of the variables t1, . . . , tD and will give information on a particular relationship between those
variables. To be able to account for many different relationships, the dimensionality of F will be extremely
high, possibly a power of the dimensionality of T . Standard PCA is recovered by taking Φ as the identity
function.

• Computing dot products in F via a kernel function in T , k : T × T −→ R. This allows to perform PCA

efficiently on the data set {Φ(tn)}Nn=1 using the dot-product Gram matrix11 K
def
=
(
Φ(tm)TΦ(tn)

)

mn
but

never explicitly calculating Φ for any point. The nonlinear nature of map Φ means that the associated
component analysis back in input space T is nonlinear.

Let us analyse more in detail the procedure:

PCA in feature space is easily seen to require the solution of the eigenvalue problem Nλa = Ka for eigen-
vectors a and nonzero eigenvalues λ, which results in up to N nonzero eigenvalues and associated eigen-

vectors, normalised such that ‖an‖ = λ
−1/2
n . This ensures that vn

def
=
∑N
m=1 anmΦ(tm) is a unit-norm

eigenvector of the sample covariance matrix in feature space, ΣF
def
= 1

N

∑N
n=1 Φ(tn)Φ(tn)

T . Orthogonal
projection in F of a vector Φ(t) on the principal component directions {vn}Nn=1 is accomplished as usual
via the scalar product and results in an associated set of nonlinear components in T : vTnΦ(t) is the
orthogonal projection of vector Φ(t) on the nth principal component in F , or the nonlinear projection
of input vector t on the nth nonlinear component in T .

Dot products in feature space Defining a kernel function k(t1, t2)
def
= Φ(t1)

TΦ(t2) creates a correspon-
dence between kernel functions k : T ×T −→ R and nonlinear maps Φ : T −→ F . Rather than choosing
Φ and then defining k, which is straightforward but does not give an efficient form for k, one chooses
k, which then implicitly defines Φ. But not every function k can be expressed as a dot product in
some space F . A way to select kernels is given by Mercer’s theorem of functional analysis (Courant and
Hilbert, 1953), which states a necessary condition for a kernel to be expressible as a dot product:

Theorem 4.5.1 (Mercer). If k is the continuous kernel of an integral operator K : L2 −→ L2,

Kf(t2)
def
=
∫

T k(t1, t2)f(t1) dt1, which is positive,
∫

T ×T f(t1)k(t1, t2)f(t2) dt1 dt2 ≥ 0 ∀f ∈ L2, then

k(t1, t2) =
∑∞
n=1 λnψn(t1)ψn(t2) with λn ≥ 0 ∀n.

Such kernels are called Mercer or reproducing kernels. We can then define Φ(t)
def
=

(√
λ1ψ1(t),

√
λ2ψ2(t), . . .

)T
and so k(t1, t2) = Φ(t1)

TΦ(t2). Table 4.3 gives examples of such ker-
nels, all of which have also been used in support vector machines (Schölkopf et al., 1999a; Cristianini
and Shawe-Taylor, 2000). The Φ(t) mapping associated with the polynomial kernel is the collection of
all possible pth degree ordered products of components of t; e.g. for p = 2 we have t = (t1 t2)

T and
k(t1, t2) = (tT1 t2)

2 = Φ(t1)
TΦ(t2) with Φ(t) = (t21 t

2
2 t1t2 t2t1)

T . As an application, each td could be a
pixel in a bitmapped image.

Evidently, the usual properties of PCA (section 4.5) remain in feature space: orthogonal directions of
maximal variance, minimal L2-reconstruction error and maximal mutual information with respect to the inputs
(under Gaussian assumptions). But not anymore in input space, where the procedure is nonlinear. Kernel
PCA will be unitary invariant (i.e., independent of the orthogonal coordinates used) if the kernel depends only
on dot products and/or distances (as those of table 4.3 do), since the only operations on the input vectors
that the whole procedure involves are computing the kernel values.

10In this section, we will use interchangeably the terms PCA, standard PCA or usual PCA to mean the linear PCA of section 4.5.
11The formula for K assumes centred vectors in F . A corrected expression for uncentred vectors that does not explicitly

compute Φ at any point is easily derived from the one given.
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Kernel k(t1, t2)

Polynomial (tT1 t2)
p

Gaussian (radial basis function) e−
‖t1−t2‖2

2σ2

Sigmoid tanh(atT1 t2 + b)

Table 4.3: Examples of Mercer kernel functions for kernel PCA and support vector machines. In the polynomial
kernel, p = 1 gives standard PCA.

Kernel PCA requires N computations of the kernel function where standard PCA required a dot product,
which is not a significant extra cost. The real problem appears with large data sets (N � D: the normal
situation in most applications) since the dot product matrix KN×N becomes huge. In this case, standard
acceleration tricks can be applied, such as extracting only the first few components or estimating K from a
small subset of the data.

For dimensionality reduction purposes, the projections on the principal components can be taken as fea-
tures. While standard PCA can extract up to min(N,D) or fewer nonnull features (the rank of the sample
covariance matrix in T -space, Σ), kernel PCA can obtain up to N , since in F-space the rank of the dot product
matrix K can be up to N if Φ is nonlinear. A natural definition of reconstruction would be based on the
usual orthogonal projection on the first principal components in feature space, but in general not every point
in the subspace spanned by those principal components will have a preimage in input space! That is, even
though {Φ(tn)}Nn=1 have by definition preimages {tn}Nn=1, a point v ∈ span

{
{Φ(tn)}Nn=1

}
may not have one

t ∈ T with Φ(t) = v. This requires to define an approximate (in some sense) reconstruction mapping in input
space. Schölkopf et al. (1999b) give an algorithm to find a close preimage in the L2 sense. They approximate

v =
∑N
n=1 anΦ(tn) by a multiple (for computational considerations) of a vector Φ(t) on the image of the

input space:

min
t∈T

∥
∥
∥
∥

vTΦ(t)

Φ(t)TΦ(t)
Φ(t)− v

∥
∥
∥
∥
⇐⇒ max

t∈T
(vTΦ(t))2

Φ(t)TΦ(t)
.

The maximisation can be carried out with standard methods or, for kernels that satisfy k(t1, t2) = κ(‖t1 − t2‖2)
(e.g. the Gaussian kernel), with a fixed-point iteration method: taking the gradient of (vTΦ(t))2 with respect
to t and equating to 0 results in

t(τ+1) =

∑N
n=1 anκ

′(‖t(τ)
n − v‖)t(τ)

n
∑N
n=1 anκ

′(‖t(τ)
n − v‖)

which for the Gaussian kernel is formally identical to the fixed-point iteration scheme we give in eq. (8.4) for
finding the modes of a Gaussian mixture.

Experimentally, Schölkopf et al. (1998) show that kernel PCA outperforms standard PCA as feature extrac-
tion preprocessor for some classification tasks over a wide range of polynomial kernels and that the nonlinear
components can be interpreted as separating or splitting clusters in a toy problem. Using approximate preim-
ages, Schölkopf et al. (1999b) show improvements over PCA when denoising patterns if a large number of
nonlinear components are used. The intuitive explanation they propose is that, since kernel PCA can extract
more components (up to N) than PCA (up to D), it can provide a larger number of components that carry
information about the structure in the data before they start to carry noise information as well (which al-
ways happens for high-order components). This would seem counterproductive for dimensionality reduction
purposes, though.

In summary, kernel PCA has the following advantages:

• We obtain nonlinear components without any nonlinear optimisation, just computing standard PCA.

• We can extract up to N components, which is usually much more than what PCA allows (D if N > D),
although this may not be conducing to dimensionality reduction. As in PCA, we do not need to restart
the procedure if we want more or less components.

• For feature extraction, it can be readily used wherever PCA is.

And the following disadvantages:
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• The procedure is sensitive to the kernel used (with different kernels resulting in different performances)
but we do not know a priori what kernel to use. Thus, while kernel PCA is free from falling in local
minima (a ubiquitous problem with methods based on nonlinear optimisation), we have a whole space
of kernel functions to explore.

• While in feature space the geometrical interpretation of the principal components as orthogonal directions
of maximal variance remains, in general and a priori we do not really know what the first components
geometrically are in input space.

• For large data sets (N � D) the algorithm must be approximated to limit its computational require-
ments.

• There is an uncomfortable lack of natural dimensionality reduction and reconstruction mappings due to
the fact that the principal component subspace in feature space may not have preimages in input space.

4.6 Projection pursuit

Principal component analysis selects linear projections of the data according to maximal variance subject
to orthogonality. In general, one can search for projections that satisfy other properties. This is the basis of
projection pursuit (Friedman and Tukey, 1974; Huber, 1985; Jones and Sibson, 1987; Ripley, 1996). Projection
pursuit is an unsupervised technique that picks interesting low-dimensional linear orthogonal projections of
a high-dimensional point cloud by optimising a certain objective function called projection index. It is
typically used in exploratory data analysis to take profit of the human ability to discover patterns in low-
dimensional (1- to 3D) projections: clustering, skewness, kurtosis, concentration along nonlinear manifolds,
etc. That is, it is mainly used for visualisation; but it is equally useful for dimensionality reduction and
regression, as shown below.

The (scaled) variable loadings (components of the projection vectors) that define the corresponding solution
indicate the relative strength that each variable contributes to the observed effect. As in factor analysis,
applying a rotation or similar transformations to the projections will produce the same picture but with an
easier interpretation of the variable loadings.

Projections are smoothing operations in that structure can be obscured but never enhanced: any structure
seen in a projection is a shadow of an actual structure in the original space. It is of interest to pursue
the sharpest projections, that will reveal most of the information contained in the high-dimensional data
distribution. We consider that a projection is interesting if it contains structure. Structure is considered as
departure from normality, since:

• For fixed variance, the normal distribution has the least information, in both the senses of Fisher infor-
mation and negative entropy (Cover and Thomas, 1991).

• For most high-dimensional clouds, most low-dimensional projections are approximately normal (Diaconis
and Freedman, 1984).

Therefore, the normal distribution is the least structured (or least interesting) density.
For example, figure 4.11 shows two 2D projections of a 3D data set consisting of two clusters. The projection

on the plane spanned by e2 and e3 is not very informative, as both clusters confuse in one; this projection nearly
coincides with the one in the direction of the first principal component, which proves that the projection index
of PCA (maximal variance; see section 4.6.1) is not a good indicator of structure. However, the projection on
the plane spanned by e1 and e2 clearly shows both clusters.

The projection pursuit procedure will tend to identify outliers because the presence of the latter in a sample
gives it the appearance of nonnormality. This sometimes can obscure the clusters or other interesting structure
being sought. Also, the sample covariance matrix is strongly influenced by extreme outliers, so that methods
relying on it (e.g. through data sphering) will not be robust against outliers. The effect of outliers can be
partially tackled by robust sphering, e.g. using a trimming method (where all observations that lie farther
than a threshold from the mean are deleted).

4.6.1 The projection index

A projection index I is a real functional on the space of distributions on RL:

I : p ∈ L2(R
L) −→ I(p) ∈ R.
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Figure 4.11: Two-dimensional projections of a three-dimensional data set. {u1,u2,u3} are the principal
component directions.

p is the pdf of an L-dimensional random variable x
def
= AT t, itself the projection (of matrix AD×L) of a

D-dimensional random variable t. Abusing of notation, we will write I(x) instead of I(p). We will consider
only one-dimensional projections for simplicity, but the treatment is easily extendable to multidimensional
projections.

Projection pursuit attempts to find projection directions for a given distribution which produce local
maxima of I. To make the maximisation problem independent of the length of the projection vectors and to
obtain uncorrelated directions, the directions are constrained to be unit length and mutually orthogonal (i.e.,
the column vectors of A must be orthonormal). The optimisation problem is then

max I(A) subject to ATA = I.

In general, there will be several interesting projections, each showing different insight, which correspond to
local optima of the projection index. In fact, a difficulty with many projection pursuit indices that has often
been observed (Friedman, 1987; Ripley, 1996) is the existence of many local maxima, in particular with small
data sets, which makes finding good, high maxima difficult with local optimisers.

Huber (1985) lists the following properties that a good projection index should satisfy:

• Have continuous first (at least) derivative, to allow the use of gradient methods.

• Be rapidly computable—as well as its derivative(s)—since the optimisation procedure requires evaluating
it many times.

• Be invariant to all nonsingular affine transformations in the data space, to discover structure not captured
by the correlation.

• Satisfy: I(x1 + x2) ≤ max(I(x1), I(x2)) because, by the central limit theorem, x1 + x2 must be more
normal (less interesting) than the less normal of x1 and x2. It follows that I(x1 + · · · + xN ) ≤ I(x) if
x1, . . . ,xN are copies of x, and therefore I(N ) ≤ I(x) if N is normal.

4.6.1.1 Examples of projection indices

Consider a random variable t of expectation µ and covariance matrix Σ.

• Average:

I(x)
def
= E {x} .
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In this case max‖a‖=1 I(a
T t) = ‖µ‖ for a = µ/ ‖µ‖.

• Variance:
I(x)

def
= var {x} .

In this case max‖a‖=1 I(a
T t) = λ1 for a = u1, the largest eigenvalue of Σ and its associated normalised

eigenvector, respectively. In other words, this index finds the first principal component. PCA is then a
particular case of projection pursuit.

• Standardised absolute cumulants km(x) (defined in section A.2):

I(x)
def
=
|km(x)|
k2(x)m/2

m > 2.

• Fisher information:

I(x)
def
= J(θ)

def
= E

{(
∂p(x;θ)

∂θ

)(
∂p(x;θ)

∂θ

)T
}

where p(x;θ) depends on some parameters θ. J(θ = cov {x}) is minimised by the normal density (Huber,
1985).

• Negative Shannon entropy:

I(x)
def
= −h(x) = E {ln p(x)} =

∫

p(x) ln p(x) dx.

For fixed variance, this index is minimised by the normal density (Cover and Thomas, 1991). Its drawback
is that it is difficult to compute, so that several approximations have been proposed. Jones and Sibson
(1987) propose two ways to evaluate it:

– By numerical integration or implementing it as a sample entropy: 1
N

∑N
n=1 ln p(aT tn), where p is a

nonparametric density estimate of the projected points aT tn. Both are very slow to compute.

– Approximating p by an expansion in terms of the cumulants (skew and kurtosis); for 1D projections:

∫

p ln p ≈ 1

12

(

k2
3 +

1

4
k2
4

)

.

Cumulant-based approximations to the differential entropy arise from a Gram-Charlier or Edgeworth
polynomial expansion of the density (Kendall and Stuart, 1977) and have been also used in the context
of independent component analysis (Comon, 1994). However, they give a poor approximation to the
entropy, since the cumulants are much more sensitive to structure in the tails of the distribution than in
its centre (a fact that is accentuated if the cumulants, being very sensitive to outliers, are estimated from
finite samples). Also, the skew and kurtosis are not meaningful for multimodal distributions. For 1D
projections, Hyvärinen (1998) gives a further approximation of the differential entropy based on a first-
order approximation of the density of maximum entropy given some simple constraints. In section 8.7.6
we give upper and lower bounds for the entropy of a Gaussian mixture of known parameters.

Jones (1983) found little difference in practice between
∫
p ln p and

∫
p2. However, for fixed variance the

integral
∫
p ln p is minimised by the normal distribution, while

∫
p2 is minimised by the Epanechnikov

kernel (Silverman, 1986).

• The original univariate index of Friedman and Tukey (1974), of difficult optimisation and dependent on
a parameter h, is large whenever many points are clustered in a neighbourhood of size h. Huber (1985)

noted that this index is essentially based on
∫
p2 = ‖p‖22 = Ep {p(x)}.

• The univariate exploratory projection pursuit index of Friedman (1987):

I(x)
def
=

∫ 1

−1

(

p(u)− 1

2

)2

du =

∫ 1

−1

p2(u) du− 1

2

where u
def
= 2Φ(x) − 1 ∈ [−1, 1] and Φ is the standard normal cdf (the data are assumed to have been

sphered). u is uniform in [−1, 1] if x is standard normal in (−∞,∞) and hence nonuniformity of u
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will mean nonnormality of x. The index is minimised by the normal distribution and in practice it is
implemented approximately by a Legendre polynomial expansion.

This index can be reexpressed by transforming back from the u variable to x as

I(x) =

∫ ∞

−∞

(p(x)− φ(x))2

2φ(x)
dx

which suggests some variations, such as
∫

(p− φ)2 (Hall, 1989) or
∫

(p− φ)2φ (Cook et al., 1993).

• Intrator and Cooper (1992) present an objective function formulation of the BCM neuron (a synaptic
modification rule proposed to explain visual cortical plasticity by Bienenstock et al., 1982) which is
equivalent to a projection index that seeks multimodality.

Many other indices exist, often designed for one- or two-dimensional projections, that measure various kinds
of departure from normality (e.g. Eslava and Marriott, 1994; Posse, 1990, 1995). Extension to high dimensions
is often difficult.

Indices based on polynomial moments operate by approximating the density by a truncated series of
orthogonal polynomials (Legendre, Hermite, etc.), such as the cumulant-based indices mentioned. They do
not have to be recomputed at each step of the numerical procedure, as they can be derived for each projection
direction from sufficient statistics of the original data set. However, they perform poorly unless high-order
polynomials are used, since deviation from normality cannot be captured in second-order correlations, as
mentioned in the discussion of independent component analysis (section 2.6.3).

4.6.2 Projection pursuit regression and density approximation

Low-dimensional projections of a distribution can be used as building blocks for function approximation. If
the number of projections used L is smaller than the number of predictor variables D, then this combines
dimensionality reduction (of the predictor variables) and regression. This idea is the basis of the following
procedures:

Projection pursuit regression (Friedman and Stuetzle, 1981) is a nonparametric regression approach that
works by additive composition, constructing an approximation to the desired response function by means
of a sum of low-dimensional smooth functions, called ridge functions, that depend on low-dimensional
projections through the data (we consider a one-dimensional function for simplicity):

f(t) =

L∑

l=1

gl(a
T
l t).

Algorithms exist to estimate the projection directions {al}Ll=1 and ridge functions {gl}Ll=1 nonparametri-
cally (Friedman and Stuetzle, 1981) or parametrically, using a neural network (Hwang et al., 1994; Zhao
and Atkeson, 1996).

Generalised additive models (Hastie and Tibshirani, 1990) are a particular case of projection pursuit
regression where the projection directions are fixed to the coordinate axes:

f(t) = α+

D∑

d=1

gd(td).

It is more easily interpretable and the individual components gd(td) can be plotted, but it is more
restricted. Hastie and Tibshirani (1990) give a backfitting12 algorithm to estimate {gd}Dd=1 nonparamet-
rically.

Multivariate adaptive regression splines (MARS) (Friedman, 1991) are an extension to generalised addi-
tive models to allow interactions between variables: each basis function gd is a product of one-dimensional
spline functions, each one depending on one data variable.

Several methods developed in the chemometrics literature, such as principal component regression and
partial least squares (reviewed by Frank and Friedman, 1993) are also closely related to projection pursuit

12The backfitting algorithm is an iterative method to fit additive models that fits each term to the residuals given the rest. It
is a version of the Gauss-Seidel method of numerical linear algebra.
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regression13. Such methods include mechanisms to determine the number of projections that gives the
smallest regression error on a test set. They usually perform much better than ordinary least squares
regression when the sample size N is smaller than the dimensionality D and the predictor variables have
a high degree of collinearity (as is the case in many chemical applications).

Projection pursuit density approximation (Friedman et al., 1984) uses a multiplicative composition so
that the estimate can be nonnegative and integrate to 1:

f(t) =

L∏

l=1

hl(a
T
l t).

Friedman et al. (1984) and Huber (1985) give algorithms to fit the model. This approach is related to
the recently proposed product-of-experts architecture (Hinton, 1999).

4.7 Local dimensionality reduction

In local dimensionality reduction methods, a global model for the data manifold is built as a combination of
several simple local models (usually linear). This is justified by several reasons:

• Taylor’s theorem: any differentiable function becomes approximately linear in a sufficiently small region
around a point.

• The data manifold may actually consist of separate manifolds which may or may not be connected
together in one piece; i.e., it may be clustered.

• The intrinsic dimensionality of the data may vary along the manifold. Consider, for example, a manifold
with the aspect of fig. 4.6; or the Lorenz attractor (Peitgen et al., 1992), which globally spans three
dimensions but locally can be described with only two in most of the space (fig. 4.12).

• The intrinsic dimensionality may not vary, but the orientation may vary as one moves along the manifold.
For example, the Lorenz attractor could be embedded in two non-parallel planes.

The key point is that, while the global data manifold may be highly nonlinear and require the whole data
space to embed it, individual parts of it may require simple, linear models. In fact, using a complex global
model able to represent a large number of manifolds (via a large number of parameters), such as nonlinear
autoassociators (section 4.5.2), has several disadvantages:

• The power of the model is wasted in those areas of the space where the manifold is approximately linear.

• A large data set is required to fit a large number of parameters.

• Training becomes difficult because, due to the high flexibility of the model, the error function is likely
to have a lot of local minima.

In contrast, in local dimensionality reduction we split the global manifold into simple parts that can be
learned easily: fast, with little data and no (or few) local minima. This, then, does not result anymore in
a single, global dimensionality reduction mapping (from the data space to a single low-dimensional space)
because each local mapping has its own low-dimensional space with its own dimension; and likewise there
is no single, global reconstruction mapping. This also happened with mixtures of latent variable models
(section 2.9.3). Local dimensionality reduction thus requires:

• Simple dimensionality reduction models as building blocks (typically PCA), usually distributed around
the space and each one having a limited reach (hence the locality).

• A way to determine the dimensionality of each component.

• A responsibility assignation rule that, given a point in data space, assigns a weight or responsibility for
it to each component. This can be seen as clustering.

• A way to learn both the local models (manifold fitting) and the responsibility assignment (clustering).

13Surprisingly, Frank and Friedman (1993) make no mention of projection pursuit regression in their review of chemometrics
regression tools.
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Figure 4.12: The Lorenz attractor can locally be described with two dimensions in most of the three-dimensional
space.

The responsibility assignation can be hard or soft :

• Hard: a single component receives all the responsibility and the rest receive no responsibility at all. It
is a winner-take-all approach, usually a form of vector quantisation.

• Soft: the responsibility is distributed among all components as a partition of unity, so that when train-
ing, a given data point will result in an update of all components; and when reducing dimensionality,
the reduced-dimension representative will be the average of the local reduced-dimension representatives
weighted by the respective responsibilities.

It has been observed empirically that soft assignation of responsibilities outperforms hard assignation, which
in a probabilistic framework is a consequence of the optimality (in the L2 sense) of the mean of a distribution
to represent the whole distribution—the mode (a form of hard assignation) not being optimal. But the
average of two points in different local models need not (and probably will not) belong to the global manifold.
We found this situation in section 2.9.1 when having to pick a point of the posterior distribution in latent
space as reduced-dimension representative, and we will find it in more detail in chapter 7 when reconstructing
arbitrarily missing values. The moral is that data points for which more than one local model are significatively
responsible are problematic.

Also, a soft assignment will yield a continuous dimensionality reduction mapping (if the local models have
continuous dimensionality reduction mappings as well), which violates the self-consistency condition (4.2) of
principal curves, as discussed in section 4.8.

From a probabilistic point of view, the concept of local models and responsibility assignation is naturally
expressed as a mixture (of latent variable models) and was covered in section 2.9.3. The training criterion is
then log-likelihood rather than reconstruction error, since the probability model attempts to model the noise
as well as (and separately from) the underlying manifold. Formulating the local dimensionality reduction
problem as a mixture of distributions results in a unified view of the whole model and its probabilistic nature
brings a number of well-known advantages, in particular the fact that typically we can derive an EM algorithm
that will train all parameters (those of the local models and those of the responsibility assignment) at the same
time, with guaranteed convergence and often in a simple way: the E step assigns the responsibilities while the
M step fits each local model. Other advantages and also disadvantages are mentioned in the conclusions of
the thesis (chapter 11).

In the rest of this section we briefly mention some local dimensionality reduction approaches that do not
define a density model in the data space. As one would expect, all of them use PCA-based components,
given the attractive properties of PCA mentioned in section 4.5. Therefore, the global manifold is piecewise
linear; we can visualise it as a collection of patches glued together. In the region of data space where a
given individual model is much more responsible than all the others the dimensionality reduction mapping
is then the orthogonal projection on the local principal component subspace. Therefore, the self-consistency
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initialise
{µm}Mm=1 ← random subset of the data points Centroids

Σm ← I for each m = 1, . . . ,M Covariances

repeat
Assign each data point to the cluster that best reconstructs it Hard assignation

for m = 1, . . . ,M For each cluster

µm ← mean of data points assigned to cluster m Update centroids

Σm ← covariance matrix of data points assigned to cluster m Update covariances

Um ← first principal components of Σm Update local PCA directions

end
until the fractional change in average reconstruction error is small
return {µm,Um}Mm=1

Figure 4.13: Pseudocode of the VQPCA algorithm of Kambhatla and Leen (1997).

condition (4.2) of principal curves is locally satisfied. Globally this need not be true—and it certainly is not
in the case of soft assignment.

Bregler and Omohundro (1994, 1995) perform the clustering with a Gaussian mixture starting from the
k-means solution (Duda and Hart, 1973) and associate to every centroid thus obtained a local PCA. Although
the algorithmic details are not clear in these papers, it seems that a fixed number of nearest neighbours of each
centroid is used to compute a local covariance matrix, from which one infers how many principal components
to keep as well as the local principal component subspace. Therefore, some data points may participate in
the covariance matrices of different, neighbouring centroids. The dimensionality reduction is soft, where the
weight of each local model is its posterior probability (with respect to the Gaussian mixture density) given
the data point. They use this model for learning a space of lip shapes in a lip-tracking application.

The optimally adaptive transform coding of Dony and Haykin (1995) consists of a collection of principal
component subspaces with the peculiarity that they are centred at the same point. Therefore, no centroids
need to be estimated, although the approach is clearly more limited. Responsibility is computed in a hard
fashion both for dimensionality reduction and for training (i.e., for a given data point only one model has its
orientation updated). The winner model is the most parallel to the data vector, i.e., the one over which the
projection of the data vector is longest. The update of the model is done via an online PCA algorithm, such
as those mentioned in section 4.5.1. They use the model for compression and feature extraction of images.

Hinton et al. (1997) applied a mixture of PCAs to model the manifold of handwritten characters. Each PCA
module was implemented with a linear autoassociator and both hard and soft versions of training were used,
based on k-means and EM, respectively. For the soft version, the training criterion was a log-likelihood function
derived from an image model (not from a probabilistic view of PCA). They found a similar performance
between the mixture of PCAs and a mixture of factor analysers (which generates a density model for the
data).

The vector quantisation PCA algorithm (VQPCA) of Kambhatla and Leen (1997) uses a vector quantisation
algorithm to produce a hard partition of the data space (a Voronoi tessellation, defined in section 4.10.2). In
each of the Voronoi cells a separate PCA is fitted, whose and mean covariance matrix are calculated from the
data points in that cell. Rather than assigning data points to centroids using the Euclidean distance, they
use a distortion function that takes into account not only the distance to the centroid but also the projection
on its local subspace. The iterative algorithm is shown in fig. 4.13. They apply their model to dimensionality
reduction of speech and image data and show it to outperform nonlinear autoassociators in both speed and
reconstruction error.

It is interesting that the partitions formed when clustering according to reconstruction error alone can be
nonlocal, as simulations by Kambhatla and Leen (1997) and Tipping and Bishop (1999a) showed.

The literature contains many similar local dimensionality reduction models, so the ones we have presented
should be considered only as representative. References to such other models can be found in several of the
papers mentioned (Hinton et al., 1997; Kambhatla and Leen, 1997; Tipping and Bishop, 1999a). The same
kind of ideas has been used not only for dimensionality reduction but also for regression and classification, as
in the hierarchical mixtures of experts of Jordan and Jacobs (1994).
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Figure 4.14: Principal curves as generalised (nonlinear, symmetric) regression. (a) The linear regression line
minimises the sum of squared deviations in the response variable (or in the independent one, for the dashed
line). (b) The principal-component line minimises the sum of squared deviations in all the variables. (c)
The smooth regression curve minimises the sum of squared deviations in the response variable, subject to
smoothness constraints. (d) The principal curve minimises the sum of squared deviations in all the variables,
subject to smoothness constraints. From Hastie and Stuetzle (1989).

4.8 Principal curves

Principal curves are intuitively defined as smooth curves that pass through the middle of a D-dimensional data
set, providing a nonlinear summary of it (Hastie and Stuetzle, 1989). They are estimated in a nonparametric
way, i.e., their shape is suggested by the data. Their motivation is a generalisation of regression (see fig 4.14):

• Linear regression minimises the sum of squared deviations in the response variable y = ax+b (i.e., in the
vertical direction in an X-Y graph). Thus changing the roles produces a different regression line (dotted
line).

• The first principal component is a regression line symmetrical with respect to all the variables, minimising
orthogonal deviation to that line.

• Nonlinear regression produces a curve that minimises the sum of squared deviations in the response
variable (the vertical deviations) subject to some form of smoothness constraint. Again, changing the
roles produces a different regression curve.

• Principal curves are a natural generalisation for nonlinear, symmetric regression: they attempt to min-
imise the sum of squared deviations in all the variables (i.e., the orthogonal or shortest distance from
the curve to the points) subject to smoothness constraints.

Therefore, if we consider that f : x ∈ X ⊂ R −→ t = f(x) ∈ RD is a smooth curve in RD parameterised by its
arc length x, principal curves define, in the sense of section 4.2:
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• A dimensionality reduction mapping F : given t ∈ RD, F (t) is the arc length of the nearest point14 in
the curve to t in the Euclidean distance, i.e., the arc length of its orthogonal projection on the curve.

• A reconstruction mapping f given by the principal curve parametric equation, f(x).

The advantage of using the arc length parametrisation is that the distance along the curve between points
f(x1) and f(x2) is simply |x1 − x2| (i.e., the geodetic distance, which in general is larger than the Euclidean,
or straight-line, distance between f(x1) and f(x2)).

We say that a curve is self-consistent with respect to a distribution if the average of all data points that
(orthogonally) project onto a given point on the curve coincides with the point on the curve:

∀x ∈ X : E {t|F (t) = x} = f(x). (4.2)

We can then say that principal curves pass through the middle of the data in a smooth way and are self-
consistent for that distribution. Using this property, Hastie and Stuetzle (1989) prove that, for a given
distribution, principal curves are the stationary points of the average of the Euclidean distance of a data point
to its projection on the curve for perturbations of bounded norm and bounded derivative. This result, verified
by principal components if only straight lines are considered, confirms the aforementioned role of principal
curves as nonlinear, symmetric regression.

However, this definition of principal curves poses several questions: for what kinds of distributions do
principal curves exist, how many different principal curves exist for a given distribution and what are their
properties? These questions have only been answered for some particular cases:

• For ellipsoidal distributions (e.g. the normal distribution) the principal components are principal curves.
In higher dimensions, the subspaces spanned by any subset of principal components are principal mani-
folds.

• For spherically symmetric distributions any straight line through the mean is a principal curve.

• For 2D spherically symmetric distributions a circle with centre at the mean and radius E {‖t‖} is a
principal curve too and has smaller expected squared distance from the distribution than the straight
lines.

• If a straight line is self-consistent, then it is a principal component. In other words, linear principal
curves are principal components.

For a model of the form t
def
= f(x) + e, with f smooth and E {e} = 0 (such as all the latent variable models

described in chapter 2), f is not a principal curve in general, as fig. 4.15 shows. This means that the principal
curve is biased for the functional model, although the bias seems to be small and to decrease to 0 as the variance
of the errors gets small relative to the radius of curvature of f . This bias is a consequence of the self-consistency
condition (4.2); in fact, relaxing it to the condition (2.5) and considering t and x as random variables results
in a continuous latent variable model, which is unbiased by definition (eq. (2.5) in section 2.3.1). Banfield
and Raftery (1992) give a robust estimation method for closed principal curves that reduces both bias and
variance.

The definition of principal curves can be naturally extended to several dimensions, in which case we could
call them principal manifolds (although the arc length, or unit-speed, parameterisation is not naturally defined
for more than one dimension). However, once again the curse of the dimensionality makes smoothing in several
dimensions hard unless data are abundant. Note also that principal curves depend critically on the scaling of
the features, as all projection techniques do.

The definition of the projection on the principal manifoldM as orthogonal projection leads necessarily to
discontinuities in the dimensionality reduction mapping if the projection sets of two points in M intersect:

∃t ∈ F−1(x1) ∩ F−1(x2)⇒ is F(t) = x1 or F(t) = x2?

An example is the centre of the circle in figure 4.15, since for any two points in the circle, F−1(x1)∩F−1(x2) =
{C}. Choosing one of the possibilities (as Hastie and Stuetzle (1989) do: the one with smallest arc length)
leads to a discontinuity at such point t. This will happen at some data points for any manifold except when
no two projection sets intersect, i.e., they are all parallel, which implies that the principal manifold is a
hyperplane—spanned by principal components.

Hastie and Stuetzle (1989) give a construction algorithm for principal curves, shown in fig. 4.16. Although
by definition principal curves are fixed points of this algorithm, it has not been proven to converge in general.
Observe that:

14For definiteness, in the exceptional case where there are several nearest points, we take the one with largest arc length.
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Figure 4.15: Bias in principal curves. In this example, the data distribution is t
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• The algorithm converges to the first principal component if the conditional expectation operation is
replaced by fitting a least-squares straight line. Principal curves are then local minima of the distance
function (sum of squared distances).

• For probability distributions, both operations—projection and average or conditional expectation—
reduce the expected distance from the points to the curve; for discrete data sets this is unknown.

• The algorithm does not necessarily produce smooth curves, in particular at the curve endpoints.

• The smoothness of the resulting principal curve is sensitive to the size of the neighbourhood over which
averaging takes place.

By relaxing the self-consistency condition (4.2), Tibshirani (1992) redefines principal curves based on a
continuous mixture model and estimates it via an EM algorithm. His view is equivalent to nonparametric
estimation of a continuous latent variable model, as discussed in sections 2.5.2 and 2.3.1.1.

initialise
τ ← 0 Iteration counter

f (0) ← first principal components Principal curve

repeat

Project the distribution onto f (τ), i.e., compute F (τ)−1
(x) for each x ∈ X . Projection step

f (τ+1)(x) ← E
{
t|F (τ)(t) = x

}
= E

{

F (τ)−1
(x)
}

. Averaging step

Reparameterise f (τ+1) in terms of arc length.
until f (τ+1) ≡ f (τ)

Self-consistence condition

return f (τ)

Figure 4.16: Pseudocode of the construction algorithm for principal curves from Hastie and Stuetzle (1989).
Since principal curves are estimated nonparametrically, the averaging step requires a local average of the data
set.
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Hastie and Stuetzle (1989) give an alternative definition of principal curves, related to spline smoothing,
as curves that minimise the distance (conveniently defined) of the data points to the curve subject to a
smoothness constraint. Thus, it becomes a regression problem of the data {tn}Nn=1 as a function of the
unknown variables x1, . . . , xL (in L dimensions). This is then very similar to latent variable models but
without a joint probability model for {t,x}. This second definition of principal curves has proven more
amenable to developments. LeBlanc and Tibshirani (1994) implement principal curves parametrically in this
sense using a MARS model (mentioned in section 4.6.2) extensible to higher dimensions. Kégl et al. (2000)
prove that, by restricting the definition to curves of a given length at most, such principal curves always exist
if the distribution has finite second moments and give a learning algorithm for them based on polygonal lines
(restricted to the one-dimensional case).

The natural interpretation of principal curves as nonlinear, symmetric regression seems very attractive
in terms of least-squares dimensionality reduction. However, before they become a practical framework for
dimensionality reduction, a number of theoretical and practical questions must be answered and estimation
algorithms that work in arbitrary dimensions must be developed.

4.9 Methods based on vector quantisation

Vector quantisation (Gray, 1984; Gray and Neuhoff, 1998) consists of summarising a data distribution in data
space RD via a discrete collection of reference or codebook vectors {µm}Mm=1 ⊂ RD. Once the codebook
has been constructed (the reference vectors trained), for which various algorithms are available, a given data
point t ∈ RD becomes quantised to the closest reference vector to it according to some convenient distance,
usually the Euclidean. As such, vector quantisation is useful for classification but not for dimensionality
reduction. A limited form of dimensionality reduction becomes possible if one imposes a topographic structure
on the reference vectors. This can be done via a learning rule or objective function that, at the same time
that it tries to fit the reference vectors to the data, discourages configurations that violate the topographic
arrangement. Several such methods exist, of which we mention two: Kohonen’s self-organising maps and the
elastic net.

None of these methods properly defines a manifold that embeds the reference vectors15: the L-dimensional
manifold in data space is defined indirectly by the location of the reference vectors. Therefore, no continuous
dimensionality reduction and reconstruction mappings in the sense of section 4.2 are derived: given a data
point, all one can do is to assign it to the closest reference vector and use its associated knot in the topographic
arrangement as reduced-dimension representative, or interpolate in some way. This latter option consists of
defining dimensionality reduction and reconstruction mappings by assuming the low-dimensional space to be
embedded in an Euclidean space (e.g. by placing the lattice nodes of a self-organising map in the X = [0, 1]D

hypercube in an equispaced way) and then fitting a regularised universal mapping approximator to the functions

X f−→ T (reconstruction) and/or T F−→ X (dimensionality reduction), learned in a supervised way from the
reference vectors and lattice points.

4.9.1 Kohonen’s self-organising maps

Let {tn}Nn=1 be a sample in the data space T = RD. Kohonen’s self-organising maps (SOMs) (Kohonen, 1995)
learn, in an unsupervised way, a mapping between a 2D lattice16 X and the data space that preserves the
two-dimensional topology of the lattice and adapts to the manifold spanned by the sample. One can visualise
the learning process as a flat sheet that twists around itself in D dimensions to resemble as much as possible
the distribution of the data vectors.

Each of the reference vectors {µm}Mm=1 in data space is associated with a node vm in the 2D lattice X .
Assume we have defined two distances (typically Euclidean) dT and dX in the data space and in the lattice,
respectively. The topology of the lattice is determined by the neighbourhood function h(vm, vm′). This is
a symmetric function with values in [0, 1] that behaves as an inverse distance in the lattice: h(vm, vm) = 1 for
any node vm and, given a node vm, for any other node vm′ h(vm, vm′) is smaller the farther apart node vm′ is
from node vm in the lattice. The neighbourhood of node vm is composed of those nodes for which h(vm, vm′)
is not negligibly small. In practice, usually h(vm, vm′) = exp(−dX (vm, vm′)/2σ2), where σ quantifies the range
of the neighbourhood.

15One can always fit an interpolating manifold of some kind to the reference vectors once these have been trained, but this is
then the original problem applied to the reference vectors rather than to the original sample.

16In the typical case, but the idea is valid for L-dimensional topological arrangements.
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The reference vectors are initially distributed at random (or perhaps are a random set of the data vectors,
or are scattered along the first principal components). A competitive learning rule, Kohonen learning, is
applied iteratively over all data vectors until convergence is achieved. Given a data vector tn, let µm∗ be the
reference vector closest to tn in data space:

m∗ = arg min
m=1,...,M

dT (µm, tn).

Learning occurs as follows (where τ is the iteration index and α(τ) ∈ [0, 1] is the learning rate):

µ(τ+1)
m = µ(τ)

m + α(τ)h(τ)(vm∗ , vm)(tn − µ(τ)
m ) = (1− ρ)µ(τ)

m + ρtn

i.e., reference vector µm is drawn a distance ρ = α(τ)h(τ)(vm∗ , vm) toward data vector tn. The update affects
only vectors whose associated nodes lie in the neighbourhood of the winner vm∗ and its intensity decreases with
the iteration index τ because both α(τ) and the range of h(τ) must decrease with τ for convergence reasons.

Intuitively it seems that the reference vectors µm will become abundant in regions of RD where the tn are
common and sparse where the tn are uncommon, thus following the distribution of the data vectors. However,
they do not approximate the data density even with infinite data; in fact, they underestimate the density
where it is high and overestimate it where it is low (Kohonen, 1995, p. 110–111).

A batch training algorithm for SOMs exists that can be written as (see Mulier and Cherkassky, 1995 and
references therein):

µ(τ+1)
m =

∑M
m′=1 h

(τ)(vm′ − vm)N
(τ)
m′ µ

(τ)
m′

∑M
m′=1 h

(τ)(vm′ − vm)N
(τ)
m′

where N
(τ)
m′ is the number of data points {tn}Nn=1 that lie in the Voronoi cell of reference vector µ

(τ)
m′ (i.e., the

number of data points whose closest reference vector is µ
(τ)
m′ ) and each iteration contains the updates due to

all the data points. This equation has the form of a kernel regression (Nadaraya-Watson estimator; Silverman,
1986) where the response variables are the data variables t, the predictor variables are the nodes v (which can

be assumed to lie on an Euclidean space), the (unnormalised) kernels are h(τ)(vm′ − v)N (τ)
m′ and the “training

set” is {(vm,µ(τ)
m )}Mm=1, with both kernels and training set depending on the iteration index τ . From this

point of view, at each iteration the SOM defines a continuous mapping t = f (τ)(v) from latent space onto data
space:

f (τ)(v) =

∑M
m′=1 h

(τ)(vm′ − v)N (τ)
m′ µ

(τ)
m′

∑M
m′=1 h

(τ)(vm′ − v)N (τ)
m′

as Mulier and Cherkassky (1995) argue. However, for τ →∞, h(τ)(vm′ − v)→ δ(vm′ − v) and so the mapping
f (∞) is only defined at the nodes {vm}Mm=1. Thus, a trained SOM does not define a continuous mapping from
latent to data space.

In summary, Kohonen learning creates an L-dimensional arrangement such that:

• The number density of reference vectors in data space is approximately proportional to a power (smaller
than one) of the data probability density.

• The mapping from the L-dimensional arrangement into data space (ideally) preserves the topographic
ordering: nearby points in the data space are mapped onto nearby points in the lattice.

Kohonen’s SOMs have proven successful in many practical applications, particularly in visualisation. How-
ever, their heuristic nature results in several shortcomings:

• Many parameters must be tuned by trial and error with little guarantee of success: the shape of the
lattice (rectangular, etc.), the number of codebook vectors or the schedules for the evolution of the
neighbourhood function and learning rate. In general, no schedules that guarantee convergence and no
proofs of convergence exist. Thus, training is unreliable. However, the shape of the neighbourhood
function is largely irrelevant (as happens in kernel estimation).

• No cost function to optimise can be defined, although SOMs have been shown to be approximately
related to probabilistic cost functions (Luttrell, 1994; Utsugi, 1997a,b).

• Neither a probability distribution function nor a manifold function is obtained for the data.

Table 4.4 compares Kohonen’s SOMs with GTM (section 2.6.5), which—being defined as a latent variable
model—enjoys much more attractive theoretical properties. The table applies to most of the variations of
SOMs that have been proposed (see Kohonen, 1995 for a review).
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SOM GTM

Internal representation of
manifold

Nodes {vm}Mm=1 in L-dimensional
array, held together by neighbour-
hood function h

Point grid {xk}Kk=1 in L-dimensional
latent space that keeps its topology
through smooth mapping f

Definition of manifold in
data space

Indirectly by locations of reference
vectors

Continuously by mapping f

Objective function No Yes: log-likelihood

Self-organisation Difficult to quantify Smooth mapping f preserves to-
pology

Convergence Not guaranteed Yes, by the EM algorithm

Smoothness of manifold Depends on α(τ) and h(τ) Depends on basis functions parame-
ters and prior distribution p(x)

Generative model No; hence no density function Yes

Additional parameters to
select

α(τ), h(τ) arbitrarily None

Speed of training Comparable according to Bishop et al. (1998b)

Magnification factors Approximated by the difference be-
tween reference vectors

Exactly computable anywhere

Table 4.4: Comparison between GTM and Kohonen’s SOM.

4.9.2 The elastic net

The travelling salesman problem (Lawler et al., 1985) is a combinatorial optimisation task that requires to
find the shortest circular tour through a set of N cities that passes through each city exactly once. It is an
NP-complete problem: solving it is O(eN ). The elastic net algorithm (Durbin and Willshaw, 1987) generates
good solutions in much less time by stretching a circular tour formed by M knots elastically linked in succession
to fit the cities (the topographic arrangement of the elastic net can be extended to any dimension); that is, it
is an algorithm for continuous, rather than discrete, optimisation. Let {tn}Nn=1 represent the positions of the
N cities in RD and {µm}Mm=1 the elastic net knots. The algorithm consists of the updating rule

∆µm
def
= α

N∑

n=1

wnm(tn − µm) +
1

2
βK(µm+1 − 2µm + µm−1) wnm

def
=

e
− 1

2

(
‖tn−µm‖

K

)2

∑M
m′=1 e

− 1
2

(
‖tn−µm′ ‖

K

)2

where α and β are constants and K is the scale parameter (which is typically annealed, i.e., slowly decreased
to zero). The α term pulls the path toward the cities while the β term pulls neighbouring path points toward
each other. The rule can be seen as an energy minimisation (or wiring length minimisation in the context of
cortical maps; Durbin and Mitchison, 1990):

E({µm}Mm=1,K)
def
= −αK

N∑

n=1

ln

(
M∑

m=1

e
− 1

2

(
‖tn−µm‖

K

)2
)

+
β

2

M∑

m=1

∥
∥µm − µm+1

∥
∥

2
∆µm = −K ∂E

∂µm
(4.3)

or (by exponentiation, analogously to the use of the Boltzmann-Gibbs distribution in statistical mechanics) as
a maximum a posteriori estimation of the following probability model (Durbin et al., 1989):

• Prior probability of a tour that favours short tours: p({µm}Mm=1)
def∝ ∏M

m=1 e
− β

2αK ‖µm−µm+1‖2 . That
is, a correlated Gaussian. Topologies other than the nearest-neighbour one can be used (Dayan, 1993;
Utsugi, 1997a).

• Probability of the city collection given a tour: p({tn}Nn=1|{µm}Mm=1)
def
=
∏N
n=1 p(tn|{µm}Mm=1) with

p(tn|{µm}Mm=1)
def
= 1

M

∑M
m=1 (2πK2)−D/2e

− 1
2

(
‖tn−µm‖

K

)2

. That is, a product of Gaussian mixtures with
isoprobable components centred at the tour knots.
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The algorithm minimises E at large K, where there is a single minimum, and then tracks the minimum down
to small K, where every city location tn is matched by some tour knot µm, as Durbin et al. (1989) prove.

4.10 Distance-preserving methods

In this section we discuss an approach to dimensionality reduction based on representing the data manifold
by a low-dimensional Euclidean space where the distances between observed points are preserved. This is a
purely geometric point of view, as opposed to the generative one of latent variable models or the minimum
squared reconstruction error (orthogonal projection) of several of the methods of this chapter. That is, given
a noisy sample {tn}Nn=1 from a data manifold M ⊂ T ⊂ RD of dimensionality L ≤ D, the aim of distance-
preserving methods is to find a collection of points {xn}Nn=1 in a metric space X ⊂ RL associated with the
high-dimensional sample such that the distance (to be defined) between two points tn and tm is approximately
the same as the distance (usually Euclidean) between their associated low-dimensional points xn and xm.

The low-dimensional Euclidean space X is not unique, since any rigid motion (translation, orthogonal
rotation or reflection) of the {xn}Nn=1 points preserves the distances between them; and the topology of X
should match that of the data manifold M. For example, if the latter is a closed surface, then using a
rectangular low-dimensional space will lead to discontinuities.

Regarding the construction of a dimensionality reduction mapping T F−→ X and a reconstruction mapping

X f−→ T , there are two possibilities:

• Implicit definition: analogously to the case of methods based on vector quantisation, the data mani-
fold is implicitly defined through the collection of points {tn}Nn=1 in data space, and together with their
associated points {xn}Nn=1 in the low-dimensional map, a dimensionality reduction mapping and a recon-
struction mapping are also implicitly defined. Such implicit definitions can be made explicit by fitting to
them a regularised parametric model with supervised learning, e.g. an MLP with weight decay. Regular-
ising the mapping approximator is very important since the whole process implicitly assumes that there
is no noise—clearly a dangerous assumption since the interpoint distances (either through a straight
line or through a geodesic) are heavily influenced by noise. Traditional multidimensional scaling, the
Sammon mapping and methods based on geodetic distances generally belong to the implicit-definition
type.

• Explicit definition: rather than directly learning the map points {xn}Nn=1, define a parametric dimen-

sionality reduction mapping x
def
= F(t;Θ) and learn instead the parameters Θ that minimise the stress

function (4.4) below. This allows to map new data vectors not in {tn}Nn=1 and has the additional advan-
tage of having fewer parameters compared to directly learning {xn}Nn=1 (which requires LN parameters).
This approach has been proposed by Webb (1995) (see also Webb, 1999), who used a radial basis function
network for F with multidimensional scaling and iterative majorisation17 as stress minimisation algo-
rithm; and by Mao and Jain (1995), who used a multilayer perceptron for F with Sammon’s mapping
and online gradient descent (resulting in a variation of backpropagation) with an optional momentum
term as stress minimisation algorithm.

4.10.1 Multidimensional scaling (MDS)

Multidimensional scaling (MDS) (Cox and Cox, 1994; Kruskal and Wish, 1978; Mardia et al., 1979; Webb,
1999) is the traditional statistical method for uncovering structure in a data set by plotting a low-dimensional
map that preserves the proximities in the (high-dimensional) data set. That is, MDS plots similar objects
close together. It has been applied to psychology, sociology, anthropology, economy, educational research, etc.
MDS is actually a set of mathematical techniques differing in various theoretical and algorithmic aspects.

Suppose we have a set of N objects and that a measure of the similarity of these objects with each other
is known. This measure, called proximity, is a number that indicates how similar two objects are or are
perceived to be. It can be obtained in different ways, e.g. by asking people to judge the psychological closeness
of the stimulus objects. What MDS does is to draw a spatial representation or map in which each object
is represented by a point and the distances between points resemble as faithfully as possible the original

17Iterative majorisation is an minimisation algorithm where at each iteration one defines a majorisation function (i.e., an upper
bound of the objective function) that has a single, easily computable minimum—typically a quadratic function. Under certain
conditions, the sequence of minima converges to a minimum of the objective function. It does not require computing gradients of
the latter but is very slow.
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Figure 4.17: Left : data from Rothkopf (1957) on similarities among Morse code symbols. Right : 2D map
obtained for the Morse code similarities by Shepard (1963) with multidimensional scaling.

similarity information; i.e., the larger the dissimilarity between two objects, the farther apart they should be
in the spatial representation. This geometrical configuration of points reflects the hidden structure of the data
and often makes it much easier to understand.

Let us consider a classical example. Confusions among 36 auditory Morse code signals were collected by
Rothkopf (1957). Our “high-dimensional” objects are here the signals, each of which consists of a sequence
of dots and dashes, such as -.- for K and ..--- for 2. Subjects who did not know Morse code listened to a
pair of signals (produced at a fixed rapid rate by machine and separated by a quiet period of 1.4 seconds),
and were required to state whether the two signals they heard were the same or different. Each number in the
table of fig. 4.17 is the percentage of roughly 150 observers who responded “same” to the row signal followed
by the column signal. This matrix is roughly symmetric, with large diagonal entries and small off-diagonal
entries, as expected, and contains the proximities data. Figure 4.17 (right) shows the result of applying MDS
to those proximities (from Shepard, 1963) using a two-dimensional map. The 36 circles represent the points
found and are labelled with the corresponding Morse code. In this case, MDS clearly shows that the data are
governed by a sort of length parameter, the number of components of the signal, as well as by the individual
numbers of dots and dashes.

All is needed for MDS is the proximities matrix, not the actual locations of the objects in a hypothetic
high-dimensional space, which may be nonsensical, as in the Morse code example. The proximities need not be
distances in the mathematical sense; in particular, they need not satisfy the symmetry property or the triangle
inequality. However, for the dimensionality reduction problem these proximities will be determined from a set
of points {tn}Nn=1 in a high-dimensional space T ⊂ RD. Typical definitions of proximity for this case are the
Euclidean distance (L2-norm), the Mahalanobis distance with respect to some (semi)positive definite matrix
(e.g. the inverse data covariance matrix, in which case it is equivalent to applying MDS to the presphered
data), the Manhattan distance (L1-norm), etc.

Formally, assume the input data are the pairwise proximities18 {δnm}Nn,m=1. If they come from a data

set {tn}Nn=1, then δnm
def
= dT (tn, tm). For an L-dimensional map, the output data will be a set of points

{xn}Nn=1 ⊂ RL, referred to some unimportant coordinate system, such that the distances dnm
def
= dX (xn,xm)

∀n,m = 1, . . . , N (typically Euclidean) are as close as possible to a function f of the corresponding proximities,

18This is called two-way MDS. In three-way MDS we have several sets of proximities (e.g. in different times or by different
subjects).
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Figure 4.18: The horseshoe phenomenon. The graph shows a two-dimensional Euclidean map obtained by
MDS where points whose associated objects have a similarity above a certain threshold are linked by a line.

f(δnm). The computational procedure is as follows. Define an objective function, traditionally called stress,
such as:

stress({xn}Nn=1, f)
def
=

√
∑N
n,m=1 (f(δnm)− dnm)

2

scale factor
(4.4)

where the scale factor will typically be
∑N
n,m=1 d

2
nm. If the map is defined via a parametric function F,

x
def
= F(t;Θ), then dnm

def
= dX (F(tn;Θ),F(tm;Θ)) and so the stress is a function of Θ and f . Then, find the

function f and the map {xn}Nn=1 or Θ that produce the minimal stress (for which there are several algorithms
available).

If f is constrained to be monotonic, the ordering of the distances will be preserved (even if they are
nonuniformly stretched or shrunk). Such MDS is called metric. The particular case where f is the identity (or

linear) and the stress function is
∑N
n,m=1 (δnm − dnm)2 is called classical scaling and has an analytic solution

which, if the distances come from a data set in an Euclidean space, is basically equivalent to PCA. If only
the ordering of the proximities is used (but not their values), the MDS is called nonmetric or ordinal and is
particularly suitable when the distances are qualitative and only determine a rank

Once f and {xn}Nn=1 or Θ have been determined, the solution map can be freely translated and rotated
(perhaps to appear in a more aesthetical way) without changing the value of the stress. f can be plotted
together with the pairs (δnm, dnm) in a scatter (or Shepard) diagram, that plots the distance in L-dimensional
space versus the proximities. If the proximities are dissimilarities (i.e., dissimilar objects have a large proximity
value), it will be a rising pattern; otherwise, it will be a falling one. If each of the objects has an associated value
yn, regression can be performed on the generated map to further help to interpret the data: {(xn, yn)}Nn=1.

Degeneracy can happen if the objects have a natural clustering and the dissimilarities between objects in
different clusters are (almost) all larger than the dissimilarities within each cluster. In this case, (almost) all
points of a single cluster will converge to a single location, the stress will converge to 0 and the scatter diagram
will be a staircase.

4.10.1.1 Selection of the map dimension

Obviously, the larger the dimension of the map is, the smaller the stress will be, but one should keep L as
small as possible, ideally to match the intrinsic dimensionality of the data (in a visualisation application one
will even force L to be less than 3, but for generic dimensionality reduction this is not necessary). Too small
a dimension of the map can give a misleading view of the data. For example, points apparently clustered in a
2D map can actually lie far apart in a 3D one. For two-dimensional maps, a simple way to embed information
from the original data in the map is to draw a line between every pair of objects whose proximity exceeds
some threshold value: the presence of long, haphazardly crossing lines will indicate a discrepancy between
closeness in the data and closeness in the space. Clusters will only be valid if they are consonant with the
lines, i.e., points within a cluster should be well connected with each other and poorly connected with those
outside the cluster. Sometimes the lines can connect many points in some nonlinear shape, like in figure 4.18,
which suggests that only one curvilinear dimension would be enough to give a reasonable description of the
data. This is called the horseshoe phenomenon.

To assure an adequate degree of statistical stability, the map dimension cannot be arbitrarily large for a
given sample size. A rule of thumb often used in statistics (Kruskal and Wish, 1978) is that the number of
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(significant) pairs of objects should be at least twice the number of parameters to be estimated:

N(N − 1)

2
≥ 2NL⇒ N ≥ 4L+ 1

but this just gives a trivial upper bound on L.
Another rule of thumb, analogous to the scree plot for PCA (plot of the cumulative eigenvalue sum versus

the number of components) is to plot the stress obtained for map dimensions L = 1, 2, 3 . . . and try to
determine a cutoff point; for example, where the slope of the stress curve changes abruptly, or where the stress
falls below a certain threshold. As in PCA, there is no guarantee that such heuristic rules can find the intrinsic
dimensionality. Besides, while running PCA for different numbers of components is immediate, for MDS it
can be quite time consuming.

4.10.1.2 Problems of MDS

• There is no foolproof method to select the appropriate dimension of the map; one must try several.

• MDS does a much better job in representing large distances (the global structure) than small ones (the
local structure).

• Contrarily to principal component analysis, in MDS one cannot obtain an (L− 1)-dimensional map out
of an L-dimensional one by dropping one coordinate (or, in general, by linearly projecting along some
direction). That is, it does not verify the property of additivity mentioned in section 2.6.2.

4.10.1.3 The Sammon mapping

With the objective of preserving the interpoint Euclidean distances of a collection of real vectors {tn}Nn=1,
Sammon (1969) proposed a particular type of MDS where the low-dimensional Euclidean space points {xn}Nn=1

are chosen to minimise the criterion

E({xn}Nn=1)
def
=

1
∑N
n<m δnm

N∑

n<m

(δnm − dnm)2

δnm

where δnm is the distance in RD between tn and tm and dnm is the distance in RL between xn and xm. Unlike
in usual MDS, this criterion gives weight to small distances, which helps to detect clusters. The Sammon
mapping is the mapping implicitly defined by the pairs {(tn,xn)}Nn=1. Sammon (1969) proposed a diagonal
Newton method to minimise the criterion function:

x
(τ+1)
nl = x

(τ)
nl − η

(∂E/∂xnl)
(τ)

(∂2E/∂x2
nl)

(τ)

with a “magical factor” η ≈ 0.3 or 0.4 and, as starting point for the {xn}Nn=1, random values or the projections
on the first L principal components of the data. This algorithm is a poor minimiser according to Ripley (1996),
who notes that it often achieves very bad local minima from random starting points and that it is difficult to
set η to achieve convergence.

4.10.2 Methods for preserving the geodetic distances

In the problem we are concerned with, dimensionality reduction of continuous data, the distance between
points is the Euclidean distance in RD (the length of the straight line segment joining both points), or perhaps
some other definition of distance, which depends only on the point coordinates. However, this distance is
not useful because it ignores the data manifold: two points that are close in the Euclidean distance in RD

may be far from each other inside the (low-dimensional) manifold defined by the data, as fig. 4.19 illustrates.
Inputting such distances to an MDS or Sammon method would produce a wrong representation. The relevant
distances are really the distances along the manifold, or more precisely, the geodetic distances. The geodetic
distance between two points of a manifold is defined as a minimum of the length of a path joining both points
that is contained in the manifold, and such minimal-length paths are called geodesics19 (do Carmo, 1976).

19Actually, a geodesic is usually defined as a curve on a manifold that has zero acceleration on the manifold, i.e., that the
acceleration vector (second derivative of the curve with respect to some parametrisation) is perpendicular to the manifold and
therefore its orthogonal projection on it is zero. From this definition follow some interesting minimising properties such as the
one mentioned.
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Figure 4.19: Distances along the straight line between two points (Euclidean distance) versus distances along
a geodesic in the manifold (geodetic distance). Points close in the former sense may be far in the latter.

Depending on the manifold, there may be more than one geodesic between two given points (e.g. in a sphere,
the two sections of a great circle passing through the two points are geodesics), but we will ignore that fact in
this discussion.

Computing geodetic distances along arbitrary nonlinear manifolds is complicated, requiring the solution
of the Euler-Lagrange equation for the arclength functional, which is a second order nonlinear differential
equation. A computationally feasible approach consists of discretising the manifold as a Delaunay triangulated
graph (Preparata and Shamos, 1985; Aurenhammer, 1991). Let us first define the Voronoi diagram. Given
a collection of M vectors {µm}Mm=1 in RD, the Voronoi diagram of RD induced by those vectors is the
collection of Voronoi cells {Vm}Mm=1 defined as

Vm def
= {t ∈ RD : d(t,µm) ≤ d(t,µn) ∀n 6= m} m = 1, . . . ,M

i.e., cell Vm is the set of points closest to µm than to any other vector according to a certain distance d defined
in RD. Each Voronoi cell is a convex D-dimensional polyhedron (a D-polytope) and the union of all cells is
the space RD. The dual of the Voronoi diagram is the Delaunay triangulation of the collection {µm}Mm=1,
defined as the graph with vertices {vm}Mm=1 (vertex vm being associated with vector µm) and adjacency matrix
A = (amn) verifying

amn =

{

1, Vm ∩ Vn 6= ∅

0, Vm ∩ Vn = ∅

i.e., two nodes are connected if and only if their associated Voronoi cells are adjacent. Analogous definitions are
derived for a manifoldM of RD by taking the intersection of each Voronoi cell withM; the collection of links
of the resulting restricted Delaunay triangulation is a subset of that of the unrestricted Delaunay triangulation
(for M ≡ RD). The key point to note is that the Delaunay triangulation restricted to a manifold carries
the topological structure of the manifold and that it enforces a discretisation of paths along the manifold
that allows to compute (approximate) geodetic distances, as well as to plan paths from one point to another.
Planning of paths through geodesics also offers interesting possibilities to applications where interpolation in
data space is required, such as in morphing or animating an object from one three-dimensional configuration
to another one (Bregler and Omohundro, 1995; Tenenbaum, 1998). Figure 4.20 illustrates these ideas.

In the rest of this section, we describe an algorithm to obtain the restricted Delaunay triangulation
(topology-preserving networks) and a method that uses it to perform MDS with geodetic distances (ISOMAP).

4.10.2.1 Topology-preserving networks

Martinetz and Schulten (1994) give an algorithm to obtain the Delaunay triangulation induced on a manifold.
They call the resultant graph a topology-preserving network. Their approach is opposite to that of self-
organising maps: in SOMs, one fixes the links of the graph (which determine its topology: linear array, planar
grid, etc.) and tries to fit it to the data manifold. This does not work if the dimensionality or the topology of
the graph do not match those of the data manifold. The algorithm of Martinetz and Schulten (1994) works
the other way, specifying the nodes and then constructing only the appropriate links, which leads to the graph.
The algorithm, showed in fig. 4.21, requires as input a set of reference vectors {µm}Mm=1 in data space which
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Figure 4.20: Voronoi diagram (graph B) and restricted Delaunay triangulation (graphs C and D). For a given
collection of points (graph A), the restricted Delaunay triangulation depends on the manifold that embeds
them: the dotted line M1 in graph C and the shaded area M2 in graph D. The points and the manifolds on
graph A are the same as those of fig. 4.5.

inputs
{µm}Mm=1 ⊂M ⊆ RD uniformly distributed on M Reference vectors

U(M) Uniform distribution on M
initialise

Graph with nodes {vm}Mm=1 and no links Topology-preserving network

repeat forever
Draw t from U(M)
m1 ← arg minm=1,...,M ‖t− µm‖ Closest node

m2 ← arg minm=1,...,M
m6=m1

‖t− µm‖ Second closest node

Connect nodes vm1
and vm2

end
return graph

Figure 4.21: Pseudocode of the construction algorithm for topology-preserving networks of Martinetz and
Schulten (1994).

is uniformly distributed over the data manifold. The reason for this requirement is that the reference vectors
must define the shape of the manifold. To each reference vector µm we associate a node vm in a graph in which
initially there are no links. To derive the appropriate links, the algorithm uses an online rule that they term
competitive Hebbian: given a point drawn uniformly from the data manifoldM, connect the nodes associated
with the two reference vectors closest to it. The rule is competitive because only the link between the two
winners (the two closest reference vectors) is updated; and it is Hebbian because, if we assume that each node
has an activity proportional to the proximity of its associated reference vector to the data point presented,
then the connection between two nodes is strengthened if both nodes have a high activity. It is intuitively clear
that this must converge to the Delaunay triangulation restricted to M and indeed Martinetz and Schulten
(1994) prove so under the assumption that the reference vectors are (using their nomenclature) dense in the
data manifold M: for any point t in M, the triangle formed by t and the two closest reference vectors must
be contained in M. However, this definition is only appropriate for manifolds of the same dimensionality as
the embedding space RD, since it trivially holds for convex manifolds of any dimensionality and never holds
for nonconvex manifolds of lower dimensionality.

Clearly, if the data manifold coincides with the data space then an unrestricted Delaunay triangulation is
obtained. While we are concerned here with the Delaunay triangulation restricted to a low-dimensional data
manifold, the unrestricted Delaunay triangulation is interesting in its own right for many other situations, such
as the finite-element method and other geometric and graph-theoretical problems mentioned by Martinetz and
Schulten (1994).

The number of links from a node in a fully-connected graph of M nodes is M − 1, which leads to O(M 2)
for the total number of links in the graph. But if only local connections are allowed, as in the Delaunay
triangulation, the average number of links from a node becomes proportional to L (the dimensionality of the
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graph), and so the total number of links in the graph becomes O(LM). In reality, this is O(LeL) since the
number of reference vectors necessary to represent an L-dimensional manifold is exponential in L.

The algorithm of Martinetz and Schulten (1994) has several problems:

• There is no way to assess convergence. The fact that points are blindly drawn from a uniform distribution
on M means that a lot of them will be redundant, since they will establish links already done and we
may need to wait very long until a point is drawn that establishes a necessary link. We presume that
the algorithm will build a proportion of the Delaunay links early during training, with the remaining
ones appearing very slowly afterwards—the slower the higher the manifold dimensionality is. Thus, the
graph obtained when the algorithm is stopped after a certain number of iterations will probably contain
many missing links if the number of reference vectors is large. This problem would disappear if there
was a way of setting to zero the probability of the manifold region affecting a link just created (so that
no further samples are drawn there).

In practice, a finite data sample {tn}Nn=1 is used, which is all the information we have about the data
manifold. This ensures that the algorithm stops after N point presentations, but the resulting graph is
affected by the factors mentioned below.

• It is not easy to distribute uniformly the reference vectors over an arbitrary manifold, in particular when
the manifold is defined by a data sample (our case). Directly using a data sample (that, ignoring the
noise for the moment, belongs to the data manifold by definition) is unlikely to work in general, since the
data distribution over the manifold need not be uniform (e.g. see the sample in fig. 2.13). This means
that the triangulation found will be too coarse in low probability areas of the manifold and far too dense
in high-probability areas.

• It is difficult to decide how many reference vectors to use and the final triangulation is very sensitive to
this. The number of reference vectors is intuitively related to the Nyquist (spatial) frequency, since they
are effectively a sample of M from which M could be reconstructed in principle. It also must depend
exponentially on L, as the volume of M does. This is again a result of the curse of the dimensionality
and is analogous to the situation found with the Monte Carlo sampling of the latent space in latent
variable models (section 2.4).

For storage efficiency and speed of training, the number of reference vectors should be kept as small as
possible. This means selecting a small subset of the data sample—which may severely reduce the number
of reference vectors in low-probability areas of the manifold. Thus, a critical point of the algorithm is to
select a subset of M points from the data sample such that it spans the data manifold uniformly and M
is neither too large (which would lead to many missing links in the graph) nor too small (which would
yield a poor approximation of the manifold and of the geodetic distances).

• Sensitivity to noise. The reference vectors are assumed to lie in the data manifold, i.e., the noise is
considered zero—a clearly untenable assumption in many practical problems. If the noise level is high
enough many points will fall out of the data manifold (if the noise was such that the points were perturbed
inside the manifold there would be no problem, of course, but this is never going to happen). Such points,
in particular outliers, will result in the establishment of links between reference vectors which are far
away in the manifold, distorting the topological structure of the graph. Thus we expect the graph
representation to degrade ungracefully with the noise level.

4.10.2.2 The ISOMAP algorithm

Tenenbaum (1998) has proposed a straightforward combination of the topology-preserving network algorithm
with multidimensional scaling for manifold modelling that he calls ISOMAP: (1) to use ordinal multidimen-
sional scaling with the geodetic interpoint distances computed with the method of Martinetz and Schulten
(1994) to derive a low-dimensional Euclidean map and then (2) fit a radial basis function network to the
mapping from the low-dimensional points to the observed ones or vice versa, thus defining reconstruction and
dimensionality reduction mappings, respectively. In particular, ISOMAP works as follows. Given a sample
{tn}Nn=1 ⊂ RD, it randomly selects M reference vectors from it and constructs an approximation to the re-
stricted Delaunay triangulation graph whose nodes are associated with those M reference vectors, using the
method of Martinetz and Schulten (1994). The infinite sequence of points uniformly distributed over the data
manifold that this algorithm requires is approximated by the data sample {tn}Nn=1. Once such graph has
been obtained, it is used to compute the geodetic distances between every two reference vectors using Floyd’s
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algorithm, whose complexity is O(M 3). Tenenbaum claims to be able to determine the intrinsic dimensional-
ity of the data manifold by trying several dimensions and plotting the stress obtained, but, as mentioned in
section 4.10.1.1, this heuristic guarantees very little. ISOMAP then uses an RBF network to implement the
mapping between reference vectors and the low-dimensional points found by the ordinal MDS.

ISOMAP is a promising method, but it inherits the problems of all the methods it is based on, namely the
lack of guarantee that the reference vectors uniformly span the data manifold20 and the potential problems
of local minima when approximating implicitly defined mappings via a universal mapping approximator. It
also has a high computational complexity: O(M 3) to compute the O(M2) geodetic distances, where the
number of reference vectors M is O(eL), plus several trial-and-error MDS runs on those distances (till a
convenient dimension L is determined), plus the final RBF fit. Tenenbaum (1998) claims that the geodetic
distances computed from the graph are very good approximations to the true ones for some toy examples,
although the distances are slightly overestimated due to the discretisation of the manifold. Since the version
of MDS used, coincident with eq. (4.4), represents large distances much better than small ones, as mentioned
in section 4.10.1.2, the net effect may be a misrepresentation of distances at all scales.

Tenenbaum et al. (2000) present a variation of ISOMAP where (1) the topology-preserving network is
constructed, instead of with the algorithm of Martinetz and Schulten (1994), simply by linking every data
point with its K nearest neighbouring data points (or with all other data points within a distance ε of itself),
with each link weighted by the corresponding distance; and (2) an easy-to-minimise stress function with a
single minimum is used, akin to classical scaling (solvable via the principal components of a matrix derived
from the geodetic distances). Tenenbaum et al. (2000) state that, in the limit of infinite training data, this
new scheme recovers the true dimensionality and geometric structure of the data manifold if this belongs to
a certain class of Euclidean manifolds (which excludes manifolds such as hemispheres and tori). They give a
proof based on the fact that as training data increases, the graph becomes denser and better approximates the
true geodetic distances; the actual convergence rate depends on unknowns such as the curvature of the data
manifold, the separation between branches and the data density. Unfortunately, in practice this proof is of little
use because, generally, training data in high dimensions will be scarce and not uniformly distributed on the
manifold; and the computational complexity (at least quadratic in the number of data points) would preclude
using many data points anyway. Also importantly, step (1) now crucially depends on the neighbourhood size
(K or ε): if too large, it will include data points from other branches of the manifold, shortcutting them
and resulting in wrong geodetic distances; if too small, it may not contain enough neighbours. Determining
a good neighbourhood size may be difficult in practice. Finally, while (2) is faster than an arbitrary MDS
(metric or ordinal), it is also more restrictive: its unique minimum may not be as good as some of the local
minima of an arbitrary MDS. Other problems mentioned earlier remain: sensitivity to noise, bad local minima
when explicitly learning a dimensionality reduction mapping and no foolproof way to determine the intrinsic
dimensionality.

ISOMAP also needs a more thorough evaluation than the fact that it seemed to work in the examples
given by Tenenbaum (1998) and Tenenbaum et al. (2000). Particularly dubious are the results regarding the
problem of finding the manifold spanned by a set of bitmapped face images in various azimuth and elevation
view angles, where ISOMAP magically picks the (to a human perceptually salient) azimuth and elevation
degrees of freedom but not the also prominent changes in illumination and translation and the noise. The data
set used (10 000 images) is also small given the dimensionality of the images (32×32). Similar criticism applies
to the manifold spanned by the images of a hand undergoing non-rigid articulated motion, which cannot be
modelled with only two degrees of freedom (Amir Assadi, personal communication).

4.10.2.3 Summary

Representing a manifold by a skeleton graph from a noisy sample from the manifold includes two steps:

• finding an approximate set of vectors that are uniformly spread on the manifold

• finding the restricted Delaunay triangulation of those points.

The algorithm of Martinetz and Schulten (1994) is a first step toward this objective. This skeleton graph
can then be used to compute pairwise geodetic distances, feed them into an ordinal MDS method and solve
the nonlinear regression between the low-dimensional map and the high-dimensional sample with a universal

20The toy examples offered by Tenenbaum (1998), as well as those by Martinetz and Schulten (1994) and Tenenbaum et al.
(2000), have the data sample uniformly distributed on the manifold by definition. In this ideal case, it is easy to obtain a
collection of reference vectors uniformly spread over the manifold by applying a vector quantisation algorithm (Martinetz and
Schulten (1994) use the neural gas) or even by simply choosing a random subset of a data sample.
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mapping approximator. This is the basis of the ISOMAP procedure of Tenenbaum (1998). Defining manifolds
via the geodetic distance is an exciting idea and a promising avenue for further research.

Preservation of distances can also be imposed on other models, for example GTM. Tenenbaum (1998)
and Marrs and Webb (1999) have criticised the GTM model because it often finds estimates that offer a
distorted view of the high-dimensional manifold. That is, the distances along the data manifold in data space
are stretched or shrunk in a complex way in different amounts in different regions of the latent space—even
though the mapping f may be approximating well the data manifold. In section 2.8.3 we mentioned the
disadvantages that this has for visualisation of structure in the data, even though such a distorted coordinate
system is as valid as any other to which it can be invertibly mapped. Anyway, it would be good to be able
to enforce the preservation of geodetic distances in GTM. Marrs and Webb (1999) try to achieve this via a
regularisation term in the log-likelihood that constrains GTM’s mapping from latent onto data space to be
unit-speed on the average, so that unit steps in latent space correspond to unit steps in data space on the
average. We discussed this approach in section 2.8.3.

4.10.3 Locally linear embedding

Roweis and Saul (2000) have recently proposed a dimensionality reduction method that they call locally linear
embedding (LLE). Given a collection {tn}Nn=1 of training points, it uses a linear mapping to capture local
neighbourhood relations—representative of the local geometry of the data manifold—that are then preserved
as much as possible in an associated low-dimensional collection of points {xn}Nn=1, which is the end product,
just as in MDS. Specifically, each data point is reconstructed by least squares as a linear combination of its
K nearest neighbouring data points (or of all other data points within a distance ε of itself):

t̂n =
∑

m∈N (tn)

wnmtn minE1 ({wnm}) def
=

N∑

n=1

∥
∥tn − t̂n

∥
∥

2
subject to

∑

m∈N (tn)

wnm = 1

where N (tn) is the set of neighbours of data point tn. The least-squares problem is solved for the optimal
weights w∗

nm as N separate linear systems of K×K equations, regularised if K < D (in which case the systems
are underdetermined). The error function E1 is invariant to translations (since the weights sum one), rotations
and uniform scalings of the neighbourhoods. Ideally, minimising E1 results in the weights characterising local,
intrinsic geometric properties of the data manifold. Such properties can then be preserved in a low-dimensional
representation of the data by imposing on it the weights, again as an objective function to be minimised by
least-squares, but this time over the low-dimensional points {xn}Nn=1 for constant weights:

minE2

(
{xn}Nn=1

) def
=

N∑

n=1

‖xn − x̂n‖2 x̂n =
∑

m∈N (tn)

w∗
nmxn.

The points {xn}Nn=1 are constrained to be zero-mean and unit-covariance to eliminate arbitrary translations
and rotations. The minimisation is then a constrained quadratic programming problem with a unique minimum
that can be found by solving an eigenvalue problem. Note that it cannot be decomposed into an independent
subprogram for each n as before, i.e., the local neighbourhood relations interact. However, it is additive in the
same sense PCA is: the map with L + 1 dimensions is obtained from the one with L by computing the next
eigenvalue. The method can also be run using as input the pairwise distances between data points instead
of the data points themselves, just as in MDS. As usual, a mapping approximator can be fit to the pairs
{(tn,xn)}Nn=1 to obtain a dimensionality reduction mapping. This will define a single global mapping, unlike
the local dimensionality reduction methods of section 4.7.

LLE is attractively simple and has similarities with MDS methods, in particular with ISOMAP. In fact,
it can be considered as a topography-preserving MDS, where the local topography is preserved by linear
neighbourhood relations rather than by the pairwise distances. It also shares some of the disadvantages of
MDS methods: (1) likely sensitivity to noise and to the training set used; (2) sensitivity to data density that is
not uniform on the data manifold (which makes difficult to obtain local neighbourhoods in low-density regions);
(3) no dimensionality reduction mapping is defined, the only way being to fit a mapping approximator to the
pairs {(tn,xn)}Nn=1, which is prone to bad local minima; (4) quadratic complexity on the training set size, both
when computing the neighbourhood weights and when solving the eigenvalue problem for the low-dimensional
points; (5) no foolproof way to determine the intrinsic dimensionality; and finally and crucially, (6) no foolproof
way to determine the neighbourhood size K, which determines how local the geometric properties captured
by the weights are. Locality implies a small neighbourhood (more so since the implementation is linear) but
not so small that no neighbours are available.
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Roweis and Saul (2000) apply LLE to a toy problem, to a face images dataset like that of ISOMAP and
to a word categorisation example. More thorough evaluations are necessary that elucidate the impact of the
caveats mentioned.

4.11 Conclusions

We have defined the problem of dimensionality reduction as the search for an economic coordinate representa-
tion of a submanifold of a high-dimensional Euclidean space, a problem so far not yet solved in a satisfactory
and general way. We have then given an overview of several techniques for dimensionality reduction.

In general, the central place occupied by PCA has not been taken by any nonlinear technique. PCA
remains the favourite feature extractor, particularly for very high-dimensional data (such as images), where
it is typically used in a preprocessing stage. Projection pursuit is another linear dimensionality reduction
technique, guided by an arbitrary criterion rather than by PCA’s (maximal variance or, equivalently, minimal
L2-error). Kernel PCA is an attractively simple nonlinear extension of PCA that has performed well in some
applications as feature extractor. However, more complete performance comparisons are necessary, and more
importantly some theoretical insight in the interpretation of the nonlinear components, the effect of the kernel
and the definition of dimensionality reduction and reconstruction mappings.

Local dimensionality reduction, particularly PCA-based, is a good and reasonably fast approach that
combines some of the benefits of PCA with a nonlinear model: economy of parameters and flexibility. However,
it is not very accurate unless many local models are used. Global nonlinear dimensionality reduction (e.g.
autoassociators) requires many parameters and training is difficult, requiring much time and data and being
very prone to bad local minima.

The definition of principal curves makes them intuitively appealing. However, while they have been used
for small dimensions (Hastie and Stuetzle, 1989; Banfield and Raftery, 1992), they are not mature enough
algorithmically for high-dimensional dimensionality reduction.

Two classes of methods, those based on topological vector quantisation (section 4.9) and those based
on MDS with either straight-line or geodetic distances (section 4.10), have as primary product a collection of
reference vectors in observed space and an associated collection of low-dimensional vectors preserving topology
and metric structure, respectively. The disadvantage of these methods is that the data manifold and the
dimensionality reduction and reconstruction mappings are defined implicitly through the pairs {(µm,xm)}Mm=1

(for vector quantisation) or {(tn,xn)}Nn=1 (for MDS). Defining such mappings explicitly requires fitting in a
supervised way a mapping approximator to that set of pairs. In an ideal situation, the dimensionality of the
X space is appropriate, and the associations xm ↔ tm are correct and are instances of a one-to-one mapping

X
f−−→←−−
F
M ⊂ T (a bijection). But even in this best case, fitting a global flexible model to either of the

mappings, f or F, is likely to end up in bad local minima, depending sensitively on the starting point of the
optimiser, the optimiser itself and the architecture of the approximator. Some knowledge about the manifold
must be injected, probably via a regularisation term in the objective function, but it is not clear how well the
final mappings will generalise to unseen data. For MDS it is possible to define the low-dimensional vectors via
an explicit dimensionality reduction mapping, although the problem of bad local minima is still serious. Two
further problems of distance-based methods are (1) their high computational complexity, at least quadratic
on the training set size; and (2) the fact that the training data should be uniformly distributed over the data
manifold, since such methods try to model the geometry of that manifold—for which the training set acts as
a scaffold—but not the density of the data.

None of the methods discussed in this chapter define a density model for the data (except PCA and the elas-
tic net in their probabilistic interpretation). While this is not necessary to obtain dimensionality reduction and
reconstruction mappings, it is to know the distribution over the manifold and the latent space. Self-organising
maps give an indication of the density over the manifold via the distribution of the reference vectors on it, but
as mentioned in section 4.9.1 they do not properly define a density model. The advantages of probabilistic
methods over non-probabilistic ones are discussed in chapter 11. One somewhat surprising property of dimen-
sionality reduction with probabilistic models is that, due to the noise model, the dimensionality reduction and
reconstruction mappings are not the inverse of each other (specifically, F ◦ f is not the identity, as happens for
probabilistic PCA; see section 2.9.1). However, basing the dimensionality reduction on an Euclidean distance
criterion (to the low-dimensional, nonlinear manifold) leads to discontinuous mappings.

Two central ideas underlie several of the methods:

• Points close together in data space should be mapped close together in low-dimensional space (vector
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Figure 4.22: The topological structure of a quantised high-dimensional Euclidean space can be preserved in
lower dimensions (even one dimension) by folding or flattening it and preserving the connections. In the
low-dimensional representation, the connections still reflect the topology of the high-dimensional space, not
of the low-dimensional one. The representation can be further generalised by labelling the connections with
distance or similarity values.

quantisation methods, such as self-organising maps and the elastic net, and MDS methods).

• The manifold should pass through the middle of the data (principal curves, nonprobabilistic PCA).

Two major issues that remain open are:

• To overcome the curse of the dimensionality, which results in many parameters that demand huge sample
sizes to obtain reasonable results. Most of the techniques reviewed still suffer of this to an extent.

• To determine the intrinsic dimensionality of a distribution given a sample of it. Knowing it would reduce
the possibility of over- or underfitting. Model selection techniques, such as those based on the value of
an error criterion as a function of the number of dimensions used (as in PCA or MDS), are unreliable.

4.12 Can dimensionality reduction be achieved with discrete vari-
ables?

We have discussed dimensionality reduction of continuous observed variables in terms of continuous latent
variables, as in PCA, autoassociators or methods based on multidimensional scaling. This is due to the
fact that topographic mappings are naturally defined in continuous Euclidean spaces thanks to their intrinsic
definition of distance, whatever the dimensionality of the space. Discrete spaces can work like continuous
spaces by assuming that they are a sample or discretisation of an underlying continuous space and ensuring
that the learning algorithm respects the topographic structure of that space, as happens with GTM or self-
organising maps. In such cases, the higher the resolution of the sample, the better the collection of discrete
values will approximate the underlying continuous space. Therefore, this use of discrete variables is essentially
not different from using continuous latent variables—it is just that we cannot use high-dimensional continuous
variables directly in an analytically exact, or otherwise desirable, way. In particular, the dimension of the
manifold induced in observed space is the same as that of the underlying low-dimensional continuous space
(e.g. 2 for a two-dimensional grid in a self-organising map).

We mention here a different possibility, without going into any detail of how it could actually be imple-
mented. If a Euclidean space of dimension D is discretised into regions, we can represent the neighbourhood
relations between these regions (and thus their topological structure) with a graph, as in fig. 4.22(left). This
graph, which is D-dimensional, can be flattened to any lower dimension, up to 1 (fig. 4.22(right)) while still
keeping the topological information of the D-dimensional space via the graph edges. In the figure, the arrange-
ment on the right is apparently one-dimensional but can be unfolded to reveal a three-dimensional structure;
this is revealed by the presence of long-range connections in the one-dimensional arrangement (extending far-
ther than the one-dimensional nearest neighbours). The graph edges can be labelled with numerical values
representing distance or similarity.

One cannot help comparing this to the complex pattern of short- and long-range connections existing in
different areas of the brain. The primary visual cortex of mammals, usually considered as a two-dimensional
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sheet of neurons, is known to have orderly representations of a number of external stimuli, such as position
in the visual field, eye of origin, orientation, direction of movement, spatial frequency and disparity. In fact,
dimensionality reduction models such as self-organising maps and the elastic net have been very successful
at replicating such organisation (Swindale, 1996). In the hippocampus, the pattern of connections is more
complex, with no two-dimensional topography, which might indicate that it is coding higher dimensions. It
would be interesting to investigate the alternative possibility of a discrete, two-dimensional collection of neurons
that actually unfolds into a higher-dimensional stimuli space.

❦
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Chapter 5

Dimensionality reduction of
electropalatographic (EPG) data

In this chapter we apply some of the latent variable models described in chapter 2 to a real-world problem, the
dimensionality reduction of electropalatographic data. We obtain results of interest for electropalatography
(adaptive data reduction and visualisation) and for latent variable modelling (relative performance of each
model).

The chapter is organised as follows. Section 5.1 introduces electropalatography and the convenience of
dimensionality reduction of electropalatographic data. Section 5.2 reviews data reduction methods for EPG
data and explains the advantages that unsupervised learning methods (in particular latent variable models)
have over fixed EPG data reduction methods. Section 5.3 describes the data set employed for the experiments
and sections 5.4–5.5 the experiments with the different models employed. The chapter is completed with a
discussion of the results in sections 5.6–5.7.

5.1 Introduction

5.1.1 The technique of electropalatography (EPG)

The technique of electropalatography (EPG) (for reviews, see e.g. Hardcastle et al., 1989 or chapter 10 of
Hardcastle and Hewlett, 1999) is well established as a relatively noninvasive, conceptually simple and easy-
to-use tool for the investigation of lingual activity in both normal and pathological speech. It records details
of the timing and location of lingual contacts with the hard palate during continuous speech. Typically, the
subject wears an artificial palate moulded to fit the upper palate with a number of electrodes mounted on
the surface to detect lingual contact (62 in the Reading EPG system; Hardcastle et al., 1991a); two such
pseudopalates are shown in fig. 5.1. The EPG signal is sampled at 100–200 Hz. Thus, for a given utterance,
the sequence of raw EPG data consists of a stream of binary vectors with both spatial and temporal structure,
such as the one showed in fig. 5.2. Careful observation of both temporal and spatial details of contact across
the entire palatal region can be very helpful to identify many phonetically relevant details of lingual activity.

The technique is suitable for investigation of those sounds that involve measurable amounts of lingual
contact with the hard palate. Varying degrees of contact occur for all English lingual obstruents, such as

������ ��!�#"$�#����%&�('��#)(�#*+�#,-�.�/��#��/0�
, the palatal approximant

��12�
, nasals

���+�#3#�
, lateral approximant

��4��
(with varying

degrees of contact depending on the nature of the following vowel) and relatively closed vowels and diphthongs
such as

��5768�!�9�;:��8�!<�5=� ���
. There is usually little contact with back vowels such as

��>+�+?$� <;?$�$@�6A�
and relatively

open vowels such as
��BC�#<�68�#D+�#�
�#E#�

.
EPG has been successfully used to study a number of phenomena in phonetic descriptive work, in studies

of lingual coarticulation1 and in the diagnosis and treatment of a variety of speech disorders (Hardcastle et al.,
1991a, 1989). In the latter case, EPG has been useful in two main areas:

• Assessment: EPG provides insights into possible origins of auditorily perceived errors.

This chapter is mainly based on references Carreira-Perpiñán and Renals (1998a,b).
1Coarticulation refers to the simultaneous or overlapping movements of different articulatory organs or different parts of the

same organ resulting in sounds being influenced by their phonetic context. It can be anticipatory, e.g. a stop being affected by
the nature of a preceding vowel; or carryover, e.g. the opposite case. See also section 10.1.1.5.
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Figure 5.1: EPG pseudopalates. Left : Reading EPG system (Arnfield, Feb. 1, 2000), from the Speech Lab-
oratory of the University of Reading. Right : UCLA Phonetics Lab system (UCLA, Feb. 1, 2000). Note the
different electrode layout. Pictures used with permission of the Reading Speech Lab and the UCLA Phonetics
Lab, respectively.

• Therapy: real-time visual feedback can be effective in the remediation of certain types of intractable
speech problems.

For descriptive purposes, particular speech gestures can be characterised by quasi-static patterns of
contact, such as those shown in fig 5.3. These patterns typify the contacts that have been found to occur
at particular phases during the production of various speech sounds, and actual contact patterns that occur
during normal spontaneous speech can be described with reference to these quasi-static patterns; Hardcastle
et al. (1991a) give a more thorough description. Figure 5.3 shows some representative EPGs for the typical
stable phase of different phonemes; these are to be compared with the EPG prototypes of fig. 5.6.

The disadvantages of EPG are:

• Currently, the technique records the location of the contact only: there is no direct information about
the proximity of the tongue to the palate2 or the overall shape of the tongue, nor is there any way of
inferring directly which part of the tongue is producing the particular contact pattern. Therefore, in the
numerous cases where the vocal tract configuration involves little or no contact with the hard palate,
the technique provides little information.

• Since the electrodes are discrete points on the surface of the artificial palate, continuous lingual contact
cannot be assumed when two adjacent electrodes are contacted (this is particularly relevant in the lateral
parts of the palate).

• Each artificial palate must be individually manufactured from dental moulds of the speaker.

• Sometimes the artificial palate in the speaker’s mouth may hinder their ability to produce normal speech.

Due to these limitations, it is advisable to adopt a multichannel approach to the investigation of lingual activity
and to supplement EPG data with information from movement tracking devices, aerodynamic data and an
audio signal representation. Nevertheless, despite these limitations it has provided useful information on many
aspects of articulation, particularly in the study of lingual coarticulation.

2Although some systems for obtaining three-dimensional palate diagrams are being developed (Jones and Hardcastle, 1995).
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Figure 5.2: The Reading EPG system. Upper left : placement of electrodes on the artificial palate. Upper
right : division of electrodes into zones: rows 1–2 alveolar zone, rows 3–5 palatal zone, rows 6–8 velar zone.
Lingual contact is indicated by full, black dots (as in fig. 5.6) for a sample phoneme. Lower : full EPG printout
of the word “tactics.” In each palatal diagram the alveolar region is at the top, and the velar region at the
bottom; lingual contact is indicated by zeroes. Interval between frames is 10 ms. Adapted with permission
from Nicolaidis et al. (1993) (copyright John Wiley & Sons Limited).
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Figure 5.3: Quasi-static EPG contact patterns found in normal speech (from left to right): alveolar stop
pattern; velar stop pattern; palatal stop pattern; double alveolar-velar pattern; alveolar grooved pattern;
palatal grooved pattern; apical pattern. From Hardcastle et al. (1991a).

5.1.2 The tongue and its mechanical constraints

The human tongue is a muscular hydrostat (Kier and Smith, 1985), i.e., an organ composed almost entirely
by muscle, lacking typical systems of skeletal support. Examples of muscular hydrostats are the tongues of
mammals, the arms and tentacles of cephalopod molluscs and the trunks of elephants.

The main property of hydrostats is that their volume is constant: any decrease in one dimension will
cause a compensatory increase in at least one other dimension. The action of different systems of muscles
(grouped according to their direction: transverse, radial, circular, longitudinal and oblique) produces a variety
of movements including elongation, shortening, bending, torsion, leverage and stiffening. The musculature acts
both as effector of the movement and as support for the movement (the latter being the role of the skeleton).
In the case of the tongue, the hard palate acts as support for the tongue in most consonants (e.g. alveolars) and
some vowels, which facilitates production of tongue shapes different from those produced by the free-standing
tongue.

Potentially the tongue has many degrees of freedom owing to its lack of bony skeleton (Stone, 1991);
however, a number of studies suggest that tongue movements in speech may be appropriately modelled using
a few elementary articulatory parameters (e.g. Nguyen et al., 1994, 1996 and references therein). As figure 5.2
shows, an EPG sequence presents redundancy at two levels, due to physical constraints of the tongue-palate
system:

• Intraframe, or spatial, redundancy arises due to the limited number of possible tongue configurations—
only a tiny fraction of the potential 262 ≈ 4.6 · 1018 EPG patterns can be produced by the articulatory
system. For example, the tongue cannot fold into arbitrary shapes or go through the palate. This suggests
the use of a static dimension-reduction method in which the temporal interdependence of different vectors
is disregarded.

• Interframe, or temporal, redundancy arises due to the correlations between neighbouring frames: the
position of the tongue (and thereby the EPG signal) changes slowly with time, compared to the acoustic
signal. This suggests the use of a model for vector time series, e.g. a hidden Markov model (HMM),
coupled with a static dimension-reduction method.

If the appropriate constraints were known, then it would be possible to represent the EPG signal using fewer
dimensions.

5.1.3 Dimensionality reduction of EPG data

In this chapter we approach the problem of finding a dimensionality reduction mapping for EPG data, not
from a physical point of view, but from a machine learning one. That is, we consider a data set consisting of
a number of EPG patterns and try to learn a mapping into a low-dimensional space from the data, without
any a priori assumption about it (other than a specific, but quite general, form). We will use the latent
variable modelling approach described in chapter 2. In common with most work on EPG data reduction we
will concentrate on dimensionality reduction at the spatial level only, thus ignoring the constraints arising from
coarticulation and other dynamics of the articulatory system. Of course, one can always analyse the temporal
evolution of the dimension-reduced frames.

The primary advantage of dimensionality reduction for EPG data is that it makes a sequence of EPG data
more amenable to analysis, since direct manipulation of the raw EPG sequence is cumbersome due to its high
dimensionality (Hardcastle et al., 1991b). A reduced-dimension representation in terms of a few variables
can be inspected, plotted against time or against each other, etc. more easily. Additional advantages are the
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consequent reductions in storage space and data transmission rate—albeit of little relevance, since the EPG
data has relatively low requirements for them.

The resultant dimensionality reduction may suggest a value for the intrinsic dimensionality of the EPG
data, i.e., the number of degrees of freedom of the tongue-palate system in what concerns the generation of
EPG patterns.

In chapter 10 we use latent variable models for EPG and acoustic data to look into the problem of the
acoustic-to-articulatory mapping, in which values for articulatory parameters such as vocal tract area functions,
lip positions and jaw dynamics are inferred from the acoustic signal. However, the EPG signal alone is an
incomplete articulatory description, omitting such details as nasalisation and vocalisation. Hence, the mapping
from phonemes to EPG patterns is not one-to-one since certain phonemes (e.g.

�(BF�
and

�(<;�
) can produce the

same EPG patterns.

5.2 Review of data reduction methods for EPG data

5.2.1 Fixed data reduction: EPG indices

Several techniques to extract features or other kind of condensed information from the EPG data have been
developed (reviewed in Hardcastle et al., 1991b; Jones and Hardcastle, 1995), such as:

• Totals display: place of articulation measure to monitor dynamic changes in different contact regions of
the palate. The palate is divided into reference zones (e.g. alveolar: rows 1–2; palatal: 3–5; velar: 6–8)
and the total number of contacts in each zone is plotted as a function of time. It is useful to illustrate
global differences in contact patterns between normal and pathological speech.

• Centre of gravity plot: useful to estimate the differences during different phases of articulatory gestures,
e.g. the approach and release phase of stop consonants. The centre of gravity index was designed to
locate the highest concentration of activated electrodes in a given EPG frame. Preferential weight is
given to the anterior zone along the sagittal axis.

• Frequency of contact with each electrode over a period of time, expressed as a percentage and usually
calculated in a row-by-row basis. For example, Farnetani et al. (1989) propose a coarticulation index that
measures the difference in electrode activation for a phonetic segment (e.g. a consonant) when uttered
in two different contexts (e.g. two different VCV sequences).

The majority of these techniques are based on linear combinations of the EPG vector components. We
refer to such linear combinations as linear indices and represent them using a D-dimensional basis vector v.
The score of a D-dimensional EPG pattern t with respect to index v is thus the projection of t on v, i.e.,
vT t =

∑D
d=1 vdtd. Multiplying an index by a constant does not add any new information, so that v, 2v and

−2v are all equivalent.
Many of these numerical indices have a fixed form, prescribed in advance. This form often reflects a

phonetician’s a priori beliefs about the relevance of different palate regions; for example, most work on EPG
data reduction uses predetermined articulatory regions on the artificial palate (Byrd et al., 1995; Hardcastle
et al., 1991b) via a linear combination of the individual contacts (see fig. 5.4). Alternatively, they may have been
designed in some other way. For example, Nguyen (1995) applies the discrete cosine transform (DCT) to the
EPG frames considered as images to obtain several linear indices, corresponding to low spatial frequencies. In
particular, he proposes four indices (shown in fig. 5.4): SSU (Scaled SUm of activated electrodes), LRA (Left-
Right Asymmetry index), APA (Alveolar-PAlatal index) and LME (Lateral-MEdian index), corresponding
to spatial frequencies of 1, 2, 3 and 6, respectively. These indices are the most easily interpretable DCT
basis vectors and also get the larger weights in the linear decomposition of a typical EPG frame. These
indices are exactly or approximately equivalent to the traditional indices TOT, ASY, ALV and (scaled) LAT,
respectively. Even though the DCT-based approach makes no a priori assumption about the data, it still has
the disadvantage that the set of indices is fixed across data sets—because the indices are the basis vectors of
the DCT, which for a given image size is fixed.

Therefore, ad hoc indices require the experimenter to make a priori assumptions (usually about the produc-
tion of speech), thereby ignoring two kinds of variability: interspeaker variability (in palate size and shape3,
and in accent or other speaker-specific characteristics) and intraspeaker variability, e.g. different speech styles
(colloquial, slow, etc.). Ad hoc methods are not robust and will not perform well in situations where the speech

3The Reading system is less vulnerable to this because the artificial palate is custom-fitted, with electrodes placed in anatomical
landmarks of the individual.
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Figure 5.4: A selection of typical EPG data reduction indices reported in the literature (basis vectors of an
orthogonal, linear projection): alveolar (ALV), palatal (PAL), velar (VEL), total of contacts (TOT, equivalent
to the scaled sum of activated electrodes, SSU), centre of gravity (COG), laterality (LAT), asymmetry (ASY),
frication (FRIC), left-right asymmetry (LRA), alveolar-palatal (APA) and lateral-median (LME).

deviates from the standard: impaired speakers, different speech styles or unusual accents. This makes desir-
able the use of automatic methods to extract structure from a data set without requiring any prior knowledge
about it, such as factor analysis (which looks for linear correlations), neural networks (which can find more
complex relationships), etc. Such techniques could also be useful in determining relevant articulatory regions
empirically; this would allow for interspeaker differences in the details of electrode placement with respect to
anatomical configurations or speaker-specific articulatory patterns (Byrd et al., 1995), rather than using fixed
electrode locations for all speakers, as is customary. Thus, one of the goals of this chapter is to find EPG cues
in an empirical way, without referring to predetermined indices based on phonetic knowledge (such as those
illustrated in fig. 5.4).

5.2.2 Adaptive data reduction

Adaptive dimensionality reduction for EPG data has been investigated using both linear systems and neural
networks (Nguyen et al., 1996; Holst et al., 1995). Linear approaches have been based on a rotated principal
components analysis (referred to as factor analysis by Nguyen et al., 1996). Two layer feed-forward neural
network autoassociators used by Nguyen et al. (1996) and Holst et al. (1995) infer a set of basis vectors that
spans a subspace similar4 to that defined by the principal components (Bourlard and Kamp, 1988; Baldi
and Hornik, 1989), as discussed in section 4.5. These adaptive methods lack a natural interpretation as a
probability model (although one may be forced upon PCA, see section 2.6.2). In this thesis we are concerned
with methods that explicitly define a full probability model.

5.2.3 Graphical representation of EPG indices

Graphically, we can represent both EPG patterns and indices as in figures 5.4 and 5.6: each small rectangle
corresponds to one component of the D-dimensional vector (starting in the top left corner and ending in the
bottom right one), where D = 62. The colour of the rectangle, black or white, indicates the positive or negative
sign of the component, and the size of the rectangle is proportional to the magnitude of the component. The
shape of the figure (an 8 × 8 grid where the top corners are unused) follows that of the palate, the alveolar
part being in the top and the velar part in the bottom. In the conventional pictorial representation of EPG
patterns, only binary data are allowed: each position is either empty or contains a full, black rectangle. Thus,
we extend this representation to EPG indices by allowing any real value in each position. However, the reader
should bear in mind that in an EPG pattern all components are either 0 or 1, and in an EPG index they
can be any real number (positive or negative). Thus, fig. 5.4 depicts EPG indices while fig. 5.6 depicts EPG
patterns.

Concerning phonemic categories, it should be clear that, for practical reasons, no general labelling of the
data was performed, as explained in section 5.3. However, we use the labels of fig. 5.6 (identified perceptually
by a phonetician) with the specific purpose of assessing our results in sections 5.4.2 to 5.5.

5.3 Data set description: the ACCOR database

For the experiments reported in this chapter we have used a subset5 of the EUR-ACCOR database (described
in appendix B). The EPG data consists of 62-bit frames sampled at 200 Hz. We have selected EPG frames

4If the neural network units have linear activation functions, then both spaces are exactly the same.
5We are grateful to Alan Wrench for providing us with the data.
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corresponding to the English language, in which each of 6 different subjects (FG, HD, KM, PD, RK, SN; see
table B.2) recorded 14 different utterances (table B.1). The data set was divided into 6 parts, one for each
speaker, and the data of each speaker was split into a training and a test set: utterances 1, 3–5 and 9–14
were put into the training set and utterances 2 and 6–8 into the test set. The criterion followed was to have a
balance between the number of different EPG frames (i.e., excluding repeated patterns) between the test and
training set: roughly 80% for training and 20% for test (depending on each speaker).

All the data used were unlabelled. Labelling each EPG frame with the phoneme it corresponds to is a
time-consuming process, requiring manual annotation of the EPG sequence in relation to the acoustic signal
(and perhaps other signals) by a phonetician; automatic annotation is possible using a speech recognition
program but prone to errors. This is another reason to perform unsupervised learning of the EPG data, so
that articulatory categories can be extracted directly from the data in the form of factors, prototypes or, more
generally, a latent-variable space.

5.4 Experimental results

We fitted the following continuous latent variable models to the EPG data: factor analysis, principal component
analysis and GTM. All these models assume continuous variables, while the EPG data are binary. We
discuss this issue in section 5.6.2. We also fitted a model for binary data, a mixture of multivariate Bernoulli
distributions.

5.4.1 Scatterplots of principal components of the EPG data

Figure 5.5 shows projections of the data set corresponding to speaker RK on planes defined by two principal
components. Observe the obvious departures from normality in many of them, including clustering and
nonlinearity, which implies that the joint distribution of the EPG variables is not multivariate normal6 and
that the relation between some variables is not linear. This means that linear-normal models such as PCA or
factor analysis will not be adequate.

5.4.2 Factor analysis and principal component analysis

For all the experiments we report, maximum likelihood factor analysis was performed using an EM algorithm
(Rubin and Thayer, 1982) with random starting points. Once the relative increase in log-likelihood was smaller
than 10−7, the iterative procedure was stopped and varimax rotation was applied to the factors.

As mentioned in section 2.6.2, for a fixed data set we may regard PCA as an additive technique, insofar
that a PCA of order L produces the same principal components as a PCA of order L−1 plus a new, additional
principal component. This property of additivity does not hold in principle for either PCA followed by
(varimax) rotation or factor analysis followed or not by (varimax) rotation. However, for the EPG data set we
used, we found that this property of factor additivity holds with good approximation: after varimax rotation,
the factor loadings obtained in a factor analysis of order L−1 appear again with little modification in a factor
analysis of order L. This has an important consequence: the factors can be ordered by a relevance criterion,
in the same way that the principal components can be ordered by the proportion of directional variance they
explain. So, a factor analysis of order 1 produces the first factor; a factor analysis of order 2 finds that same
factor plus a second one, and so on. In this situation, it is possible to refer individually to each factor as
having an independent status.

Figure 5.7 shows the factor loadings obtained for a factor analysis of order 9, ordered by relevance for
speaker RK. Considering the loading vectors as linear indices, it is apparent that many of the indices of
figure 5.4 may be associated with the factor loadings or with linear combinations of these loadings (e.g. ALV,
PAL and VEL with factors 3, 7 and 1, respectively).

This association may be regarded as an empirical justification of these phonetic indices, since they account
for a large proportion of the correlation between variables, as well as possessing a straightforward interpretation.
However, if we compare figure 5.7 with figure 5.8 (corresponding to speaker HD) we see that, although some
factors are approximately equal for both speakers (e.g. factor 8 in RK is factor 2 in HD), there are significant
differences, revealing different articulation trends. For example, speaker HD tends to produce EPG patterns
which are much less symmetrical than those of RK. Such variations are difficult to track with fixed indices;

6A normally distributed projection may be hiding a non-normal data set, and besides Diaconis and Freedman (1984) prove
that most projections from an arbitrarily distributed data set will be approximately normal. But, clearly, a projection which is
not normally distributed necessarily implies that the original data set is also non-normal.

116



−3 −2 −1 0 1 2 3 4 5

−3

−2

−1

0

1

2

3

4

5

PSfrag replacements

PC1

P
C

2

PC3
PC4

−3 −2 −1 0 1 2 3 4 5

−3

−2

−1

0

1

2

3

4

5

PSfrag replacements

PC1

PC2

P
C

3

PC4
PC2

−3 −2 −1 0 1 2 3 4 5

−3

−2

−1

0

1

2

3

4

5

PSfrag replacements

PC1

PC2
PC3

P
C

4

PC2
−3 −2 −1 0 1 2 3 4 5

−3

−2

−1

0

1

2

3

4

5

PSfrag replacements

PC1
PC2

P
C

3

PC4

PC2

−3 −2 −1 0 1 2 3 4 5

−3

−2

−1

0

1

2

3

4

5

PSfrag replacements

PC1
PC2
PC3

P
C

4

PC2

−3 −2 −1 0 1 2 3 4 5

−3

−2

−1

0

1

2

3

4

5

PSfrag replacements

PC1
PC2
PC3

P
C

4

PC2

PC3

Figure 5.5: Projections of the EPG database corresponding to speaker RK on different principal component
planes. The mean vector is marked as a circle (◦). The departure from normality is obvious.
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e.g. the asymmetry index will give no extra information for a speaker that does not produce any asymmetric
patterns.

We also applied principal component analysis (computed via singular value decomposition) to the same
training sets as factor analysis. The first 9 principal components7 for speaker RK are shown in figure 5.9.
Most of the basis vectors contain both positive and negative values, thus lacking a simple interpretation. After
a varimax rotation (figure 5.10) most basis vectors contain a majority of positive values, with several being
similar to some of the factors of fig. 5.7. This is a consequence of the uniquenesses matrix Ψ being relatively
isotropic (a multiple of the identity matrix), in which case factor analysis is equivalent to PCA. However, in
a general situation the two methods give different results.

The factor analysis and PCA representations may be evaluated in terms of log-likelihood and reconstruction
error. The left side of figures 5.11 and 5.12 show the log-likelihood of the factor analysis and PCA models for
the training and test data sets of speaker RK and for different numbers of factors or principal components,
respectively. In both models the log-likelihood value was computed as (see eqs. (2.20) and (2.29)):

L(Θ) = −N
2

(
D ln 2π + ln |Σ(Θ)|+ tr

(
SΣ(Θ)−1

))
(5.1)

where S = 1
N

∑N
n=1 (tn − t)(tn − t)T is the sample covariance matrix of the data set, with t = 1

N

∑N
n=1 tn

being the sample mean. Σ(Θ) is the covariance matrix under the model specified with parameters Θ, i.e.,
Σ(Λ,Ψ,µ) = ΛΛT+Ψ for factor analysis and Σ(Λ, σ2,µ) = ΛΛT+σ2I for PCA, according to the probabilistic
PCA model of section 2.6.2. Factor analysis is systematically better than PCA, as the theory predicts, because
PCA is a particular case of factor analysis in which the uniquenesses are forced to be equal. That is, factor
analysis is a more complete model than PCA. Not shown in the figure is the fact that the maximum achievable
log-likelihood is identical for PCA (using the limit of 62 principal components) and factor analysis (using 51
factors, the identifiability limit, see section 2.8.2.1).

The right side of figures 5.11 and 5.12 shows the reconstruction error of the factor analysis and PCA
models, respectively. For PCA, the projection on the L principal components was used8; for factor analysis,
the projection using the posterior mean (2.19) was used. The reconstruction error was defined in the usual
way:

E2 =
1

N

N∑

n=1

‖tn − (ΛA(t− µ) + µ)‖22 (5.2)

where for PCA, Λ = AT contains the first L principal components and for factor analysis, Λ contains the
factor loadings and A is defined in (2.18). According to the squared reconstruction error criterion PCA is
systematically better than factor analysis; note that PCA is optimal among linear mappings according to this
criterion on the training set. Further, the directional variance (along each component or factor) decreases
monotonically in PCA, while in factor analysis it does not—although it has a tendency to decrease with the
relevance order.

5.4.3 GTM

A factor analysis goodness-of-fit test9 (valid in the asymptotic limit of large samples) is available for the null
hypothesis that “the data sample can be explained with L factors” (Everitt, 1984), i.e., that the covariance of
the observed variables can be accounted for with L factors. For our training sets (of sizes well above N = 5000
in all cases) and at a significance level of 5%, this hypothesis was rejected for all L < 45. A similar test is

7Defined by the ordered eigenvectors u1, . . . ,uL of the sample covariance matrix rather than by the columns of matrix Λ in
eq. (2.28), although for interpretation purposes the scaling introduced in the columns of Λ is irrelevant.

8Again, by principal components we mean the ordered eigenvectors of the sample covariance matrix rather than the columns
of matrix Λ in eq. (2.28). Thus, we disregard the dimensionality reduction mapping induced by the probability model and use the
usual PCA orthogonal projection, which is guaranteed to minimise the reconstruction error of any linear dimensionality reduction
mapping (section 4.5).

9This statistical test should be considered only as qualitative evidence for two reasons:

• Traditional hypothesis tests are not generally valid under a Bayesian perspective, due to the fact that they use the likelihood
and not the posterior distribution. That is, they disregard the prior distribution of a given sample—which may be very
difficult to estimate anyway. This means that the conventional practice of quoting P -values for assessing the level of
rejection of a hypothesis is actually of qualitative value only. Berger (1985, pages 145–157) and Sivia (1996, pages 87–88)
further discuss this issue.

• This test requires normality of the population, as most parametric tests do (Kanji, 1993, page 3), which does not hold for
our EPG data sets (section 5.4.1).
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Figure 5.10: Principal components for speaker RK after varimax rotation.
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available for PCA and the null hypothesis was rejected for all values of L at the same significance level. This
suggests that linear methods are not powerful enough and are able to extract only a fraction of the information
contained in the EPG data. Besides, the scatterplots of section 5.4.1 indicate that linear-normal methods will
not be adequate.

The generative topographic mapping (GTM) is a latent variable model well suited to visualisation, since
the latent space is effectively limited to two dimensions10. We trained GTM models11 with the following
parameters: 20 × 20 grid in two-dimensional latent space (K = 400 points), scaled to the [−1, 1] × [−1, 1]
square, and

√
F ×
√
F grid in the same square of F Gaussian basis functions of width equal to the separation

between basis functions centres;
√
F varied from 3 to 14. Training was achieved by an EM algorithm, stopping

when the relative increment in log-likelihood was smaller than 10−4; the starting point was not random, but
derived from the first principal components of the data set, as described by Bishop et al. (1998b).

Figure 5.13 gives the log-likelihood (left) and the reconstruction error (right) for the GTM models (speaker
RK; the vertical axes have the same scale as in figs. 5.11–5.12). We can see that:

• While the log-likelihood for the training set increases monotonically with increasing F , that of the test
set reaches a maximum at around F = 49 and starts decreasing again. This means that overfitting is
occurring for F > 49: the model is learning the training set too well but cannot generalise to the test
set properly. The phenomenon of overfitting did not appear in the previous models, probably due to the
small number of parameters (although the log-likelihood curves for the test set do flatten if many factors
or principal components are used). Note that the reconstruction error continues decreasing monotonically
past F = 49.

• The log-likelihood of the GTM model (even with a relatively small number of basis functions, to avoid
overfitting) is better than the highest possibly attainable log-likelihood of both PCA and factor analysis
(i.e., using any number of principal components or factors). The reconstruction error using as reduced-
dimension representative the mode of the posterior distribution12 is very small, comparable to that of a
PCA with 10 principal components or more (i.e., a latent space of dimension L = 10).

We remark that GTM is using a latent space of only dimension 2, while the curves for factor analysis and
PCA correspond to latent spaces of higher dimension.

GTM is then a much better generative model for the EPG data set than PCA or factor analysis, due to the
fact that the mapping between latent and data space used by GTM is an expansion in radial basis functions,
which have been proven to be able to approximate any smooth function to arbitrary accuracy given enough
basis functions (Park and Sandberg, 1993; Scarselli and Tsoi, 1998). However, the number of parameters of a
GTM model is typically much higher than that of the other models we have analysed.

As we mentioned in section 2.9, the reduced-dimension representative for a data point t is obtained as a
particularly informative point in latent space according to the posterior distribution for t. For factor analysis
and PCA this posterior distribution is normal (more or less broad, depending on the covariance matrix) and
there is no doubt as to what reduced-dimension representative to select, because the normal is unimodal:
the mean (equal to the mode). This is not necessarily the case for GTM, though: in principle, the posterior
distribution for a given data point can be multimodal, which makes difficult to select a single reduced-dimension
representative (see section 2.9). However, after our GTM model was trained, we found that the posterior
distribution was unimodal and sharply peaked for over 90% of the data points. Thus, almost every EPG
pattern can be associated with a unique point in two-dimensional latent space. Clearly, the coordinates of the
reduced-dimension representative could be considered as (nonlinear) EPG data reduction indices.

5.4.4 Mixture models

5.4.4.1 Mixtures of factor analysers

We modelled the same training sets with a mixture of factor analysers. Again, a maximum likelihood estimate
for the parameters of the model was found via an EM algorithm13 (Ghahramani and Hinton, 1996), with
random starting point and stopping when the relative increment in log-likelihood was smaller than 10−4. The

10Although theoretically it may use a latent space of any dimension L, in practice one uses L ≤ 2, since the computational
complexity is approximately exponential in L due to the curse of the dimensionality (section 2.6.5).

11We are grateful to Markus Svensén’s for making available (from http://www.ncrg.aston.ac.uk/GTM) his Matlab implemen-
tation of GTM.

12Using as reduced-dimension representative the mean of the posterior distribution gave a slightly larger error in all cases.
13We are grateful to Zoubin Ghahramani for making available (from http://www.gatsby.ucl.ac.uk/~zoubin) his Matlab im-

plementation of mixtures of factor analysers.
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Figure 5.11: Log-likelihood (left) and reconstruction error (right) of the factor analysis model for speaker RK.
TR and TE refer to training and test set, respectively.
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Figure 5.12: Log-likelihood (left) and reconstruction error (right) of the PCA model for speaker RK. TR and
TE refer to training and test set, respectively. Vertical scale as in fig. 5.11.
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Figure 5.13: Log-likelihood (left) and reconstruction error (right) of the GTM model for speaker RK. TR and
TE refer to training and test set, respectively. Vertical scale as in fig. 5.11.
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parameters are now the mixing proportions πm of the mixture (that correspond to the prior probabilities of
the different mixture components) and the means µm and factor loadings Λm of each factor analyser.

Figure 5.14 shows the results for a mixture with 4 components, each of them a factor analysis of first order.
The means coincide with some of the typical EPG patterns of fig. 5.6 (and with some of the prototypes found
by the mixture of multivariate Bernoulli distributions of the next section). The corresponding loading vectors
coincide with or are approximately a linear combination of several of the factor loadings of fig. 5.7. This implies
that the mixture does not find new factors, but that it places different factors in different locations of data
space, adapting to the local behaviour of the correlations. For example, component number 2 is located in the
area of vowels like

��BF�
and is associated with a factor stressing velar patterns with some left-right asymmetry.

In all our experiments, a first-order factor analysis was used for each component (which made varimax
rotation unnecessary), varying only the number of components in the mixture. The reason for not using
higher order factor analysers is that the estimation algorithm systematically tends to a singularity of the
likelihood surface, where some of the uniquenesses tend to zero and the Ψ matrix is not positive definite. This
is a well-known problem in the literature of factor analysis and finite mixture distributions (Bartholomew,
1987; Everitt and Hand, 1981), called a Heywood case. See section 5.6.1 for possible solutions to this.

As before, the left side of figure 5.15 shows the log-likelihood of the mixture of factor analysers model
for all data sets of speaker RK, and the right side the reconstruction error (M is the number of components
in the mixture). The log-likelihood of the mixture is always superior to that of simple factor analysis (the
latter being a more restricted maximum likelihood model), and the reconstruction error is always smaller as
well, although there is not much difference. The mixtures considered do not result in a significantly improved
performance over factor analysis.

5.4.4.2 Mixtures of multivariate Bernoulli distributions

We trained a mixture of multivariate Bernoulli distributions with an EM algorithm (Everitt and Hand, 1981;
Wolfe, 1970), using random starting values for the parameters and stopping when the relative increment in
log-likelihood was smaller than 10−4. In this case, the only parameters to be estimated (apart from the
mixture proportions) are the Bernoulli probabilities pm = (pm1, . . . , pmD)T of each component, which can be
considered as the prototype vectors for that component, because the mean of a Bernoulli distribution coincides
with its p value. Since each Bernoulli probability (of the corresponding electrode being activated) is in the
range [0, 1], the prototypes obtained are interpretable as EPGs without the necessity of any transformation,
such as varimax rotation.

Again, we observed that for this data set the mixtures also have approximately the property of additivity
mentioned in section 2.6.2, and so we can order the prototypes obtained. A mixture with M = 9 components
produced the prototypes shown in fig. 5.16, in decreasing order of relevance from left to right. Those prototypes
are easily recognisable as some of the typical EPG patterns of fig. 5.6, e.g. p2 with

��'0�
, p5 with

��4��
or p6 with�("��

. Thus, the mixture may be doing a good job at estimating the density of the distribution of the EPG
data in D = 62 dimensions, but—as noted in section 2.9.3.3—it does not achieve dimensionality reduction.
The most it can do is to assign each data vector to its most likely component (in the sense of highest posterior
probability) and reconstruct it as the prototype (pm vector) of that component. This is essentially vector
quantisation.

Figure 5.17 (left) shows the log-likelihood for speaker RK (where M is the number of components used).
The addition of new components after the first 4 or 5 does not increase much the log-likelihood. Figure 5.17
(right) shows the reconstruction error, which is quite large compared to most of the other methods, confirming
that this model is not good for vector reconstruction.

Also, the phenomenon of overfitting appears here again: the log-likelihood for the test set reaches a plateau
at about M = 4.

As noted in section 3.2.2, EM estimation of a mixture of multivariate Bernoulli distributions will always
give a positive likelihood from almost every starting point. In particular, boundary values (where some pmd
can be 0 or 1) will not give rise to a likelihood equal to 0 (and a log-likelihood equal to −∞) for points in the
training set. However, this is not necessarily the case for other data sets. This is an undesirable feature arising
from the Bernoulli distribution itself: a Bernoulli distribution of parameter p = 0 (1) can never generate a 1
(0). The other models studied (based on the normal distribution) assign to any point in the domain a strictly
positive probability, however small this may be. Thus, for each speaker, a few points from the test set (usually
less than 2%) were removed in a number of occasions in order to obtain a finite log-likelihood in figure 5.17.
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Figure 5.14: Means µm and factor loadings Λm for a mixture of M = 4 factor analysers, each of L = 1 factor
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5.5 Two-dimensional visualisation of EPGs

We consider now the issue of graphically representing a set of EPG frames, possibly a sequence obtained during
an utterance. When there are more than two indices, the usual way to do this is by plotting the variation of
all the indices with the time in an X-Y plot (called trajectory or contact profile) where time goes in abscissas
and the index or indices of interest in ordinates (Byrd et al., 1995; Hardcastle et al., 1991b). However, when
there are only two indices a more natural representation is possible: both index values are used as the X-Y
coordinates in a plane, with points consecutive in time being linked by an arrow. If the two indices are powerful
enough to adequately discriminate between different articulatory classes, the two-dimensional representation
will be a map of articulatory regions.

There are statistical methods specifically suited to find the best projection of a multidimensional data set
in the sense that it maximises a certain criterion. For example, discrimination between classes (Fisher’s linear
discriminant), departure from normality (projection pursuit) or a stress measure (multidimensional scaling);
see chapter 4. These methods do not propose a model for the high-dimensional data. In contrast, our latent
variable models are trained not to find an optimal low-dimensional projection but to model best the data
according to the maximum likelihood criterion. Nevertheless, the two-dimensional representation found by
them (in particular by GTM) turns out to be good14, as one might intuitively expect.

Figure 5.18 shows such a representation using pairs of factors for speaker RK. In the left picture, factors 1
and 2 were used, while in the right one factors 3 and 4 were used. The labels correspond to the typical EPG
patterns of figure 5.6, while the trajectory corresponds to the highlighted fragment of the following utterance:
“I prefer Kant to Hobbes for a good bedtime book,” with phonemic transcription

�(G&�IH#/��8J �8KLJ ��BM�
C��NJ O#D#P#%����/Q�NJ "#?.�RJ P$:��.2G
��STJ P$?.�#�
. In each picture, the trajectory was obtained by projecting onto two-dimensional

latent space each of the EPG frames of the utterance fragment and linking consecutive ones by a straight line.
For visualisation purposes, we are free to choose the best pair from the factors extracted. In fact, factors 3-4
give a poor view of the data while factors 1-2 give a better one.

Figure 5.19 shows, for the case of two-dimensional GTM with F = 49 basis functions, the two-dimensional
latent space with the same typical EPG patterns and utterance fragment as in fig. 5.18. Now, points in two-
dimensional latent space which correspond to consecutive EPG frames in the utterance have been labelled
with a correlative number to show more clearly the path followed by the reduced-dimension representative.
The GTM map presents a much clearer layout of the articulatory classes than the best pair of factors did.

These two-dimensional maps obtained by latent variable models can be useful to analyse articulatory
dynamics. Since the inverse mapping F defined in section 2.9 is continuous for factor analysis and for GTM
(although see below), and since the EPG signal is assumed to be a continuous function of the time (due to
the mechanical constraints of the tongue-palate system), discontinuities in the latent space trajectory must be
due to abrupt jumps in the sampled EPG sequence in data space. This is the case for the transition from

��BF�
to

���
0�
in the utterance mentioned (fig. 5.20). The reason is that the EPG sampling frequency (equal to 200

Hz), while generally appropriate, is too low in situations where the tongue moves very fast and this results
in missing EPG frames. The latent variable two-dimensional maps are able to detect this situation. Note,
however, that the concept of continuity is not well defined because:

• The EPG frames are binary. Still, for a high enough sampling frequency, one can expect most neigh-
bouring frames to be very close (in both the Euclidean and Hamming distance sense).

• The latent space in GTM is discretised (see sections 2.6.5 and 2.9.2). However, owing to the fact that
for most data points the posterior distribution was unimodal and sharply peaked, examination of the
EPG sequence of the utterance showed that nearby points in data space were most times projected on
neighbouring points in latent space.

Two-dimensional maps are also useful in speech therapy, speech assessment or language learning appli-
cations. For example, in speech therapy, most systems (such as the IBM SpeechViewer; Pratt et al., 1993),
provide real-time visual and auditory feedback on a range of speech parameters. Auditory feedback is available
as normal or reduced-speed playback. Visual feedback includes cartoon graphics, intended for the speaker,
and technical displays, useful for the therapist to monitor the details of the speaker’s performance or to show
aspects of speech patterning. The latter include displays over time of the fundamental frequency or the ampli-
tude, 3D spectrograms, etc. If articulatory regions are drawn on the two-dimensional latent space, the speaker
will receive instantaneous feedback in an intuitive way about the correctness of the articulatory gesture that

14We realise that our comparisons here are of qualitative value only. However, making them quantitative would take us too
far away, as it would require defining an index of goodness of two-dimensional representation and comparing our latent variable
models with some of the other methods. A further obstacle is that our data are unlabelled.
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Figure 5.18: Two-dimensional plot of the trajectory of the utterance fragment “I prefer Kant to Hobbes for
a good bedtime book” using factor analysis for speaker RK (left: latent space of factors 1 and 2; right: latent
space of factors 3 and 4). The start and end points are marked as ∗ and ◦, respectively. The phonemes are
located on the figure by projecting the prototypes of figure 5.6 using equation (2.19).
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Figure 5.19: Two-dimensional plot of the trajectory of the utterance fragment “I prefer Kant to Hobbes for
a good bedtime book” using GTM with F = 49 basis functions and a 20× 20 latent space grid (left: speaker
RK; right: speaker HD). The start and end points are marked as ∗ and ◦, respectively. Points are numbered
correlatively. The phonemes are located on the figure by projecting the indices of figure 5.6 using the posterior
mean of the GTM model.
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Figure 5.20: Discontinuities in the latent space due to discontinuities in the EPG sequence of the utterance
fragment “I prefer Kant to Hobbes for a good bedtime book.” For speaker RK, the transition from
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occurs from frame 335 to frame 336. The right part of the figure shows the three consecutive EPG frames.
The plots on the left part show the corresponding trajectory in the two-dimensional map of factor analysis
(factors 1 vs. 2, left; factors 3 vs. 4, centre) and GTM (right).
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he is trying to produce, a difficult task to achieve with the raw data. Hardcastle et al. (1991a) give a specific
account of the uses of electropalatography (using both raw and reduced data) in speech therapy.

5.6 Discussion

5.6.1 Method comparison

Figures 5.21 and 5.22 show the log-likelihood and reconstruction error, respectively, for the training and test
sets of speaker RK and all the models studied. The curves for other speakers were also very similar, with the
ranking of the methods being virtually the same for all our six speakers15.

Our primary criterion is the log-likelihood in the test set, since it measures the generalisation power of
the generative model (although in a Bayesian approach a prior distribution over the parameters and the test
set should be considered too). Reconstruction error is of secondary importance from a modelling perspective,
since it treats equally the true data and the noise—although a good model in terms of likelihood will usually
have a low reconstruction error as well.

For the cases studied, overfitting in the log-likelihood can appear if the number of parameters of the model
is large enough (e.g. GTM in the right side of fig. 5.21), but the reconstruction error presents a steady decrease
in both the training and test sets for any number of parameters (fig. 5.22).

Linear models (factor analysis and PCA) The training set curves confirm the theory: factor analysis
outperforms PCA in log-likelihood (PCA being a particular case of factor analysis) while PCA outperforms
factor analysis in reconstruction error (since PCA is the linear transformation with minimal squared recon-
struction error). Interestingly, PCA outperforms factor analysis in log-likelihood in the test set for speakers
RK and HD. We can conclude that for our data set the PCA model is almost as good as the factor analysis
one. Both methods are computationally straightforward.

Mixtures of latent variable models have the advantage of providing different latent variable models for
different data space regions, thus adapting to local structure of the data. This often is a good modelling
assumption, in that data are usually due to a number of different, concurrent processes. The mixtures of
factor analysers, using a latent space of only one dimension, have a performance similar to that of factor
analysis with several factors. This makes them promising for higher dimensions of the latent space. However,
their practical application is limited as long as a training algorithm which efficiently avoids singularities in
the log-likelihood surface is not available. One could perhaps overcome this by constraining the domain of
some parameters, although the question arises of how much to constrain them. More generally, one could use
regularisation techniques (Girosi et al., 1995) in the form of a prior on the parameters. This requires some sort
of approximation due to the impossibility of solving exactly the marginalisation of the hyperparameters. Recent
work on Bayesian regularisation for mixtures of factor analysers includes the use of variational approximations
(Ghahramani and Beal, 2000) and of Gibbs sampling (Utsugi and Kumagai, 2001). Not all mixtures are
affected by this problem, either because of the nature of the likelihood surface (e.g. mixtures of multivariate
Bernoulli distributions, section 3.2.2) or because a direct algorithm to find maxima of it is available (e.g.
mixtures of PCAs, section 2.6.2).

Mixtures of multivariate Bernoulli distributions fare worse than all the other methods in all categories
despite being the only model purely for binary data. Computationally they are also more costly than linear
models. Their use for EPG data modelling is thus discouraged.

The generative topographic mapping (GTM), a nonlinear latent variable model, appears to be the
best model in all categories. Taking the point of F = 49 radial basis functions (which gives the maximum
likelihood in the test set), it clearly outperforms all the other models in log-likelihood and also reconstruction
error (PCA needs a latent space of more than L = 10 dimensions to achieve a comparable reconstruction
error). GTM achieves this with a latent space of only L = 2 dimensions, while the other methods were tested
up to L = 15 (except the mixtures of factor analysers). The major drawback of GTM is its computational
complexity, exponential in the dimension of the latent space, which limits it to L = 2 dimensions in practice.

15A Friedman test (for n-wise comparisons) (Kanji, 1993, test 73, p. 113) showed significant n-wise differences (at a significance
level of 1%) between the effect of the methods. Although this test does not require normality of the population (being a
nonparametric test), again this evidence should be only qualitative under the Bayesian viewpoint (see comments in footnote 9,
section 5.4.3).
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Figure 5.21: Comparison between methods in terms of log-likelihood for speaker RK (left: training set; right:
test set): factor analysis (FA), principal component analysis (PCA), generative topographic mapping (GTM),
mixtures of factor analysers (MFA) and mixtures of multivariate Bernoulli distributions (MB). The x axis
refers to the order of the factor analysis or principal component analysis, the number of mixture components in
the case of mixture models and the square root of the number of basis functions in the case of GTM. Compare
with the left graph of figures 5.11–5.13, 5.15 and 5.17.
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Figure 5.22: Comparison between methods in terms of reconstruction error for speaker RK (left: training set;
right: test set): factor analysis (FA), principal component analysis (PCA), generative topographic mapping
(GTM), mixtures of first order factor analysers (MFA) and mixtures of multivariate Bernoulli distributions
(MB). The x axis refers to the order of the factor analysis or principal components analysis, the number of
mixture components in the case of mixture models and the square root of the number of basis functions in the
case of GTM. Compare with the right graph of figures 5.11–5.13, 5.15 and 5.17.
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Nevertheless, two-dimensional visualisation can be of interest in many speech applications, as we noted in
section 5.5.

5.6.2 Model validity

5.6.2.1 Validity of a priori indices

The results from factor analysis show that:

• The similarity between the factors found and some of the linear data reduction indices proposed in the
literature (Hardcastle et al., 1991b; Jones and Hardcastle, 1995), which have been designed using a priori
assumptions, gives empirical support to the validity of the latter: such indices effectively capture a good
deal of linear correlation in the data.

• However, the fact that the factors differ according to the EPG database employed indicates that fixed
indices will not perform well on all databases (corresponding to different speakers, different speech styles,
etc.). In order to capture as much structure as possible from a given database it is necessary to let the
data speak for itself.

5.6.2.2 Model identifiability

The identifiability issue was discussed in sections 2.8 and 3.3: PCA and factor analysis are identifiable (up
to (varimax) rotation); mixtures of multivariate Bernoulli distributions are not identifiable in theory but they
generally are in practice; and no results are known for mixtures of factor analysers or GTM.

5.6.2.3 Model additivity

In section 2.6.2 we introduced the concept of model additivity for PCA and factor analysis, and we found that a
similar phenomenon was observed for mixtures of multivariate Bernoulli distributions. There we claimed that
often—whether the model is identifiable (e.g. factor analysis) or not (e.g. mixtures of multivariate Bernoulli
distributions)—the factors or prototypes found in a model of order L are very approximately those of a model
of order L − 1 plus a new one. Here we add some more facts, based on our experience with the data sets
analysed in this chapter:

• Sometimes one does not obtain a new, stable factor or prototype but an intermediate one which will
unfold into two new, stable ones in higher-order models.

• Past a certain order the models begin to produce repeated versions of some of the prototypes (typically
the more relevant ones). This indicates that that order is probably too high and that a smaller one
should be tried.

• While standard PCA is additive (the principal components being the eigenvectors of the sample covari-
ance matrix ordered by the magnitude of the associated eigenvalue), PCA followed by varimax rotation
is not. The components change considerably between adjacent orders.

In our data sets the phenomenon of additivity holds, but we do not have a theoretical basis for a general
situation.

5.6.2.4 Continuous versus binary models

It may be argued a priori that using continuous variables to model binary data (or, in general, discrete
data) is not a good idea, since binary D-dimensional vectors occupy only the 2D corners of a hypercube (see
section 4.3.1). However, a posteriori the model based on binary variables (the Bernoulli mixtures) performed
worse than the ones based on continuous variables in terms of both log-likelihood and reconstruction error.
There are other applications where models based on continuous variables have performed well with discrete
data, such as self-organising maps for text categorisation (Kohonen, 1995), or some generative models for
handwritten character recognition (Revow et al., 1996; Hinton et al., 1997).

Another common strategy to model binary data with underlying continuous variables is to squash the
outputs of the continuous model to the [0, 1] interval (e.g. with the logistic function σ(·)) and use the resulting
values as the parameters of a Bernoulli distribution. In fact, Bishop et al. (1998a) proposed such an extension
for GTM (section 2.6.5.1), where each binary observed variable td receives a noise model td|x ∼ B(σ(fd(x)))
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(and no variance parameter). However, the M step becomes more complex, requiring iterative, nonlinear
optimisation, and we did not experiment with this model. A more crude possibility than using a soft squashing
nonlinearity is to simply add a clipping nonlinearity to the outputs of the continuous model (e.g. Lee and
Sompolinsky, 1999 do this to the outputs of a PCA model), although one would expect worse results.

Binary data do present a computational problem for linear methods, because the sample covariance matrix
can be singular. This can be easily solved by adding a small amount of noise to the training data.

5.6.3 Training set preprocessing

For some data sets, particularly if they have a small number of EPG patterns, it can happen that the data ma-
trix (having as row vectors the EPG patterns) is rank defective. This is due to the relatively high-dimensionality
of the EPG patterns and the fact that, of all the frames contained in an utterance, only a small fraction are
distinct. For example, the training sets for speakers FD, KM and PD had ranks 54, 50 and 56, respectively. In
such cases, straightforward application of factor analysis and mixtures of factor analysers would fail (the sam-
ple covariance matrix being singular) and some of the other methods may also produce bad results. An obvious
way to circumvent this problem is to first apply a PCA to the original matrix, eliminating all (nearly-)zero
eigenvalues, and then apply any of the other methods. Another possibility is to add a small amount of noise
to the data.

An important question is: given a sequence of EPG frames collected from an utterance, should all repetitions
of EPG frames be removed? There are several reasons for and against removing repeated patterns:

• Practically, removing repeated patterns is possible both in batch and online learning algorithms and
leads to a large improvement in training speed (since typically the size of the training set reduces to
about 20% of the original one). Also, it happens that typically a handful of specific patterns (e.g. those
corresponding to

���;�
and vowels such as

�(BF�
and

�����
) can account for up to 30% of the EPG frames

and obscure other less frequent patterns.

• However, in doing so one is equalising the natural prior distribution of the data. Also, if one removes
repeated patterns and then adds some noise to the remaining patterns for numerical stability, the size of
the remaining data set may be insufficient for methods with many parameters (e.g. GTM) and lead to
overfitting.

We also trained the models presented in this work with non-repeated data and found little difference in
the prototypes or factors found (not so in the mixing proportions, which are essentially related to the prior
distribution of the components). This may reduce the importance of this issue.

5.6.4 Number of parameters

So far we have not said anything about the complexity of the models used, measured by the number of
independent parameters to be fitted. The usual rule of thumb is that the sample size should be large enough
for the estimation to be statistically sound, at least as large as the number of free parameters. Since our training
sets have more than N = 5000 vectors for all speakers, this holds for all the models we have employed, except
for GTM with more than 100 basis functions (which produced overfitting, as we saw in section 5.4.3). Table 5.1
lists the number of free parameters of each model. The general formulas are given by:

PCA: D(L+ 1) FA: D(L+ 2)− L(L− 1)

2
GTM: (F + 1)D + 1

MFA: DM(L+ 1)− ML(L− 1)

2
+M +D − 1 MB: M(D + 1)− 1

where D = 62 is the dimension of the data space, L is the number of principal components or factors, F is
the number of basis functions in GTM (which we took equal to 81) and M is the number of components in a
mixture. For the mixtures of factor analysers we took L = 1. So factor analysis and PCA have approximately
the same number of parameters, while GTM can have many even for a dimension L = 2 of the latent space,
due to the mapping between latent and data space being a radial basis functions expansion.

5.6.5 Computational considerations

Table 5.2 gives some average training and testing times for the methods considered and for typical values
for the parameters (dimension of latent space, number of components of mixture, etc.). Training means here
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L PCA FA
1 124 186
2 186 247
3 248 307
4 310 366
5 372 424
6 434 481
7 496 537
8 558 592
9 620 646

10 682 699
11 744 751
12 806 802
13 868 852
14 930 901
15 992 949

F GTM
9 621

16 1055
25 1613
36 2295
49 3101
64 4031
81 5085

100 6263
121 7565
144 8991
169 10 541
196 12 215

M MFA MB
1 186 62
2 311 125
3 436 188
4 561 251
5 686 314
6 811 377
7 936 440
8 1 061 503
9 1 186 566

10 1 311 629
11 1 436 692
12 1 561 755
13 1 686 818
14 1 811 881
15 1 936 944

Table 5.1: Comparison between methods in terms of number of free parameters: factor analysis (FA), principal
component analysis (PCA), generative topographic mapping (GTM), mixtures of factor analysers (MFA) and
mixtures of multivariate Bernoulli distributions (MB).

PCA FA GTM MFA MB
Training 9.1 13.5 4 000 1 253 670
Testing 9 · 10−5 9 · 10−5 3.2 · 10−3 5.2 · 10−3 5.6 · 10−3

Table 5.2: Comparison between methods in terms of CPU consumption. Times are given in seconds. For
training, the data set size was N = 6892. The testing time is per EPG pattern. The methods were run with
the following parameters: PCA: L = 9 principal components. Factor analysis (FA): L = 9 factors. GTM:
latent space of dimension L = 2, with K = 400 latent space points and M = 49 basis functions. Mixtures of
factor analysers (MFA): M = 9 components, each a factor analysis of L = 1 factor. Mixtures of multivariate
Bernoulli distributions (MB): M = 9 components.

the process of producing a maximum likelihood estimate for all the model parameters given a training set (of
size N = 6892 patterns). Testing is the process of producing a reduced-dimension representative of a given
EPG pattern. All the times correspond to Matlab implementations of the various methods in a Sun Ultra-170
workstation16.

We can see that for an EPG sampling frequency of 200 Hz, all the methods are able to produce a reduced-
dimension representative of the current sample in real time. This would allow the use of any of them in a
system for speech therapy or speech assessment. Training requires a relatively long time for GTM, a moderate
time for the mixtures of multivariate Bernoulli distributions and mixtures of factor analysers, and virtually no
time for factor analysis and PCA. C implementations of the methods considered would reduce considerably
both the computation time and the memory requirements.

5.6.6 Intrinsic dimensionality of the EPG data

All the models described need to know in advance either the dimension of the latent space L or the number
of components in the mixture M . This is a common disadvantage of most dimensionality reduction methods
and is directly related to the determination of the intrinsic dimensionality of the EPG data. That is, the
number of degrees of freedom of the articulatory system that generates the EPG patterns: the tongue and the
hard palate. This is a matter currently being investigated (e.g. Stone, 1991; Nguyen et al., 1994, 1996 and
references therein); a dimension of 5 to 10 is usually suggested. Alternatively, one can try to infer this intrinsic
dimension directly from the data set by standard statistical techniques of model selection (see e.g. Bishop,
1995, pp. 371–377); or by methods to estimate the (fractal) dimension, such as box counting—although in

16This is a slower computer than that used in section 10.2.4.
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practice these methods are generally limited to small dimensions (see e.g. Falconer, 1990, pp. 38ff and Peitgen
et al., 1992, pp. 212ff, 721ff).

In the models analysed in this chapter, one can often get a rough idea of what the appropriate number of
latent variables or components is by examining the factors or prototypes found. For example, if in a mixture
of multivariate Bernoulli distributions several prototypes look very similar (e.g. see fig. 5.16), it is obvious that
one should try a mixture with fewer components even if the log-likelihood decreases a bit. Also, plotting the
log-likelihood in the training and test sets versus the number of latent variables or components can help to
avoid overfitting by selecting L or M such that the log-likelihood with the test set is maximal.

The fact that the dimension of the latent space or the number of components found in any of these ways may
be optimal with respect to the model does not guarantee that it actually matches the intrinsic dimensionality of
the EPG data, because the model may be bad for this data. Nevertheless, the two-dimensional representation
produced by GTM and its performance in log-likelihood and reconstruction error (compared to that of the
other methods, which use more latent variables) suggest that the intrinsic dimensionality of the EPG data
may be substantially smaller than that claimed by other studies.

Determining the intrinsic dimensionality of the EPG data would be a significant step towards the solution
of the acoustic-to-articulatory mapping and the construction of a realistic mechanical model of the vocal tract.
However, a purely phenomenological, or black-box, approach—where all hope for finding a simple model is
abandoned—may be more fruitful from a practical point of view. That is, a low-dimensional model of high
complexity (with a high number of parameters) may offer no help in understanding the physical behaviour of
the articulatory system yet be able to mimic it to a desired level of accuracy. In chapter 10 we look further
into the acoustic-to-articulary mapping problem.

5.7 Conclusion

We have shown that latent variable models, owing to their ability to produce a reduced-dimension representa-
tion of a data set, can be useful to present the relatively high-dimensional information contained in the EPG
sequence in a way which is easier to understand and handle, e.g.:

• The loading vectors and principal component vectors of factor analysis and PCA, respectively, can be
used as conventional EPG data reduction indices, with the advantage of adapting better to the database
under consideration.

• A two-dimensional latent space representation can be used for the analysis of EPG sequences in several
applications, such as speech therapy, language learning and articulatory dynamics.

This is a significant advantage over general probability models and mixtures of them, which are suitable for
classification or clustering but not for dimensionality reduction.

The superior performance of a two-dimensional GTM model over the other methods indicates that the
EPG data may be appropriately accounted for with a very small number of degrees of freedom as long as a
nonlinear, complex model is used.

A direction for future work is the development of a dimension-reduced representation for EPG data that
takes into account their temporal dependence. Integration of well-known modelling tools for time-varying
data, such as hidden Markov models, with static dimensionality reduction methods, such as those discussed
here, seems a promising avenue for research.

Our Matlab implementation of factor analysis, varimax rotation, principal component analysis and imaging
tools for EPG data is freely available in the Internet (see appendix C).

❦
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Part III

Sequential data reconstruction
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The central assumption of this thesis is the fact that multivariate data often embody relations between
variables so that a lower-dimensional representation is possible. We dealt with the problem of finding such a
representation (i.e., dimensionality reduction) in parts I and II, and we saw probabilistic and non-probabilistic
methods, respectively, for that. Finding a low-dimensional representation can be seen as inferring the values
of some invented variables given the values of the variables that are actually observed. In part III we deal
with a somewhat different problem: given the values of some (not all) the observed variables, infer the values
of the remaining observed variables. This problem is called missing data reconstruction. Again, the solution
of this problem is partly possible due to the redundancy caused by the relations between observed variables.
Such redundancy is necessary but not sufficient in general and an extra form of redundancy is necessary to
solve the problem, as we will see.

The relations between variables mentioned earlier usually are due to the existence of a forward (univalued)
mapping, whose inverse mapping is then typically multivalued. The pattern recognition literature sometimes
uses the terms inverse mapping and inverse problem interchangeably, but in general they mean different things.
Chapter 6 is devoted to reviewing inverse problems and clarifying when they become equivalent to inverting
a mapping. Chapter 7 presents the problem of missing data reconstruction in general and proposes a method
to solve it. Its title, “sequential data reconstruction,” reflects the fact that most of the time we will consider
a particular and important case of missing data reconstruction, but the ideas are readily generalisable. The
current implementation of the method relies on an algorithm, explained in chapter 8, to find all the modes of
an arbitrary Gaussian mixture. Chapters 9 and 10 present experimental results using synthetic and real-world
data sets, respectively.
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Chapter 6

Inverse problems and mapping
inversion

6.1 Introduction

The concepts of “inverse problem” and “mapping inversion” are often used interchangeably in the machine
learning literature, although they denote different things. The aim of this chapter is: to introduce the area of
(Bayesian) inverse problem theory; to compare it with general Bayesian analysis and in particular with latent
variable models; and to differentiate it from the problems of mapping inversion and mapping approximation.

Section 6.2 defines inverse problem theory, explains the reasons for non-uniqueness of the solution and
reviews Bayesian inverse problem theory, including the topics of the choice of prior distributions, stability
and regularisation. It also describes several examples of inverse problems in some detail to clarify the theory
and its interpretation. Section 6.3 compares Bayesian inverse problem theory with general Bayesian analysis
and in particular with latent variable models. Section 6.4 defines (statistical) mapping inversion, mapping
approximation and universal mapping approximators.

6.2 Inverse problem theory

6.2.1 Introduction and definitions

Inverse calculations involve making inferences about models of physical systems from data1. The scientific
procedure to study a physical system can be divided into three parts:

1. Parameterisation of the system: discovery of a minimal set of model parameters2 whose values completely
characterise the system.

2. Forward modelling : discovery of the physical laws allowing, for given values of the parameters, predictions
of some observable or data parameters to be made.

3. Inverse modelling : use of actual measurements of the observed parameters to infer the values of the
model parameters. This inference problem is termed the inverse problem.

The model parameters conform the model spaceM, the observable parameters conform the data space D and
the union of both parameter sets conforms the parameter space X = D×M. See section 6.2.3.1 for a further
interpretation of the model parameters.

Usually the forward problem is a well-defined single-valued relationship (i.e., a function in the mathematical
sense) so that given the values of the model parameters the values of the measured parameters are uniquely

1Tarantola (1987) claims that inverse problem theory in the wide sense has been developed by people working with geophysical
data, because geophysicists try to understand the Earth’s interior but can only use data collected at the Earth’s surface. However,
inverse problems appear in many other areas of physics and engineering, some of which are briefly reviewed in section 6.2.4.

2The term parameters is used in inverse problem theory to mean both the variables and the parameters of a model, as these
terms are usually understood in machine learning. Throughout this chapter, we will keep the notation and naming convention
which is standard in inverse problem theory. In section 6.3 we discuss the point of view of probabilistic models.
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identified. This is often due to causality in the physical system. But often this forward mapping is many-to-
one, so that the inverse problem is one-to-many: given values of the observed parameters, there is more than
one model (possibly an infinite number) that corresponds to them.

Thus, if g :M→D is the forward mapping, then d = g(m) is unique given m, but its inverse g−1(d) can
take several values for some observed d ∈ D.

The example in section 6.2.4.1 illustrates this abstract formulation.

6.2.1.1 Types of inverse problems

Inverse problems can be classified as:

Continuous Most inverse problems are of this type. The model to be estimated is a continuous function in
several variables. For example, the mass density distribution inside the Earth as a function of the space
coordinates.

Discrete There is a finite (actually numerable) number of model parameters to be estimated. Sometimes
the problem itself is discrete in nature, e.g. the location of the epicentre in the example 6.2.4.1, which
is parameterised by the epicentre coordinates X and Y . But most times, the problem was originally
continuous and was discretised for computational reasons. For example, one can express the mass density
distribution inside the Earth as a parameterised function in spherical coordinates (perhaps obtained as
the truncation of an infinite parameterised series) or as a discrete grid (if the sampling length is small
enough).

In this chapter we deal only with discrete inverse problems. Tarantola (1987) discusses both discrete and
continuous inverse problems.

6.2.1.2 Why the nonuniqueness?

Nonuniqueness arises for several reasons:

• Intrinsic lack of data: for example, consider the problem of estimating the density distribution of matter
inside the Earth from knowledge of the gravitational field at its surface. Gauss’ theorem shows that there
are infinitely many different distributions of matter density that give rise to identical exterior gravitational
fields. In this case, it is necessary to have additional information (such as a priori assumptions on the
density distribution) or additional data (such as seismic observations).

• Uncertainty of knowledge: the observed values always have experimental uncertainty and the physical
theories of the forward problem are always approximations of the reality.

• Finiteness of observed data: continuous inverse problems have an infinite number of degrees of freedom.
However, in a realistic experiment the amount of data is finite and therefore the problem is underdeter-
mined.

6.2.1.3 Stability and ill-posedness of inverse problems

In the Hadamard sense, a well-posed problem must satisfy certain conditions of existence, uniqueness and
continuity. Ill-posed problems can be numerically unstable, i.e., sensitive to small errors in the data (arbitrarily
small changes in the data may lead to arbitrarily large changes in the solution).

Nonlinearity has been shown to be a source of ill-posedness (Snieder and Trampert, 1999), but linearised
inverse problems can often be ill-posed too due to the fact that realistic data is finite. Therefore, inverse
problems in general might not have a solution in the strict sense, or if there is a solution, it might not be
unique or might not depend continuously on the data. To cope with this problem, stabilising procedures such
as regularisation methods are often used (Tikhonov and Arsenin, 1977; Engl et al., 1996). Bayesian inversion
is, in principle, always well-posed (see section 6.2.3.5). Mapping inversion (section 6.4) is also a numerically
unstable problem but, again, probabilistic methods such as the one we develop in chapter 7 are well-posed.

6.2.2 Non-probabilistic inverse problem theory

For some inverse problems, such as the reconstruction of the mass density of a one-dimensional string from
measurements of all eigenfrequencies of vibration of the string, an exact theory for inversion is available (Snieder
and Trampert, 1999). Although these exact nonlinear inversion techniques are mathematically elegant, they
are of limited applicability because:
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• They are only applicable to idealistic situations which usually do not hold in practice. That is, the
physical models for which an exact inversion method exists are only crude approximations of reality.

• They are numerically unstable.

• The discretisation of the problem caused by the fact that the data are only available in a finite amount
makes the problem underdetermined.

Non-probabilistic inversion methods attempt to invert the mathematical equation of the forward mapping
(for example, solving a linear system of equations by using the pseudoinverse). These methods cannot deal
with data uncertainty and redundancy in a natural way, and we do not deal with such methods here. A more
general formulation of inverse problems is obtained using probability theory.

6.2.3 Bayesian inverse problem theory

The standard reference for the Bayesian view of (geophysical) inversion is Tarantola (1987), whose notation we
use in this section; the standard reference for the frequentist inverse theory is Parker (1994); other references
are Scales and Smith (1998) and Snieder and Trampert (1999).

In the Bayesian approach to inverse problems, we use physical information about the problem, plus possibly
uninformative prior distributions, to construct the following two models:

• A joint prior distribution ρ(d,m) in the parameter space X = D×M. This prior distribution is usually
factorised as ρD(d)ρM(m), because by definition the a priori information on the model parameters is
independent of the observations. However, it may happen that part of this prior information was obtained
from a preliminary analysis of the observations, in which case ρ(d,m) might not be factorisable. If no
prior information is available, then an uninformative prior may be used (see section 6.2.3.2).

• Using information obtained from physical theories we solve the forward problem, deriving a deterministic
forward mapping d = g(m). If a noise model f (typically normal) is applied, a conditional distribution
θ(d|m) = f(d − g(m)) may be derived. For greater generality, the information about the resolution
of the forward problem is described by a joint density function θ(d,m). However, usually θ(d,m) =
θ(d|m)µM(m), where µM(m) describes the state of null information on model parameters.

Tarantola (1987) postulates that the a posteriori state of information is given by the conjunction of the two
states of information: the prior distribution on the D ×M space and the information about the physical
correlations between d and m. The conjunction is defined as

σ(d,m)
def
=
ρ(d,m)θ(d,m)

µ(d,m)
(6.1)

where µ(d,m) is a distribution representing the state of null information (section 6.2.3.2). Thus, all available
information is assimilated into the posterior distribution of the model given the observed data, computed by
marginalising the “joint posterior distribution” σ (assuming factorised priors ρ(d,m) and µ(d,m)):

σM(m) =

∫

D
σ(d,m) dd = ρM(m)L(m) (6.2)

where the likelihood function L, which measures the data fit, is defined as:

L(m)
def
=

∫

D

ρD(d)θ(d|m)

µD(d)
dd.

Thus, the “solution” of the Bayesian inversion method is the posterior distribution σM(m), which is unique
(although it may be multimodal and even not normalisable, depending on the problem). Usually a maximum
a posteriori (MAP) approach is adopted, so that we take the model maximising the posterior probability σ:

mMAP
def
= maxm∈M σM(m).

Likewise, the posterior distribution in the data space is calculated as

σD(d) =

∫

M
σ(d,m) dm =

ρD(d)

µD(d)

∫

M
θ(d|m)ρM(m) dm

which allows to estimate posterior values of the data parameters (recalculated data).
In practice, all uncertainties are described by stationary Gaussian distributions:
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• likelihood L(m) ∼ N (g(m),CD)

• prior ρM(m) ∼ N (mprior,CM).

A more straightforward approach that still encapsulates all the relevant features (uninformative priors and
an uncertain forward problem) is simply to obtain the posterior distribution of the model given the observed
data as

p(m|d) =
p(d|m)p(m)

p(d)
∝ p(d|m)p(m). (6.3)

This equation should be more familiar to statistical learning researchers.

6.2.3.1 Interpretation of the model parameters

Although the treatment of section 6.2.3 is perfectly general, it is convenient to classify the model parameters
into one of two types:

• Parameters that describe the configuration or state of the physical system and completely characterise
it. In this case, they could be called state variables as in dynamical system theory. We represent them
as a vector s. Examples of such parameters are the location of the epicentre in example 6.2.4.1 or
the absorption coefficient distribution of a medium in CAT (example 6.2.4.3). These parameters are
independent, in principle, of any measurements taken of the system (such as a particular projection in
CAT or a measurement of the arrival time of the seismic wave in example 6.2.4.1).

• Parameters that describe the experimental conditions in which a particular measurement of the system
was taken. Thus, for each measurement dn we have a vector cn indicating the conditions in which it
was taken. For example, in 2D CAT (example 6.2.4.3) one measurement is obtained from a given X-ray
source at plane coordinates x, y and at an angle θ; thus cn = (xn, yn, θn) and the measurement dn is
the transmittance. In example 6.2.4.1, one measurement is taken at the location (xn, yn) of station n;
and so on. If there are N measurements, then the model parameters are {cn}Nn=1 (in addition to the s
model parameters) and one can postulate prior distributions for them to indicate uncertainties in their
determination. However, usually one assumes that there is no uncertainty involved in the conditions
of the measurement and takes these distributions as Dirac deltas. Of course, the measured value dn
can still have a proper distribution reflecting uncertainty in the actual measurement. In this way, the
estimation problem is simplified, because all {cn}Nn=1 model parameters are considered constant, and
only the s model parameters are estimated.

From a Bayesian standpoint, there is no formal difference between both kinds of model parameters, state s and
experimental conditions c—or between model parameters m and data parameters d, for that matter—because
probability distributions are considered for all variables and parameters of the problem.

Thus, if there are N measurements, the forward mapping is d = g(m) with d = (d1, . . . ,dN ) and m
including both kinds of parameters (state variables and experimental conditions): m = (s, c1, . . . , cN ). Usually
the measurements are taken independently, so that

ρD(d) =

N∏

n=1

ρD,n(dn) µD(d) =

N∏

n=1

µD,n(dn)

and the forward mapping decomposes into N equations dn = gn(s, cn). Thus θ(d|m) =
∏N
n=1 θn(dn|s, cn) =

∏N
n=1 f(dn − gn(s, cn)) and the likelihood function factorises as L(m) =

∏N
n=1 Ln(m) with

Ln(m)
def
=

∫

Dn

ρD,n(dn)θn(dn|m, cn)

µD,n(dn)
ddn.

6.2.3.2 Choice of prior distributions

The controversial matter in the Bayesian approach is, of course, the construction of prior distributions. Usual
ways to do this are (Jaynes, 1968; Kass and Wasserman, 1996):

• Define a measure of information, such as the entropy, and determine the distribution that optimises it
(e.g. maximum entropy).
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• Define properties that the noninformative prior should have, such as invariance to certain transformations
(Jeffreys’ prior). For example, for a given definition of the physical parameters x, it is possible to find
a unique density function µ(x) which is form invariant under the transformation groups which leave the
fundamental equations of physics invariant.

• The previous choices, usually called “objective” or “noninformative,” are constructed by some formal
rule, but it is also possible to use priors based on subjective knowledge.

In any case, the null information distributions are obtained in each particular case, depending on the coordinate
systems involved, etc. However, the choice of a noninformative distribution for a continuous, multidimensional
space remains a delicate problem. Bernardo and Smith (1994, pp. 357–367) discuss this issue.

6.2.3.3 Bayesian linear inversion theory

Assuming that all uncertainties are Gaussian, if the forward operator is linear, then the posterior distribution
σ will also be Gaussian. This is equivalent to factor analysis, which is a latent variable model where the prior
distribution in latent space is Gaussian, the mapping from latent onto data space is linear and the noise model
in data space is Gaussian.

Linear inversion theory is well developed and involves standard linear algebra techniques: pseudoinverse,
singular value decomposition and (weighted) least squares problems. Tarantola (1987) gives a detailed expo-
sition.

6.2.3.4 Bayesian nonlinear inversion theory

Almost all work in nonlinear inversion theory, particularly in geophysics, is based on linearising the problem
using physical information. Usual linearisation techniques include the Born approximation (also called the
single-scattering approximation), Fermat’s principle and Rayleigh’s principle (Snieder and Trampert, 1999).

6.2.3.5 Stability

In the Bayesian approach to inverse problems, it is not necessary in principle to invert any operators to
construct the solution to the inverse problem, i.e., the posterior probability σ. Thus, from the Bayesian point
of view, no inverse problem is ill-posed (Gouveia and Scales, 1998).

6.2.3.6 Confidence sets

Once a MAP model has been selected from the posterior distribution σ, confidence sets or other measures of
resolution can be extracted from σ(mMAP). Due to the mathematical complexity of this posterior distribution,
only approximate techniques are possible, including the following ones:

• The forward operator g is linearised about the selected model mMAP, so that the posterior becomes nor-
mal: σ(m) ∼ N (mMAP,C

′
M). The posterior covariance matrix C′

M is obtained as C′
M = (GTC−1

D G +
C−1

M )−1, where G is the derivative3 of g with respect to the model parameters evaluated at mMAP. This
has the same form as the posterior covariance matrix in latent space of a factor analysis, as in eq. (2.59),
where G would be the factor loadings matrix Λ.

• Sampling the posterior distribution with Markov chain Monte Carlo methods (Mosegaard and Tarantola,
1995).

6.2.3.7 Occam’s inversion

In Occam’s inversion (Constable et al., 1987), the goal is to construct the smoothest model consistent with
the data. This is not to say that one believes a priori that models are really smooth, but rather that a more
conservative interpretation of the data should be made by eliminating features of the model that are not
required to fit the data. To this effect, they define two measures:

3The linearised mapping g(mMAP) + G(m−mMAP) is usually called Fréchet derivative in inverse problem theory, and is the
linear mapping tangent to g at mMAP.
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• A measure of data fit (irrespective of any Bayesian interpretation of the models):

d(m,d)
def
= (g(m)− d)TC−1

D (g(m)− d),

that is, the Mahalanobis distance between g(m) and d with matrix C−1
D .

• A measure of model smoothness: ‖Rm‖, where R is a Tikhonov roughening operator (Tikhonov and
Arsenin, 1977), e.g. a discrete second-difference operator, such as

R =











−2 1 0 0 . . . 0 0 0
1 −2 1 0 . . . 0 0 0
0 1 −2 1 . . . 0 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 0 . . . 1 −2 1
0 0 0 0 . . . 0 1 −2











. (6.4)

Then, Occam’s inversion finds a model being both smooth and fitting well the data by solving the optimisation
problem:

min
m∈M

‖Rm‖ subject to d(m,d) ≤ ε

for some tolerance ε. Practically, due to the distance d being a quadratic form, this can be conveniently
implemented as a weighted least-squares problem with a Lagrange multiplier to control the tradeoff between
model smoothness and data fit: for fixed λ, solve the weighted, regularised least-squares problem

min
m∈M

(g(m)− d)TC−1
D (g(m)− d) + λ(m−mprior)

TRTR(m−mprior). (6.5)

Then, increase λ until (g(m)− d)TC−1
D (g(m)− d) > ε.

Clearly, Occam’s inversion is a particular case of Bayesian inversion, in which the uncertainty distributions
are taken as Gaussians (with the appropriate covariance matrix) and the prior distribution over the models
is used as a smoothness regularisation term by taking C−1

M = λRTR. However, Bayesian inversion is more
general than Occam’s inversion in that the prior distributions allow to introduce physical knowledge into the
problem. Gouveia and Scales (1997) compare Bayes’ and Occam’s inversion in a seismic data problem.

6.2.3.8 Locally independent inverse problems

In the general statement of inverse problems, the data parameters d depend on all the model parameters m
which in turn are a continuous function of some independent variables, such as the spatial coordinates x. Thus
m = m(x) and d = g(m). A single datum parameter depends on the whole function m(·), even if that datum
was measured at point x only.

Sometimes we can assume locally independent problems, so that a datum measured at point x depends
only on the value of m(x), not on the whole function m for all x. If we have N measurements {dn}Nn=1 at
points {xn}Nn=1 and we discretise the problem, so that we have one model parameter mn at point xn, for
n = 1, . . . , N , then:

θ(d|m) =

N∏

n=1

ϑ(dn|mn) =⇒ θ(d,m) ∝ ρM(m)

N∏

n=1

ϑ(dn|mn) (6.6)

where the distribution ϑ is the same for all parameters because the function g is now the same for all values of

m. This is equivalent to inverting the mapping x→m(x)
g−→ d(m(x)) at data values d1, . . . ,dN and obtaining

values m1 = g−1(d1), . . . ,mN = g−1(dN ). This approach is followed in the example of section 6.2.4.2. We
deal with problems of this kind in section 6.4.1 and give examples. However, this simplification cannot be
applied generally. For example, for the CAT problem (section 6.2.4.3) a measurement depends on all the points
that they ray travels through.

If we also assume an independent prior distribution for the parameters, ρM(m) =
∏N
n=1 %M(mn), then

the complete inverse problem factorises into N independent problems:

θ(d|m) ∝
N∏

n=1

%M(mn)ϑ(dn|mn).

139



PSfrag replacements

Seismic event
at (X,Y )

Station 1
at (x1, y1)

Station 2
at (x2, y2)

Station 3
at (x3, y3)

Station N
at (xN , yN )

Figure 6.1: A seismic event takes place at time τ = 0 at location (X,Y ) and the seismic waves produced are
recorded by several seismic stations of Cartesian coordinates {(xn, yn)}Nn=1 at times {dn}Nn=1. Determining
the location of the epicentre from the wave arrival times is an inverse problem.

.

6.2.4 Examples of inverse problems

To clarify the concepts exposed, we briefly review some examples of inverse problems, some of which have a
rich literature.

6.2.4.1 Locating the epicentre of a seismic event

We consider the simplified problem4 of estimating the epicentral coordinates of a seismic event (e.g. a nuclear
explosion), depicted in fig. 6.1. The event takes place at time τ = 0 at an unknown location (X,Y ) on the
surface of the Earth (considered flat). The seismic waves produced by the explosion are recorded in a network
of N seismic stations of Cartesian coordinates {(xn, yn)}Nn=1, so that dn = dn is the observed arrival time of
the seismic wave at station n. The waves travel at a velocity v in all directions.

The model parameters to be determined from the data parameters {dn}Nn=1 are:

• State parameters: the coordinates of the epicentre (X,Y ).

• Experimental condition parameters: the coordinates of each station (xn, yn), the time of the event τ and
the wave velocity v.

Thus m = (s, c1, . . . , cN ) = (X,Y, τ, v, x1, y1, . . . , xN , yN ). Assuming that the station coordinates, the time of
the event and the wave velocity are perfectly known, we can drop them and avoid defining prior distributions
for them, so that m = (X,Y ).

Given (X,Y ), the arrival times of the seismic wave at the stations can be computed exactly as dn =
gn(X,Y ) = 1

v

√

(xn −X)2 + (yn − Y )2 for n = 1, . . . , N , which solves the forward problem. Determining the
epicentre coordinates (X,Y ) from the arrival times at the different stations is the inverse problem, whose
complete solution is given by Tarantola (1987).

6.2.4.2 Retrieval of scatterometer wind fields

A satellite can measure the amount of backscatter generated by small ripples on the ocean surface, in turn
produced by oceanic wind fields. The satellite scatterometer consists of a line of cells, each capable to detect
backscatter at the location to which it is pointing. At a given position in space of the satellite, each cell records
a local measurement. A field is defined as a spatially connected set of local measurements obtained from a
swathe, swept by the satellite along its orbit. For example, for the ESA satellite ERS-1, which follows a polar

4This example is adapted from problem 1.1 of Tarantola (1987, pp. 85–91).
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orbit, the swathe contains 19 cells and is approximately 500 km wide. Each cell samples an area of around
50× 50 km, with some overlap between samples.

The backscatter σ0 is a three-dimensional vector because each cell is sampled from three different direc-
tions by the fore, mid and aft beams, respectively. The near-surface wind vector u is a two-dimensional,
quasicontinuous function of the oceanic spatial coordinates (although see comments about the wind continu-
ity in section 7.9.6). Both σ0 and u contain noise, although the noise in σ0 is dominated by that of u. A
backscatter field is written as Σ0 = (σ0

i ) and a wind field as U = (ui).
The forward problem is to obtain σ0 from u and is single-valued and relatively easy to solve. The inverse

problem, to obtain the wind field from the backscatter, is one-to-many and no realistic physically-based local
inverse model is possible. The aim of the inversion is to produce a wind field U that can be used in data
assimilation for numerical weather prediction (NWP) models. The most common method for inversion is to
use lookup tables and interpolation. Following the standard Bayesian approach of inverse problem theory
described in section 6.2.3, Cornford and colleagues5 (Cornford et al., 1999a; Nabney et al., 2000; Evans et al.,
2000) model the conditional distribution p(Σ0|U) and the prior distribution of the wind fields p(U). The
prior is taken as a zero-mean normal, p(U) ∼ N (0,KU). The conditional distribution of the backscatter
field Σ0 given the wind field U can be factorised into the individual distributions at each point in the region
(i.e., at each cell) as p(Σ0|U) =

∏

i p(σ
0
i |ui) because theoretically there is a single-valued mapping u → σ0.

However, rather than using a physical forward model to obtain a noise model p(σ0|u), which is difficult, they
use Bayes’ theorem to obtain p(σ0|u) ∝ p(u|σ0)/p(u), the factor p(σ0) being constant for a given data, and
they model p(u|σ0) as a mixture density network (Bishop, 1994), which is basically a universal approximator
for conditional densities (see section 7.11.3). Applying Bayes’ theorem again, the posterior distribution is

p(U|Σ0) ∝ p(U)
∏

i

p(ui|σ0
i )

p(ui)
.

Given a backscatter field Σ0, the corresponding wind field is determined by MAP: a mode of p(U|Σ0) is found
using a conjugate gradients method.

The fact that this inverse problem can be factorised into independent mapping inversion problems (see
section 6.4.1) and the quasicontinuous dependence of the wind on the space coordinates make this problem
amenable to the technique described in chapter 7.

6.2.4.3 Computerised tomography

The aim of computerised tomography (Herman, 1980) is to reconstruct the spatially varying absorption coeffi-
cients within a medium (e.g. the human body) from measurements of intensity decays of X-rays sent through
the medium. Typically, X-rays are sent between a point source and a point receiver which counts the number
of photons not absorbed by the medium, thus giving an indication of the integrated attenuation coefficient
along that particular ray path (fig. 6.2). Repeating the measurement for many different ray paths, conveniently
sampling the medium, the spatial structure of the attenuation coefficient can be inferred and so an image of
the medium can be obtained.

The transmittance ρn (the probability of a photon of being transmitted) along the nth ray is given by:

ρn
def
= exp

(

−
∫

Rn

m(x(sn)) dsn

)

where:

• m(x) is the linear attenuation coefficient at point x and corresponds to the probability per unit length
of path of a photon arriving at x being absorbed.

• Rn is the ray path, identified by the coordinates of the X-ray source and its shooting angle (ray paths
of X-rays through an animal body can be assimilated to straight lines with an excellent approximation).

• dsn is the element of length along the ray path.

• x(sn) is the current point considered in the line integral along the ray (in Cartesian or spherical coordi-
nates).

5Papers and software can be found in the NEUROSAT project web page at http://www.ncrg.aston.ac.uk/Projects/NEUROSAT.
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Figure 6.2: Setup for 2D X-ray tomography. A source sends a beam of X-rays through the object under
study. Each individual X-ray is attenuated differently according to its path through the object. The X-rays
are measured by an array of receivers, thus providing with a projection of the object. By rotating the source or
having several sources surrounding the object we obtain several projections. Reconstructing the object density
from these projections is the inverse problem of tomography.

Defining the data

dn
def
= − ln ρn =

∫

Rn

m(x(sn)) dsn (6.7)

gives a linear relation between the data dn and the unknown function m(x). Eq. (6.7) is the Radon transform
of the function m(x), so that the tomography problem is the problem of inverting the Radon transform.

Thus, here the model parameters are the attenuation m(x) in the continuous case, or m = (mijk) in a
discretised version, and the observed parameters are the measured log-transmittance dn. Given m(x), the
forward problem is solved by the linear equation (6.7).

Similar problems appear in non-destructive testing and in geophysics. For example, in geophysical acoustic
tomography the aim is to compute the acoustic structure of a region inside the Earth from seismic measure-
ments. This allows, for example, to detect gas or oil deposits or to determine the radius of the Earth’s metallic
core. Acoustic waves are generated by sources at different positions inside a borehole and the travel times of
the first wave front to receivers located in other boreholes around the region under study are recorded. The
main difference with X-ray tomography is that the ray paths are not straight (they depend on the medium
structure and are diffracted and reflected at boundaries), which makes the forward problem nonlinear. Acous-
tic tomography is an inverse scattering problem, in which one wants to determine the shape or the location of
an obstacle from measurements of waves scattered by the obstacle.

Unlike example 6.2.4.2, this inverse problem does not factorise into independent mapping inversion problems
and thus is not approachable by the technique of chapter 7.

6.3 Inverse problems vs Bayesian analysis in general

In Bayesian analysis in general, a parametric model is a function p(x;Θ) where x are the variables of interest
in the problem and Θ the parameters, which identify the model. One is interested in inferences about both
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Bayesian inverse problem theory Latent variable models

Data space D Observed or data space T
Model space M Latent space X
Prior distribution of models ρM(m) Prior distribution in latent space p(x)

Forward mapping g :M→D Mapping from latent space
onto data space f : X → T

Uncertainty in the forward
mapping θ(d|m) = f(d− g(m))

Noise model p(t|x) = p(t|f(x))

Table 6.1: Formal correspondence between continuous latent variable models and Bayesian inverse problem
theory.

the parameters and the data, e.g. prediction via conditional distributions p(x2|x1), etc. Bayesian inference is
often approximated by fixing the parameters to a certain value given a sample {xn}Nn=1 of the data, e.g. via
maximum a posteriori (MAP) estimation:

ΘMAP
def
= arg max

Θ
p(Θ|x) = arg max

Θ
p(x|Θ)p(Θ). (6.8)

The model parameters m and the observed parameters d of inverse problem theory correspond to the
parameters Θ and the problem variables x, respectively, of the Bayesian analysis in general. Bayesian inference
about the model parameters m, as shown in section 6.2.3, coincides with equation 6.8. But the emphasis is
solely in inferences about the parameter estimates, i.e., how to find a single value of the model parameters
that hopefully approximates well the physical reality. Thus, inverse problem theory is a one-shot inversion
problem: use as much data as required to find a single value mMAP. Even if a second inversion is performed,
we would expect the new inverse value of the model parameters to be close to the previous one—assuming
that the system has not changed, i.e., assuming it is stationary or considering it in a fixed moment of time.

6.3.1 Inverse problems vs latent variable models

As an interesting example of the differences in interpretation between inverse problem theory and general
Bayesian inference, let us consider continuous latent variable models as defined in chapter 2. As mentioned
before, estimating the parameters of any probabilistic model can be seen as an inverse problem. But even
when these parameters have been estimated and fixed, there is a formal parallelism between latent variable
models and Bayesian inverse problem theory (in fact, all the estimation formulas for factor analysis mirror
those of linear inverse problem theory). In latent variable models, we observe the data variables t ∈ T and
postulate a low-dimensional space X with a prior distribution p(x), a mapping from latent space onto data
space f : X → T and a noise model in data space p(t|x) = p(t|f(x)). Thus, the model here means the whole
combined choice of the prior distribution in latent space, p(x), the noise model, p(t|x), and the mapping
from latent onto data space, f , as well as the dimensionality of the latent space, L. And all these elements
are equipped with parameters (collectively written as Θ) that are estimated from a sample in data space,
{tn}Nn=1. Table 6.1 summarises the formal correspondence between continuous latent variable models and
Bayesian inverse problem theory.

The choice of model parameters to describe a system in inverse problem theory is not unique in general,
and a particular choice of model parameters is a parameterisation of the system, or a coordinate system. Two
different parameterisations are equivalent if they are related by a bijection. Physical knowledge of the inverse
problem helps to choose the right parameterisation and the right forward model. However, what really matters
is the combination of both the prior over the models and the forward mapping, ρM(m)θ(d|m), because this
gives the solution to the Bayesian inversion. The same happens in latent variable models: what matters is
the density in observed space p(t), which is the only observable of the problem, rather than the particular
conceptualisation (latent space plus prior plus mapping) that we choose. Thus, we are reasonably free to choose
a simple prior in latent space if we can have a universal approximator as mapping f , so that a large class of
p(t) can be constructed. Of course, this does not preclude using specific functional forms of the mapping and
distributions if the knowledge about the problem suggests so.

We said earlier that inverse problem theory is a one-shot problem in that given a data set one inverts the
forward mapping once to obtain a unique model. In continuous latent variable models, the latent variables
are interpreted as state variables, which can take any value in their domain and that determine the observed
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variables of the system (up to noise). That is, when the system is in the state x, the observed data is f(x)
(plus the noise). The model remains the same (same parameters Θ, same prior distribution, etc.) but the
marginal distribution of the latent and observed variables p(x, t) can be used to make inferences about t
given x (forward problem, related to the deterministic and now estimated mapping f : X → T ) and about x
given t (inverse problem, or dimensionality reduction), for different values of x and t. Thus, once the latent
variable model has been fixed (which requires estimating any parameters it may contain, given a sample in
data space) it may be applied any number of times to different observed data and give completely different
posterior distributions in latent space, p(x|t)—unlike in inverse problem theory, where different data sets are
expected to correspond to the same model.

The particular case of independent component analysis (ICA), discussed in section 2.6.3, cannot be con-
sidered as an inverse problem because we do not have a forward model to invert. Even though we are looking
for the inverse of the mixing matrix Λ (so that we can obtain the sources x given the sensor outputs t), Λ is
unknown. ICA finds a particular linear transformation A and a nonlinear function f that make the sources
independent, but we do not either invert a function (the linear transformation Λ) or estimate an inverse from
input-output data ({xn, tn}Nn=1).

6.4 Mapping inversion

Consider a function6 f between sets X and Y (usually subsets of RD):

f : X −→ Y
x 7→ y = f(x).

Mapping inversion is the problem of computing the inverse x of any y ∈ Y:

f−1 : Y −→ X
y 7→ x = f−1(y).

f−1 may not be a well-defined function: for some y ∈ Y, it may not exist or may not be unique. When f−1

is to be determined from a training set of pairs {(yn,xn)}Nn=1, perhaps obtained by sampling X and applying
a known function f , the problem is indistinguishable from mapping approximation from data: given a
collection of input-output pairs, construct a mapping that best transforms the inputs into the outputs.

A universal mapping approximator (UMA) for a given class of functions F from RL to RD is a set U of
functions which contains functions arbitrarily close (in the squared Euclidean distance sense, for definiteness)
to any function in F , i.e., any function in F can be approximated as accurately as desired by a function in
U . For example, the class of multilayer perceptrons with one or more layers of hidden units with sigmoidal
activation function or the class of Gaussian radial basis function networks are universal approximators for
continuous functions in a compact set of RD (see Scarselli and Tsoi, 1998 for a review). The functions in U
will usually be parametric and the optimal parameter values can be found using a learning algorithm. There
are important issues in statistical mapping approximation, like the existence of local minima of the error
function, the reachability of the global minimum and the generalisation to unseen data. But for our purposes
in this last part of the thesis what matters is that several kinds of UMAs exist, in particular the multilayer
perceptron (MLP), for which practical training algorithms exist, like backpropagation.

A multivalued mapping assigns several images to the same domain point and is therefore not a function
in the mathematical sense. Among other cases, multivalued mappings arise when computing the inverse of
an injective mapping (i.e., a mapping that maps different domain points onto a same image point)—a very
common situation. That is, if the direct or forward mapping verifies f(x1) = f(x2) = y then both x1 and x2 are
inverse values of y: f−1(y) ⊇ {x1,x2}. UMAs work well with univalued mappings but not with multivalued
mappings. In chapter 7 we give a method for reconstruction of missing data that applies as a particular case
to multivalued mappings, and we compare it to UMAs as well as other approaches for mapping approximation
like vector quantisation (section 7.11.4) and conditional modelling (section 7.11.3).

6.4.1 Inverse problems vs mapping inversion

Mapping inversion is a different problem from that of inverse problem theory: in inverse problem theory, one
is interested in obtaining a unique inverse point x which represents a model of a physical system—of which

6We use the term function in its strict mathematical sense: a correspondence that, given an element x ∈ X , assigns to it one
and only one element y ∈ Y. We use the term mapping for a correspondence which may be multivalued (one-to-many).
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we observed the values y ∈ Y. In mapping inversion, we want to obtain an inverse mapping f−1 that we can
use many times to invert different values y ∈ Y.

In section 6.2.3.8 we saw that the Bayesian inverse problem theory could be recast to solve such a mapping
inversion problem. We rewrite eq. (6.6) with a simplification of the notation and decompose the model
parameters m into parameters of state s and experimental conditions cn, m = (s, c1, . . . , cN ):

p(s, c1, . . . , cN |d1, . . . ,dN ) ∝ p(s, c1, . . . , cN )

N∏

n=1

p(dn|s, cn)

where p(dn|s, cn) = f(dn − g(cn; s)) and g is the known forward mapping. This can be interpreted as a
function g which maps cn into dn and has trainable parameters s. However, {cn}Nn=1 are unknown parameters
themselves, not data. We are interested in constructing an inverse mapping g−1 given a data set consisting of
pairs of values {(xn,yn)}Nn=1 so that yn = g(xn) for a mapping g (not necessarily known). Clearly, in these
terms the distinction between inverse and forward mapping disappears and the problem, as before, becomes a
problem of mapping approximation.

Practitioners of inverse problem theory may object that by considering the forward mapping unknown we
are throwing away all the physical information. But the theorems about universal approximation of mappings
and about universal approximation of probability density functions support the fact that, given enough data,
we can obtain (ideally) a good approximation of the joint density of the observed data and thus capture the
information about the forward mapping too. This has the added flexibility of making inferences about any
group of variables given any other group of variables by constructing the appropriate conditional distribution
from the joint density—which includes both the forward and inverse mappings.

Two well-known examples of mapping inversion problems with one-to-many inverse mappings (often re-
ferred to as inverse problems in the literature) are the inverse kinematics problem of manipulators
(the robot arm problem) (Atkeson, 1989) and the acoustic-to-articulatory mapping problem of speech
(Schroeter and Sondhi, 1994). We describe them and apply to them our own algorithm later in this thesis.

❦
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Chapter 7

Sequential data reconstruction

7.1 Introduction

In this chapter we propose a method for sequential data reconstruction, which is also extendable to other
kinds of data reconstruction problems. The problem of data reconstruction is very general, including as
particular cases those of dimensionality reduction, mapping approximation and regression (we could also
consider classification as a data reconstruction problem, but we stick to continuous variables in this thesis).
All these problems require to compute some unknown values from other known values.

In section 7.2 we will define precisely the data reconstruction problem we are interested in. Let us introduce
it here with an artificial example based on the binary star example of section 2.2.1. Imagine now that the
astronomer has an apparatus that allows him to actually measure the (x, y) values of the position of the star,
but that this apparatus is doubly imperfect: on the one hand, all measurements are affected by noise; on the
other hand, the measured value x can from time to time be missing, and so can the value y other times. After
having measured the position of the orbiting star a number of times, the astronomer obtains a collection of
(x, y) values where some pairs have both x and y present, some have x missing and y present, some have
y missing and x present, and some may have both x and y missing. The astronomer’s problem is now to
reconstruct as accurately as possible the collection of (x, y) values. To do so, he plots the collection as in
figure 7.1 (left), where the filled dots indicate points for which both x and y are known; the vertical lines
(drawn of finite length to avoid cluttering) indicate that x is known but not y, and so y can lie anywhere along
that vertical line; similarly, the horizontal lines indicate that y is known but not x; and for the case where
both x and y are missing we can draw nothing. As an aid, the actual location of the points where x, y or both
are missing is drawn as a hollow dot (which is invisible for the astronomer). The task is then to find precisely
those dots, e.g. for point 7 to find that y7 = yL.

Imagine that the astronomer has an estimate of the orbit, obtained perhaps from a previous collection
of measurements with no missing values, which we plot in figure 7.1 (right). The task is easier now, since

This chapter is partly based on references Carreira-Perpiñán (1999b, 2000b).
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Figure 7.1: The example of the binary system orbit revisited. Left : the astronomer has measured a number of
(x, y) positions of the orbiting star (black dots), but they are noisy and sometimes one or both of x or y are
missing (hollow dots). The vertical line on point 7 indicates that x7 is present but not y7, which is somewhere
on the line (of infinite length, although drawn finite to avoid cluttering). Likewise, the horizontal line on point
2 indicates that y2 is present but not x2, which is somewhere on the line. For points where both x and y are
missing, as 14 and 18, we draw nothing. Right : superimposing the orbit helps to complete the missing values
by finding where the lines meet the orbit and trying to avoid abrupt jumps in consecutive points (e.g. for y7

choose yL rather than yH).
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knowledge of the value of x helps us to determine the value of y and vice versa. For example, for point 7 the
vertical line meets the ellipse at y7 = yH and y7 = yL (since the mapping x → y is multivalued). Clearly the
latter value is the correct one, because it gives a smooth trajectory (x3, y3), . . . , (x9, y9) along the lower branch
of the ellipse. These two kinds of redundancy—the points lying on a low-dimensional manifold and each point
lying close to its predecessor in the sequence—are the basis to solve the data reconstruction problem. The
first kind of redundancy, which we will call pointwise redundancy, allows us to infer possible values for the
missing variables given the present ones; we implement this by building offline a joint probability model of all
variables and then deriving a functional relationship from the conditional distribution of the missing variables
given the present ones. We implement the second kind of redundancy with a geometric constraint that can be
minimised by dynamic programming.

This problem is more complex than that of multivariate regression because:

• We are not predicting one variable from the other one all the time: sometimes x is missing, sometimes
y is missing and sometimes both are missing.

• The individual mappings x→ y and y → x are multivalued: given a value of x, there are (nearly always)
two values of y and vice versa.

The rest of this chapter is organised as follows. Section 7.2 defines precisely the data reconstruction
problem. Section 7.3 explains how to derive (multivalued) functional relationships from conditional distribu-
tions. Section 7.5 explains how to use prior information to constrain the multivalued mappings thus derived.
Finding the optimal reconstruction consistent with the multivalued maps and the constraints is described in
section 7.6. The remaining sections deal with other topics: a probabilistic interpretation using the Markov
assumption (section 7.7), an investigation of the computational complexity of the method (section 7.8), a
discussion of its weak points (section 7.9) and of possible applications (section 7.10) and a review of related
work (section 7.11). Experimental results are given separately in chapters 9 and 10.

7.2 Definition of the problem of data reconstruction

Generally, we define the problem of data reconstruction as follows.

Definition 7.2.1 (The problem of data reconstruction). Given a data set {tn}Nn=1 where part of the
data are missing, reconstruct the whole data set to minimise an error criterion.

Let us examine in detail the elements of this definition.

7.2.1 The data set

The data set must have some structure in order that reconstruction be possible, i.e., there must be some
dependencies between the different vectors in the set that give rise to redundancy. A typical example is
sequential data in which consecutive vectors are close to each other (note that not all sequences satisfy this).
Such data can be considered as the result of sampling in time a variable that is a continuous function of the
time. We can generalise this notion as follows. Assume {tn}Nn=1 are samples from a continuous function F of
an independent variable z at points {zn}Nn=1. We call z the experimental conditions; z can be the time (when
the sample was taken), the position in space (where it was taken), etc. Thus, t = F(z) is the sample point
obtained at condition z. We observe t but not necessarily z. Table 7.1 gives some examples. F gives to the
collection {tn}Nn=1 the structure or redundancy that allows the reconstruction of missing data.

We now have three dimensionalities: the dimensionality of the space T of the t vectors, D; the intrinsic
dimensionality of the manifoldM where the t vectors live, L; and the dimensionality of the variable z, C (we
assume that the intrinsic dimensionality of the variable z coincides with C). It could seem that the intrinsic
dimensionality of the t vectors cannot be larger than that of the z vectors, since t is a (continuous) function
of z; but L can indeed be larger than C. Consider for example an ant that walks on the trunk of a tree
(L = 2) and take T as the Euclidean space (D = 3) and z as the time (C = 1); a given trajectory of the ant
will be one-dimensional, but the region that the ant is allowed to be on (the trunk) is two-dimensional and in
principle we may find it anywhere in that two-dimensional region (either by taking a very long trajectory or
by imagining many different trajectories).

Summarising: T is the space on which we observe data of D dimensions; these data are constrained to
live on an L-dimensional manifold M of T ; and we measure a batch of data {tn}Nn=1 under experimental
conditions that give them an apparent dimensionality C. Figure 7.2 illustrates the point.
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Examples of problem Experimental conditions z Observed variables t
Trajectory of a mobile point time, 1D spatial coordinates, 3D

(Cartesian, spherical)
Spoken utterance time, 1D speech feature vector, ≈13D

(e.g. LSPs, MFCCs, PLPs)
Wind field on the ocean surface spatial coordinates, 2D wind velocity vector, 2D
Colour image spatial coordinates, 2D RGB level, 3D
Greyscale image spatial coordinates, 2D grey level, 1D

Table 7.1: Experimental conditions z and observed variables t for several examples of problems.
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Figure 7.2: Dimensionalities involved in data reconstruction. The data, measured in a D-dimensional space
T , live in an L-dimensional manifold M. A particular data set F(z) of M has a dimensionality C equal to
that of the experimental conditions z. The dimensionalities verify C ≤ L ≤ D.

We will concentrate on the case where D > 1, since the whole topic of this dissertation is the analysis of
multidimensional data. The case D = 1 (e.g. that of the “greyscale image problem” in table 7.1) does not
allow to look at the relationship between variables, since there is only one (t = t1) and therefore we cannot
make use of the redundancy derived from a low-dimensional representation.

In the rest of this thesis we will assume sequential data unless otherwise noted, i.e., z is the time or some
other one-dimensional variable, although the treatment can be generalised to any dimensionality C. We will
note {t(n)}Nn=1 a sequential data set, where n indicates a temporal order in the data, reserving the notation
{tn}Nn=1 for data sets which need not have any sequential order (in which case n is just a label).

7.2.2 The pattern of missing data

In definition 7.2.1 we stated that part of the data are missing. This means that some of the ND variables
{tnd}N,Dn,d=1 have missing values. We say that the value of a given scalar variable tnd for certain n ∈ {1, . . . , N}
and d ∈ {1, . . . , D} is present if such value was measured, even if it is (slightly) noisy; otherwise, we say it
is missing. Abusing the language, we will also speak of present (missing) variables to mean variables whose
values are present (missing). The reasons for a value to be missing are multiple: the value was not measured;
the value was measured but got lost, erased or corrupted; and so on, depending on the particular problem.

When the values are corrupted in various amounts rather than just being either missing or present, one
could consider further categories of uncertainty in a value. This is a beneficial strategy for, e.g., recognition
of occluded speech (see the discussion in section 7.10.6). However, for the purposes of data reconstruction, it
is not clear what one should do with a value that is neither present (which must not be modified) nor missing
(which must be filled in). Therefore we will stick to the present/missing dichotomy. We will also assume that
each value has been classified as either present or missing, even though in some applications this task may not
be trivial at all.

We can represent the pattern of missing data associated with the data set {tn}Nn=1 with a matrix (or mask)
M = (mnd) of N × D such that mnd = 1 if the value of tnd is present and mnd = 0 otherwise. The matrix
M acts then as a multiplicative mask on the complete data set, i.e., the data set where all values are present,
as represented in figure 7.3. We obtain the problem of regression (or mapping approximation, or mapping
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Figure 7.3: Schematic representation of the missing data. The black and white cells in the missing data
pattern indicate missing and present values, respectively. The data set is notated as a sequence, but this is
not necessary.

inversion) in the particular case where mnd is independent of n (in which case the mask of fig. 7.3 has a
columnar structure).

The algorithm described in this chapter is applicable to any pattern of missing data, irrespectively of why
or how that pattern came about. However, if the missing data are not missing completely at random (see
section 7.11.1.1), then any information about the mechanism of missing data should be taken into account if
possible, since it may further constrain the values that the missing variables may take.

We will use the term complete data (set) to mean the data (set) as if no values were missing and recon-
structed data (set) to mean the data (set) where the missing values have been filled in by a reconstruction
algorithm.

7.2.3 Reconstruction of the whole data set

To reconstruct the whole data set means to find a single estimate of each missing value and is the objective
pursued in this thesis. In some problems, e.g. classification in the presence of missing data, reconstruction
may not be the optimal procedure; this is discussed in section 7.9.8.

7.2.4 Error criterion

The question of the error criterion has two aspects, related to the two dimensions of redundancy in the data:

• The intervariable, or pointwise, redundancy implies functional relationships between variables. If the
relationship happens to be univalued, then defining it as the mean of the relevant conditional distribution
implicitly minimises the quadratic error, as shown in section 7.3.3. If the relationship happens to be
multivalued, the question of what error criterion is being minimised is more difficult. Intuitively, if we are
able to select the correct branch (or sheet) of the data manifold and then define the functional relationship
as the mean of the conditional distribution in that sheet, we would be minimising the quadratic error
too; this interesting approach, akin to bump finding, is not the one we follow in this chapter, since we
define functional relationships via the modes. Thus, we discuss briefly bump-finding in section 7.9.9 but
leave it for future research.

• The interpoint redundancy implies some sort of continuous constraint between consecutive points. We
are able to select with complete freedom this constraint, which then defines the error criterion, as shown
in section 7.6.

7.2.5 Notation

We will use the following notation to select components (or variables) of a vector. If t ∈ T is a D-dimensional
real vector, t = (t1, . . . , tD)T , and I ⊂ {1, . . . , D} is a set of indices, then tI represents the vector composed
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of those components of t whose indices are in I. This notation can be used in probabilistic expressions; for
example, if I,J ∈ {1, . . . , D} with I = {1, 7, 3} and J = {2, 5} then:

tI is (t1, t7, t3)
tJ is (t2, t5)
p(tI) is p(t1, t3, t7)

p(tJ |tI) is p(t2, t5|t1, t3, t7)
p(tI , tJ ) is p(t1, t2, t3, t5, t7).

For definiteness we will consider that all sets of indices are ordered increasingly and contain no repeated
elements, although this is not necessary. This notation is convenient to represent arbitrary patterns of missing
data, where the present or missing variables at point n are indicated by sets Pn andMn, respectively, in which
case Pn ∩Mn = ∅ and Pn ∩Mn = {1, . . . , D} ∀n = 1, . . . , N . Abusing the notation, we may sometimes write

tn,I or t
(n)
I to mean tn,In

or t
(n)

I(n) , respectively.

7.2.6 Types of reconstruction

It will be convenient to define four types of reconstruction for later use according to the combinations of the
following characteristics:

• The number of candidate reconstructions of a given entity that are provided: single or multiple recon-
struction.

• The entity that is being reconstructed: pointwise (or local) for reconstruction of a vector t(n) given
information present in t(n) only and global for reconstruction of the whole sequence or data set {t(n)}Nn=1

given information present in it.

A method that provides single pointwise reconstruction can only provide single global reconstruction; standard
regression and mapping approximation are examples such methods. But single global reconstruction can be
attained by an appropriate combination of a collection of multiple pointwise reconstructions; the method
proposed in this chapter is an example. The kind of reconstruction referred to in definition 7.2.1 is single
global reconstruction. We briefly speak about multiple global reconstruction in section 7.7.1.

Any kind of reconstruction is based on a functional relationship of what is missing given what is present
and we deal with this next.

7.3 Deriving functional relationships from conditional distributions

This section contains two central ideas. The first one is that one can define a functional relationship x → y
(y as a function of x) from the conditional distribution of y given x by picking representative points of
this distribution. The second one is that underlying a multimodal conditional distribution there (often) is a
multivalued functional relationship and that it is wrong to summarise such a distribution with its expected
value. As a result, we will propose the use of all the modes of a conditional distribution to define a multivalued
functional relationship and thus to define multiple pointwise reconstruction.

7.3.1 Informative, or sparse, distributions

Consider a real variable y which is a deterministic function of another real variable x, so that for each value x0

of x there is a unique value y0 = f(x0) of the variable y. In probability terms1 we can say that the conditional
probability of y given x is a Dirac delta function located at y = f(x), p(y|x) = δ(y − f(x)) (see fig. 7.4a).

Let us introduce some random variability, so that although the functional relationship is still there, it
becomes blurred. Now, for each value x0 of x there is a range of values of y located in an environment of
y0 = f(x0) which are possible, although the closer to f(x0) they are the more likely they are. In probability
terms, for each value of x, we have some nondegenerate2 distribution p(y|x) peaking around y = f(x) and
which is the narrower the smaller the uncertainty is about y as depending on x (see fig. 7.4b).

If we were to predict a value for y given the value x0 of x, it would be reasonable to choose y = f(x0) or
some other value with high probability, which in view of the graph will fall close to f(x0). In this way we could
derive a functional relationship between y and x, which we would expect to be close to the function y = f(x).

1With an abuse of notation. More strictly we should write p(y = y1|x = x0) = δ(y1 − f(x0)).
2By degenerate we mean a continuous distribution that assigns probability mass only to a zero-measure set, such as a delta

distribution. That is, its density is zero almost everywhere.

150



PSfrag replacements

a b c d

e f

x

x x

x

x x

y

yy

y

y y

y y

x0

x0x0

x0

x0x0

x1

x1

x1

x2

x2

y0

y0

y0 y0

y0

y0

p
(y
|x

=
x

0
)

p
(y
|x

=
x

0
)

p
(y
|x

=
x

0
)

p
(x
|y

=
y
0
)

t1

t2

t3

f(x) f(x) f(x)

p(t)

p(t3|t1, t2)

p(t2, t3|t1)

p(t1, t2|t3)

Figure 7.4: Different cases of a conditional distribution in data spaces of two and three dimensions. The
shaded areas represent probability density and the black dots a sample typical from that density. In the
one-dimensional graphs of p(y|x) and p(x|y), graphs (a) to (e), the densities are not drawn at the same scale.
(a) Noiseless, univalued mapping x → y from p(y|x). (b) Noisy, univalued mapping x → y from p(y|x). (c)
No functional relationship x → y because p(y|x) is very flat. (d) Noisy, multivalued mapping y → x from
p(x|y). (e) Various cases of maps in three dimensions; p(t) extends over R3, not just the shaded surface. (f)
p(y|x) is very informative around x = x0 but little informative around x = x1. Actual examples are given in
figures 9.4–9.5.

Consider a situation where there is not a well-defined relationship of y as a function of x, that is, given a
value x0 of x, we do not expect any particular value of y to be much more likely than others in the domain of
interest. Then the conditional distribution y|x will have a rather flat aspect (see fig. 7.4c). We cannot derive
a functional relationship in this case.

We conclude that sharply peaked conditional distributions convey more information about a functional
relationship between the variables involved than flat-looking ones, to the point that we could construct a
mapping y = g(x) where g is a function of a distribution that picks a single particularly informative point of
the domain of p(y|x). Such an informative point could be the mean or the mode of the distribution.

Consider now the case of a multivalued functional relationship, such as that shown in fig. 7.4d for y → x
from p(x|y). Now we have a conditional distribution with several sharp peaks instead of only one. Although
we cannot single out any of these peaks, we can still speak of a functional relationship in the sense that most of
the domain of x can be ruled out because its associated probability mass is very low compared to that around
the peaks. In this sense the distribution is still much more informative than the flat one.

Finally, consider the case of a multivariate distribution, as in fig. 7.4e, which shows how a functional
dependence of a variable t3 on variables t1 and t2, with some random variability, leads to a distribution
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mainly concentrated on a surface rather than a volume. A conditional distribution p(t3|t1, t2) is approximately
defined on a region centred around f(t1, t2), thus with dimension 0. A two-dimensional conditional distribution
p(t1, t2|t3) is approximately defined on a one-dimensional region, represented by the dotted line (leading to
a multivalued relationship). The same happens with the two-dimensional conditional distribution p(t2, t3|t1),
approximately defined on the one-dimensional region of the dashed line.

In general, we say that a D-dimensional pdf p(t) (possibly the distribution of t conditioned on the values
of some other variables) is informative or sparse if the probability mass is concentrated around a low-
dimensional manifold. Conversely, if the probability mass is spread over a D-dimensional region then we
say that the pdf is uninformative. We thus state the principle that highly informative distributions can be
assimilated to (multivalued) functional relationships.

The concept of sparseness is then a probabilistic extension of that of a low-dimensional manifold3. Thus, a
D-dimensional pdf defined around a point/curve/surface is sparse for D ≥ 1/2/3, respectively, and so on. Our
definition of sparseness is vague, since the term “concentrated around” is relative (just how much probability
mass and how near the low-dimensional manifold?), and thus lends itself to being quantitatively measured
in various ways. We attempt one such measure in section 7.12.4, but for our purpose (to derive functional
relationships from conditional distributions) this definition suffices.

A conditional distribution p(y|x) may be informative for some values of x and uninformative for other
values of x; figure 7.4e gives an example of this. Clearly, if we require that p(y|x) be informative for any value
of x, then the joint density p(x, y) must be itself an informative distribution, since p(y|x) ∝ p(x, y).

For more generality, the pointwise predictive distribution could be taken as p(missing|present)p(present)
where p(present) is an extra prior distribution quantifying the accuracy to which the present variables have
been measured. This prior could be taken as a factorised Gaussian with variances related to the experimental
accuracy.

7.3.2 The modes as representative points of a distribution

Choosing representative points from a distribution means collapsing the domain of the continuous random
variable in question into a finite number of points. This can only be done without loss of information if the
distribution is a mixture of delta functions. In practice, a mixture of deltas will appear as a multimodal
distribution, with more or less sharp peaks around the centres of the individual deltas, due to the noise.
Intuitively, it would still be possible to recover those centres by identifying the peaks and then, for each peak,
locating its centre, perhaps as its mode or mean. In our approach, we select all the modes of the distribution
as representative points of it. This has three possible drawbacks, namely the potential existence of spurious
modes; the potential coalescence of peaks associated with different centres into a single peak; and the question
of choosing the mean of each local peak; we discuss them in section 7.9. For the time being, let us assume
that every mode or peak of a multimodal distribution is closely associated with one and only one centre of an
underlying mixture of deltas.

Our mode-finding algorithms for Gaussian mixtures given in chapter 8 can also compute error bars for each
mode, thus estimating locally the error. The global error incurred by reducing the distribution to its modes
can be quantified by a sparseness measure (section 7.12.4). However, we will not make use of any of these
error estimates in our experiments.

7.3.3 Unimodal distributions: L2-optimality of the expectation

Let us first consider the simple case of a unimodal distribution. In our earlier assumption of an underlying
delta function, we need to pick a single point. This problem depends on what error criterion we want to
minimise:

Given p(t) with t ∈ T ⊆ RD, select t̂ ∈ T as t̂ = arg min
t̂∈T

Ep(t)
{
d(t, t̂)

}
= arg min

t̂∈T

∫

T
p(t)d(t, t̂) dt.

That is, we pick the point that minimises the average distance (with respect to the distribution of t) to every
other point in the domain of t. For the squared Euclidean distance, the most common case, the optimal point
is the mean of the distribution:

d(t, t̂)
def
=
∥
∥t− t̂

∥
∥

2

2

⇒ Ep(t)

{∥
∥t− t̂

∥
∥

2

2

}

= Ep(t)

{∥
∥t− µ− (t̂− µ)

∥
∥

2

2

}

= tr (Σ) +
∥
∥t̂− µ

∥
∥

2

2
≤ tr (Σ) ∀t̂ ∈ T

3The astute reader will sense the influence of latent variable models here.
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where µ
def
= Ep(t) {t} and Σ

def
= Ep(t)

{
(t− µ)(t− µ)T

}
are the mean and covariance matrix of p(t), independent

of t̂, and we have used tr (AB) = tr (BA). For symmetric distributions the mean and mode coincide, but for
skewed distributions they differ. Therefore, for unimodal distributions we need only pick a single representative,
according to the desired criterion.

For the L1 norm, the optimal point is the median. To see it, consider first the case D = 1 (DeGroot (1986)
gives a different proof):

Ep(t)
{∣
∣t− t̂

∣
∣
}

=

∫ t̂

−∞
−(t− t̂)p(t) dt+

∫ ∞

t̂

(t− t̂)p(t) dt

= −
∫ t̂

−∞
tp(t) dt+

∫ ∞

t̂

tp(t) dt+ t̂

(
∫ t̂

−∞
p(t) dt−

∫ ∞

t̂

p(t) dt

)

= µ− 2

∫ t̂

−∞
tp(t) dt+ t̂(2P (t̂)− 1)

where P is the cdf of t. Differentiating with respect to t̂ we obtain a minimum at the median t̂
def
= P−1

(
1
2

)
:

∂

∂t̂
Ep(t)

{∣
∣t− t̂

∣
∣
}

= −2t̂p(t̂) + 2P (t̂)− 1 + 2t̂p(t̂) = 0⇒ t̂ = P−1

(
1

2

)

∂2

∂t̂2
Ep(t)

{∣
∣t− t̂

∣
∣
}

= 2p(t̂) > 0.

This is the well known result that the median minimises the sum of absolute errors. It can be generalised to

D dimensions for the L1 distance: the optimal value is given by the componentwise medians, t̂d
def
= P−1

d

(
1
2

)
,

where Pd is the marginal cdf of td. However, this generalisation does not have the natural interpretation of the
onedimensional case, since it considers the coordinate directions as more important than arbitrary directions,
which is not particularly useful.

A number of approaches exist that derive univalued mappings from the conditional distribution, usually
via the mean. For example, for function approximation, Moody and Darken (1989) and Specht (1991) used the
mean of the conditional distribution derived from a kernel joint density estimate. For a classification problem
with missing data and for function approximation, Ghahramani (1994) and Ghahramani and Jordan (1994)
used a mixture model of the joint density and a single value from the conditional distribution: the mean, a
random sample or the component centroid with highest posterior probability4. (Tresp et al., 1995) used an
approximation of the regression of response variables y as a function of predictor variables x when some of

the latter are missing and the regression E {y|x} is given by a known mapping approximator x
g−→ y:

E {y|xP} =

∫

E {y|xP ,xM} p(xM|xP)dxM ≈
∫

g(x)p(xM|xP)dxM.

p(xM|xP) is obtained from a kernel or Gaussian mixture estimate of p(x) and inserted in the right-hand
side integral, which is then computed approximately to give E {y|xP}. This is done to avoid estimating the
joint distribution p(x,y) in the first place and so gain some computational efficiency, but—apart from the
approximations involved—it remains a conditional mean method.

7.3.4 The expectation of a multimodal distribution considered harmful

This statement should be obvious in itself but it is surprising how often a whole distribution is collapsed onto
its mean without being sure that it is unimodal (or mildly multimodal). As fig. 7.5(left) shows, the mean of
a multimodal distribution can lie on an area of low probability, thus being a highly unlikely representative
of the distribution. Worse still, the mean may lie outside of the support of the random variable when such

4The “component centroid with highest posterior probability” is really a fast approximation to the global mode that amounts
to vector quantisation, since all interaction between components is ignored. In fact, much research aims at using the “global
mode” either for representing a conditional distribution by a single value or more generally to satisfy some optimality criterion for
parameter estimation (e.g. maximum likelihood or least squares). Since often there are other modes or local optima, this “global
mode” usually is a random mode (like the rmode method in section 9.1), depending on the implementation of the maximisation
algorithm (typically on the starting point in iterative algorithms). Our mode finding algorithm of chapter 8 is guaranteed to find
the global mode because it finds all the modes, at least for the mixtures that verify conjecture 8.1 (thus, in chapters 9–10, the
gmode method is truly the global mode).
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Figure 7.5: The expectation of a multimodal distribution considered harmful. Left : a unimodal (dotted line)
and a multimodal conditional distribution (solid line). The vertical, dashed lines mark the modes and the
means. Right : the expectation (×) of a probability distribution on a nonconvex support (shaded area) may
lie outside the support.

support is not a convex set5 (since the mean is a convex sum itself), as shown in fig. 7.5(right); this fact has
often been pointed out in the context of inverse problems and mapping inversion (e.g. Jordan, 1990; Jordan
and Rumelhart, 1992). Unlike the mean, any mode must lie by definition inside the support of the random
variable and have a locally high probability density.

There appear to be two reasons for the popularity6 of the mean as a representative of a multimodal
distribution:

• Its ease of calculation. Calculating the modes of a multivariate distribution is in general difficult because
one does not know how many modes there are and because computing each one of them cannot be done
analytically.

• The mean remains the optimal choice with respect to the L2-norm for multimodal distributions, as long
as one constrains the choice to be univalued.

But then how does one deal with a multivalued choice? In the absence of additional information, all we
can do is to keep all the modes, since any of them is a likely representative of the distribution (a centre of
the underlying mixture of deltas). But additional information can help to discard some of those modes; for
example, if consecutive points in a sequence are constrained to lie close (as in the example of the introduction).
For the time being, we keep all the modes, which implies defining a multivalued functional relationship if the
distribution is a conditional distribution.

We conclude that for single pointwise reconstruction, the mean of the conditional distribution of the missing
variables on the present ones is the L2-optimal choice; and for multiple pointwise reconstruction, we propose
the modes of that conditional distribution (but see section 7.9). For the same reason as the mean, one should
not use a (weighted) average of the modes.

7.3.5 Underconstrained functions

The cases discussed so far concern functional relationships y = f(x) where x and y can take at most a finite
number of values. Theoretically it is possible to have a countably infinite number of values; e.g. y = arcsinx
takes the values {mπ}∞m=−∞ when x = 0. This situation is not a practical problem because in practice the

5This can happen even if the distribution is unimodal.
6People often consider the central value of a range the most likely or balanced even when there is absolutely no reason for it.

Consider, for example, the average man of Quetelet in the XIX century, or the following more recent example. An archaeology
journalist, David Keys, has put forward the theory that a natural catastrophe happened in 535 a.D. that was responsible for all
sorts of environmental and social disruption worldwide, including climatic change, plagues, draughts and political turmoil. He
pinpointed the catastrophe as a massive volcanic eruption between Sumatra and Java. Stratigraphic and carbon-14 measurements
have indicated that the eruption could have taken place in any date from 1 to 1200 a.D. (David Keys, Catastrophe, Ballantine
Books, New York, 2000; chapter 32 and p. 316, note 2). In a documentary on his book by the U.K. broadcaster Channel 4
Television, Mr. Keys expressed his satisfaction that 535 a.D. was almost right in the middle of that period.
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Figure 7.6: Geometric view of missing data reconstruction. The data lie in the spherical 2-manifold x2
1 + x2

2 +
x2

3 = 1. When only some of the variables are given, the rest can take values in the intersection of that sphere
with the appropriate hyperplanes. This figure is similar to figure 7.4f, the difference being that there we used
conditional probability distributions and here we use intersections of manifolds with hyperplanes parallel to
the coordinate axes.

variables will have a limited support, particularly when the mapping is defined by a sample of data rather
than by an equation7. A case more likely to appear in practice is when y is underconstrained given x: y
can take any value in a continuous manifold of dimension Y ≥ 1. The case of countable values corresponds
to a manifold of dimension 0. Geometrically, if the possible joint values of x and y span a manifold M of
dimensionality L in RD, then the set of possible values for y given a fixed value x0 of x is the intersection of

M with the hyperplane x = x0. For example, consider the sphere x2
1 +x2

2 +x2
3 = 1: y

def
= (x1 x2)

T as a function

of x
def
= x3 takes values continuously in the 1-manifold x2

1 + x2
2 = 1 (a circle) if x3 = 0; y

def
= x3 as a function of

x
def
= (x1 x2)

T takes values discretely in the 0-manifold {−1,+1} if x = 0; etc. Figure 7.6 illustrates this point.
Therefore, from a geometric point of view the problem consists of determining the intersection between an

arbitrary manifold M and several coordinate hyperplanes. This has two disadvantages:

• It requires solving nonlinear systems of equations.

• It disregards the noise, i.e., the stochastic variability of the data around and inside that manifold.

In the probabilistic framework the information about the data manifoldM is embedded in the joint probability
distribution p(t) of the observed variables, noise is taken care of and the only mathematical operations needed
are conditioning (therefore marginalising) and exhaustive mode search, which are computationally tractable
for Gaussian mixtures. The choice of a Gaussian mixture as probabilistic model also eliminates the problem
of underconstrained mappings, because the number of modes is finite if the Gaussian mixture is finite8. Of
course, the underconstrained nature of a problem y = f(x) remains. What this means is that the method is
not affected by it, i.e., the method is providing a partial but robust solution to the problem. The solutions
provided will be scattered over the manifold of y. Therefore, the space of solutions is quantised and only an
approximation can be given: the closest of this modes to the true solution. At least, the approach guarantees
that the solutions obtained are valid in principle in that they lie in the solution manifold.

7It is still possible to have a countably infinite number of values even when all variables have a finite support. For example,
y = 1/ arcsin x for y ∈ (0, 1) and x ∈ [−1, 1] takes the values y =

{
1

mπ

}∞

m=1
when x = 0. But, again, such pathological cases are

unlikely in practice when learning from data.
8This assertion depends on whether conjecture 8.1 is true, but it is probably safe to say that the number of modes is finite.

This issue will be dealt with at length in chapter 8.
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7.3.6 Universal mapping approximators versus density models

Consider the problem of function approximation: given a training set {(xn,yn)}Nn=1, where yn is a function
of xn corrupted with additive zero-mean noise. Then the univalued function f : x → y that asymptotically
minimises the squared error is the conditional mean of y given x, as we can prove in a completely analogous

way to section 7.3.3. Call µy|x
def
= Ep(y|x) {y} = E {y|x} and Σy|x

def
= Ep(y|x)

{

(y − µy|x)(y − µy|x)T
}

the

conditional mean and covariance of y given x, respectively. Then, for a given univalued function f : x→ y:

Ep(x,y)

{

‖y − f(x)‖22
}

= Ep(x,y)

{

‖(y − µy|x) + (µy|x − f(x))‖22
}

= Ep(x,y)

{

(y − µy|x)
T

(y − µy|x)
}

+ Ep(x,y)

{

‖µy|x − f(x)‖22
}

+ 2Ep(x,y)

{

(y − µy|x)
T

(µy|x − f(x))
}

= Ep(x)

{

Ep(y|x)

{

tr
(

(y − µy|x)
T

(y − µy|x)
)}}

+ Ep(x)

{

‖µy|x − f(x)‖22
}

+ 2Ep(x)

{

Ep(y|x) {y − µy|x}T (µy|x − f(x))
}

= tr
(

Ep(x)

{

Ep(y|x)

{

(y − µy|x) (y − µy|x)
T
}})

+ Ep(x)

{

‖µy|x − f(x)‖22
}

= tr
(
Ep(x)

{
Σy|x

})

︸ ︷︷ ︸

(a)

+Ep(x)

{

‖µy|x − f(x)‖22
}

︸ ︷︷ ︸

(b)

.

Term (b) is minimised at f(x)
def
= µy|x; term (a), the sum of expected conditional variances, is independent of

f and represents the residual value of the error function at its global minimum.
Therefore, using a universal mapping approximator (introduced in section 6.4) will give us a function very

close to the conditional mean (Bishop, 1995). For the purposes of this thesis, we will assume that a universal
approximator and the conditional mean are equivalent. However, this assumes an ideal density model for
the conditional distribution. In practice, both density models and function approximators are estimated from
data and the resulting conditional mean may differ from the approximated function and from the asymptotic
conditional mean.

If all is needed is a univalued mapping of a fixed group of predictor variables x onto a fixed group of response
variables y, then the use of universal approximators is appropriate, since they are trained to minimise the
quadratic error and thus will converge to the mean. Universal approximators are faster and more efficient,
since they model a function of L variables while density estimation models a function of D + L variables.
This is analogous to classification using a discriminant function or a probabilistic model: the former models a
boundary while the latter models the whole space. The baseline is the dimensionality of the manifold being
modelled, since there is where the curse of dimensionality has an effect.

If we need a multivalued mapping of a fixed group of predictor variables x onto a fixed group of response
variables y, then using a single universal approximator is not appropriate, since this will converge to the
conditional mean which will be a compromise mapping half way through the branches9 of the true mapping.
It is conceivable to fit each one of these branches by a separate universal approximator, but this has a practical
difficulty: to identify the branches or equivalently to separate the training data according to these branches.
We discuss this approach in section 7.11.2.1.

If we need to model the mappings between many combinations of variables, universal approximators are
not applicable in general because each combination requires a separate universal approximator and the total
number of combinations grows exponentially10, also requiring sufficient training data for each combination.
Besides, a combination where few variables are mapped onto many (i.e., many variables are missing) will
give rise to a severely unconstrained mapping, which cannot be summarised as a univalued mapping, as the
universal approximator would do. Therefore the probabilistic approach to mapping approximation is the choice
for multivalued maps and/or arbitrary combinations of predictor and response variables—in spite of the fact
that density estimation requires more parameters than mapping approximation.

9Intuitively, we can define a branch of a forward function g as a submanifold of the trace of g where g is invertible (one-to-one).
10Writing a particular mapping as (present variables) → (missing variables), the total number of different mappings is equal

to the total number of combinations of present variables. If the index d means the number of present variables, then there are
∑D−1

d=0

(D
d

)
= 2D−1 such mappings, as can be proven by induction (it is simply the cardinal of the set of parts of {1, . . . , D} minus

1). This counts a pair of forward and inverse mappings as two different mappings (e.g. (t1 t3) → (t2 t4) and (t2 t4) → (t1 t3))
but counts (t1 t3) → t2, (t1 t3) → t4 and (t1 t3) → (t2 t4) as the same mapping, and includes the mapping ∅ → (t1, . . . , tD) but
not the mapping (t1, . . . , tD) → ∅.
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7.3.7 Sampling the predictive distribution

Another method to pick representative points of a distribution is to sample from it. This makes sense when
there are few present variables, so that the missing variables are so underdetermined that they can take values
on a continuous manifold: in this case, the modes of a Gaussian mixture-based conditional distribution are
effectively a particular sample from that manifold. Computationally, sampling is also more attractive than
exhaustive mode finding, in particular for Gaussian mixtures. Finally, sampling may also give robustness to
poor density models.

However, when the missing variables are constrained to take a finite number of values (as in mapping
inversion), this does not make much sense, because—unless the conditional distribution is very sharply peaked
around its modes—it will return values that by definition of sample are corrupted by noise: sometimes they can
fall in areas far from the main probability mass body or ignore low-probability bumps (which may represent
infrequent but legitimate reconstructions). A further, serious problem is how to set the number of samples to
obtain, which will certainly locally underestimate or overestimate the true number of values that the missing
variables can take. Missing a correct pointwise reconstruction or generating a wrong one may affect the global
reconstruction, not just the local one, via the continuity constraint. The experiments of chapter 9 will show
that this sampling strategy performs consistently worse than both the mean- and mode-based approaches and
is thus not recommended11.

7.3.8 Summary

We have argued that the conditional distribution of the missing variables given the present ones, if sparse
enough, contains information to reconstruct the missing variables by picking representative points of it and
thus defines a mapping from present to missing variables. This mapping is in general multivalued and therefore
we have proposed to use the modes of the conditional distribution and not the mean as such representative
points.

More generally, we reserve the terms predictive distribution for a distribution containing information
about the missing variables (perhaps different from the conditional) and candidate (pointwise) reconstruc-
tions for the values used to fill in the missing variables (perhaps different from the modes). This is because
most of the ideas in the rest of this chapter, in particular the constraint optimisation, would apply equally
well to any pointwise reconstruction method.

7.4 Joint density model of the observed variables

For a generic missing data pattern we need to be able to obtain the conditional distribution for any combination
of missing and present variables, which requires estimating a joint density model of the observed variables.
The joint density embodies the relation of any subset of observed variables with any other subset of observed
variables; all we require is to compute the appropriate conditional distribution, which in turn requires a
marginalisation: p(tM|tP) = p(tM, tP)/p(tP). Therefore, we are free to choose the method by which we
estimate the joint density as long as the estimator allows easy marginalisation. The density model should be
estimated offline using a training set different from the one that is to be reconstructed. Typically, the training
set will have no missing data, although even if it does, it is possible to train the model using an EM algorithm
(e.g. Ghahramani and Jordan, 1994; McLachlan and Krishnan, 1997). This is because the presence of missing
data is at the core of the EM algorithm, where missing variables are averaged over; in fact, it basically amounts
to replacing xn with tn,Mn

and tn with tn,Pn
in the discussion of section 2.5. See also section 7.11.1.2.

An obvious choice for a density estimation method are latent variable models, since the pointwise re-
dundancy implies an intrinsic low dimensionality of the observed variables (the distribution of the observed
variables is sparse in the sense of section 7.3.1). Eq. (2.3) gives the joint density of the observed variables
by marginalising over the latent variables. In particular, the GTM model is able to represent a broad class
of densities, including multimodal distributions (although, as discussed in section 2.3.1, it is not a universal
approximator for densities). The linear-normal models (factor analysis and PCA) are not interesting, for both
the joint and conditional densities are normal, thus unimodal, and result in linear mappings.

We do not necessarily have to use a latent variable model. Other popular models include Gaussian mixtures
(parametric) and kernel density estimation (nonparametric), both of which do have the property of universal

11However, it is recommended in the method of multiple imputation (reviewed in section 7.11.1.2), in which the aim is not
reconstruction but inference about data sets with missing values where typically no (continuity) constraint is applicable and where
the present variables do not strongly constrain the missing ones.
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density approximation (Titterington et al., 1985; Scott, 1992). For all the specific latent variable models of
chapter 2 (except ICA), as well as for mixtures of such latent variable models, the density of the observed
variables has the form of a constrained Gaussian mixture: equations (2.16) for factor analysis, (2.24) for
PCA, (2.37) for independent factor analysis and (2.43) for GTM. The constraint is imposed by the mapping
from latent space onto observed space and the total number of parameters is relatively low because the noise
model covariance is independent of the latent variables (section 2.3.1). Besides, owing to the axiom of local
independence, the components are diagonal. We compared Gaussian mixtures and latent variable models in
terms of the number of parameters in section 2.7.3.

Hereafter we will assume that the joint density of the observed variables has the form of a Gaussian mixture,
whose parameters were estimated from a data sample in an unsupervised way. For a diagonal Gaussian
mixture, computing conditional distributions requires little more than crossing out rows and columns; for a
full-covariance Gaussian mixture, the conditional distribution requires inverting submatrices, but there is still
an analytic solution (section 7.12.1). Chapter 8 gives algorithms to find all the modes of a Gaussian mixture,
which will be our mechanism to obtain multiple candidate pointwise reconstructions.

7.5 Use of prior information to constrain multivalued mappings

So far we have exploited the redundancy between component variables of a given data point (via the conditional
distribution) to constrain the possible values of the missing variables, but this can still result in multivalued
mappings, as we have seen. In the absence of any additional information, the answer to the reconstruction
problem would be those multivalued mappings. We now turn to the case of using extra information about the
problem to constrain the possible values so that we obtain a unique global reconstruction of a data set.

First, we note that for some particular problems, knowledge of the measured values for a given data point
can entail a further constraint apart from the one imposed by the conditional distribution. For example, in
the problem of reconstruction of occluded speech (section 7.10.6), each point n corresponds to a frame of
occluded speech and its energy is known. This energy can be taken as the energy of the unoccluded speech
(our reconstruction goal) plus the energy of the corrupting signal (assuming additive corruption) and so it
gives an upper bound for the energy of the unoccluded speech (which is also lower bounded by 0). In general,
this type of constraint results in upper (A) and lower (B) bounds dependent on the present values for each
missing component at each point in the data set: And(tnP) ≤ tnd ≤ Bnd(tnP) for d ∈ M. A further type
of constraint that depends only on the present values at a given point is given below for mapping inversion
problems (see also section 7.11.1.1).

However, although for some points in the data set this kind of constraint may convert the multivariate
mapping into a univariate one (if for each missing component all candidate values but one fall out of the
bounds, or for mapping inversion problems only one candidate forward-maps well to the present values), in
general the mapping will continue to be multivalued.

7.5.1 Continuity constraints

A more common (and powerful) source of additional information comes from the redundancy between data
points and depends on the experimental conditions. The most usual such constraint is given by continuity
of the observed variables as a function of the experimental conditions, t = F(z): nearby values of z produce
nearby values of t. In this case, typically z is a physical variable such as the time or space, and then t is a
measured vector that depends continuously on it, resulting in a continuous trajectory or field, respectively.
Consider the specific case of onedimensional z = z (e.g. the time): continuity then implies that consecutive
points should be near each other according to a distance dependent on the problem, or “d(tn, tn+1) is small.”
To first order of approximation12 we can reexpress a continuity constraint as a constraint on the derivative of
the function F (assuming such derivative exists): for points measured at consecutive instants zn and zn+1

tn+1 − tn = F(zn+1)− F(zn) = ∆znF
′(zn) +O(∆z2

n)

where ∆zn
def
= zn+1− zn is assumed small. Thus, the condition that consecutive points be near each other can

be written as smallness of F′(z)∆z and we can derive specific forms of the continuity constraint by numerically
approximating the derivative by a finite difference scheme (Isaacson and Keller, 1966, chapter 6; Press et al.,

12In fact, by the mean-value theorem the relation is exact: F(zn+1)−F(zn) = ∆znF′(ξ) with ξ ∈ [zn, zn+1), but ξ is unknown.
Any useful definition of constraint must rely only on the available variables, measured at {zn}N

n=1.
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1992, section 5.7) in terms of the available measures at z1, z2, . . . , zN and then taking the (problem-dependent)
norm of ∆z times that scheme. For example, the forward difference scheme (accurate to first order)

F(zn+1)− F(zn)

∆zn

gives ‖tn+1 − tn‖ and the central difference scheme (accurate to second order, for equispaced data: zn+1 = zn
for all n)

F(zn+1)− F(zn−1)

2∆z

gives 1
2 ‖tn+1 − tn−1‖, which translate as “d(tn, tn+1) be small” and “ 1

2d(tn−1, tn+1) be small,” respectively.
A stronger constraint is smoothness: besides being continuous, the trajectory F(z) cannot have high-

curvature turns. Smoothness is usually defined through the second derivative and, again, by approximating
it with finite differences, we can express it as a function of the measured points. For example, the forward
difference scheme (again accurate to first order, for equispaced data)

F(zn+1)− 2F(zn) + F(zn−1)

∆z2

gives ‖tn+1 − 2tn + tn−1‖, which translates as “2d
(

tn,
tn−1+tn+1

2

)

be small” (compare with eq. 6.4). And in

general one can consider constraints of order p, of the form
∥
∥d

p
F

dzp

∥
∥

2
for some finite-difference approximation of

the pth derivative.
This strategy of defining constraints based on the norm of finite difference approximations of derivatives

can be readily generalised to multidimensional experimental conditions, although the resulting expressions

are correspondingly more complex. For example, for continuity we obtain
∥
∥∆zT∇F

∥
∥ =

∥
∥
∥
∑C
c=1 ∆zl

∂F

∂zl

∥
∥
∥ and

we approximate ∇F =
(
∂F

∂z1
, . . . , ∂F

∂zC

)
T . In two equispaced dimensions, a forward difference leads to the

expression ‖tn+1,m − tn,m + tn,m+1 − tn,m‖ (where we write tn,m instead of tn) and so on.
Another type of constraint that has been often found useful in inverse problems is a quadratic constraint

(tn − t0)
TQ(tn − t0), which can be interpreted physically as an energy (potential, kinematic) or work in

mechanical systems (e.g. in the acoustic-to-articulatory mapping, eq. (10.3)). In particular, ‖tn − t0‖2 cor-
responds to the potential energy of a Hooke oscillator with resting position at t = t0 and restoring constant
k = 1.

If instead of the L2-norm one applies the squared L2-norm to linear combinations of the data points, all
the constraints described in this section result in quadratic forms on the variables {tnd}N,Dn,d=1.

7.5.2 Choice of distance

The constraints just discussed rely on a distance defined in the observed space. This distance depends neces-
sarily on what the observed variables (physically) are, but typically will be the Euclidean or squared Euclidean
distance. In this case, it is important to account for the effects of variable scaling (change of units): a sepa-
ration of length 1 along one axis may mean a larger or shorter distance than a separation of length 1 along a
different axis. This is particularly true when the observed variables have different units (length, mass, time,
etc.) or different ranges. For example, in the acoustic-to-articulatory mapping application of chapter 10, some
variables are a complex function of the speech acoustics while other variables are geometric parameters of the
vocal tract. A convenient way to take into account the scale (or units) of each variable is to use a weighted

distance, e.g. one based on the weighted squared Euclidean norm ‖t‖22 =
∑D
d=1 wdt

2
d, where w1, . . . , wD are

positive weights. This is equivalent to rescaling each variable td by a weight
√
wd. The weights depend on the

(physical) nature of the observed variables and may or may not be related to the standard deviation or to the
local noise of the observed variables (see fig. 2.8), so sphering the data may still require the use of a weighted
distance.

Although the choice of distance should be dictated by the peculiarities of the reconstruction problem,
some distances may have a computational advantage. For example, for distances satisfying the property that
d(t1, t2) = d(u1,u2)+ d(v1,v2) if t = ( u

v ) then, for a constant missing data pattern (Mn =M ∀n) and using
a global continuity constraint (see section 7.6.1)

arg min
{

t
(n)

M(n)

}N

n=1

N−1∑

n=1

d(t(n), t(n+1)) = arg min
{

t
(n)

M(n)

}N

n=1

N−1∑

n=1

d
(

t
(n)

M(n) , t
(n+1)

M(n+1)

)
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since, for each n, d
(

t
(n)

P(n) , t
(n+1)

P(n+1)

)

is constant, independent of M(n). The L2 norm does not satisfy this, but

the square of the L2 norm does.
Also, the global constraint optimisation is independent of additive terms or positive multiplicative factors

in the distance because they preserve the order relation of the global constraint: if
∑N−1
n=1 d(t

(n+1), t(n)) <
∑N−1
n=1 d(t̂

(n+1), t̂(n)) then
∑N−1
n=1 k1d(t

(n+1), t(n)) + k2 <
∑N−1
n=1 k1d(t̂

(n+1), t̂(n)) + k2 if k1 > 0.

7.5.3 Constraint by forward mapping

In the particular case where the reconstruction problem is a mapping inversion problem, we can use the known
forward (direct) mapping as a further constraint. The forward mapping g maps the missing variables onto the
present ones: tP = g(tM), where P and M are independent of n (i.e., the same for all data points). Thus,
given the values of tP and given a candidate reconstruction (tP t̂M), such as for t̂M being one of the modes
of p(tM|tP), the distance (in observed space, as discussed earlier) between13 (tP t̂M) and (g(t̂M) t̂M) should
be as small as possible.

In the ideal case where the procedure that provides candidate reconstructions (in this thesis, the modes of
the conditional distribution) was perfect, this constraint would have no effect, since every t̂M would exactly
map onto tP . In reality, correct reconstructions will give small, but nonzero, differences between tP and
g(t̂M), while incorrect reconstructions (such as spurious modes, see section 7.9.1) will generally give a much
larger difference. Thus, the constraint by forward mapping can help to discard such incorrect reconstructions.
Such constraint should be combined with the continuity constraint in the way explained in section 7.6.1.

7.5.4 Continuity of the modal mapping revisited

In section 2.9.2 and fig. 2.14 we showed that a mapping defined as the mean (of a conditional distribution)
was always continuous, while a mapping defined as the global mode (or some other mode) was not necessarily
continuous. This can also be seen in the discontinuous way in which the gmode method switches between
branches in figures 9.8–9.9. We are now overcoming this problem by allowing a different mode to be picked at
different points so that a continuity constraint is satisfied (e.g. in fig. 2.14 we would follow for all values of t
either the mode near x = 0 or the mode near x = 1, avoiding the discontinuity at t = 1

2 ).

7.6 Minimisation of constraints

The constraints introduced in the previous section are by definition local and generally take the form of
the norm of a linear combination of a collection of neighbouring points around a given point. For example,
cn = d(tn, tn+1) as an approximation of

∥
∥∆zT∇F

∥
∥
zn

.

7.6.1 Definition of global constraint

Here we derive from such local constraints a global constraint that involves the whole data set. The reason
for doing this is to define an objective function depending on all missing variables {tn,Mn

}Nn=1 and then find
the combination of candidate pointwise reconstructions that minimises it. We will then have a single global
reconstruction that should be a good approximation to the complete data set. The role of the global constraint
in breaking the nonuniqueness of the reconstruction is analogous to that of Tikhonov regularising operators
or stabilisers (Tikhonov and Arsenin, 1977) for ill-posed problems (such as inverse problems, chapter 6).

The obvious way to obtain the global constraint is to sum the local constraints for every point in the
data set. As usual, we consider sequential data (one-dimensional experimental conditions). Then, if cn
is the local constraint at point n, we have14 C

(
{t(n)}Nn=1

) def
=
∑N
n=1 cn. For example, if we use conti-

nuity constraints based on forward differences, cn
def
= d(t(n), t(n+1)), and taking15 cN ≡ 0, then we have

C
(
{t(n)}Nn=1

)
=
∑N−1
n=1 d(t

(n), t(n+1)). This expression is also the length of the polygonal trajectory passing

13We write “the distance between (tP t̂M) and (g(t̂M) t̂M)” rather than “the distance between tP and g(t̂M)” to emphasise
that, strictly, the distance is defined in the observed space of variables t1, . . . , tD. However, in practice there is no difference.

14We write C as a function of {t(n)}N
n=1 rather than of {t(n)

M(n)}N
n=1 for simplicity. The reader should bear in mind that the

present variables {t(n)

P(n)}N
n=1 are fixed to the present values.

15Taking cN = d(t(N), t(1)) instead would account for a closed trajectory.
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Constraint type Local approximation
Global constraint C

in distance form
Global constraint C

in norm form

Continuity, C1 Forward difference
∑N−1
n=1 d(t

(n), t(n+1))
∑N−1
n=1

∥
∥t(n) − t(n+1)

∥
∥

Continuity, C2 Central difference 1
2

∑N−1
n=2 d(t

(n−1), t(n+1)) 1
2

∑N−1
n=2

∥
∥t(n+1) − t(n−1)

∥
∥

Smoothness, S1 Forward difference 2
∑N−1
n=2 d

(

t(n), t(n+1)+t(n−1)

2

)
∑N−1
n=2

∥
∥t(n+1) − 2t(n) + t(n−1)

∥
∥

Quadratic, Q1

∑N
n=1 (tn − t0)

TQ(tn − t0)

Table 7.2: Specific form of global continuity, smoothness and quadratic constraints C
(
{t(n)}Nn=1

)
. The con-

tinuity and smoothness constraints are obtained for different finite difference approximations of the first and
second derivatives of the experimental conditions function F. d and ‖·‖ represent a distance and a norm in
observed space, respectively; Q and t0 are constant.
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Figure 7.7: Multiple pointwise reconstruction and continuity constraints from a physical point of view. The
left and centre drawings show a one-dimensional case of high and low spring energy, respectively, for the given
trajectory fragment. The intersections of the horizontal (abscissa missing) and vertical (ordinate missing) lines
with the underlying trajectory mark the locations of the multiple pointwise reconstructions. The right drawing
shows a possible setup for two-dimensional constraints.

through t(1), . . . , t(N), which is not surprising if we note that, in the limit ∆z → 0, cn → c(z) is the elementary
arc length traced by F from z to z + dz and so

∫ t(N)

t(1)
c(z) =

∫ z(N)

z(1)
‖∇F(z)dz‖ =

∫ z(N)

z(1)
‖∇F(z)‖ dz

is exactly the arc length between the two end points. For a specific approximation of ‖∇F(z) dz‖ applied at N
points we will obtain a specific approximation of this arc length. Table 7.2 summarises some choices of global
constraints. For the rest of this thesis we will mainly deal of the case of C1.

The combination of the multiple pointwise reconstruction and the continuity constraint can be seen from
a physical point of view as placing a chain of springs so that every joint between two springs must be located
on some specific points (the modes of the predictive distribution), as depicted in fig. 7.7. The tensions of the
springs would achieve a state of minimal energy of the whole chain constrained to pass through the prescribed
locations.

A probabilistic view of the constrained reconstruction problem is given in section 7.7.
For mapping inversion problems, we likewise derive a global forward mapping constraint by summing the

terms as defined in section 7.5.3 for every point in the data set:

F

(

{t(n)}Nn=1

)
def
=

N∑

n=1

d

((

t
(n)
P

t
(n)
M

)

,

(

g(t
(n)
M )

t
(n)
M

))

(7.1)
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Figure 7.8: Constraint minimisation as a shortest path problem in a layered graph. The nodes in layer n

in the graph are the candidate pointwise reconstructions of t
(n)

M(n) (the modes of the conditional distribution
p(tn,M(n) |tn,Pn

)). There are N layers and a single global reconstruction of the data set defines a left-right (or
right-left) path passing through all layers exactly once (one such path is highlighted). By imagining fictitious
end nodes B and E fully connected by zero-cost links to the end layers 1 andN , respectively, we can reformulate
the problem as that of finding the shortest path between B and E. Each edge in the graph is undirected and
has an associated cost given by the continuity or smoothness constraint; in the simplest case where we use the
curve length as global constraint, the edge cost is the distance in observed space of the reconstructed points.
There may also be a cost associated with each node for mapping inversion problems of the form explained in
section 7.5.3.

and then combining it linearly with the continuity or smoothness constraint C :

λC

(

{t(n)}Nn=1

)

+ F

(

{t(n)}Nn=1

)

. (7.2)

Potentially, both C and F may contradict each other at some points, so the weight λ may have to be chosen
carefully (the same problem exists in codebook-based approaches to the acoustic-to-articulatory mapping
problem, section 10.1.3). Note the analogy with a regularisation formula that combines model fitness with
model complexity, such as eq. (2.46) or (6.5).

7.6.2 Constraint minimisation problem

Thus we arrive at the following minimisation problem:

Reconstruct the data set as arg min
{tn,Mn}N

n=1∈S
C
(
{tn,Mn

}Nn=1|{tn,Pn
}Nn=1

)

where the search space S is the Cartesian product of the N sets of candidate reconstructions for each tn,Mn

(i.e., each set contains the modes of p(tn,Mn
|tn,Pn

)). This is a combinatorial optimisation problem that can
be expressed as finding the shortest path in a layered graph, as represented in figure 7.8. Calling νn ≥ 1 the
number of candidate pointwise reconstructions at point n, the total number of paths is

∏N
n=1 νn, which in an

average case is of exponential order in N . Fortunately, there are efficient algorithms both for global (exact)
and local (approximate) minimisation.

Figure 9.6 shows a demonstration of the use of the constraints with the multiple pointwise reconstruction
given by the modes.

7.6.3 Global minimisation: dynamic programming

The problem of finding the shortest path in a layered graph is a particular case of that of finding the shortest
path in an acyclic graph and can be conveniently solved by dynamic programming (Bellman, 1957; Bertsekas,
1987). We can apply dynamic programming because for this problem the following principle of optimality
for a decision policy holds: regardless of the policy adopted at previous stages, the remaining decisions must
constitute an optimal policy, where here a stage is a layer in the graph and a policy is a sequence of decisions
(i.e., a sequence of chosen nodes). This leads us to an algorithm where the decision of what link to choose is
taken locally (at each layer n), but νn paths must be kept. Figure 7.9 gives the forward recursion version of the
dynamic programming algorithm (starting from layer 1) for a global continuity constraint C1

(
{t(n)}Nn=1

)
=

∑N−1
n=1 d(t

(n), t(n+1)). Due to the symmetry of the problem, a backward algorithm (starting from layer N)
is equivalent. We choose the forward version because it follows the direction of increasing time for sequence
reconstruction. The algorithm requires the following definitions:
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initialise
for i = 1, . . . , ν1 For each node of layer 1

A1,i ← [a1,i] Path

l1,i ← 0 Path length

end
for n = 2, . . . , N For each layer

for i = 1, . . . , νn For each node of layer n

j∗ ← arg minj=1,...,νn−1
{d(an−1,j ,an,i) + ln−1,j}

ln,i ← d(an−1,j∗ ,an,i) + ln−1,j∗

An,i ← [An−1,j∗ ; [an,i]]
end

end
i∗ ← arg mini=1,...,νN

lN,i
return AN,i∗ Shortest path

Figure 7.9: Dynamic programming algorithm for global constraint minimisation. Sequences of nodes are
written in square brackets and [A;B] means the concatenation of sequences A and B.

{an,i}νn
i=1 The set of candidate pointwise reconstructions for t(n); thus an,i is node i of layer n in

the graph.
An,i Minimal length path from layer 1 to node i of layer n, for i = 1, . . . , νn at layer n. Thus,

An,i = [a1,•;a2,•; . . . ;an,i] where • indicates some node.

ln,i Total length of An,i, i.e., ln,i
def
=
∑n−1
m=1 d (An,i(m),An,i(m+ 1)), where An,i(m) is the

mth element of the sequence An,i.

There may be more than one minimal length path from layer 1 to node i of layer n, i.e., the arg minj=1,...,νn−1

operation may return several values of j, and so it may be necessary to keep more than one path per node.
However, such ties are unlikely in practical cases involving real numbers, so we ignore this possibility in the
practical implementation of the algorithm—all we lose is the remote possibility of having more than one
optimal path of exactly the same length (but see section 7.9.2).

The dynamic programming algorithm examines each link in the graph (i.e., each pair of nodes in adjacent
layers) only once, thus achieving its mission very efficiently.

7.6.4 Local minimisation: greedy algorithm

The dynamic programming algorithm is guaranteed to find a path of globally minimal cost, but it needs to
keep νn paths at layer n, which can be costly if the average number of candidates per layer ν is high (in
the acoustic-to-articulatory mapping problem of chapter 10, νn can be several hundreds). For this reason, we
give in fig. 7.10 a suboptimal algorithm that needs only keep one path at all times; it is also more intuitive
than dynamic programming, so in fact one might think of it first to solve the constraint optimisation. The
algorithm is a greedy version of dynamic programming: at layer n, it simply selects the minimal cost edge
(i.e., the closest node). The starting point can be any node in any layer (the first layer, say); to improve the
chances of getting a good path, it is better to start in a layer having very few nodes (hopefully just one). If
such layer is an intermediate one (1 < n0 < N), the algorithm greedily proceeds leftwards to 1 and rightwards
to N , since all edges are undirected.

We anticipate that this algorithm is not an option for two reasons16. First and foremost it usually leads to
poor solutions, not just in terms of a high value of the constraint, but also as yielding a high reconstruction
error—which is our ultimate criterion. Such solutions are sensitive to the choice of starting layer n0. Second,

16One might also try to use a divide-and-conquer algorithm along the lines of: find the layer n0 with fewest nodes; for each
node in it, solve the left (n < n0) and right (n > n0) subproblems; join the solutions; pick the best solution of all nodes in
layer n0. This does find a global minimal cost path, but with an average computational complexity of O

(
2blog2 Ncνblog2 Nc+1

)

it is no opponent for dynamic programming in any practical situation where ν is significantly more than 1. Divide-and-conquer
algorithms usually perform very well; the reason why this particular one does not is that some of the edges are examined more
than once: in the divide-and-conquer cutoff point (say, the middle layer), every node is used only once; but the left and right
subproblems “repeat themselves” (or part of themselves) for every node in that cutoff layer.
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initialise

n0 ← one of

{

1

arg minn=1,...,N νn
Starting layer

i ← any node in layer n0 First node

A(n0) ← [an0,i] Path

for n = n0 − 1, . . . , 1 Left part of the path (only if n0 > 1)

j∗ ← arg minj=1,...,νn
{d(an,j ,A(n+ 1))}

A(n) ← an,j∗

end
for n = n0 + 1, . . . , N Right part of the path (only if n0 < N)

j∗ ← arg minj=1,...,νn
{d(A(n− 1),an,j)}

A(n) ← an,j∗

end
return A

Figure 7.10: Greedy algorithm for global constraint minimisation.

its computational complexity is hardly better than that of dynamic programming. More details are given in
section 7.8 and in the experiments of chapters 9 and 10.

7.7 Probabilistic interpretation

In this section we adopt the shorthand notation tnm
def
= {t(m), t(m+1), . . . , t(n)}, commonly used in the hidden

Markov model literature to write vector sequences.
The following theorem results from decomposing p(tN1 ) by conditional independence assumptions and by

assuming that p(t(n)) is the same for all values of n and for all modes.

Theorem 7.7.1. Under a bidirectional Markovian assumption, the following two optimisation problems are
equivalent:

min
{t(n)}N

n=1

N∑

n=1

∥
∥
∥t(n+1) − t(n)

∥
∥
∥

2

and max
{t(n)}N

n=1

p(tN1 )

where:

• ‖u‖2 def
=
∑D
d=1 wdu

2
d = uTWu is a weighted squared Euclidean distance of positive semidefinite matrix

W
def
= diag (w1, . . . , wD).

• t(n+1)|t(n) = τ ∼ N
(
τ , (2W)−1

)
, i.e., normal of mean τ and covariance matrix (2W)−1.

Proof.

p(tN1 )

p(t(1))
=

N−1∏

n=1

p(t(n+1)|tn1 )
(a)
=

N−1∏

n=1

p(t(n+1)|t(n))

(b)
=

N−1∏

n=1

∣
∣2π(2W)−1

∣
∣
− 1

2 e−
1
2 (t(n+1)−t(n))T 2W(t(n+1)−t(n))

= Ce−
∑N−1

n=1 (t(n+1)−t(n))T W(t(n+1)−t(n)) = Ce−
∑N−1

n=1 ‖t(n+1)−t(n)‖2

⇒ max
p(tN1 )

p(t(1))
= min

N−1∑

n=1

∥
∥
∥t(n+1) − t(n)

∥
∥
∥

2

where we have applied the Markov assumption in (a) and the normality assumption in (b). Since
∥
∥t(n+1) − t(n)

∥
∥2 =

∥
∥t(n) − t(n+1)

∥
∥2, the result also holds for the reversed sequence and so p(tN1 )/p(t(1)) =
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Figure 7.11: Combination of probabilistic constraint and joint pointwise density. Assuming that point t(n) is
known, the likely areas for the next point are given by the product (AND operation) of the constraint density
pC(u|t(n)) and the joint density pJ(u). In the left graph, the constraint density is assumed spherical normal
centred in t(n) =

(−1
−3

)
and with standard deviation σ = 2. In the centre graph, the joint density is the same

as the one used for the toy model of chapter 9. All graphs are contour plots of the corresponding density in
the space of u1 and u2 and both variables u1 and u2 are assumed to be missing.

p(tN1 )/p(t(N)). Likewise, if we split the sequence at an arbitrary step 1 < k < N we have

N−1∏

n=1

p(t(n+1)|t(n)) =

k−1∏

n=1

p(t(n+1)|t(n))

︸ ︷︷ ︸

p(tk
1 )

p(t(1))
=

p(tk
1 )

p(t(k))

N−1∏

n=k

p(t(n+1)|t(n))

︸ ︷︷ ︸

p(tN
k

)

p(t(k))
=

p(tN
k

)

p(t(N))

and so p(t(1)) = p(t(k)) = p(t(N)). Therefore p(t(n)) = constant for n = 1, . . . , N and max p(tN1 )/p(t(1)) =
max p(tN1 ).

The set in which the variables over which the max- or minimisation takes place, {t(n)}Nn=1, is irrelevant for
the theorem, although in our case this is the set of multiple pointwise reconstructions. It is also independent of
the method that was used to generate such set, thus being valid for vector quantisation, committees of neural
networks, etc.

This result allows to generalise the continuity constraint in a probabilistic way by defining different dis-
tributions for p(t(n+1)|t(n)) other than diagonal normal or by defining different conditional independence
assumptions other than the Markov assumption. In fact, a smoothness-based constraint will be equivalent to
a second-order Markov assumption.

7.7.1 Distributions over trajectories

The previous derivation is trivial: weighted Euclidean distances are replaced with Gaussian distributions
and constraints with Markov assumptions. It would be more useful to define a grand joint density function
pG({t(n)}Nn=1) encompassing both the density model for a single point and the continuity constraints that link
neighbouring points. Such a grand density would then be a distribution over trajectories (or data sets) rather
than over points, and choosing a representative point of it (in the sense of section 7.3) would give us a likely
reconstruction of the trajectory without having to explicitly minimise a constraint over the pointwise candidate
reconstructions. Thus, it would attack the problem of global reconstruction directly, rather than splitting it
into a set of pointwise reconstruction problems followed by a constraint optimisation. From a generative point
of view, the grand distribution pG would be a sequence generative model while the joint density model pJ

would be a pointwise generative model.
In principle, it would be conceivable that this grand distribution be unimodal since there should be less

ambiguity in the global reconstruction than in the local ones (except in pathological cases, as in fig. 7.12); in
this case no optimisation would be required at all, since we could take the mean of the grand distribution as
reconstructed trajectory.
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The grand density should be constructed from the pointwise joint density for each point, p(t(n)), and
from the constraints. That is, the problem is to find a grand density pG with marginals p(t(1)), . . . , p(t(N))
(with the form of the individual density model) and conditionals p(t(2)|t(1)), . . . , p(t(N)|t(N−1)) (as given by
the continuity constraints). However, it does not seem possible to find a density verifying that; instead, we
offer a heuristic combination in probabilistic form of both terms. Given a point t(n), how likely is a point u
to be the next point, t(n+1)? On the one hand, the further u is from t(n), the less likely. We express this by a
probabilistic continuity constraint as earlier: pC(u|t(n)) = N (t(n), σ2I). The parameter σ would be related to
the speed at which the curve t = F(z) is traversed, and more generally we could take an arbitrary covariance
matrix. On the other hand, the point u itself must lie in likely areas of the observed space. We express this by
the joint density model: pJ(u) = p(u). Now we combine both conditions as an AND operation, i.e., we take
their product. Figure 7.11 shows an example of pC(u|t(n))pJ(u). Finally, we combine such products again as
an AND for the whole sequence, taking into account that either the first or the last point is not constrained
by its neighbour:

pJ(t
(1))

N−1∏

n=1

pC(t(n+1)|t(n))pJ(t
(n+1)) =

N∏

n=1

pJ(t
(n))

N−1∏

n=1

pC(t(n+1)|t(n)). (7.3)

We call this combination “heuristic” because the result is not a density function (although it could be nor-
malised) and it does not satisfy our earlier desideratum. That is, its marginals are not the originally specified
p(t(1)), . . . , p(t(N)) and its conditionals are not the originally specified p(t(2)|t(1)), . . . , p(t(N)|t(N−1)). Now,
even if this function was unimodal, we would not be able to compute its mean analytically as speculated earlier,
so numerical optimisation is necessary, e.g. by gradient ascent17. If equivalently, we maximise its logarithm,
we find

N∑

n=1

ln pJ(t
(n))− 1

2σ2

N−1∑

n=1

∥
∥
∥t(n+1) − t(n)

∥
∥
∥

2

(7.4)

which has the standard form18 of a fitness term (on the left) and a constraint term (on the right) with weight
1/2σ2. We can obtain the method we have proposed in this chapter as a limit case of eq. (7.4): if pJ(t

(n)) is

taken as a sum of deltas centred at the modes of pJ

(

t
(n)

M(n) |t(n)

P(n)

)

, then the search space is restricted to those

modes and operates only on the right side term (our continuity constraint)19.
If, as mentioned earlier, the function of eq. (7.4) was unimodal, we would be free from local-maxima prob-

lems; but the truth is that it may have many local maxima where point t(n) tends to a mode of pJ

(

t
(n)

M(n) |t(n)

P(n)

)

for all n; this will certainly be the case if such conditional distributions are very sharply peaked. In our method,
the dynamic programming search is guaranteed to find the global optimum. On the other hand, an objective
function over trajectories opens the door for multiple global reconstruction as defined in section 7.2.6.

Another possible disadvantage of this method is that the candidate pointwise reconstructions (the modes)
are weighted by their respective density values, while in our method all modes are equally weighted. This
may bias the reconstruction towards highly likely pointwise reconstructions at the expense of the continuity
constraint. Finally, we are also left with the choice of the tradeoff parameter σ. An implementation and
evaluation of this method is left for future research.

Using eq. (7.3) we can generate sequences as follows: generate a point t(1) from pJ(t); then generate a
point t(1) from the normalised version of pC(t(2)|t(1))pJ(t

(2)); and so on. In fact, this results in a random walk
(the term pC(t(n+1)|t(n))) constrained to the data manifold (the term pJ(t

(n+1))). The weighted distance (i.e.,
the covariance matrix) of the continuity constraint determines the “sampling period” of the sequence.

7.8 Computational complexity

Reconstructing a data set {t(n)}Nn=1 of N vectors requires two separate computations: (1) implicitly construct-
ing the layered graph of fig. 7.8, i.e., computing the multiple pointwise reconstructions of each point; (2) finding

17Remember that the optimisation takes place only over the missing variables {t(n)

M(n)}N
n=1, since the present ones are frozen.

This also precludes the local optimum where t(1) = · · · = t(N) (a zero-length trajectory) that would occur in the (practically
uninteresting) situation where there are no present variables at all.

18Compare it with the elastic net objective function of eq. (4.3): our t(n) would be a net knot µm, but there are no “cities”.
19Strictly, this requires to find the global maximum of eq. (7.4), since for the delta limit any trajectory where every point t(n)

is a mode represents a local maximum.
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the shortest path on the graph, i.e., minimising the constraint on the multiple pointwise reconstructions search
space. We analyse them separately20.

There is also the cost of estimating the joint density model in observed space, but since this is done offline
with a training set and the resulting density can be reused for many different data sets, we do not consider it
here.

7.8.1 Computing the multiple pointwise reconstructions

If Rn is defined as the cost of computing all pointwise candidate reconstructions of point n (all the modes

of the conditional distribution) and R
def
= 1

N

∑N
n=1Rn as the average such cost, a simple average estimate

would be O(NR). Estimating Rn is difficult, though. For the algorithms of chapter 8 (where the conditional
distribution is a Gaussian mixture of M components) finding all the modes at point n requires M̂n iterative
searches in D-dimensional space. M̂n is the effective number of components of the mixture (the number of
components whose mixing proportion is higher than a user-defined threshold used to discard spurious modes):
it will usually be a small fraction of M , depending in a complex way on the nature of the data manifold, the
amount of missing data and the exact missing data pattern, as well as on the threshold. It is thus unknown.
The cost of a search depends on the (also unknown) number of iterations required, each of which is proportional
to M̂n and to D, D2 or D3 (depending on whether spherical, diagonal or full covariance matrices are used and
whether gradient or quadratic optimisation is used). The accuracy of the modes obtained can also be regulated
by further user parameters. Consequently, all we can say is that the order of the average cost of computing

all multiple pointwise reconstructions is proportional to NDαM̂2, where 1 ≤ α ≤ 3 and M̂
def
=
√

1
N

∑N
n=1 M̂

2
n

is a “small fraction” of M .

7.8.2 Minimising the constraint

Define the average number of candidate pointwise reconstructions as ν
def
= 1

N

∑N
n=1 νn (for unbounded horizon

problems, described in section 7.9.3, N can be taken as some large enough number).

Dynamic programming From the algorithm of fig. 7.9 we see that every link between layer n − 1 and
layer n is used once (loop on i = 1, . . . , νn and minimisation on j = 1, . . . , νn−1). That gives νn−1νn links

which, summed for all layers (loop on n = 2, . . . , N) gives
∑N
n=1 νn−1νn, indeed the total number of links in

the graph. For an average case where every layer has ν ≥ 1 nodes we get a complexity of O(Nν2).

Greedy algorithm From the algorithm of fig. 7.10 we see that not every link between layer n−1 and layer n is
used, only νn (or νn−1 if going backwards) of them are. So the number of links used is

∑n0−1
n=1 νn+

∑N
n=n0+1 νn =

∑N
n=1 νn − νn0

if the starting layer n0 is chosen at random. If we select as starting layer the one with fewest
nodes, an additional O(N) term must be added. For an average case where every layer has ν ≥ 1 nodes we
get a complexity of O(Nν). This is ν times faster than the dynamic programming algorithm, which might be
considerable for problems where many pointwise reconstructions are possible—perhaps a data set with lots of
missing data.

7.8.3 Conclusion

Since α ≥ 1 and ν ≤ M̂ , and usually ν is a fraction of M̂ (since Gaussian mixture components coalesce), the
dominant computational complexity term is that of computing the multiple pointwise reconstructions, as we
confirmed experimentally. We also found that a crucial factor is the amount of missing data (as happens with
EM algorithms for maximum likelihood): the higher it is, the higher ν becomes and the longer the algorithm
takes.

Thus, reconstructing a large data set with lots of missing data can take long due to the exhaustive mode
search, which may be a problem for real-time reconstruction. As as indication for a hard, real-world problem,
for the mappings between electropalatographic and acoustic speech features of chapter 10, reconstructing an
utterance a few seconds long (for which typically N ≈ 400 and D ≈ 75) takes from some seconds (EPG to
acoustic, 16% data missing) to 10 minutes (acoustic to EPG, 84% data missing) in our Matlab implementation.
Section 10.2.4 gives additional execution times. It is possible to accelerate the mode search by:

20Some familiarity with the algorithms of chapter 8 is required, especially in section 7.8.1.
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• Raising the threshold parameter θ of section 8.2.3 to discard low-probability mixture components in
the conditional distribution. Doing this, we obtained up to 10× speedup with up to 17% increase in
reconstruction error.

• Reducing the number of mixture components (either by simply using fewer components or by using
full-covariance mixtures21) at the cost of a less accurate density model.

Considerable speedups should also be gained by coding the method more efficiently (or by waiting for a couple
of years for a faster CPU generation!).

7.9 Discussion

In this chapter, we defined the problem of missing data reconstruction, which includes multivariate regres-
sion, mapping approximation and mapping inversion as particular cases. We defined single/multiple point-
wise/global reconstruction and constraints based on “experimental conditions” variables. We then proposed
an algorithm for single global reconstruction based on multiple pointwise reconstruction and constraint min-
imisation: multiple pointwise reconstruction was achieved as the modes of the conditional distribution of
the missing variables given the present ones for the point being reconstructed; constraint minimisation was
achieved by dynamic programming. For the joint probability model of the observed variables, we chose to use
a latent variable model (GTM) which adopted the form of a Gaussian mixture; exhaustive mode finding in
Gaussian mixtures was achieved with the algorithms described in chapter 8; and the constraint was defined as
(temporal) continuity via the trajectory length in the (weighted) Euclidean distance sense.

From a probabilistic point of view, the joint density model can be used as a pointwise generative model,
while its product with the continuity constraint (viewed as a conditional probability of the new point given
the current one), can be used as a sequence generative model, where the sequences are random walks along
the data manifold.

Computationally, the bottleneck at reconstruction time is the exhaustive mode finding in the conditional
distribution (the dynamic programming search being very fast in comparison), particularly for high amounts
of missing data. This may limit the method in some real-time applications.

This section discusses additional issues. Chapters 9 and 10 report experimental results.

7.9.1 Choice of density model: robustness and smoothness

Robustness is intuitively defined as insensitivity to small deviations from the assumptions (Huber, 1981).
An important aspect of robustness concerns the effect of outliers in the training set on the estimated density
model. Classical statistical procedures, including our latent variable models, are typically based on assumptions
of normality and thus are not robust. One possibility of difficult implementation is the use of long-tailed
distributions, as mentioned in section 2.3.1. Peel and McLachlan (2000) (also in McLachlan and Peel, 2000,
chapter 7) have proposed the use of mixtures of Student-t distributions (trained with an ECM algorithm).
This would require a new mode-finding algorithm, since that of chapter 8 is specific for Gaussian mixtures.

The modes are a key aspect of our approach. Unfortunately, the mode is not a robust statistic of a
distribution since small variations in the distribution shape can have large effects on the location and number
of modes. This is related to the smoothness of the density model and is demonstrated in section 9.2.3: with
finite mixtures of localised functions, spurious modes can appear as ripple superimposed on a smoothly-varying
function. These spurious modes have the following characteristics:

• They can happen in regions where the mixture components are sparsely distributed and have little
interaction, as in the boundaries of the density model, but not only there.

• They can happen whether the components have independent or shared covariance parameters, and
whether the covariance parameters are isotropic, diagonal or full.

• Their probability value can be as high as that of true modes, which rules out the use of a rejection
threshold to filter the spurious ones out (see section 8.2.3).

• They are not due to local maxima or singularities of the log-likelihood surface.

21Which, having more parameters, have to keep the number of components down to avoid overfitting.
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Such spurious modes can lead the dynamic programming search to a wrong trajectory and a large reconstruction
error, although we observed this only in regression problems, not in general missing data patterns. For
regression problems, specially mapping inversion, it should be possible to prevent spurious modes from forming
part of the reconstructed sequence by applying a forward mapping constraint (section 7.5.3 and equations (7.1)–
(7.2)), where the forward mapping may be known exactly or derived by a mapping approximator. The reason
is that spurious modes, by definition, will give a high value for constraint F in eq. (7.1).

To prevent spurious modes from entering the constraint minimisation at all, possible solutions are:

• To globally smooth the density model at estimation time. This may be done in different ways:

– By regularisation, adding a term to the log-likelihood to penalise low variance parameters, thus
penalising nonsmooth models. For example, a zero-mean Gaussian prior on σ−1 for GTM. GTM
includes a regularisation parameter for the mapping f (section 2.6.5), but this does not guarantee
a smooth density model. Perhaps a regularisation to force f to be unit-speed (section 2.8.3) would
work better, by uniformly separating the mixture components in observed space. The extension
of GTM to a manifold-aligned noise model (section 2.6.5.1) may also result in a smoother (full-
covariance) Gaussian mixture.

However, the cost of smoother density models is to increase the width of the error bars of each mode
location (if used) and to incur higher errors where the data manifold bends itself (see section 9.2.5).

Several methods have been proposed to obtain a sparse Gaussian mixture, i.e., one that represents
well the data with a small number of components22. For example, Roberts et al. (1998) and
Ormoneit and Tresp (1998) use Bayesian regularisation to penalise overcomplex models and so
obtain an optimal number of components. Weston et al. (1999) and Vapnik and Mukherjee (2000)
use support vector machines with a Gaussian kernel for density estimation, which results in a sparse
Gaussian mixture due to the property of support vector machines of selecting only a few support
vectors. Ueda et al. (2000) propose an algorithm that splits and merges components according
to a criterion embedded in the EM algorithm. The algorithm of Brand (1999) uses a maximum-
a-posteriori (MAP) estimation where the likelihood is maximised and the entropy of the mixing
proportions is minimised, and at the same time that it obtains the optimal parameters it removes
components. However, it is likely that, in their efforts to reduce the number of components, these
methods will result in nonsmooth models. Ormoneit and Tresp (1998) also propose an approach
based on a ensemble of Gaussian mixtures, each trained differently to disagree from the others, with
the final density model being the average of the ensemble members (see section 7.11.2.1); this might
produce smoother models.

Finally, if the density model is obtained by kernel estimation (Silverman, 1986), it is possible to
either oversmooth the model (at the cost of a worse fit) or to use different values for the smoothing
parameter in different areas of the space (adaptive kernel estimation). In both cases, the disadvan-
tage is that the number of kernels is very large, equal to the number of training points.

– By increasing the number of components. In latent variable models that sample the latent space
prior distribution (e.g. GTM), the mixture centroids in data space (associated with the latent
space samples) are not trainable parameters. We can then improve the density model at a higher
computational cost with no generalisation loss by increasing the number of mixture components.
The number of components required will depend exponentially on the intrinsic dimensionality of the
data (ideally coincident with that of the latent space, L) and not on the observed one, D. However,
good coverage in latent space does not guarantee good coverage in data space because the amount
by which the latent space is stretched when mapped onto the data space (the local magnification
factor, defined in section 2.8.3) may separate the component centres.

• To locally smooth the density model at mode-finding time, i.e., to smooth the conditional distribution.

• To look for bumps (regions of high probability mass) instead of modes. This is discussed in section 7.9.9.

If smoothing the density model, either globally or locally, the difficulty is just how much to smooth so that
important modes are not removed.

Outliers at reconstruction time can affect the dynamic programming search when they result in violations
of the constraint, particularly discontinuities. This is discussed in section 7.9.6.

22The word “sparse” here is used purely to mean “few components” and is not related to the concept of distribution sparseness
of section 7.3.1. Besides, the number of components of a Gaussian mixture does not determine the sparseness of the distribution;
for example, a Gaussian mixture with many narrow, separated components will have a higher distribution sparseness than a
single, broad Gaussian.
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Figure 7.12: Several global reconstructions with the same length. The reconstruction problem shown is the
inversion of the forward mapping t2 = g(t1) at several given values of t2 in the interval [1, 2] in the following
sequence: 1, 2, 1, 2 (for simplicity, but more realistically there would be intermediate values between 1 and 2).
A possible reconstruction is the trajectory ABCD = [( 1

1 ) , ( 2
2 ) , ( 3

1 ) , ( 4
2 )], but not the only one. The table shows

several others (and there are more), all of which have the same length (value of C1) but different smoothness
(value of S1). If the missing values were 0, 1, 2, 1, 2, 3 then the minimal-length reconstructed trajectory would
be unique: OABCDE.

7.9.2 Choice of constraints

In principle, constraints based on other criteria (e.g. smoothness instead of continuity) may result in signif-
icantly different data set reconstructions. Figure 7.12 shows an example where a segment of a trajectory
ABC admits several reconstructions that have the same length. Those reconstructions are indistinguishable
when using continuity constraint C1, but the smoothness constraint does distinguish between some of them,
penalising every sharp turn. However, the situation where several global reconstructions tie in the constraint
value is unlikely in practice because the following factors would break the ambiguity:

• An imperfect density model derived from a noisy sample.

• An arbitrary pattern of missing data or the presence of one-to-one relationships.

• A longer trajectory segment, e.g. OABCDE.

• The use of finite-precision computer arithmetic.

Therefore, it is not clear how different the effect would be without actually performing simulations, since the
degree of discretisation (given by the sampling of the experimental condition variables) is likely to have some
influence on the result.

Another important point is that applying a given type of constraint to different coordinate systems may lead
to qualitatively different kinds of behaviour. Jordan (1990)23 gives the example of a pianist playing a lengthy
ascending scale: crossing the fingers leads to faster transitions between piano keys. That is, a nonsmooth
trajectory in actuator24 space entails a high cost (the difficulty of crossing the fingers) but it is offset by the
gain in the speed of transitions in the work space (from note to note). Section 10.2.3 shows some results with
the use of weighted Euclidean distances.

It would be interesting to test the method with multidimensional constraints (when the experimental
conditions are multidimensional). Section 7.10 discusses a possible example of this. An important problem
with constraints of dimension D higher than one is the curse of the dimensionality: the complexity of the
multidimensional dynamic programming algorithm grows exponentially with D (specifically: O(N1N2 . . . ND)
times a term for ν); e.g. see Durbin et al. (1998, pp. 141–143), who consider it for multiple sequence alignment
methods in biological sequence analysis. Thus, global minimisation will not be feasible except for very small
dimensions D. Further research is necessary to develop efficient heuristic approximations to multidimensional
dynamic programming.

23I am grateful to Michael Jordan for sending me a hardcopy of this paper.
24These terms are explained in the robot arm problem of section 9.3.1.
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7.9.3 Unbounded horizon problems

The dynamic programming problem considered in section 7.6.3 is finite (N is finite), deterministic (once a
decision is taken, the transition is deterministic) and discrete (the number of nodes νn at each layer n is finite).
Here we consider the case where N is infinite. There are practical reconstruction problems where the data
set to be reconstructed is infinite or long enough that the user periodically demands partial reconstruction;
for example, in continuous speech with missing data, the user should receive reconstructed speech in real
time, which requires that past speech be frozen once reconstructed, passed to the user and discarded for
reconstruction of future speech. In operations research problems such as inventory control this is called an
unbounded horizon problem and approaches to it usually assume stationarity (Wagner, 1975, chapters 11–12
and 17–18)—which we have assumed throughout by using a density model independent of n.

The greedy algorithm, if started from point n0 = 1, requires no modification for unbounded horizon
problems, but we do not recommend it for the reasons of section 7.9.4. As for the dynamic programming
algorithm, there are two simple approaches:

• Upon arrival of point t(n), which has some missing values, compute all νn possible reconstructed
trajectories—each one having as end node a different candidate reconstruction for t(n). This can be
done incrementally from the νn−1 trajectories of the previous step in O(ν2) average time and the cur-
rent best trajectory can be provided if desired. This method remains exact, i.e., it still finds the global
optimum up to point n. Its drawback is the storage cost of, on the average, ν D-dimensional trajectories
of length N that grows indefinitely.

• Split the data stream into chunks (perhaps coinciding with user requests) and reconstruct them separately
by dynamic programming. This has the risk of (1) getting discontinuities at the splitting points and (2)
getting a suboptimal reconstruction of the whole stream by concatenating the reconstructed chunks. It
has the advantage of keeping on the average ν D-dimensional trajectories of length less than or equal
to the chunk length, rather than equal to N . It should be possible to improve the average performance
of this suboptimal approach by using heuristic rules. For data-rich applications with limited storage
capability this is the way to go.

Both approaches may be combined if at the splitting points there is a unique pointwise reconstruction (νn = 1),
since effectively this splits the layered graph into separate subgraphs (e.g. at node n = 4 in fig 7.8). That is,
whenever νn = 1 the reconstructed trajectory for points earlier than n can be frozen (to its optimal value) and
the dynamic programming algorithm “restarted” from scratch, saving computer time and storage. Depending
on the particular application and on the amount of missing data such zero-uncertainty points may be common;
in speech, one likely example are silent frames, which are easily detected by thresholding the frame energy.

7.9.4 Dynamic programming algorithm versus greedy algorithm

The greedy algorithm has a tendency to obtain reconstructed trajectories that retrace themselves at turning
points, as the “movie” in fig. 7.13 shows using the example of fig. 7.12. This behaviour is due to two reasons:
at the turning point (B), one of its two neighbouring points must be the closest25: either the reconstructed
point to the left (L) or the one to the right (R); and the greedy algorithm cannot undo a decision. While in
the examples of figures 7.12 and 7.13 there is ambiguity in short segments of trajectory with respect to C1, for
longer segments the greedy algorithm results in suboptimal reconstructions with retracing and abrupt jumps,
as in figure 9.10 (see also the reconstruction error in table 9.1). For multidimensional experimental conditions,
it is not clear what kind of retracing behaviour can be expected. The reconstruction found by the greedy
algorithm is also sensitive to the starting layer (n0 in fig. 7.10)—an issue that does not arise with dynamic
programming.

The greedy algorithm has the advantage over dynamic programming of a slightly lower computational
complexity, depending on the average number of candidate pointwise reconstructions ν (section 7.8). It might
also be argued that it is more suited to unbounded horizon problems on the grounds that it looks like an
“online” reconstruction algorithm: upon the arrival of a new point t(n) with missing values, a new global
reconstruction of the whole trajectory is immediately obtained incrementally, at the small cost of computing
the multiple pointwise reconstructions of t(n) and choosing the closest one to t(n−1). However, the dynamic
programming algorithm is also able to incrementally update its current reconstruction—but rather than one,
it keeps νn current reconstructions, of which one is the current global optimum. Again, this requires on the
average ν times more operations and storage at step n.

25The unlikely case where L and R are equidistant from T does not alter the point we are making.
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Figure 7.13: The greedy algorithm leads to reconstructed trajectories that retrace themselves. The problem is
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C. The inset shows that at B it cannot select R because it is farther than L from B. Starting the greedy
algorithm from a point to the right of B would avoid this problem in this particular case, but in general this
problem is likely to occur. Key to the graph: at each step n of the greedy algorithm, the horizontal dotted
line indicates the known value of t2 (t1 runs in abscissas and t2 in ordinates; the axes are omitted for clarity).
The crossings of this line with the underlying mapping (long-dashed line) give the (ideal) candidate pointwise
reconstructions, marked as white circles. The candidate which is chosen is marked with a solid arrow and the
ones not chosen are marked with a dashed arrow. The so-far reconstructed trajectory is marked with a solid
line and black circles. Not all steps n are shown.

Whatever its potential advantages, the greedy algorithm has a great risk of obtaining poor reconstructions.
The experiments of chapters 9–10 show that this risk is likely to occur and that its effect on the quality of the
reconstruction is strong. Thus we do not recommend the use of the greedy algorithm.

7.9.5 Many missing variables

If at some point n there are few variables present, then the missing variables are likely to be strongly un-
derdetermined (as in section 7.3.5): they can take values compatible with those of the present variables in
a continuous manifold, rather than a finite set. Practical implementations using Gaussian mixtures of our
method do not break down in this situation: they will still produce the modes of the conditional distribution
as candidate reconstructions. Effectively, this is a finite sample of such manifold, and a quantisation error
appears. This error can be reduced by using more mixture components, but at a cost that grows exponentially
with the observed space dimension.

In the extreme case where all variables are missing at point n, the modes are now the modes of the joint
density function and can be computed once and stored for subsequent points where all variables are missing,
to save computer time. If the density is a Gaussian mixture, another possibility with nil computational cost
is simply to use all the component centroids, since in principle they should all lie in high-density areas of the
observed space. This will also produce a finer discretisation of the observed data manifold, since there will be
fewer modes than centroids (for the mixtures that verify conjecture 8.1).

7.9.6 Discontinuities

Discontinuities may occur in isolated instances in data sets that are otherwise continuous (as a function of the
experimental conditions):

• Due to undersampling: if the frequency at which the observed variables are sampled is not high enough
compared to the rate at which they are changing we may get samples that are too widely separated
(see fig. 7.14(left, top)). This typically occurs when a signal changes slowly most of the time but has
occasional short-duration changes; for economy, the signal is sampled at the slow rate and therefore
isolated discontinuities occur. Since generally one cannot predict when a fast change is going to occur,
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Figure 7.14: Isolated discontinuities in continuous data sets. Left, top: undersampled signal. Left, bottom:
intrinsic discontinuity. Right : a front in a wind field (figures are in kilometres).

the only foolproof solution is to sample it at the high rate. An example from EPG signals was described
in section 5.5 (fig. 5.20).

• Due to intrinsic discontinuities in the data as in fig. 7.14(left, bottom). An example with two-
dimensional experimental conditions is a front in a wind field. Ordinarily, the wind vector varies con-
tinuously as a function of the location on an area (considered flat) of the Earth. A front is the interface
between two air masses of different density and temperature and is generated by complex atmospheric
dynamics. A front is frequently accompanied by marked changes in wind direction and relative humidity,
as well as by low barometric pressure (a pressure trough) and considerable cloudiness and precipitation.
Therefore, at a typical observation scale (e.g. that of a scatterometer) they appear as a discontinuity
along a curve (not necessarily straight) in that area (although the front extends in the vertical direction
too), where the wind vector changes its direction (but not its modulus) abruptly. Fig. 7.14(right) shows
schematically a front.

Another example of intrinsic discontinuities happens in geophysical inverse problems. For example,
the Earth properties generally change abruptly between soil and rock units. Traditional regularisation
methods apply smoothness constraints and so cannot recover discontinuities in the structure.

Discontinuities in the data set to be reconstructed may potentially bring about a wrong global reconstruction
in our algorithm, since effectively they violate the definition of continuity constraint and can confuse the
dynamic programming search. It would be interesting to carry out controlled experiments where isolated
discontinuities occur in a continuous data set to determine the sensitivity of the dynamic programming search
to such discontinuities.

While undersampling discontinuities can be blamed to the data collection procedure, intrinsic discontinuities
in otherwise continuous data pose challenging modelling difficulties. In a Bayesian setting for wind retrieval
from scatterometer data (see section 7.10.2), Cornford et al. (1999b) define a prior distribution for wind fields
via Gaussian processes that allows the inclusion of constrained singularities.

7.9.7 When is the method not applicable?

Our method is not applicable in the following situations:

Discrete observed variables In common with the rest of this thesis, we have assumed that the observed
variables are continuous. Discretised variables are also acceptable (e.g. the EPG data of chapters 5
and 10) although there will be a quantisation error. Intrinsically discrete, or categorical, variables, are
not acceptable because, even though probability models can be constructed, the definition of local mode
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makes no sense; only the global mode makes sense. Specific applications may exist where it is possible
to extract several candidates from the predictive distribution, but in general the multiple pointwise
reconstruction is not applicable.

Independent data If every data point t(n) is independent of its neighbours t(n−1), t(n+1), etc. then no
constraint across data points exists and consequently only multiple pointwise reconstruction is possible,
not global reconstruction. Examples are i.i.d. data or shuffled data (where the original ordering of the
data has been irreversible altered). Such data sets are fine for training the joint pointwise density model,
though.

The continuity or smoothness constraints are very general in form and should apply to a variety of physical
and engineering reconstruction problems. Seeking other forms of constraints or interpoint dependences that
may be applicable to other problems seems a worthwhile endeavour.

7.9.8 Reconstruction as a preprocessing step

If the missing data reconstruction is a preprocessing step for some other processing that ordinarily operates
on the complete data, then the whole procedure may be suboptimal but faster than marginalising over the
missing variables. For example, in a classification task such as speech recognition, one wants to compute

p(C
(n)
i |t(n)) where C

(n)
i is a phoneme class and t(n) an acoustic feature vector (Rabiner and Juang, 1993).

Using a hidden Markov model, such probabilities can be computed for every point n in an utterance and
an optimal transcription C(1), . . . , C(N) obtained with the Viterbi algorithm. However, if some features are
deemed to be missing (due to the presence of noise, for example; see section 7.10.6), then the correct thing to do

is to use p(C
(n)
i |t

(n)

P(n)), i.e., to marginalise over the missing variables the joint distribution p(C
(n)
i , t

(n)

M(n) |t(n)

P(n))

of what is unknown given what is known. If we reconstruct the data as t̂(n) def
= (t

(n)

P(n) t̂
(n)

M(n)) with t̂
(n)

M(n)

given by t
(n)

P(n) and then use p(C
(n)
i |t̂(n)) instead, we are implicitly wasting all the information contained in the

distribution p(t
(n)

M(n) |t(n)

P(n)):

• Marginalisation:

p(C
(n)
i |t

(n)

P(n)) =

∫

p(C
(n)
i , t

(n)

M(n) |t(n)

P(n)) dt
(n)

M(n) =

∫

p(C
(n)
i |t

(n)

M(n) , t
(n)

P(n))p(t
(n)

M(n) |t(n)

P(n)) dt
(n)

M(n) .

• Reconstruction: p(C
(n)
i |t̂

(n)

M(n) , t
(n)

P(n)) where t̂
(n)

M(n) is the mean, mode or some other convenient statistic

of the distribution t
(n)

M(n) |t(n)

P(n) .

Effectively, the reconstruction method is equivalent to the marginalisation where the distribution of missing

features given present features has been replaced by a delta function at t̂
(n)

M(n) , thus throwing away all the dis-

tribution t
(n)

M(n) |t(n)

P(n) . Cooke et al. (2001) have demonstrated empirically the superiority of the marginalisation
approach for classification in the context of recognition of occluded speech.

However, strictly what we have shown is that reconstructing and then classifying is worse only when the
reconstruction is done on a point-by-point basis, i.e., considering the speech frames independent from each
other—which they are not. Thus, there may indeed be a benefit in using a global, utterance-wide constraint
to reconstruct the whole speech segment—ideally recovering the original speech—and then classifying it; in

other words, reconstructing t
(n)

M(n) from {t(n)

P(n)}Nn=1, not just from t
(n)

P(n) .

7.9.9 Bump-finding rather than mode-finding

If we want to pick representative points of an arbitrary density p(t), using a mode as a reconstructed point
is not appropriate in general because locally the optimal value (in the L2 sense) is the mean, as shown in
section 7.3.3. That is, if a function is multivalued it will have several branches; in a neighbourhood around
a branch the function becomes univalued and so the mean of that branch would be L2-optimal. Besides,
the modes are very sensitive to the idiosyncrasies of the training data and in particular to outliers—they are
not robust statistics. This suggests that, when the conditional distribution is multimodal, we should look for
bumps26 associated with the correct values and take the means of these bumps as reconstructed values instead

26Bumps of a density function p(t) are usually defined as continuous regions where p′′(t) < 0, while modes are points where
p′(t) = 0 and p′′(t) < 0 (Scott, 1992). However, there does not seem to be agreement on the definition of “bumps,” “modes” or
even “peaks” in the literature. Titterington, in his comments to Friedman and Fisher (1999), claims that “bump-hunting” has
tended to be used specifically for identifying and even counting the number of modes in a density function, rather than for finding
fairly concentrated regions where the density is comparatively high.
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of the modes. If these bumps are symmetrical then the result will coincide with picking the modes, but if they
are skewed, they will be different.

How to select the bumps and their associated probability distribution is a difficult problem not considered
here. A possible approach would be to decompose the distribution p(t) as a mixture:

p(t) =
K∑

k=1

p(k)p(t|k) (7.5)

where p(t|k) is the density associated with the kth bump. This density should be localised in the space of
t but can be asymmetrical. If p(t) is modelled by a mixture of Gaussians (as is the case in chapter 8) then
the decomposition (7.5) could be attained by regrouping Gaussian components. What components to group
together is the problem; it could be achieved by a clustering algorithm—but this is dangerous if one does
not know the number of clusters (or bumps) to be found. Computing then the mean of each bump would be
simple, since each bump is a Gaussian mixture itself.

This approach would avoid the exhaustive mode finding procedure of chapter 8, replacing it by a grouping
and averaging procedure, which would probably be much faster (and it could be accelerated by discarding
low-probability components from the Gaussian mixture, as explained in section 8.2.3).

These ideas operate exclusively with the functional form of a Gaussian mixture as starting point, as do
our mode-finding algorithms of chapter 8. Bump-finding methods that work directly with a data sample
exist, such as algorithms that partition the space of the t variables into boxes where p(t) (or some arbitrary
function of t) takes a large value on the average compared to the average value over the entire space, e.g.
PRIM (Friedman and Fisher, 1999); or some nonparametric and parametric clustering methods, e.g. scale-
space clustering (Wilson and Spann, 1990; Roberts, 1997) or methods based on morphological transformations
(Zhang and Postaire, 1994).

7.9.10 Reconstruction via dimensionality reduction

If a latent variable model is used as density model (with latent variables x), one could think of performing
missing data reconstruction via dimensionality reduction: tP → x → tM. That is, if tM are missing and tP
are present:

1. Reduce dimensionality by picking a representative point of p(x|tP) =
∫
p(x, tM|tP) dtM =

∫
p(x|t)p(tM|tP) dtM.

2. Map that point onto T using the mapping f from latent onto observed space (p(t|x) is unimodal centred
in f(x), so it has no effect).

This will not work well except when p(x|tP) is sharply unimodal, that is, tP strongly constrains tM to lie in
a small region. Usually x|tP will be multimodal and therefore step (1) is translating the problem of finding
a multivalued relationship tP → tM to that of a multivalued dimensionality reduction tP → x! Besides, step
(2) will produce a value not just for tM but also for tP , which may differ from the actual value of tP .

In fact,

p(tM|tP) =

∫

X
p(tM,x|tP) dx =

∫

X
p(tM|x, tP)p(x|tP) dx =

∫

X
p(tM|x)p(x|tP) dx

where we have used the axiom of local independence in the last equality. Therefore, the procedure is equivalent
to collapsing x|tP onto a delta function centred on x̂, thus throwing away all the probability mass not in x̂.
For this same reason, in general it is not convenient to apply the constraints to the latent variables rather
than to the observed ones (besides, for GTM the modes of x|tP are not well defined since its latent space is
discretised; see section 7.9.7).

What does makes sense for the purposes of dimensionality reduction exclusively is to use the conditional
distribution

p(x|tP) =
p(x, tP)

p(tP)
=

∫
p(x, t) dtM

∫
p(x, t) dtM dx

if some data are missing. We can then define a corresponding dimensionality reduction mapping x
def
= F(tP),

as in section 2.9.1. This mapping will often be multivalued (for latent variable models that allow multimodal
distributions), since tP cannot in general fully determine x, and the same ideas developed in this chapter (mul-
tiple pointwise dimensionality reduction, continuity constraints, etc.) are applicable with little modification.
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One such modification would concern the definition of what a mode of p(x|tP) is for models that sample the
latent space, such as GTM (since effectively the latent space is then discrete), but we do not pursue this issue
here.

7.9.11 Summary and further work

In summary, we have showed that the modes of the conditional distribution of the missing variables given the
present ones are potentially plausible reconstructions of the missing values, and that the application of local
continuity constraints—when they hold—can help to recover the actually plausible ones. We could call this
approach modal regression or modal reconstruction (with constraints), in analogy with the standard definition
of regression in terms of the mean of the conditional distribution of missing given present data. Our method
has the following advantages:

• It is applicable to varying patterns of missing data: by using a joint probability model, the observed
variables are treated symmetrically, unlike methods based on function approximators or conditional
distribution approximators, which treat each variable either always as a predictor or always as a response.
Predictive distributions for the missing data can be flexibly constructed as the conditional distribution.

However, if the pattern of missing data is constant (but the corresponding mapping is multivalued), one
can simply model the conditional distribution of inputs given outputs rather than the joint distribution
of inputs and outputs—the latter being a harder problem. The conditional distribution is then used
to provide the modes, as usual. Section 7.11.3 describes some conditional distribution models, such as
mixture density networks.

• It deals by design with multivalued mappings, representing all solution branches and choosing the right
branch only at reconstruction time. This is unlike standard function approximators, which transform the
multivalued mapping into a univalued one by either selecting always a given branch (irreversibly losing
the others) or by averaging branches (which often results in a non-solution mapping).

• For mapping inversion problems, the inverse mapping can be constructed from measured input-output
data, without knowledge of the functional form of the forward system—which can sometimes be difficult
to obtain (e.g. the acoustic-to-articulatory mapping of chapter 10). And since the pattern of missing
data is constant, one can simply model the conditional distribution of inputs given outputs rather than
their joint distribution.

If the forward mapping is not known analytically, it is worth to also approximate it from measured
input-output data for two reasons: (1) to use it as a double-check that the candidate inverse points
produced by another method (in our case, the conditional distribution of missing variables given present
ones) are indeed inverse points (i.e., map correctly to the present values); and (2) to include it in the
constraint for dynamic programming minimisation.

• It is insensitive to time warping, i.e., to reparametrisations of the trajectory, because the continuity
constraint is the arc length—a geometric invariant.

• It requires no assumption about the reason why or how the data are missing, it just needs to know
what data are missing. Although such information, if available, might be used to further constrain the
candidate reconstructions.

• It is modular (fig. 7.15): joint density model, mode finding in conditional distributions, constraint
minimisation by dynamic programming; and different algorithms, models or definitions may be used for
each module.

• It can also give confidence regions for each reconstructed value, derived from the Hessian at the corre-
sponding mode that was selected.

• Multiple pointwise reconstruction by the conditional distribution is robust: no matter what values the
present variables may have, one can compute a conditional distribution on them (at least for the Gaussian
mixture density model) and locate its modes. This is very helpful in situations for which the forward
mapping is nearly singular (in which case numerical inversion is unstable) or when the present values are
just out of their domain due to noise (in which case a reconstruction strictly does not exist).

And the following disadvantages:
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• For general patterns of missing data, the method performs extremely robustly, but for constant patterns
of missing data (as in regression problems), it is sensitive to the smoothness of the density model: the
conditional distribution can contain spurious modes that result in suboptimal reconstructed trajectories
with low constraint value. In mapping inversion problems, the effect of spurious modes may be eliminated
by using a forward constraint.

• Density estimation in high dimensions is difficult due to the curse of the dimensionality.

• When many variables are missing, it can have a high computational cost at reconstruction time due to
the mode-finding step.

The method should not be used:

• As a replacement for universal mapping approximators (e.g. neural networks) in univalued mapping
approximation problems (e.g. in forward mappings), since universal mapping approximators are faster
and more reliable at both training and reconstruction time.

• When the constraint assumptions do not hold, e.g. continuity does not hold in a shuffled sequence. Care
must be taken too when continuity does hold but there exist isolated discontinuities (either intrinsic or
due to undersampling).

Several directions for future theoretical work appear specially fruitful to us: the evaluation of constraints
other than continuity (implemented as polygonal curve length); the extension to multidimensional constraints—
e.g. reflecting spatial structure (one- to three-dimensional) as well as temporal (one-dimensional)—and the
development of an efficient multidimensional constraint minimisation algorithm; the implementation of con-
tinuous reconstruction in real time (unbounded horizon); the use of bump means rather than modes for multiple
pointwise reconstruction; and the efficient estimation of smooth density models in high dimensions.
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Figure 7.15: Modular structure of the missing data reconstruction approach. The boxes represent modules that admit different implementations, such as the
ones given; the ones recommended are in boldface. The density estimation stage, enclosed in a thick box, takes place offline.
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Figure 7.16: Reconstruction from hippocampal place cells. After the rat has explored the maze (represented
by the 8-shaped line) for some time, a population of hippocampal CA1 place cells contains a representation of
it: a given place cell tends to fire strongly only when the rat is at or near a certain location in the maze.

7.10 Possible applications

We believe the method has potential practical utility and it would be a personal pleasure to see it implemented
in real situations. We have identified several reconstruction problems in the literature that are described below.
Mapping inversion problems are clear candidate applications and abound. However, problems with arbitrary
missing data patterns where constraints exist do not seem so abundant, so we have the case of a method in
search of a problem!

7.10.1 Decoding neural population activity: reconstruction from hippocampal
place cells

The brain contains populations of neurons that code as activity levels (spike trains) certain physical variables,
such as the orientation of a line in the visual field or the location of the body in space. We can record the
simultaneous activity of many neurons with an electrode array and try to reconstruct or decode from it the
values of the physical variables. This poses a mapping inversion problem (often referred to as an inverse
problem). Reconstruction can elucidate how much information about the physical variables is actually present
in the population and how the brain might use it to solve computational problems such as object recognition
and navigation. Practically, it can be applied to generate control signals based from the neural representation
(e.g. to control a robot arm; Nicolelis, 2001).

Here we consider the particular problem of reconstructing the trajectory of a rat freely moving in a maze
from the activity of hippocampal CA1 place cells (see Zhang et al., 1998; Brown et al., 1998; and references
therein). If a rat is left in a new environment, it will explore it for a while, after which any given place cell
tends to fire strongly when the rat is at or near a certain physical location but not when it is far from it (see
fig. 7.16). Thus, such cells build a map of the environment. While the rat location is the main variable that
affects the cell’s firing rate, other variables can modulate it, notably the rat speed and direction of movement
and the phase of its theta rhythm; in particular, place cells fire above background only when the rat is moving.

The reconstruction problem can be formalised as follows (typical experimental values are given in parenthe-
ses). At a given instant, the present variables are the instantaneous firing rates f = (f1, . . . , fC)T of the C cells
being measured (around 100) and the missing variables are the coordinates27 x (two- or three-dimensional)
of the rat’s position; a further missing variable can be the (vectorial) velocity v of the rat. The position and
velocity can be measured with a video camera (sampling at around 20 Hz) and the firing rates are obtained
as spike counts over a time window of fixed width τ (around 1 s). Ideally, the intrinsic dimensionality of the

27Not to be confused with the notation of chapter 2, where x meant latent variable and f mapping latent → observed.
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joint variables should be that of the maze (e.g. 1 for a linear maze). The mapping x → f is multivalued for
self-intersecting mazes (e.g. for an 8-shaped maze); the mapping f → x may not be univalued since sometimes
a cell responds to different locations; the spike trains are noisy; and continuity constraints hold, at least for
the position and velocity as a function of time (the experimental condition), assuming a high enough sampling
rate. Thus, our method should be applicable, given a training set of pairs (xn, fn).

Several decoding methods have been used, e.g. based on radial basis functions. The most successful ones
are based on probabilistic models and are often referred to as Bayesian reconstruction methods28 (Sanger,
1996; Zhang et al., 1998; Oram et al., 1998; Brown et al., 1998). Here we analyse one proposed by Sanger
(1996) and extended by Zhang et al. (1998), because it has some similarities with ours and because the analysis
demonstrates the generality of our method, which only requires mild modelling assumptions about the problem.
Sanger (1996) reconstructs the rat location xn given the firing rate fn at time n as the (global) mode of the
conditional distribution

p(xn|fn) =
p(fn|xn)p(xn)

p(fn)

where:

• Place cells are assumed independent given x: p(f |x) =
∏C
c=1 p(fc|x) ∀x.

• fc|x is modelled as an inhomogeneous Poisson process, that is, a Poisson distribution whose rate param-
eter λc is not constant (a common model for neuronal spike statistics). Specifically, λc = τfc(x), where
τ is the time window width and fc(x) the firing rate map of cell c, i.e., the average firing rate of cell c
when the animal is at position x.

• p(x) is set to the (normalised) number of times that the rat was found at position x during training; this
requires quantising x (e.g. 256× 256 grid).

• p(fn) is a normalisation factor.

This is then the same strategy as that of section 6.2.3.8 (Bayesian inversion with locally independent inverse
problems): a forward mapping is modelled with a factorised conditional distribution f |x which is “inverted”
by Bayes’ theorem.

Using p(xn|fn) alone leads to high reconstruction errors due to erratic jumps often caused by low instanta-
neous firing rates, especially when the animal stops running (v = 0): if all cells stop firing, there is not enough
information for accurate reconstruction29. Zhang et al. (1998) introduce a continuity constraint by a Markov
assumption on x: reconstruct xn as the mode of p(xn|fn,xn−1), approximated as

p(xn|fn,xn−1) =
p(xn−1|xn, fn)p(xn, fn)

p(xn−1, fn)

(a)
=
p(xn−1|xn)p(xn|fn)

p(xn−1|fn)
∝ p(xn|fn)p(xn−1|xn)

by assuming in (a) that p(xn−1|xn, fn) = p(xn−1|xn), i.e., that the activity fn at the current time step cannot
directly affect the position xn−1 at the preceding time step. The only new factor in this conditional probability
is p(xn−1|xn), which forces the current position, xn, not to be far away from the previous one, xn−1. They

model xn−1|xn ∼ N (xn, σ
2
nI) where σn ∝ vαn , vn

def
= ‖vn‖ is the speed at time n (estimated in one of two ways:

either as linearly dependent on fn, or as the average speed at each position x computed from previous data)
and α = 1

2 for random walks and 1 for linear movements. If σn is too large the continuity constraint has little
effect, but if it is too small it becomes too restrictive and the reconstructed position might get stuck and not
change; an intermediate value can be found that reduces the reconstruction error. The same kind of continuity
constraint also worked well for Brown et al. (1998), who used a nonlinear Kalman filter approach, where the
rat’s position is the state variable (which follows a random walk) and the spike train is the (nonlinear and
discrete) observed process. However, they found experimentally that the path distribution had longer tails
than a normal distribution.

We now compare the extended method of Zhang et al. (1998) with ours. Firstly, the fact that the extended
method outperforms the one based on xn|fn alone reinforces the beneficial role of continuity constraints. Then,

28Because they use Bayes’ theorem to “invert” a conditional distribution that represents a forward mapping. But the adjective
“Bayesian” does not seem appropriate since, strictly, Bayesian methods are associated with the use of probability distributions
over parameters, which is not the case here. And, although some of the models have no free parameters (estimated from data),
it would be arguable whether τ , p(x), fc(x) and λc are parameters estimated from data or fixed parameters.

29This fact makes it important to model the modulation of the firing rate by the rat speed. Zhang et al. (1998) took f(x,v)
either independent of v or as f(x)(av + b) for constants a and b. Brown et al. (1998) took instead f(x, φ) = f(x)eβ cos (φ−φ0) for
constants β and φ0, where φ is the theta rythm, but experimentally found a higher reconstruction error than with f(x) alone.
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the extended method can be seen as a greedy reconstruction, where only one mode is computed and only the
local constraint between xn and xn−1 is considered (which can lead to wrong trajectories, as discussed in
section 7.9.4). Finally, their density model p(f |x)p(x) forces some simplistic assumptions about p(f |x) and
p(x) (in common with conditional modelling methods, section 7.11.3), e.g.: discretising x; assuming conditional
independence of the firing rates given x; modelling the firing rate distribution as Poisson (Treves et al., 1999
discuss other distributions, e.g. based on truncated normals); the prior distribution on x, as if the rat preferred
some locations to others, seems arbitrary; particularly risky are the assumptions about the speed of the rat
(and about σn) in the continuity constraint, which our global constraint does not require, and about the
modulation of the firing rate by the rat speed. These assumptions are relaxed in our method by using a
universal density approximator trained with joint data for x, v and f . Any variable suspected to play a role
can be included without forcing an assumption on its distribution or on its relation with other variables, other
than that dictated by the density estimate.

7.10.2 Wind vector retrieval from scatterometer data

In section 6.2.4.2 we described the inverse problem of obtaining the wind field U = (ui) on a region of the
Earth, ui being the two-dimensional wind vector at location i, given a backscatter field Σ0 = (σ0

i ) measured
by a satellite, σ0

i being the three-dimensional backscatter vector. We showed that this inverse problem—which
is subject to two-dimensional continuity constraints—can be factorised into independent mapping inversion
problems. Therefore our method should be applicable.

The forward mapping u→ σ0 is univalued and can be solved analytically or learned from data; the inverse
mapping σ0 → u can be multivalued. Training data consisting of pairs (wind vector, backscatter vector) is
available from weather forecast organisations, such as those used in the NEUROSAT project mentioned in
section 6.2.4.2. Two new problems arise here concerning the constraints: (1) the implementation of a two-
dimensional continuity constraint (using finite differences) and efficient extension of the dynamic programming
search; and (2) the possible presence of discontinuities along curves caused by fronts (described in section 7.9.6),
that probably would disrupt the dynamic programming search.

7.10.3 Inverse kinematics and dynamics of a redundant manipulator

In section 9.3 we show that our method outperforms methods based on the conditional mean or in universal
mapping approximators for the inverse kinematics problem of a very simple robot arm, having only two degrees
of freedom and being restricted to planar movement. The method should be tested with a more realistic
manipulator, having redundant degrees of freedom and three-dimensional movement. This will require a GTM
model with a latent space of dimension L = 3. Another extension is to the case of inverse dynamics, where
one considers not just the instantaneous manipulator position but also its velocity and acceleration.

In this problem, the forward mapping is analytically known from the geometrical and inertial properties of
the manipulator and so it can be used to generate abundant training data and to augment the global constraint
for greater accuracy.

7.10.4 Audiovisual mappings for speech recognition

Human speech is bimodal: although we primarily rely on hearing to process speech, much information is
received visually as well from the movements of the lips and other facial features. Evidence supporting this
includes the fact that human recognition of speech in noisy environments30 is enhanced by visual information
because some sounds can be easily confused acoustically but not visually and vice versa. Another, classical
demonstration of the bimodality of speech is the McGurk effect: when humans receive conflicting acoustic and
visual stimuli, the perceived sound may not exist in either modality (e.g. a person that listens to

��P�G��
but

sees the speaker saying
�("�G.�

perceives something like
����G��

instead). Therefore, it is better to process acoustic
and visual speech jointly rather than separately. Audiovisual integration has applications in automatic robust
speech recognition, human and automated lip reading, facial animation (human-computer interfaces, computer-
aided instruction, cartoon animation, video games and multimedia telephony for the hearing impaired), lip
synchronisation, joint audio-video coding, bimodal speaker verification and multimodal speech perception
modelling. For a review see Chen and Rao (1998).

It is then important to study the mappings between acoustic and visual features of speech, i.e., to estimate
the acoustics from the mouth shape (lip reading) and vice versa (facial animation); see fig. 7.17. In a statistical

30During spontaneous speech, occlusion can occur in the acoustic domain (e.g. noise), in the visual domain (e.g. speaker turns
head) or in both.
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Figure 7.17: Audiovisual mappings for multimodal speech processing: to recover facial features such as the
lips from the acoustics and vice versa.

learning approach the mappings are implemented between two sets of feature vectors: one for the speech, such
as cepstral or filter-bank coefficients extracted from the waveform, and another one for the face, such as
locations and dimensions of various landmarks (lip opening, cheek stretch, etc.) extracted from the visual
stream. A separate problem that we do not deal with here but important for practical applications is the
tracking and segmentation of facial features from a video sequence. To study the audiovisual mappings,
there are databases of facial data (synchronised with speech) collected with tracking aids such as special
makeup or metallic pellets attached to specific points in the face (whose location can be tracked by EMA,
as in section 7.10.5). Some extra information that can be used by a human is difficult to capture in the
measurements. For example, whether the teeth touch the lips or whether the tongue is visible.

The usual methods for construction of (temporal) mappings have been applied. Yehia et al. (1998) showed
that a considerable part of the acoustic variability can be linearly predicted from the three-dimensional dis-
tortions of the face (and also that facial distortions are highly predictable from the movement of the vocal
tract articulators, but not vice versa). But, surely, the mapping cannot be linear, and in fact Barker and
Berthommier (1999) and Yehia et al. (1999) have showed improvements using neural networks. Lavagetto
(1997) used time-delay neural networks to implement the mapping acoustic → lip shape in an audio-video
synchronisation task. Chen and Rao (1998) jointly model the acoustic and visual features with a Gaussian
mixture and use the conditional mean to define the appropriate mapping. Yamamoto et al. (1998) use hidden
Markov models to implement the mapping acoustic → lip shape: the HMM is trained on the acoustic data
as usual and specific lip shapes are associated with each HMM state (e.g. the average of the lip shapes for all
frames associated with the same state).

The mapping between acoustic and facial features is many-to-many. Multiple phonemes can be associated
with a single viseme31: the phonemes

��H$�
,
��P$�

and
��So�

are all produced by a closed mouth shape and may
be visually indistinguishable. Conversely, a given phoneme may be associated with different visemes, because
the vocal tract (which is not readily visible, except for occasionally the tongue, but is primarily responsible
for the acoustics) can be controlled relatively independently of the lips and jaw. The reasons for the existing
correlation of the acoustic and visual modes during speech production have been debated. Yehia et al. (1998)
claim that configuring the vocal tract to produce the acoustic signal simultaneously deforms the face through
positioning of the jaw, shaping of the lips and motion of the cheeks, and thus not just the lip movements but
also those of a much larger region of the face are caused by the articulator motion. Barker and Berthommier
(1999) argue that the correlation may be due to all parts of the speech apparatus (vocal tract and face)
being driven in a coordinated manner to achieve a common goal rather than one causing the other. In any
case, the fact is that acoustic and facial features are correlated and this allows (partial) reconstruction of one
set given the other. Also, considerations of critical articulators and “don’t care” values should apply here
(section 10.1.1.6).

The facial features are subject to continuity constraints as a function of time (although not necessarily
the acoustic ones, see section 10.1.1.3), and besides should have a low dimensionality since the face is a
semirigid solid (if it was a rigid solid the dimensionality would be 3 at most, since all the facial features
could be derived from the position of, say, the face centre-of-mass). This and the multivalued character of the
audiovisual mappings suggest that our method could be a flexible way of representing both mappings for a

31Phonemes and visemes are the basic units of acoustic speech and mouth configurations, respectively. Thus, a viseme is the
smallest visibly distinguishable unit of speech.

182



speech utterance.
Possible future work could be done with data32 from the Institut de la Communication Parlée (ICP),

Grenoble, France (Benôıt et al., 1992). Their corpus consists of simultaneous measurements of the acoustic
waveform (10 LSP coefficients) and of 15 features describing the configuration of face, lips and jaw, obtained
using Chroma-Key video processing for several fully-voiced French VCVCV sequences, totalling some 13 000
frames. This data also provides an opportunity to study the effects on our algorithm of undersampling
discontinuities, which we have observed in the lip position during bilabial plosives (e.g.

��P!�
), in which lip

closure occurs very fast. Performance should be reported in terms not just of reconstruction error but also
of Pearson’s product-moment correlation coefficient (eq. (10.1)) between the original and reconstructed data,
as is customary in audiovisual mapping modelling. As a result, and using purely experimental measurements
and probabilistic learning techniques, we would expect to characterise the extent to which the mappings are
nonlinear and many-to-many and to determine to what extent it is possible to recover visual features from
acoustic ones and vice versa.

7.10.5 Acoustic-to-articulatory mapping

The speech processing problem of the acoustic-to-articulatory mapping, to recover the vocal articulators’
positions given the observed speech waveform, is explained in detail in chapter 10. There we apply our
method to a version of this problem using EPG data, which is an incomplete articulatory representation
of the vocal tract. More thorough experiments are desirable using measured articulatory data33 that more
completely characterise the vocal tract during an utterance, such as the 2D (midsaggittal) or 3D positions of
several articulators sampled in time in a number of phonetic contexts. The instrumental techniques of X-ray
microbeam and electromagnetic articulography (EMA or EMMA) (Hardcastle and Hewlett, 1999, chapter 12)
are both able to provide this kind of data. The X-ray microbeam device solves the difficulties associated with
conventional X-ray imaging (Hardcastle and Hewlett, 1999, chapter 11) of the whole vocal tract (e.g. as used in
Fant, 1970), namely high radiation dose (which prevents extended imaging) and difficult segmentation of the
articulator landmarks of interest from the image (automatic detection is unreliable). Two public databases
exist that contain articulators’ trajectories: the Wisconsin X-ray microbeam database and the still under
construction MOCHA database.

The X-ray Microbeam Speech Production Database (Westbury, 1994) is a publicly available speech resource
developed at the University of Wisconsin. It incorporates representations of lingual, labial, and mandibular
movements, recorded in association with the sound pressure wave, for 57 normal, young adult speakers of
American English, for a rich set of speech tasks: prose passages, counting and digit sequences, oral motor
tasks, citation words, near-words, sounds and sound sequences, and sentences. Kinematic data recorded from
each speaker represent the time-varying, mid-sagittally projected positions of a set of small pellets (gold beads,
roughly 3 mm in diameter) glued to the articulators.

State-of-the-art ASR systems require more continuous speech data for training than is available in the
Wisconsin database. The MOCHA (Multi-CHannel Articulatory) database (Wrench, 2000) is being prepared
to provide a resource for training speaker-independent continuous ASR systems and for general coarticulatory
studies. The planned dataset includes 40 speakers of English, each reading up to 460 TIMIT sentences (British
version). The articulatory channels currently include EMA sensors directly attached to the vermillion border
of the upper and lower lips, lower incisor (jaw), tongue tip (5–10 mm from the tip), tongue blade (2–3 cm
posterior to the tongue tip sensor), tongue dorsum (2–3 cm posterior to the tongue blade sensor) and soft
palate (10–20 mm from the edge of the hard palate). Additionally, a laryngograph provides voicing information
and an electropalatograph provides tongue-palate contact data at 62 normalised positions on the hard palate
defined by landmarks on the upper maxilla. EPG includes lateral tongue contact information which is missing
from the EMA data. The sampling rates used are 200 Hz for EPG, 500 Hz for EMA and 16 000 Hz for
laryngography.

7.10.6 Reconstruction of occluded speech34

In the acoustic-to-articulatory mapping problem, the speech waveform was assumed to be observed. A re-
construction problem of considerable practical interest occurs when the speech itself is partly occluded or

32I am grateful to Frédéric Berthommier and Jon Barker for their help in obtaining the data.
33It is possible to use articulatory data generated by articulatory models, as in fact many studies of the acoustic-to-articulatory

mapping have (see chapter 10). However, articulatory models are always approximate. We can avoid any assumptions by using
measured articulatory data.

34In this section, a point n in the sequence (the utterance) is called a frame and the observed variables are called acoustic
features, as is common in the literature of automatic speech recognition.
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Figure 7.18: Speech occluded by noise (data kindly provided by Ljubomir Josifovski). In all graphs, the
horizontal axis is the time in seconds and the vertical axis the subband centre frequency in hertz. In the
three spectrograms, the grey shade is proportional to the log-energy in dB at the corresponding frequency and
time. Left, top: spectrogram of the clean, non-occluded speech for the utterance “one one five nine”. Right,
top: spectrogram of the occluding signal (factory noise). Left, bottom: spectrogram of the occluded speech.
Right, bottom: ideal pattern of missing data (mask) derived from the spectrogram of the occluded speech by
comparing it with the nonoccluded speech; black (white) areas represent missing (present) data.

corrupted by a different acoustic signal, such as background noise. Note that here all observed variables are
measured: it is just that some of them are severely corrupted and thus effectively missing (how to know which
ones are missing is explained below). In this case, and assuming that the acoustic features (observed variables)
are related to a collection of speech frequencies (obtained for a time window of fixed width), we will have a
reconstruction problem with a genuinely varying missing data pattern—since different features may be missing
at different times, depending on the time course of the occluding signal. A naive signal processing approach
is to apply a filter to the occluded speech to remove the noise, but this only works well when the noise is
stationary and its characteristics known, so that it can be modelled and thus a specific filter designed (e.g.
a bandpass filter); this is not the case in, say, spontaneous speech in a noisy environment. There are several
subproblems with occluded speech:

Recognition of occluded speech (see Cooke et al., 2001 for an excellent review) This is a classification
problem, not a reconstruction one. For non-occluded, clean speech the state-of-the-art methods are
(still!) hidden Markov models in any of their flavours with Viterbi decoding (Rabiner and Juang, 1993);
however, the performance of HMMs deteriorates drastically as the speech signal-to-noise ratio decreases.
In the recognition of occluded speech, or robust speech recognition, the missing variables are the occluded
features and the frame classes (the phoneme that each frame represents) but one is interested in the latter
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only. As was discussed in section 7.9.8, reconstructing the speech and the classifying it as usual is worse35

than attempting directly to classify conditionally on the present variables, as Cooke et al. (2001) have
demonstrated empirically.

Reconstruction of occluded speech: interframe constraints Estimating a joint density model for the
acoustic features is straightforward and there are many public databases for different languages and
styles (telephone speech, news broadcasts, conversational speech, etc.). However, as mentioned in sec-
tion 10.1.1.3, the acoustic features are in general not continuous, and so the key to allow the application
of our method consists of finding (and formalising in terms of the acoustic features) a different interframe
constraint. Even a cursory examination of a spectrogram shows that the frames are not independent; e.g.
observe the formant trajectories in fig. 7.18, both in the clean and in the occluded speech (although in-
terrupted by various discontinuities: silence, unvoiced sounds, etc.). Perhaps perceptual grouping based
on Gestalt principles, as used in computational auditory scene analysis (Brown and Cooke, 1994; Cooke
and Ellis, 2000), could be helpful here.

If the speech is detected by several sensors, the problem of reconstructing occluded speech can also be
formulated as blind signal separation. In fact, independent component analysis has been applied to it
with some success (sections 2.6.3 and 2.9.1.2), but only under the following conditions: that the number
of signals is known, constant and not larger than the number of sensors; that the mixing is linear and
constant. These stringent assumptions rarely hold for spontaneous speech. Our method does not require
such assumptions and needs only one sensor.

The determination of the missing data pattern This is here a difficult problem, since the observed vari-
ables are not really missing but corrupted in various amounts by the unknown noise. Strategies used
to identify regions of missing data are usually based on the assumption of energy additivity and on an
estimate of the noise energy (such as the average of a few frames containing only noise). An example is
spectral subtraction, where features whose energy is smaller than that of the noise estimate are deemed
missing.

For the problem of recognition, although not for reconstruction (as noted in section 7.2.2), the speech
features may be considered as uncertain rather than either present or missing, since the amount of
occlusion varies in a continuum36, from no occlusion (feature present) to full occlusion (feature missing).
In this case, it makes sense to define the pattern of missing data in a soft, continuous way, rather than in
a binary one (Barker et al., 2000). The element mnd of the mask matrix M = (mmd) of section 7.2.2 is
then redefined as the probability that tnd be present. It is possible to incorporate such uncertainty into
a probabilistic treatment of the recognition problem but the problem with this approach is, naturally, to
determine the values of M.

7.11 Related work

The key aspects of our approach are the use of a joint density model (learnt in an unsupervised way); the use
of the modes of the conditional distribution as multiple pointwise candidate reconstructions; the exhaustive
mode search; the definition of a geometric trajectory measure derived from continuity constraints and its
minimisation by dynamic programming. Several of these ideas have been applied earlier in the literature.

The conditional distribution obtained from a joint density model has been used in other work to derive
mappings. While such work usually acknowledges the fact that the conditional distribution may be multimodal
and that the conditional mean will not be a good summary of that distribution, in most cases a single point is
still selected (typically the mean, the global mode or some approximation to it). Only the multiple imputation
method of statistics has used multiple values from the conditional distribution, although not intended as
candidate reconstructions but to inject randomness. Our use of all the modes as candidate reconstructions is
new, as is its implementation with a Gaussian mixture derived from a latent variable model.

The use of constraints either at estimation time or minimised by dynamic programming at runtime is
not new. It has been used in inverse problem theory and in mapping inversion problems, particularly the
acoustic-to-articulatory mapping and the inverse kinematics of a robot arm.

Given the generality of the missing data reconstruction problem, related work spans many fields. We review
some of it without claiming to be comprehensive.

35At least, on a frame-by-frame basis, i.e., reconstructing t
(n)

M(n) with no global constraints, using information in t
(n)

P(n) only.
36Although experimentally it is often found that at any frame most features are dominated by either the speech or the noise.
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7.11.1 Statistical approaches to missing data and imputation methods

In this chapter we have dealt with the problem

given a data set with missing data, reconstruct it

and we have assumed that a model for the data was available (perhaps obtained from a complete training set).
The problem

given a data set with missing data, estimate parameters (and standard errors, p-values, tests, etc.)
of a model of the data; or more generally, make inferences about the population from which the
data come from

has been the main concern of the statistical literature on missing data (for reviews see Little and Rubin,
1987; Little, 1992; Schafer, 1997). Such inferences must be done incorporating the missing data uncertainty;
otherwise one will obtain too small standard errors, too low p-values or too high rates of type-I error. We
discuss here two aspects of this literature in relation with our work: the mechanism of missing data and the
statistical methods for missing data.

7.11.1.1 Missing data mechanisms

Statistical methods for missing data are based on assumptions about the mechanism whereby the data become
missing. The pattern of missing data, given by the matrix M of section 7.2.2, is considered a random variable.
The present data are37 then (TP ,M) and the complete data T = (TP ,TM). If a joint distribution of (T,M)
with parameters Θ, Ψ is assumed:

p(T,M|Θ,Ψ) = p(T|Θ)p(M|T,Ψ)

the distribution of the present data is obtained by marginalisation:

p(TP ,M|Θ,Ψ) =

∫

p(T,M|Θ,Ψ) dTM =

∫

p(TP ,TM|Θ)p(M|TP ,TM,Ψ) dTM

and we are interested in inferences about Θ (parameter estimates, confidence intervals and tests) from
p(Θ,Ψ|TP ,M). The mechanisms of missing data are classified as follows:

• Missing data are missing completely at random (MCAR) if p(M|TP ,TM,Ψ) = p(M|Ψ) for all
T: the pattern of missing data does not depend on the actual data. Examples: a study ran out of funds
before some subjects could come in for followup visits; a dropped test tube.

• Missing data are missing at random (MAR) if p(M|TP ,TM,Ψ) = p(M|TP ,Ψ) for all TM: the
probability that a variable is missing does not depend on the value of that variable when it is missing.
Example: females are less likely to give their personal income than males (but giving it or not is in-
dependent of their actual income) and the sex of the subject is known. Therefore p(TP ,M|Θ,Ψ) =
p(TP |Θ)p(M|TP ,Ψ) and if Θ and Ψ do not contain common parameters, likelihood-based inferences
for Θ from p(Θ,Ψ|TP ,M) will be the same as likelihood-based inferences for Θ from p(Θ|TP), i.e., the
missing data mechanism is ignorable. Most statistical analyses assume MAR.

• Missing data are not ignorable or informative missing if the probability that a variable is missing
depends on the values of the missing variables. Example: subjects with lower income are less likely to
provide their personal income in a survey.

Comparison with our approach In section 7.2.2 we ignored any dependence between the probability that
a variable be missing and the values that it or other variables may take. If information about such dependence
was available, we could use it to further constrain the predictive distribution resulting in fewer candidate
reconstructions, either pointwise (given tn,Pn

, constrain tn,Mn
) or globally (given {tn,Pn

}Nn=1, constrain tn,Mn

for each n). This would only be useful for varying missing data patterns, since we do not gain any information
if it is always the same variables that are missing.

37In this section we use the notation T = {tn}N
n=1, TM = {tn,Mn}N

n=1 and TP = {tn,Pn}N
n=1 for short. The word “case”

refers to a particular point tn.
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7.11.1.2 Statistical methods for missing data

We briefly review the statistical methods for missing data following the taxonomy given by Little (1992) for
the problem of regression with missing data, i.e., inferences about a model p(y|x) where the training data for
x have missing values:

Complete-case analysis Cases with any missing data are discarded. While trivial to implement, this has
two serious disadvantages: inefficiency, due to the possibly very large reduction in sample size, and
therefore larger standard errors, wider confidence intervals and lower power of tests; and bias, if the
data are not MCAR. For example, consider x = (age, sex, blood pressure) and y = (death) with blood
pressure sometimes missing, typically when the subject is about to die.

Available-case analysis The largest sets of available cases are used for estimating individual parameters,
e.g. to compute the covariance σ2

de between variables xd and xe, all cases are used where both xd and xe
are present. However, the estimated covariance matrix may not be positive definite, especially when the
data are highly correlated.

Least squares on imputed data The missing data are filled in or imputed 38. Then, regression of y on x is
computed by least squares (possibly downweighting incomplete data). Imputation methods include:

• Unconditional mean imputation: missing data are imputed by their unconditional sample means.
The inferences are seriously distorted by bias, so it cannot be generally recommended.

• Conditional mean imputation based on x’s: information in the present x’s in a case is used to impute
the missing x’s, e.g. by linear regression (with parameters estimated from the complete cases).

• Conditional mean imputation based on x’s and y: using y to fill in missing x’s results in biased
estimates.

• Hot-deck imputation: missing values are imputed with randomly selected values present in a pool
of similar complete cases. This results in less tendency toward the mean because of the variation
introduced by the pool. However, depending on the data set, it may be difficult to obtain pools
that are large enough to provide with reasonable variance.

Maximum likelihood ML estimates for a model (typically normal) of the joint distribution of y and x.
Under model assumptions, this method remains valid when the data are MAR, and simulations have
shown is superiority to least-squares methods and complete-case or available-case analyses. Although for
certain patterns of missing data closed-form solutions exist, in general iterative methods are necessary,
such as scoring, Newton’s algorithm or an EM algorithm. The appeal of EM is that, for many problems,
the M step is a complete-data problem with a direct solution. Ghahramani and Jordan (1994) and
McLachlan and Krishnan (1997) give examples of the use of EM to train a model with missing training
data.

Bayesian methods For small samples, maximum likelihood is limited. Bayesian methods approach this by
adding a prior to the likelihood and basing inference on the posterior distribution. The complexity of the
likelihood function does not allow explicit expressions for marginal posterior distributions of parameters,
which have to be approximated by numerical integration or simulation, such as data augmentation, the
Gibbs sampler or importance sampling (Schafer, 1997).

Multiple imputation In single-imputation methods the confidence intervals for the complete data are too
small because errors in the imputations are not taken into account. In the method of multiple imputation
(Rubin, 1987), instead of imputing a single mean for each missing value, M > 1 values are drawn from the
predictive distribution and then complete-data analyses repeated M times, once with each imputation
substituted. That is, inferences from p(Θ|TP) are done by approximating

p(Θ|TP) =

∫

p(Θ|TP ,TM)p(TM|TP) dTM ≈
1

M

M∑

m=1

p(Θ|TP ,Tm,M) (7.6)

from M samples of the predictive distribution

p(TM|TP) =

∫

p(TM|TP ,Θ)p(Θ|TP) dΘ

38The terms to impute, imputation, etc. have been traditionally used in statistical analysis with missing data to mean to fill in
some missing value not to reconstruct it but as a means for inference. They have also been recently adopted in the literature of
robust speech recognition (e.g. Cooke et al., 2001).
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which, being in general intractable, requires methods such as Markov chain Monte Carlo (Schafer, 1997).
Here TP (TM) contains the present (missing) variables of both x’s and y’s, since when draws are
imputed, conditioning on the x’s alone gives biased estimates while conditioning on the x’s and y does
not (the opposite as when means are imputed).

If θ̂m and v̂m are the estimated values for a parameter θ and its variance by the mth analysis, then the
final estimate is the average θ̂ = 1

M

∑M
m=1 θ̂m, with estimated variance v̂2 = S2

W +
(
1 + 1

M

)
S2

B, where

S2
W

def
= 1

M

∑M
m=1 v̂m is the average variance within imputed data sets and S2

B
def
= 1

M−1

∑M
m=1 (θ̂m − θ̂)2

is the between-imputation variance, which reflects uncertainty in the imputation process. Large-sample

inference for θ is based on treating θ̂−θ
v̂ as a Student-t with ν = (M − 1)

(

1 + M
M+1

S2
W

S2
B

)

degrees of

freedom.

If imputations are predictions based on an explicit model, multiple imputation is closely related to ML
inference. For example, as the sample size and M increase, θ̂ converges to the ML estimate of θ and v̂
converges to the variance of the ML estimate based on the information matrix.

Comparison with our approach There are parallels between imputation methods and our reconstruction
algorithm: single imputation with reconstruction by the mean (see our criticism in section 7.3.4) and multiple
imputation with multiple pointwise reconstruction by a sample from the conditional distribution (section 7.3.7).
However, in multiple imputation each imputation is done on the whole data set, not on each point separately;
the latter would imply a number of imputations exponential (on the sample size). We avoided such an
exponential complexity by minimising a constraint by dynamic programming. No constraint-based approaches
seem to have been used in the statistical literature of missing data—but, again, its aim is model inference
rather than data set reconstruction.

Also, the basic approach of the best statistical analysis methods for missing data consists of averaging over
the missing data. The averaging is done deterministically by EM and stochastically (by simulation, eq. (7.6))
by multiple imputation; other methods use different types of averaging. This results in averaging branches of
a multivalued mapping and contrasts with our method, which is based on mode finding and thus on branch
identification.

7.11.2 Universal function approximators

In section 7.3.6 we showed that universal mapping approximators (UMAs), e.g. MLPs, cannot deal with
multivalued mappings (because they are by definition functions in their mathematical sense) and are, roughly
speaking, equivalent to the conditional mean mapping. In this section we critically review some extensions
of mapping approximators that have been proposed for mapping inversion or sequence reconstruction. We
consider the problem of approximating a multivalued mapping y→ x and will assume that it is the inverse of

a univalued forward mapping x
g−→ y. None of the methods described here can deal with varying patterns of

missing data.

7.11.2.1 Ensembles

Rather than solving a mapping approximation problem by using a single mapping approximator, one can use
a finite collection of them, called an ensemble39, whose outputs are combined in some way (Bishop, 1995,
section 9.6; Dietterich, 1997). The usual combination strategy is to take the (weighted) average, which is
known to improve over the ensemble members in approximation error and generalisation to unseen data if
the members are independent from each other and disagree with each other. Ways of obtaining independent,
disagreeing predictors include:

• Using different architectures for each predictor.

• Using different training algorithms or different regularisation.

• Training each predictor with different data, e.g. by subsampling methods. A simple and good one is
bagging (Breiman, 1996): given a training database of N examples, construct a training set for one
predictor by sampling N examples randomly with replacement, and repeat for each predictor.

39The terms ensemble, assembly and committee are used interchangeably in the pattern recognition literature. The ensemble
approach has been applied to problems of classification too (typically with a voting strategy), but we concentrate on mapping
approximation (regression), since we are dealing with reconstruction of continuous data.
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• Training to a different local minimum, e.g. by using different initialisations. Backpropagation, for exam-
ple, is sensitive to initial conditions (Kolen and Pollack, 1990).

The improvement of the ensemble is intuitively due to the cancellation of the individual errors and goes
back to the L2-optimality of the mean for approximation of univalued mappings (section 7.3.3). But for
multivalued mappings we have shown that this is wrong (section 7.3.4). For ensembles to succeed with
multivalued mappings we need to represent every branch of the mapping with a different ensemble member:
this achieves multiple pointwise reconstruction. The ensemble members do not necessarily overlap and a
selection, rather than averaging, strategy can then be applied to attain a single reconstruction; constraint
minimisation (section 7.6) is an example. We describe here several methods based on the following tasks:

1. Branch determination or resolution: this is the key part and requires to partition the space of the x-
variables into subsets over which the forward mapping is invertible. One can try to do this analytically
or by clustering a training set (unsupervised learning). Obviously, random partitions are inappropriate.

2. Branch inversion: the forward mapping restricted to a branch is by definition one-to-one, so a separate
UMA (such as a polynomial, RBF network or MLP) can now be fit to each branch to define a local
inverse (supervised learning). The collection of all UMAs, restricted to their respective subsets of y-
space, defines the ensemble and the global inverse. We could learn local forward mappings in the same
way, but this is not necessary since a single UMA will correctly learn the global forward mapping, being
unimodal (besides, the forward mapping may be known, as for a robot arm).

First we describe two methods based on branch determination by clustering, each proposed to solve a well-
known mapping inversion problem:

• Rahim et al. (1993) consider the acoustic-to-articulatory mapping problem, described in section 10.1,
where the mapping from articulator configurations x to acoustic features y is many-to-one. The algorithm
works as follows: first the training data is clustered using a modified k-means algorithm into a selected
number Ny of acoustic clusters using an acoustic distance and each cluster is partitioned into another
selected number Nx of articulatory subclusters using the articulatory distance. Additional heuristics
are applied: clusters are forced to overlap by sharing border vectors to ensure a smooth transition from
cluster to cluster; very small clusters are absorbed into neighbouring ones. At this point, it is assumed
that within each of the NxNy clusters, the x-vectors are close to each other and the y-vectors are close
to each other; and that the acoustic space is split into regions such that each region maps one-to-one to
a corresponding region in the articulatory domain, each region being associated with a cluster. Now, a
different MLP is trained in each cluster; the procedure for this is rather complex and based on heuristics,
because one does not know which MLP to adjust for a given speech frame. The actual system uses
Ny = 32, Nx = 4 and an MLP with 26 hidden units.

• DeMers and Kreutz-Delgado (1992, 1998) consider the problem of the inverse kinematics of a robot
arm, described in section 9.3.1. The mapping40 from joint angles x to location of the end effector in
Cartesian coordinates y is many-to-one. Assume we have a training set {(xn,yn)}Nn=1, obtained by finely
discretising the x-space and computing y = g(x). The algorithm works as follows: select a point y0 in
y-space, define an ε-ball around it and search through the training set for all the values of x whose image
lies inside that ball. These x-values will consist of several distinct neighbourhoods in the x-space. If the
sampling of the training set is adequate, there should be one such neighbourhood for each of the inverse
mapping branches. Thus, each point can be labelled with the corresponding branch. If g is continuous,
perturbing slightly y0 will perturb the neighbourhoods in x-space and the new data can be labelled in a
way consistent with the previous labels. Sweeping the y-space in this way could ideally label, or cluster,
a significant proportion of the training set, resulting in tuples (xn,yn, b(xn)) where b(xn) ∈ {1, . . . , B}
indicates which of the B inverse branches the point xn (and its unique image yn = g(xn)) is in. Using
these labelled data, one can construct a classifier with supervised learning to compute b(x) for any x and
use it to partition the training set into B subsets, one for each of the inverse branches, and fit a UMA
to each separately.

Instead of by clustering, determination of the branches can be done by analysis for some simple robot arms.
DeMers and Kreutz-Delgado (1996) consider a synthetic, planar, three-link robot arm problem. They use a
combination of self-organising maps to represent the redundant manifolds associated with each solution branch

40For uniformity of notation thoughout this section, we use x and y rather than θ and x, respectively (the latter are the
conventional symbols in the inverse kinematics problem, section 9.3.1).
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of a one-to-many mapping. Each manifold is parameterised by a different self-organising map of dimension
equal to the number of degrees of freedom and topology equal to that of the manifold (a circle in their
case). The solution branches are determined analytically, so it is necessary to know the topology of the global
manifold (i.e., how many branches and of what dimension). This knowledge is also necessary to select some
ad-hoc parameters of the learning algorithm. For systems with more than one redundant degree of freedom,
which have a complex topological structure (a fiber bundle), this is very difficult. Thus, analytic methods may
succeed in some simple problems, but they are inapplicable in general.

The underlying strategy of these methods is divide-and-conquer, with branch determination as “divide”
and branch inversion as “conquer.” The divide-and-conquer strategy was also the basis of the mixture-of-
experts architecture (Jacobs et al., 1991; Jordan and Jacobs, 1994), which is a set of function approximators
(expert networks) combined by a classifier (gating network). The gating net, a multinomial logit model, softly
splits the x-space into regions where particular experts specialise but allowing data to be processed by multiple
experts. The output of each expert is weighted by the gating network’s estimate of the probability that that
expert is the appropriate one to use (Jordan and Jacobs, 1994), or a particular expert may be chosen according
to the gating network’s estimates (Jacobs et al., 1991), e.g. the one with the largest estimate. The expert
nets are MLPs (Jacobs et al., 1991) or linear mappings (Jordan and Jacobs, 1994). In the latter case, an EM
algorithm trains all the parameters of the mixture simultaneously and in both cases the mixture of experts
is a UMA. However, it is still restricted to learning univalued mappings (in fact, Jordan and Jacobs, 1994
applied it to the forward dynamics, not the inverse dynamics, of a robot arm). The mixtures of experts can
be also extended to do conditional density approximation (section 7.11.3) in a similar way to mixture density
networks (Bishop, 1995, pp. 369–371).

A divide-and-conquer architecture, similar to the mixture of experts but contemplating inverse mappings,
has been proposed by Wolpert and Kawato (1998) for motor learning. Rather than having a single controller
which uses all the contextual information to produce appropriate control signals (which would demand enor-
mous complexity to allow for all possible scenarios), they propose a modular approach with several controllers
(inverse models), each suitable for one or a few contexts. This needs a context identification process that will
select the appropriate controller given a context; it also needs a learning algorithm so that the set of controllers
can cover all the relevant contexts. It remains to be seen whether this generic architecture can be applicable
to multivalued mappings.

Critique These methods can in an ideal case represent all the branches of a one-to-many mapping. While
the learning stage (clustering and fitting the branches) is computationally costly, they have the advantage
over our method of being fast at run-time: inversion requires evaluating the local UMAs rather than mode
finding. But they have the disadvantage that getting the right clustering is very difficult, particularly in high
dimensions:

• Creating the training set and clustering it requires heuristic parameters, such as the sampling period of
the x-variables or the size of the ε-balls for the method of DeMers and Kreutz-Delgado (1998) or the
numbers of clusters Nx and Ny for the method of Rahim et al. (1993). Without a priori knowledge of
the number of branches, it is difficult to detect when two neighbourhoods or clusters are really different.
These parameters depend on the topologic and the geometric structure of the mapping manifold (e.g. its
curvature) which is unknown in general. The clustering is probably quite sensitive to these parameters
and a wrong clustering can seriously deteriorate the global inverse obtained.

• The method of DeMers and Kreutz-Delgado (1998) is badly affected by the curse of the dimensionality,
since each dimension of the x-variables must be thoroughly and finely sampled to ensure that enough
points fall within each ε-ball.

In short, with clustering there is no guarantee that the local mappings are one-to-one inside every region
and determining the regions is computationally costly in high dimensions. And the fact that high-dimensional
forward mappings with multivalued inverses have a complex topological structure makes difficult to analytically
determine branches where the mapping is one-to-one.

The power of density estimation is that it implicitly represents all the branches, i.e., implicitly determines
the topology of the manifold—notwithstanding the difficulty of density estimation in high dimensions and
the smoothness problem of section 7.9.1. In our method, branch determination is achieved at reconstruction
time by mode-finding in the corresponding conditional distribution41; this is so to preserve the flexibility to

41The dynamic programming search acts as a voting scheme for an ensemble where a vote happens at each point n in the
sequence and the ensemble members are the modes (in varying number at every n).
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cope with varying missing data patterns. However, for mapping inversion problems, it is perfectly feasible to
determine the branches at training time just as in the methods above by finely sampling the y-variables, using
mode-finding in the conditional distribution x|y and clustering modes in the same branch (for varying missing
data patterns this is not possible because of the combinatorial explosion of mappings).

Density estimation, especially with latent variable models, also naturally solves the problem of redundant
degrees of freedom considered by DeMers and Kreutz-Delgado (1996), since only the low-dimensional manifold
of the observed space will receive nonnegligible probability mass.

7.11.2.2 Irreversible branch selection at training time

Direct application of a UMA to a multivalued inverse mapping g−1 results in a univalued mapping h equivalent
to the conditional mean that may not be a solution for nonconvex problems (section 7.3.4), i.e., g(h(y)) 6= y.
Several methods convert the multivalued mapping into a univalued one that is a valid inverse, i.e., that satisfies
g(h(y)) = y ∀y. For example:

• Jordan and Rumelhart (1992) propose a distal learning procedure applicable to mapping inversion, in

particular to the problem of inverting the many-to-one forward kinematics of a robot arm42 x
g−→ y.

They first train a neural network to model the forward kinematics g; then they prepend to it another
network and retrain the resulting, cascaded network to learn the identity, y→ y, but keeping unchanged
the weights of the forward model. This results in the prepended portion of the network learning one
of the possible inverses; in general, it is not possible to know which one, although an inverse satisfying
certain desired properties may be found by including appropriate constraint terms in the error function.

• Rohwer and van der Rest (1996) introduce a cost function with a description length interpretation whose
minimum is approximated by the densest mode of a distribution. A neural network trained with this
cost function can learn one branch of a multivariate mapping.

Therefore, these methods regularise the multivalued inverse mapping by adding some kind of constraints at
training time so that the mapping becomes univalued: a single, particular branch is selected and the other
inverses can never be recovered. The methods are relatively straightforward and learn well a particular inverse

y
h−→ x, so that trajectories that are contained in that branch exclusively will be accurately reconstructed. But

they have important disadvantages:

• The extra inverse branches may be necessary if new constraints must be satisfied at run-time. In other
words, trajectories that are contained in other branches will be incorrectly reconstructed.

• The learned inverse mapping must contain discontinuous jumps between branches, similar to those of
the global mode method (e.g. see fig. 9.8).

7.11.2.3 Recurrent nets

Feedforward nets, such as the MLP, are memoryless function approximators in that the predicted value depends
only on the current input of a sequence. To represent information from the past, recurrent nets (Hertz et al.,
1991; Robinson, 1994; Tsoi, 1998) extend this architecture via feedback loops, e.g. to additional hidden units
called context units or to a tapped delay line (time-delay neural networks). For observed data t(1), t(2), . . . , t(N)

they then estimate tn|t1, . . . , tn−1, which makes them attractive for time series modelling. There exist different
architectures and several training algorithms, e.g. gradient-based (Pearlmutter, 1995). Bengio and Gingras
(1996) have used recurrent nets with feedback into the input units for handling missing input variables.
Schuster (1999) has extended recurrent nets to estimate the outputs given future as well as past inputs.

Recurrent nets have a higher representational power than feedforward nets and they may conceivably be
able to learn a constraint (given by the neighbouring sequence points) and an inverse mapping from data so
that the right mapping branch is tracked at reconstruction time. Thus, it would be worth to investigate their
performance on a mapping inversion problem. However, they have two important practical disadvantages:

• Compared with feedforward nets, they are more difficult to train (it requires large training sets, takes
longer and there may be convergence problems) and do not generalise as reliably.

42As earlier, we use x and y rather than the conventional θ and x, respectively.
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• It may be difficult to find the right architecture for a given problem, particularly the number of context
units or the time lag. This also applies to other time series models, for example to an autoregressive model
of lag p, which takes (tn|t1, . . . , tn−1,Θ) ∼ N (µ+β1tn−1+ · · ·+βptn−p,Σ), where the parameters Θ are
the constant µ, the regression coefficients β1, . . . , βp and the error variance Σ. Least-squares estimates of
Θ are found by regressing tn on (tn−1, . . . , tn−p) for observations n = p, p+1, . . . , N , but the appropriate
value for p is unknown.

7.11.3 Conditional vs density modelling

To approximate a multivalued mapping x → y, only the conditional distribution p(y|x) is necessary, not
the joint distribution p(x,y). Several approaches for estimating conditional distributions from paired data
{(xn,yn)}Nn=1 have been proposed (see Husmeier, 1999 for further references):

• One approach is to estimate a density model for y with parameters Θ (means, variances, etc.) depending
on the inputs x through a mapping approximator, e.g. an MLP with weights w, inputs x and outputs Θ
that computes Θ(x;w). If the density model for y and the mapping approximator are flexible enough
then any reasonable conditional distribution can be represented. The only parameters to be learned
are the MLP weights w, which can be done by minimising the log-likelihood with gradient descent
in a backpropagation-style way. Care is needed to ensure that the density parameters Θ computed
by the MLP satisfy certain constraints, which can be done by using a suitable transformation. For
example, variances must be positive, which can be done by applying the exponential function to the
relevant MLP outputs (this also helps to avoid zero variances); mixture proportions must be positive
and add to one, which can be done by applying the softmax function to the relevant MLP outputs; and
covariance matrices must be positive definite, which can be done by representing the covariance matrix
as its Cholesky factorisation Σ = LLT where L is lower triangular and has positive diagonal elements.
Location parameters can usually take any real value and so their corresponding MLP outputs need no
special transformation. Two examples of these models using MLPs are the mixture density networks of
Bishop (1994) (see also Bishop, 1995, pp. 211–222), who uses a Gaussian mixture of spherical components
as density model for y, and the model of Williams (1996), who uses a single full-covariance Gaussian
instead.

• Another approach is to implement p(y|x) directly with a function approximator. Husmeier (1999) uses
a neural network architecture to approximate the conditional cdf (for univariate y) which can then be
differentiated to obtain the conditional pdf. He shows that at least two hidden layers of sigmoidal non-
linearities are necessary for that architecture to be a universal approximator of conditional distributions.

Bishop (1994) uses the centroid of one of the mixture components as an approximation to the global mode
of the conditional distribution y|x (estimated by the mixture density network): either the component with

highest mixture proportion πm(x) or the component with highest density value πm(x)
σm(x) . This results then in the

same branch of the mapping being selected for a given value of x (just as in the irreversible branch selection
methods of section 7.11.2.2), with the rest of the information contained in the conditional distribution being
ignored.

The conditional distribution obtained for a value of x could be used to provide multiple pointwise recon-
struction by finding its modes, as we propose in this chapter. And estimating only the conditional distribution
(D2 variables, y1, . . . , yD2

) is more efficient than estimating the joint density model (D1 + D2 variables,
x1, . . . , xD1

, y1, . . . , yD2
), especially in view of the curse of the dimensionality. But the disadvantage is that,

like function approximators, it treats the variables in an asymmetric way: y missing and x present. To recon-
struct missing x from present y (for example) one would need the conditional distribution p(x|y) ∝ p(y|x)p(x)
which requires estimating the density of the x variables or equivalently the joint density p(x,y).

7.11.4 Vector quantisation, codebooks and dynamic programming

Consider again a known forward mapping g : X → Y to be inverted. In vector quantisation, one constructs
a set of pairs {(xm,ym)}Mm=1 ⊂ X × Y called codebook where g(xm) = ym and the codebook thoroughly and
finely spans the low-dimensional manifold of the mapping g. Then, given a point y ∈ Y, we can look up or
scan the codebook for candidate inverses that approximately map onto y. There are different options for doing
this:

1. Return all points xm such that d(g(xm) − y) < ε where d is a distance in the space Y and ε is large
enough to return at least one x but not too large that many wrong xs are returned.
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2. Return the M ′ best inverses, i.e., order the codebook in increasing distance d(g(xm) − y) and pick the
first M ′, with M ′ � N .

3. Return the whole codebook, i.e., M ′ = N .

To invert a sequence {y(n)}Nn=1, the pointwise candidate reconstructions provided by the codebook can be
used with dynamic programming to minimise a global constraint or cost function, such as continuity. Since
the forward mapping is known, a constraint of the form of eq. (10.2) (see sections 7.5.3 and 7.6.1) can be used
too.

Dynamic programming search of codebooks has been used for articulatory inversion (section 10.1.3) and
in fact it is the leading method for that problem. There, option 3 is used at each point n, i.e., the whole
codebook is used as candidate reconstructions; option 2 is used only when the codebook size N is very large,
to limit computation time; option 1 seems not to have been used. It is surprising that no effort has been
devoted to refine the set of candidate codebook vectors in view of the problems that spurious candidates can
bring about (see section 7.9.1 about the smoothness of density models). The likely reason is that using the
forward mapping in the constraint partly filters out such wrong candidate reconstructions.

Codebooks have the following disadvantages:

• Huge size: finely sampling in several dimensions implies very high codebook storage and search time (the
curse of the dimensionality).

• Constructing the codebook is difficult for several reasons (see section 10.1.3 for details). Among others,
simple clustering algorithms like k-means cannot be used because the data manifold usually is not convex
and so interpolated values may be illegal; and it is difficult to obtain a good sampling because the forward
mapping g can stretch or compress the distance between neighbouring samples in the space X .

• Even assuming a good codebook, the look-up returns fewer or, more likely, more inverse values than
really exist (e.g. several per branch), which should result in the same problems as the spurious modes or
the heuristic sampling of the conditional distribution (section 7.3.7).

• The reconstructed values are quantised, that is, only a finite number of different values is available to
fill in the missing variables, even though their range is continuous. For reconstruction methods based on
the mean, modes (as ours) or random samples from a Gaussian mixture, a continuous range is preserved
for every variable. The reason is that different values of the present variables result in different forms
for the conditional distribution.

Dynamic programming search of codebooks is a particular case of our method. In effect, the codebook is
a zero-variance limit version of a mixture density model. The latter has the advantage of (1) being more
parsimonious (the size of the parameters is much smaller than the size of the codebook, although this depends
on how fine the latter is and how accurate and smooth the former is) and (2) providing with the correct
inverse values (assuming a good density model), not requiring a neighbourhood parameter ε or M ′. In terms
of computational complexity at reconstruction time, which method is faster depends on the choice of M ′ and
the implementation of the mode finding algorithm.

Finally, the codebook approach should be applicable to general missing data patterns, although noone
seems to have done this.

7.11.5 Dynamical, sequential and time series modelling

Many sequence models are based on the Markov assumption, which correlates consecutive points and so
provides a local constraint (as well as simplifying the algebra). For example:

• For continuous time: a Kalman filter (Harvey, 1991) takes (t(n)|M(n)x(n),Θ) ∼ N (M(n)x(n),B),
(x(1)|Θ) ∼ N (µ,Σ) and (x(n)|x(1), . . . ,x(n−1),Θ) ∼ N (Φx(n−1),Q) where {x(n)}Nn=1 is a random un-
observed series and the parameters Θ are B, µ, Σ, Φ and Q. If Θ was known, the optimal estimates for
{x(n)}Nn=1 would be their means conditioned on Θ and the observed data {t(n)}Nn=1. There are recursive
formulas and an EM algorithm to obtain Θ.

Like function approximators, Kalman filters learn to average paths when the underlying path distribu-
tion is multimodal. Diffusion networks (Movellan et al., 1999) have been recently proposed to repre-
sent multimodal path distributions. A diffusion network is a stochastic extension of continuous-time,
continuous-state recurrent neural networks in which the dynamics are described by stochastic differential
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equations. A diffusion network results in a parametric model for distributions of time-varying signals
that, once trained, can be used for tasks such as sequence recognition, sequence generation, stochastic
filtering, prediction, smoothing or decoding.

• For discrete time: hidden Markov models (HMMs) (Rabiner and Juang, 1993) are the most successful
models in speech recognition and recently in biological sequence analysis (Durbin et al., 1998). An HMM
is a probabilistic finite state machine with a probabilistic output process attached to each state (or tran-
sition): if at time n the machine is at state q(n), it will output a value t(n) according to an emission
probability distribution p(t(n)|q(n)) and move to a state q(n+1) according to a state transition probability
distribution p(q(n+1)|q(n)). The sequence of states {q(n)}Nn=1 models the temporal structure of the series
and is unobserved; the sequence of state output processes models the locally stationary character of
the series and is observed. The parameters are the transition probability matrix P = (pij) (where pij
is the transition probability from state i to state j) and the parameters of the emission distribution.
Given observed data, maximum likelihood estimates of the parameters can be computed exactly with
the Baum-Welch algorithm, which is an EM algorithm, or approximately but faster with Viterbi train-
ing. Given an observed sequence {t(n)}Nn=1, the state sequence maximising p({t(n)}Nn=1|{q(n)}Nn=1), or
p({q(n)}Nn=1|{t(n)}Nn=1) for MAP, can be obtained by Viterbi decoding, which is a dynamic programming
algorithm.

However, in standard HMMs the state space has no topology, just as it happens in a Gaussian mixture:
the state (or mixture component) index is just a label and is not attached to a Euclidean space. There
have been several extensions of HMMs that embed the states in a low-dimensional Euclidean space and
constrain the transitions to occur between neighbouring states—in an effort to implement the mechanical
constraints associated with the speech production organs, the slow-moving articulators of the vocal tract.
For example, the GTM through time model of Bishop et al. (1997a) reuses the latent space points of GTM
(section 2.6.5) as states of an HMM. The output probability at each state of the HMM is naturally given
by p(t|xk) = p(t|f(xk)). The transition probabilities are tied to groups of states. For example, in 2D one
can consider 10 groups (and thus 10 parameters) from a given state at position (i, j): the 9 neighbouring
states at (i± d1, j ± d2) with d1, d2 ∈ {0, 1} (9 parameters) plus all the remaining states (1 parameter).
This constrained transition matrix P allows for continuity (neighbouring states) and for transitions
between different regimes (remaining states). The free parameters are the matrix P (tied) and W and σ
from the standard GTM (the same for all states). An EM algorithm for maximum likelihood estimation
is given, which updates W and σ like the standard GTM and P like the Baum-Welch algorithm of
HMMs. As another example, Roweis (2000) constrains HMM transitions to occur between neighbouring
knots of a grid and also gives an EM algorithm. In general, these constraints result in a banded, tied
structure for the transition matrix P. A more abstract way of imposing such constraints would be to do
so on the transition matrix directly, for example using Toeplitz matrices, as has been done for the HMM
covariance matrices (see Roberts and Ephraim, 2000 and references therein). An additional advantage of
these constrained HMM models is that they reduce the number of free parameters and so require smaller
training sets, which is particularly welcome in automatic speech recognition.

Nix and Hogden (1999) have presented the maximum-likelihood continuity mapping (MALCOM) as a
variation of HMMs to allow for a continuous path in hidden state space. The model formulation is
basically that of HMMs with integrals over state-space paths instead of sums. However, to make it
tractable, they quantise the acoustic space into an acoustic codebook {ym}Mm=1 and take the conditional
distribution of state given acoustics as x|ym ∼ N (µm, σ

2I), thus unsurprisingly converting the hidden
state distribution p(x) in a Gaussian mixture. By forcing the distribution of hidden states given the
acoustics to be unimodal (Gaussian), the model becomes unable to account for the nonuniqueness of the
acoustic-to-articulatory mapping (since the hidden space is assumed to be an articulatory space). The
smoothness constraint enters the training algorithm as a low-pass filtering of the state path x1, . . . ,xN
for a given observed acoustic sequence y1, . . . ,yN . The training algorithm itself is iterative, with each
iteration consisting of a gradient maximisation of the log-likelihood over the means {µm}Mm=1 for fixed
path {yn}Nn=1 followed by a gradient maximisation and low-pass filtering over the path (and a reestima-
tion of the variance σ) for fixed means. It remains to be proven whether MALCOM has any advantage
over simply constraining the transitions of a standard HMM as mentioned before.

For articulatory speech modelling, production information can be incorporated in the state space more
literally by simply quantising a few articulatory variables and forbidding some transitions. In the
articulatory-feature model of Erler and Freeman (1996), an articulatory feature space is described by
7 features taken from the theory of articulatory phonology of Browman and Goldstein (1992) (sec-
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tion 10.1.2.1) such as the degree of rounding of the lips, the position of the tongue tip constriction or
the presence or absence of voicing. Each articulatory feature is quantised into 2 to 6 values (e.g. the lip
rounding into 5 possible values, ranging from ‘closed’ to ‘spread’). This results in 7200 states, which de-
fine the state space of an HMM. State transitions are subjected to several types of constraints, including
(1) static rules, which discard physically unrealisable articulatory configurations (e.g. ‘tongue tip cannot
be behind tongue body’); and (2) dynamic rules, which dictate what values a given articulatory variable
can take at a particular time (e.g. depending on the intrinsic inertia of its associated articulator, that is,
continuity and velocity constraints). The model is trained using words labelled with their ortographic
description. This description is mapped to a phonemic description using a lookup dictionary and each
phonemic segment is mapped to an articulatory target which, after applying the rules, results in an artic-
ulatory state sequence. Each state outputs an acoustic vector according to its own emission distribution.
Initialising the model is difficult, and the trained model is sensitive to the particular initialisation chosen.
Recognition results using a carefully crafted model with a large-vocabulary, speaker-dependent, isolated
word task approach the performance of standard acoustic HMMs.

Other variations of Markovian sequence models are segment models (Ostendorf et al., 1996), a complex
extension of HMMs where the states generate sequences themselves rather than a single output vector
and allow the inclusion of trajectory and correlation constraints; and Markov processes on curves (Saul
and Rahim, 2000a), which combine the Markov assumption with a continuous trajectory parameterised
by arc length to achieve invariance to time warpings (trajectory reparametrisations).

Reinhard and Niranjan (1999) propose a method to capture segmental transition information for diphone
classification. Each diphone is sampled as a sequence of acoustic feature vectors. They enforce the
sequence order by augmenting each vector with its index (weighted by a scale parameter) in the sequence.
The augmented sequence is then reduced to a two-dimensional sequence with PCA. In this subspace, each
diphone is represented by a trajectory model (a principal curve, GTM or a simple framewise average)
estimated from several sequences. A given test sequence is first smoothed with a cubic spline and then
classified as the diphone whose trajectory model is closest to it. The Euclidean distance normalised by
the trajectory length is used in an attempt to attain duration invariance.

Comparison with our approach Our approach does not attempt to model the temporal evolution of the
system. The joint probability model is estimated statically. The temporal aspect of the data appears indirectly
and a posteriori through the application of the continuity constraints to select a trajectory43. In this respect,
our approach differs from that of dynamical systems or from models based on Markovian assumptions, such
as those above.

The fact that the duration or speed of the trajectory plays no role in our algorithm makes it invariant to time
warping. That is, the dynamic programming algorithm depends only on the values of the observed variables
but not on the experimental conditions and so is independent of the speed at which the trajectory is traversed.
It is also independent of direction, since it can be run forwards (from point 1 to N) or backwards with the
same result. Therefore, our reconstruction algorithm does not depend on the particular parametrisation of
the trajectory, but just on its geometric shape. This is important in the case of speech: it is well known that
hidden Markov models are very sensitive to time warpings, i.e., fast or slow speech styles, where the trajectory
in speech feature space is the same but is traversed fast or slowly, respectively. Our reconstruction method
should then be robust to time warpings.

Formally, a time series prediction is a reconstruction problem where the data set is

{t(1), t(2), . . . , t(N), t(N+1), . . . , t(N+N ′)}, {t(n)}Nn=1 are present and {t(n)}N+N ′

n=N+1 are missing. But, even if
continuity constraints and stationarity assumptions (p(t) independent of n) hold, the values for the future,

missing variables {t(n)}N+N ′

n=N+1 are too unconstrained: many reconstructed trajectories would be equally
plausible44. Thus, our method is not useful for time series prediction.

Finally, there exists work in the (statistical) signal processing literature concerning the restoration of audio
and images corrupted by impulsive noise. A typical application is the removal of click and crackle noise from old
gramophone recordings or of dirt and sparkle from pictures and films, due to surface irregularities, scratches,
dust particles, etc. (Vaseghi, 2000; Godsill and Rayner, 1998a). In the problem of audio reconstruction, the
objective is to recover an uncorrupted audio sequence {s(n)}Nn=1 (where n is the time) from an observed sequence

{s(n)
obs}Nn=1. Several methods have been developed for this, including median filtering, least-squares interpolation

43The constraints, though, may be seen probabilistically as a normal, Markovian dependence between adjacent frames (sec-
tion 7.7).

44In fact, the trivial application of a continuity or smoothness constraint would lead to t̂(n) = t(N) ∀n > N , i.e., a constant
sequence.
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(Vaseghi and Rayner, 1990) and Bayesian reconstruction using a likelihood model p({s(n)
obs}Nn=1|{s(n)}Nn=1,Θ)

with parameters Θ and a prior on the uncorrupted data (Godsill and Rayner, 1998b). In these methods,
redundancy in the temporal domain is exploited via a one-dimensional autoregressive process (section 7.11.2.3).
The same methods are applicable to image reconstruction, where the signal s depends then on the spatial
coordinates x and y as well as the time n, and so a three-dimensional autoregressive process is necessary
(Kokaram et al., 1995). Thus, these methods apply to reconstruction of one-dimensional signals that are
(semi)continuous or smooth over time and/or space; however, the method we propose in this chapter applies
when the signal itself is multidimensional and exploits the redundancy that arises due to its lower intrinsic
dimensionality—in addition to the temporal or spatial redundancy.

7.12 Mathematical appendix

In this appendix, selection of variables follows the notation of section 7.2.5. Let I,J ∈ {1, . . . , D} be disjoint,
nonempty sets of indices with I ∪ J ⊆ {1, . . . , D} not necessarily equal to {1, . . . , D}.

7.12.1 Marginal and conditional distributions of Gaussian mixtures

Let us write t ∼ N (µ,Σ) meaning that the D-dimensional vector t has a D-variate normal distribution of
mean vector µ and covariance matrix Σ. Up to an index permutation, D-dimensional vectors and D × D
matrices are partitioned in the usual way according to index sets I, J :

µ =





µI
µJ
. . .



 , Σ =





ΣII ΣIJ . . .

ΣT
IJ ΣJJ . . .

. . . . . . . . . . . . . . . . .





where . . . means the rest of the variables.
Recall the well-known facts that if t ∼ N (µ,Σ) then (section A.3; Mardia et al., 1979):

• tI ∼ N (µI ,ΣII), i.e., any marginal is normal with the marginalised variables removed.

• tJ |tI ∼ N (µJ |I ,ΣJ |I) with µJ |I = µJ + ΣT
IJΣ−1

II (tI − µI) and ΣJ |I = ΣJJ −ΣT
IJΣ−1

IIΣIJ , i.e.,
any conditional is normal.

Thus, for a Gaussian mixture p(t) =
∑M
m=1 p(m)p(t|m) with t|m ∼ N (µm,Σm), we obtain immediately the

following exact formulae for the marginal and conditional distributions:

• p(tI) =
∑M
m=1 p(m)p(tI |m), with tI |m ∼ N (µm,I ,Σm,II), i.e., any marginal is a mixture of normal

distributions with the marginalised variables removed.

• p(tJ |tI) =
∑M
m=1 p(m|tI)p(tJ |tI ,m), with p(m|tI) = p(tI |m)p(m)/p(tI) and tJ |tI ,m ∼

N (µm,J |I ,Σm,J |I), i.e., any conditional is a mixture of normal distributions.

For diagonal components Σm,IJ = 0 and Σm,II is diagonal for all m and any I, J . Therefore, in the

conditional distribution we avoid the computationally costlyM matrix inversions of Σm,II and the distribution
of each component is obtained by crossing out rows and columns: tJ |tI ,m ∼ N (µm,J ,Σm,JJ ).

7.12.2 Marginal and conditional distributions of mixtures of factorised distribu-
tions

Conditioning and marginalising on mixtures of factorised distributions is straightforward. In section 2.4 we
saw that marginalising a multivariate distribution can be hard if the integral cannot be solved analytically.
However, consider a D-variate distribution having the form of a mixture of factorised distributions with M
components:

p(t) =

M∑

m=1

p(m)p(t|m) t = (t1, . . . , tD) ∈ T ⊂ RD, with p(t|m) =

D∏

d=1

p(td|m) ∀m = 1, . . . ,M.

From the joint distribution p(t) we can compute the marginal distribution of tI as follows:

p(tI) =

∫

p(t) dt{1,...,D}\I =

∫ M∑

m=1

p(m)p(t|m) dt{1,...,D}\I =

M∑

m=1

p(m)p(tI |m) (7.7)
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where p(tI |m) =
∏

d∈I p(td|m), since marginalising a factorial distribution amounts to removing the terms
associated with the variables on which we marginalise (e.g. if p(t|m) is diagonal normal, we cross out all rows
and columns except those of I from its covariance matrix and mean vector, as seen in section 7.12.1):

p(tI |m) =

∫

p(t|m) dt{1,...,D}\I =

∫ D∏

d=1

p(td|m) dt{1,...,D}\I

=

(
∏

d∈I
p(td|m)

)


∏

d∈{1,...,D}\I

∫

p(td|m) dtd



 =
∏

d∈I
p(td|m).

(7.8)

Equation (7.7) shows that marginalising a mixture of factorised distributions results in another mixture of
factorised distributions with the corresponding variables removed.

Computing conditional distributions is also straightforward. The distribution of tJ conditional on tI can
be computed as

p(tJ |tI) =
p(tJ , tI)

p(tI)
=
p(tI∪J )

p(tI)
=

∑M
m=1 p(m)p(tI∪J |m)
∑M
m=1 p(m)p(tI |m)

=

∑M
m=1 p(m)p(tI |m)p(tJ |m)
∑M
m=1 p(m)p(tI |m)

. (7.9)

Thus we have exact formulae to marginalise and condition on mixtures of factorised distributions.
Using Bayes’ theorem on the component index m,

p(m|tI) =
p(tI |m)p(m)

∑M
m=1 p(m)p(tI |m)

eq. (7.9) can also be put in the form

p(tJ |tI) =
M∑

m=1

p(m|tI)p(tJ |m)

which shows that the conditional distribution of a mixture of factorised distributions is another mixture of
factorised distributions, where the component weights are the posterior probabilities or responsibilities of
the component given vector tI . The mean of this distribution is immediately obtained as the weighted
intracomponent marginal mean:

Ep(tJ |tI) {tJ } =

M∑

m=1

p(m|tI) Ep(tJ |m) {tJ },

which is a point in the convex hull of the intracomponent marginal means {Ep(tJ |m) {tJ }}Mm=1, since all the
p(m|tI) are nonnegative and add to 1.

7.12.3 Marginal and conditional distributions of latent variable models in data
space

In section 2.3 we saw that the marginal distribution in data space, p(t), was obtained from the joint distribution
p(x, t) = p(t|x)p(x) by integrating it over the latent variables. Two situations were possible:

• The integral in latent space was analytically possible. The distribution in data space p(t) has a closed
form and has to be integrated again to marginalise and condition between variables in data space. Notice
that there is no guarantee that this can be done analytically again. However, for the linear-normal models
(factor analysis and PCA), this is indeed possible and the resulting marginal and conditional distributions
are also normal, as is well known, with appropriate values of the mean vector and covariance matrix
(given in section 7.12.3.1).

• The integral in latent space was approximated by a Monte Carlo or fixed sampling, resulting in a sum
over a number of fixed points in latent space (section 2.4). Owing to the axiom of local independence,
this distribution in data space is a mixture of factorised distributions and we can apply the results
of section 7.12.2. For the GTM case, the marginal and conditional distributions are also mixtures of
factorised normal distributions, and the very simple resulting formulae are given in section 7.12.3.2.
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7.12.3.1 Linear-normal latent variable models

With the same matrix partitioning notation as in section 7.12.1:

Factor analysis The distribution in data space is normal with mean µ and covariance matrix Σ = ΛΛT +Ψ,
eq. (2.16). The submatrices of the covariance matrix are ΣII = ΛIΛT

I + ΨI , ΣJJ = ΛJΛT
J + ΨJ ,

ΣIJ = ΛIΛT
J with

Λ =





ΛI
ΛJ
. . .



 , Ψ =





ΨI 0 . . .
0 ΨJ . . .
. . . . . . . . . . . . . .



 .

Note that Λ is a D × L matrix and Ψ a diagonal D ×D matrix. Therefore:

• tI ∼ N (µI ,ΛIΛT
I + ΨI).

• tJ |tI ∼ N (µ′
J ,Σ

′
JJ ), where

µ′
J = µJ + ΛJ (I + ΛT

IΨ−1
I ΛI )−1ΛT

IΨ−1
I (tI − µI)

= µJ + ΛJΛT
I (ΛIΛT

I + ΨI )−1(tI − µI)

Σ′
JJ = ΛJ (I + ΛT

IΨ−1
I ΛI )−1ΛT

J + ΨJ .

Principal component analysis Now the covariance matrix is Σ = ΛΛT + σ2I. Similarly:

• tI ∼ N (µI ,ΛIΛT
I + σ2I).

• tJ |tI ∼ N (µ′
J ,Σ

′
JJ ), where

µ′
J = µJ + ΛJ (ΛT

IΛI + σ2I)−1ΛT
I (tI − µI)

= µJ + ΛJΛT
I (ΛIΛT

I + σ2I)−1(tI − µI)

Σ′
JJ = σ2ΛJ (ΛT

IΛI + σ2I)−1ΛT
J + σ2I.

For both models, the regression of tJ on tI , where tJ takes the value µ′
J , is a linear manifold passing through

the conditional mean. Note that µ′
J depends (linearly) on tI , but Σ′

JJ (and therefore covariance-based error
bars derived from it, as in section 8.4) does not depend on tI but just on I and J .

7.12.3.2 Latent variable models with fixed sampling in the latent space

Generative topographic mapping (GTM) Applying eqs. (7.7) and (7.9) to eq. (2.43) gives:

• p(tI) =
∑K
k=1 p(xk)(2πσ

2)−
I
2 e−

1
2σ2 ‖fI(xk)−tI‖2

= 1
K (2πσ2)−

I
2

∑K
k=1 e

− 1
2σ2 ‖fI(xk)−tI‖2

.

• p(tJ |tI) =
∑K
k=1 p(xk)(2πσ

2)−
I
2 (2πσ2)−

J
2 e−

1
2σ2 ‖fI(xk)−tI‖2

e−
1

2σ2 ‖fJ (xk)−tJ ‖2

/p(tI) =

(2πσ2)−
J
2

∑K
k=1 e

− 1
2σ2 ‖fI(xk)−tI‖2

e−
1

2σ2 ‖fJ (xk)−tJ ‖2

∑K
k=1 e

− 1
2σ2 ‖fI(xk)−tI‖2 .

where I
def
= card (I) and J

def
= card (J ) are the cardinalities of each index set (the number of variables

in each set). The rightmost part of the equations is for a uniform distribution over the latent grid, i.e.,
p(xk) = 1

K ∀k = 1, . . . ,K.

7.12.4 A quantitative measure of sparseness

We propose here a preliminary study of quantitative measures of sparseness. Call a particular such measure
S (not to be confused with the smoothness constraint of section 7.6.1). S maps a density (belonging to a
given class of densities defined on a compact subset of RD) onto an interval, possibly infinite, of the real line;
high (low) values of S mean more (less) sparseness45. S should have some desirable properties, such as:

1. Maximal sparseness: S should give high value to a mixture of delta distributions.

45A hard classification of densities into sparse and not sparse could be attained by thresholding the value of S , but this always
entails some arbitrariness in the choice of the threshold.
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2. Minimal sparseness: S should give low value to a uniform distribution.

3. Domain increase: S should increase its value if a zero-density nonempty compact subset is added to
the domain of the density (i.e., if the domain becomes larger but the density remains the same). For
example, a uniform distribution in the interval [0, 1] looks broad if the domain is [0, 1] but sparse if the
domain is [0, 100]. However, two densities should only be compared in terms of sparseness if they are
defined in the same domain.

4. Transformations: S should be invariant to rigid motions (translations, rotations, flips) but, if the domain
is RD, not to scale changes: stretching (compressing) a variable of infinite domain decreases (increases)
its sparseness.

At first sight, an entropy-based measure (Cover and Thomas, 1991) would seem to fit the bill; but things
are a bit more complicated. Firstly, the differential entropy by itself is a relative measure and so must be
compared to a reference distribution pr:

S (p)
def
= −(h(p)− h(pr)) (7.10)

where the negative sign ensures that S (p) increases the narrower p is. If pr is a uniform distribution, this
equation can also be interpreted as the Kullback-Leibler divergence of density p to density pr:

D (p‖pr) =

∫

p ln
p

pr
=

∫

p ln p−
∫

p ln
1

V
= −h(p) + lnV = −(h(p)− h(pr)).

For bounded domains we could take as reference a uniform distribution on the domain, whose entropy (equal

to lnV , V
def
=
∫

domain
dt being the domain volume) is maximal over all distributions and its sparseness minimal.

But for unbounded domains, such uniform distribution does not exist: we can make the entropy arbitrarily
large and so there is not a minimal sparseness distribution (in other words, we cannot subtract h(pr) =∞ in
eq. (7.10)). But we could just take a different distribution as reference—it may not be as meaningful as the
“minimal sparseness distribution,” but as long as we always use the same reference, this is not a problem.

Secondly, it is easy to check that the entropy-based measure satisfies most of the previous conditions:

2. Minimal sparseness: since h = lnV for a uniform distribution of support size V , S decreases indefinitely
as the support increases.

3. Domain increase: h(p) does not change, but the reference distribution does, since it must cover the new
region added; thus h(pr) increases and S increases.

4. Transformations: the entropy satisfies h(u) = h(t) + ln |A| under an affine transformation u
def
= At + b

(here |A| is the absolute value of the determinant of A, i.e., |A| def
=
∏D
d=1 |λd| in terms of A’s eigenvalues).

Since |A| = 1 for both rotations (A is orthogonal) and flips (A is diagonal with entries ±1 in the
diagonal), h is invariant to rigid motions, and so is S . For scale changes, if the domain is bounded then
the reference distribution is also scaled and S does not change value; but if the domain is unbounded
then the reference distribution does not change (because the domain does not change either) while S

changes by − ln |A| = −∑D
d=1 ln |λd| (stretching the dth axis gives |λd| > 1 and so S decreases, and

vice versa).

Where the measure of eq. (7.10) falls short is in the way it deals with delta functions. A delta function has
h = −∞ and so any distribution which is a mixture of a delta and any other density will have h = −∞ as
well, which is not reasonable.

In summary, an entropy-based measure of sparseness is not completely satisfactory. A topic of future
research is then to identify a set of conditions that an ideal measure should satisfy, possibly including all
conditions mentioned above, and then determine what quantitative measures verify them.

7.12.4.1 Other measures of sparseness

Kurtosis, the fourth-order cumulant of a distribution, has been proposed and used by Field (1994) and others
(Olshausen and Field, 1996, 1997; Bell and Sejnowski, 1997; Vinje and Gallant, 2000) as a measure of sparseness
in the context of neural codes, based on the experimental observation that the receptive fields of neurons in
primary visual cortex typically have positive kurtosis—although this fact has been debated both theoretically
and experimentally (e.g. Fyfe and Baddeley, 1995; Baddeley, 1996; Willmore et al., 2000). However, kurtosis
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Distribution
PSfrag replacements

s

Uniform

PSfrag replacements

s

Normal

PSfrag replacements

s

Laplace (double exponential)

Density pU (x) =

{

0 x /∈ [−s, s]
1
2s x ∈ [−s, s] pN (x) = 1√

2πs2
e−

1
2 (

x
s )

2

pL(x) = 1
2se

−| xs |

Variance µ2 = s2

3 µ2 = s2 µ2 = 2s2

Entropy h(pU ) = ln 2s h(pN ) = ln
√

2πes h(pL) = ln 2es

Kurtosis k4 = − 2
15s

4 < 0 k4 = 0 k4 = 12s4 > 0

Table 7.3: The kurtosis is not a good sparseness measure. Each of the densities shown takes values in (−∞,∞)
and depends on a width parameter s > 0. The entropy of each density can vary between −∞ (for s → 0,
maximal sparseness) and +∞ (for s→∞, minimal sparseness) but the kurtosis type (negative, zero or positive)
does not depend on the width s. Thus, kurtosis is unrelated to entropy and does not measure distribution
sparseness as defined in sections 7.3.1 and 7.12.4.

is not a good measure of sparseness in the sense we have described above, since we are not interested in the
shape (or skew) of a peak, but in its narrowness and in the narrowness of the other peaks. In fact, as table 7.3
shows, we can have a distribution depending on one variance parameter (uniform, normal, Laplace) with the
same kurtosis type independent of that parameter (negative, zero, positive) but whose width can vary from
zero (maximum sparseness, entropy = −∞) to infinity (minimum sparseness, entropy = +∞).

As for the variance, it would be an appropriate measure of sparseness for unimodal distributions, but not
for multimodal ones, since in this case the variance depends not just on the peaks’ width but also on their
separations (this also applies to the kurtosis), as fig. 7.19 demonstrates. In fact, by taking the extreme case of
sparse distribution, a mixture of delta functions, we can obtain any desired value for its variance and kurtosis
by varying the separation between individual deltas, while its differential entropy remains constant at −∞.

Yet other definitions of sparseness are based on the coefficient of variation c
def
= σ

µ (for univariate

distributions), where σ is the standard deviation and µ the mean; Treves and Rolls (1991) and Rolls and
Treves (1998, p. 326–329) define sparseness as 1

1+c2 to measure the proportion of very active cells at any
particular moment in time or the proportion of time that a particular cell is very active, in the context of
sparse coding and cell tuning. In all these cases, the entropy gives a more natural measure of sparseness as we
define it, notwithstanding the caveat discussed earlier.

Finally, it is important to remark that we use the word “information” in the opposite sense as in the
traditional, information theory definition of information contained in a distribution. In the latter view, the
more values a random variable can take, the more unpredictable its outcome is and the higher the information
(and the higher the entropy). In our view, the fewer the possible values, the more predictable the outcome(s)
are and the more informative the distribution is46.

❦

46Finding good names is a difficult art. Apart from “sparse” and “informative” distributions, we also considered “spread out”
and “unconstrained,” all of which ring unwanted bells.
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PSfrag replacements p(x)

µ = 0

PSfrag replacements p(x)

µ = 0.99

PSfrag replacements p(x)

µ = 1

h(p) = 1
2 ln 2πev ≈ 1.4189 h(p) ≈ 0.1536 h(p) = −∞
v = 1 v = 1 v = 1

Figure 7.19: The variance is not a good sparseness measure for multimodal distributions. The graphs show
distributions with the same variance v but different sparseness (and entropy ranging from −∞ to 1

2 ln 2πev):
p(x) = 1

2N (−µ, σ2(µ)) + 1
2N (µ, σ2(µ)) with σ2(µ) = v − µ2.
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Chapter 8

Exhaustive mode finding in Gaussian
mixtures

This chapter is organised as follows. Section 8.1 motivates the problem. Sections 8.2–8.3 describe algorithms
for locating the modes. The significance of the modes thus obtained is quantified locally by computing error
bars for each mode (section 8.4) and globally by measuring the sparseness of the mixture via the entropy
(section 8.5). Section 8.6 concludes and mentions some applications. The chapter relies heavily on section 8.7,
which gives formulae for the moments, gradient, Hessian and entropy of a Gaussian mixture, as well as for
bounds on them.

8.1 Introduction

Gaussian mixtures (Titterington et al., 1985; Everitt and Hand, 1981; McLachlan and Peel, 2000) are ubiquitous
probabilistic models for density estimation in machine learning applications. Their popularity is due to several
reasons:

• Since they are a linear combination of Gaussian densities, they inherit some of the advantages of the
Gaussian distribution: they are analytically tractable for many types of computations, have desirable
asymptotic properties (e.g. the central limit theorem) and scale well with the data dimensionality. Fur-
thermore, many natural data sets occur in clusters which are approximately Gaussian.

• The family of Gaussian mixtures is a universal approximator for continuous densities. In fact, Gaussian
kernel density estimation (spherical Gaussian mixtures) can approximate any continuous density given
enough kernels (Titterington et al., 1985; Scott, 1992), in the sense of (uniform or L2-norm) convergence
in probability of the estimator to the density. In particular, they can model multimodal distributions.

• Many complex models result in a Gaussian mixture after some assumptions are made in order to obtain
tractable models. For example, Monte Carlo approximations to integrals of the type:

p(t) =

∫

p(t|θ)p(θ) dθ ≈ 1

N

N∑

n=1

p(t|θn)

where {θn}Nn=1 are samples from the distribution p(θ) and p(t|θn) is assumed Gaussian. This is the case
of continuous latent variable models that sample the latent variables, described in section 2.4, such as
the generative topographic mapping (GTM).

• A number of convenient algorithms for estimating the parameters (means, covariance matrices and mixing
proportions) exist, such as the traditional EM for maximum-likelihood or more recent varieties, including
Bayesian (and non-Bayesian) methods that, in theory, can tune the number of components needed as
well as the other parameters (e.g. Richardson and Green, 1997; Roberts et al., 1998).

This chapter is mainly based on references Carreira-Perpiñán (1999a, 2000a) and can be read independently of the rest of the
thesis.
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Examples of models (not only for density estimation, but also for regression and classification) that often result
in a Gaussian mixture include the GTM model, kernel density estimation (also called Parzen estimation; Scott,
1992), radial basis function networks (Bishop, 1995), mixtures of probabilistic principal component analysers
(Tipping and Bishop, 1999a), mixtures of factor analysers (Hinton et al., 1997), support vector machines
for density estimation (Weston et al., 1999; Vapnik and Mukherjee, 2000), models for conditional density
estimation such as mixtures of experts (Jacobs et al., 1991) and mixture density networks (Bishop, 1995),
the emission distribution of hidden Markov models for automatic speech recognition and other applications
(Rabiner and Juang, 1993) and, of course, the Gaussian mixture model itself. Titterington et al. (1985) give
an extensive list of successful applications of Gaussian mixtures.

Mixture models are not the only way to combine densities, though—for example, individual components
may be combined multiplicatively rather than additively, as in logarithmic opinion pools (Genest and Zidek,
1986) or in the recent product-of-experts model (Hinton, 1999). This may be a more efficient way to model high-
dimensional data which simultaneously satisfies several low-dimensional constraints: each expert is associated
with a single constraint and gives high probability to regions that satisfy it and low probability elsewhere, so
that the product acts as an AND operation.

Gaussian mixtures have often been praised for their ability to model multimodal distributions, where each
mode represents a certain entity. For example, in visual modelling or object detection, a probabilistic model
of a class of objects should account for multimodal distributions in order to prepresent multiple views of the
object (Moghaddam and Pentland, 1997) or multiple object shapes in a cluttered scene (Isard and Blake, 1998).
In missing data reconstruction and inverse problems, which is the case we are interested in here, multivalued
mappings can be derived from the modes of the conditional distribution of the missing variables given the
present ones. Finding the modes of posterior distributions is also important in Bayesian analysis (Gelman
et al., 1995, chapter 9). However, the problem of finding the modes of this important class of densities seems
to have received little attention—although the problem of finding modes in a data sample, related to clustering,
has been studied (see section 7.9.9).

Thus, the problem addressed in this chapter is to find all the modes of a given Gaussian mixture (of
known parameters). No direct methods exist for this even in the simplest special case of one-dimensional
bi-component mixtures, so iterative numerical algorithms are necessary. Intuitively, it seems reasonable that
the number of modes will be smaller than or equal to the number of components in the mixture: the more
the different components interact (depending on their mutual separation and on their covariance matrices),
the more they will coalesce and the fewer modes will appear. Besides, modes should always appear inside the
region enclosed by the component centroids—more precisely, in their convex hull.

We formalise these notions in the following conjecture, for which we provide a partial proof in section 8.7.2.
First, let us recall that the convex hull of the vectors {µm}Mm=1 is defined as the set

{

t : t =

M∑

m=1

λmµm with {λm}Mm=1 ⊂ [0, 1] and

M∑

m=1

λm = 1

}

.

Conjecture 8.1. Let p(t) =
∑M
m=1 p(m)p(t|m), where t|m ∼ ND(µm,Σm), be a mixture of M D-variate

normal distributions. Then p(t) has M modes at most, all of which are in the convex hull of {µm}Mm=1, if one
of the following conditions holds:

1. D = 1 (one-dimensional mixture)

2. D ≥ 1 and the covariance matrices are arbitrary but equal: Σm = Σ ∀m = 1, . . . ,M (homoscedastic
mixture).

3. D ≥ 1 and the covariance matrices are isotropic: Σm = σ2
mID (spherical or isotropic mixture).

This conjecture suggests that, in the cases for which it holds, a hill-climbing algorithm starting from every
centroid will not miss any mode. The analytical tractability of Gaussian mixtures allows a straightforward
application of convenient optimisation algorithms and the computation of error bars. To our knowledge, this is
the first time that the problem of finding all the modes of a Gaussian mixture has been investigated, although
certainly the idea of using the gradient as mode locator is not new (e.g. Wilson and Spann, 1990).

The treatment in the following sections considers general Gaussian mixtures for simplicity of notation, but
it only applies to the cases where conjecture 8.1 holds. The case of multivariate, arbitrary, different covariance
matrices—for which the conjecture does not hold—is discussed in sections 8.6–8.7.
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8.2 Exhaustive mode search by a gradient-quadratic search

Consider a Gaussian mixture p with M > 1 components as in equation (8.6). Since the family of Gaussian
mixtures is a density universal approximator, the landscape of p could be very complex. However, assuming
that conjecture 8.1 is true, there are at most M modes and it is clear that every centroid µm of the mixture
must be near, if not coincident, with one of the modes, since the modes are contained in the convex hull of
the centroids (as the mean is). Thus, an obvious procedure to locate all the modes is to use a hill-climbing
algorithm starting from every one of the centroids (and so from every vertex of the convex hull).

Due to the ease of calculation of the gradient (8.11) and the Hessian (8.12), it is straightforward to use
quadratic maximisation (i.e., Newton’s method) combined with gradient ascent (Nocedal and Wright, 1999).
Assuming we are at a point t0, let us expand p(t) around t0 as a Taylor series to second order:

p(t) ≈ p(t0) + (t− t0)
Tg(t0) +

1

2
(t− t0)

TH(t0)(t− t0)

where g(t0) and H(t0) are the gradient and Hessian of p at t0, respectively. The zero-gradient point of the
previous quadratic form is given by:

∇p(t) = g(t0) + H(t0)(t− t0) = 0 =⇒ t = t0 −H−1(t0)g(t0) (8.1)

which jumps from t0 to the maximum (or minimum, or saddle point) of the quadratic form in a single leap.
Thus, for maximisation, the Hessian can only be used if it is negative definite, i.e., if all its eigenvalues are
negative.

If the Hessian is not negative definite, which means that we are not yet in a hill-cap (defined as the region
around a mode where H < 0), we use gradient ascent:

t = t0 + sg(t0) (8.2)

where s > 0 is the step size. That is, we jump a distance s ‖g(t0)‖ in the direction of the gradient (which does
not necessarily point towards the maximum). For comments about the choice of the step size, see section 8.2.1.

Once a point for which g = 0 is found, the Hessian (8.12) can confirm that this point is indeed a maximum
by checking that H < 0. Of course, both the nullity of the gradient and the negativity of the Hessian can
only be ascertained to a certain numerical accuracy, but due to the simplicity of the surface of p(t) this should
not be a problem (at least for a small dimensionality D). Section 8.2.1 discusses the control parameters for
the gradient ascent. Fig. 8.1 shows the pseudocode for the algorithm. Fig. 8.2 illustrates the case with a
two-dimensional example.

Some remarks:

• It is not convenient here to use multidimensional optimisation methods based on line searches, such as the
conjugate gradient method, because the line search may discard local maxima. Since we are interested
in finding all the modes, we need a method that does not abandon the region of influence of a maximum.
Gradient ascent with a small step followed by quadratic optimisation in a hill-cap should not miss local
maxima.

• If the starting point is at or close to a stationary point, i.e., with near-zero gradient, the method will not
iterate. Examination of the Hessian will determine if the point is a maximum, a minimum or a saddle
point. In the latter two cases it will be discarded.

• The gradient ascent should not suffer too much in higher dimensions because the search follows a one-
dimensional path. Of course, this path can twist itself in many more dimensions and thus became longer,
but once it reaches a hill-cap, quadratic maximisation converges quickly. If the dimension of the space
is D, computing the gradient and the Hessian is O(D) and O(D2), respectively. Inverting the Hessian
is O(D3), but this may be reduced by the techniques of section 8.7.4.

• Other optimisation strategies based on the gradient or the Hessian, such as the Levenberg-Marquardt
algorithm (Nocedal and Wright, 1999), can also be easily constructed.
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inputs
Gaussian mixture defined by {p(m),µm,Σm}Mm=1

constants

σ ←
√

minm=1,...,M{min{eigenvalues(Σm)}} Minimal standard deviation

ε ← 10−4
Small number 0 < ε � 1

θ ← 10−2
Rejection threshold 0 < θ � 1

control parameters

min step ← σ2(2πσ2)
D
2

min grad ← σ−1(2πσ2)−
D
2 εe−

1
2 ε

2

min diff ← 100εσ
max eig ← 0
max it ← 1000

initialise
s ← 64∗min step Step size

M ← ∅ Mode set

optionally

Remove all components for which p(m)
maxm=1,...,M p(m) < θ and renormalise p(m)

for m = 1, . . . ,M For each centroid

τ ← 0 Iteration counter

t← µm Starting point

p← p(t) From eq. (8.6)

repeat Gradient-quadratic search loop

g← ∇ln p(t) Gradient from eq. (8.13)

H← (∇∇T )ln p(t) Hessian from eq. (8.14)

told ← t
pold ← p
if H < 0 Hessian negative definite?

t← told −H−1g Quadratic step

p← p(t) From eq. (8.6)

end
if H ≮ 0 or p ≤ pold

t← told + sg Gradient step

p← p(t) From eq. (8.6)

while p < pold

s← s/2
t← told + sg Gradient step

p← p(t) From eq. (8.6)

end
end
τ ← τ + 1

until τ ≥ max it or ‖g‖ < min grad

if max{eigenvalues(H)} < max eig Update mode set

N ← {ν ∈M : ‖ν − t‖ ≤ min diff} ∪ {t}
M ← (M\N ) ∪ {arg maxν∈N p(ν)}

end
end
returnM

Figure 8.1: Pseudocode of the gradient-quadratic mode-finding algorithm described in section 8.2. Instead
of for L(t) = ln p(t), the gradient and the Hessian can be computed for p(t) using eqs. (8.11) and (8.12):
g← ∇p(t), H← (∇∇T )p(t). Also, at each step one can compute the gradient and Hessian for both p(t) and
lnp(t) and choose the one for which the new point has the highest probability.
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Figure 8.2: Example of mode searching in a two-dimensional Gaussian mixture. In this example, the mixing
proportions are equal and the components are isotropic with equal covariance σ2I2. The surface has 3 modes
and various other features (saddle points, ridges, plateaux, etc.). The mixture modes are marked “4” and the
mixture mean “∗”. The dashed, thick-line polygon is the convex hull of the centroids. The left column shows
the surface of L(t) = ln p(t) and the right column the surface of p(t). Top row : contour plot of the objective
function. Each original component is indicated by a grey disk of radius σ centred on the corresponding
mean vector µm (marked “+”). A few search paths from different starting points (marked “◦”) are given for
illustrative purposes (paths from the centroids are much shorter); continuous lines indicate gradient steps and
dotted lines quadratic steps. Middle row : plot of the gradient (arrows) and the Hessian character (dark colour:
positive definite; white: indefinite; light colour: negative definite). Bottom row : like the top row, but here the
fixed-point iterative algorithm was used.
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8.2.1 Control parameters for the gradient-quadratic mode-finding algorithm

We consider here a single D-dimensional isotropic Gaussian distribution N (µ, σ2ID) and derive some control
parameters for the gradient ascent which may be transferrable to the mixture case: min step, min grad,
min diff and max eig.

• For the isotropic Gaussian, the gradient always points to the mode, by symmetry. Thus, g = ‖g‖ µ−t
‖µ−t‖ .

Consider a point at a normalised distance ρ =
∥
∥ t−µ

σ

∥
∥ from the mode µ. Then g = ‖g‖

ρσ (µ− t). Thus, a

step s = ρσ
‖g‖ would jump directly to the mode: tnew = t + sg = t + ρσ

‖g‖
‖g‖
ρσ (µ− t) = µ. From eq. (8.9)

‖g‖ = p(t)
∥
∥ t−µ
σ2

∥
∥ = σ−1(2πσ2)−

D
2 e−

1
2ρ

2

ρ ≤ σ−1(2πσ2)−
D
2 ρ and so s ≥ σ2(2πσ2)

D
2 . Therefore, a step

of min step = σ2(2πσ2)
D
2 times the gradient would never overshoot, that is, would climb up the hill

monotonically. However, it would be too small for points a few normalised distances away from the
mode. Moreover, theorem 8.7.8 shows that the gradient norm for the mixture is never larger than that of
any isolated component, which suggests using even larger step sizes. Thus, our gradient ascent algorithm
starts with a step size of several (64, corresponding to a point at 2.88 normalised distances away from
the mode) times the previous step size and halves it every time the new point has a worse probability.

• To determine when a gradient norm is considered numerically zero, we choose the points for which the
normalised distance is less than a small value ε (set to 10−4). This gives a minimum gradient norm

min grad = σ−1(2πσ2)−
D
2 εe−

1
2 ε

2 ≈ σ−1(2πσ2)−
D
2 ε. Since for the mixtures the gradient will be smaller

than for the components, points with a gradient norm of min grad may be farther from the mode than
they would be in the case of a single mixture, so ε should be small compared to 1.

• Thus, since the algorithm will not get closer to the mode than a normalised distance of ε, the normalised
distance below which two points are considered the same may be taken as several times larger than ε.
We take min diff = 100εσ as the minimum absolute difference between two modes to be assimilated as
one.

Updating the mode setM in the algorithm after a new mode t has been found is achieved by identifying
all modes previously found that are closer to t than a distance min diff, including t (the N set in
figures 8.1 and 8.3), removing them from the mode setM and adding toM the mode in N with highest
probability p.

• The Hessian will be considered negative definite if its algebraically largest eigenvalue is less than a
nonnegative parameter max eig. We take max eig = 0, since theorem 8.7.9 shows that not too far from
a mode (for the case of one component, inside a radius of one normalised distance), the Hessian will
already be negative definite. This strict value of max eig will rule out all minima (for which ‖g‖ = 0
but H > 0) and should not miss any maximum.

• To limit the computation time, we define max it as the maximum number of iterations to be performed.

These results can be easily generalised to a mixture of full-covariance Gaussians. Theorems 8.7.8 and 8.7.8 show
that the mixture gradient anywhere is bounded above and depends on the smallest eigenvalue of the covariance
matrix of any of the components. Calling this minimal eigenvalue σ2, the control parameter definitions given
above remain the same.

In high dimensions, these parameters may require manual tuning (perhaps using knowledge of the particular
problem being tackled), specially if too many modes are obtained—due to the nature of the geometry of
high-dimensional spaces (section 4.3.1; Scott, 1992). For example, both min step and min grad depend
exponentially on D, which can lead to very large or very small values depending on the value of σ. For
min diff, consider the following situation: vectors t1 and t2 differ in a small value δ in each component, so
that ‖t1 − t2‖ =

√
Dδ. For high D, ‖t1 − t2‖ will be large even though one would probably consider t1 and t2

as the same vector. However, if that difference was concentrated on a single component, one would probably
consider them as very different vectors.

Finally, we remark that there is a lower bound in the precision achievable by any numerical algorithm
due to the finite-precision arithmetic (Press et al., 1992, pp. 398–399; Nocedal and Wright, 1999, pp.167–
168), so that in general we cannot get arbitrarily close to a scalar value µ: at best, our estimate t we will
get to |t− µ| ∼ µ

√
εm, where εm is the machine accuracy (usually εm ≈ 3 × 10−8 for simple precision and

εm ≈ 10−15 for double precision). This gives a limit in how small to make all the control parameters mentioned.
Furthermore, converging to many decimals is a waste, since the mode is at best only a (nonrobust) statistical
estimate based on our model—whose parameters were also estimated to some precision.
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8.2.2 Maximising the density p vs maximising the log-density L = ln p

Experimental results show that, when the component centroids µm are used as starting points, there is not
much difference in speed of convergence between using the gradient and Hessian of p(t) and using those of
L(t) = ln p(t); although there is difference from other starting points, e.g. far from the convex hull, where
p(t) is very small. Fig. 8.2 illustrates this: in the top row, observe the slow search in points lying in areas of
near-zero probability in the case of p(t) and the switch from gradient to quadratic search when the point is in
a hill-cap, where the Hessian is negative definite. In the middle row, observe how much bigger the areas with
negative definite Hessian are for the surface of L(t) in regions where p(t) is small, as noted in section 8.7.1.1.
This means that, for starting points in regions where p(t) is small, quadratic steps can be taken more often
and thus convergence is faster. However, the centroids are usually in areas of high p(t) and thus there is no
improvement for our mode-finding algorithm.

In any case, at each step one can compute the gradient and Hessian for both p(t) and ln p(t) and choose
the one for which the new point has the highest probability.

It may be argued that L is a quadratic form if p is Gaussian, in which case a quadratic optimiser would find
the maximum in a single step. However, p will be far from Gaussian even near the centroids or modes if the
mixture components interact strongly (i.e., if they are close enough with respect to their covariance matrices,
as in fig. 8.2) and this will be the case when the mixture is acting as a density approximator (as in kernel
estimation).

8.2.3 Low-probability components

Gaussian mixtures are usually applied to high-dimensional data. Due to computational difficulties and to the
proverbial lack of sufficient training data (both issues arising from the curse of the dimensionality; section 4.3,
Scott, 1992), the estimated mixture may not be a good approximation to the density of the data. If this is
the case, some of the modes found may be spurious, due to artifacts of the model. A convenient way to filter
some of them out is to reject all modes whose probability (normalised by the probability of the highest mode)
is smaller than a certain small threshold θ > 0 (e.g. θ = 0.01). This does not remove all spurious modes; for
example, spurious ripple superimposed on a bump implies spurious modes of high probability density value.
See sections 7.9.1 and 9.2.3 for discussions on the effect of spurious modes in missing data reconstruction.

Consider the particular case when the mixture whose modes are to be found is the result of computing
the conditional distribution of a joint Gaussian mixture given the values of certain variables y. It is easy
to see (section 7.12.1) that the conditional distribution is again a Gaussian mixture where the new mixing
proportions are

p(m|y) =
p(y|m)p(m)

p(y)
∝ p(m)e−

1
2 (y−µm,y)T Σ−1

m,yy(y−µm,y)

for certain µm,y and Σm,yy. Thus, the means (projected in the y axes) of most components will be far from the
value of y and will have a negligible mixing proportion p(m|y). Filtering out such low-probability components
will accelerate considerably the mode search without missing any important mode.

8.3 Exhaustive mode search by a fixed-point search

Equating the gradient expression (8.11) to zero we obtain immediately a fixed-point iterative scheme:

g =
M∑

m=1

p(t,m)Σ−1
m (µm − t) = 0

=⇒ t = f(t) with f(t)
def
=

(
M∑

m=1

p(m|t)Σ−1
m

)−1 M∑

m=1

p(m|t)Σ−1
m µm

(8.3)

where we have used Bayes’ theorem. Note that using the gradient of L(t) = ln p(t) makes no difference here. A
fixed point t of the mapping f verifies by definition t = f(t). The fixed points of f are thus the stationary points
of the mixture density p, including maxima, minima and saddle points. The iterative scheme t(τ+1) = f(t(τ))
converges to a fixed point of f , as we prove in section 8.7.3. In a number of experiments it has found exactly
the same modes as the gradient-quadratic method. Thus, as in section 8.2, iterating from each centroid should
find all maxima, since at least some of the centroids are likely to be near the modes. Checking the eigenvalues
of the Hessian of p with eq. (8.12) will determine whether the point found is actually a maximum.
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inputs
Gaussian mixture defined by {p(m),µm,Σm}Mm=1

constants

σ ←
√

minm=1,...,M{min{eigenvalues(Σm)}} Minimal standard deviation

ε ← 10−4
Small number 0 < ε � 1

θ ← 10−2
Rejection threshold 0 < θ � 1

control parameters
tol ← εσ
min diff ← 100εσ
max eig ← 0
max it ← 1000

initialise
M ← ∅ Mode set

optionally

Remove all components for which p(m)
maxm=1,...,M p(m) < θ and renormalise p(m)

for m = 1, . . . ,M For each centroid

τ ← 0 Iteration counter

t← µm Starting point

repeat Fixed-point iteration loop

told ← t

t←
(
∑M
m=1 p(m|t)Σ−1

m

)−1∑M
m=1 p(m|t)Σ−1

m µm From eq. (8.3)

τ ← τ + 1
until τ ≥ max it or ‖t− told‖ < tol

H← (∇∇T )p(t) Hessian from eq. (8.12)

if max{eigenvalues(H)} < max eig Update mode set

N ← {ν ∈M : ‖ν − t‖ ≤ min diff} ∪ {t}
M ← (M\N ) ∪ {arg maxν∈N p(ν)}

end
end
returnM

Figure 8.3: Pseudocode of the fixed-point mode-finding algorithm described in section 8.3.

The inverse matrix
(∑M

m=1 p(m|t)Σ−1
m

)−1
may be trivially computed in some cases (e.g. if all the com-

ponents are diagonal). In the particular1 case where Σm = Σ for all m = 1, . . . ,M , the fixed-point scheme
reduces to the extremely simple form

t(τ+1) =
M∑

m=1

p(m|t(τ))µm, (8.4)

i.e., the new point t(τ+1) is the conditional mean of the mixture under the current point t(τ). This is formally
akin to EM algorithms for parameter estimation of mixture distributions (Dempster et al., 1977), to clustering
by deterministic annealing (Rose, 1998) and to algorithms for finding pre-images in kernel-based methods
(Schölkopf et al., 1999b).

The fixed-point iterative algorithm is much simpler than the gradient-quadratic one, but it also requires
many more iterations to converge inside the convex hull of {µm}Mm=1, as can be seen experimentally (observe
in fig. 8.2 (bottom) the quick jump to the area of high probability and the slow convergence thereafter). This
is due to the fact that the fixed-point iterative scheme is really an EM algorithm (see section 8.7.3), which
is only a first-order method (Dempster et al., 1977; McLachlan and Krishnan, 1997); perhaps it could be
accelerated by some of the techniques described by Meng and van Dyk (1997) and McLachlan and Krishnan

1Important models fall in this case, such as Gaussian kernel density estimation (Parzen estimators) or the generative topo-
graphic mapping (GTM), as well as Gaussian radial basis function networks.
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(1997). Whether the fixed-point algorithm is faster than the gradient-quadratic one has to be determined for
each particular case, depending on the values of D and M and the numerical routines used for matrix inversion.
Note that the update of t in eq. (8.3) should be computed via the Cholesky factorisation of

∑M
m=1 p(m|t)Σ−1

m

(which is a positive definite matrix) followed by the solution of two triangular systems, rather than via its
inversion, which is less accurate.

8.3.1 Control parameters for the fixed-point mode-finding algorithm

A theoretical advantage of the fixed-point scheme over gradient ascent is that no step size is needed. As
in section 8.2.1, call σ2 the smallest eigenvalue of the covariance matrix of any of the components. A new
tolerance parameter tol = εσ is defined for some small ε (10−4), so that if the distance between two successive
points is smaller than tol, we stop iterating. Alternatively, we could use the min grad control parameter
of section 8.2.1. The following control parameters from section 8.2.1 remain unchanged: min diff = 100εσ,
max eig and max it. Note that min diff should be several times larger than tol.

8.4 Error bars for the modes

In this section we deal with the problem of deriving error bars, or confidence intervals, for a mode of a mixture
of Gaussian distributions. That is, the shape of the distribution around that mode (how peaked or how spread
out) contains information about the certainty of the value of the mode. These error bars are not related in any
way to the numerical precision with which that mode was found by the iterative algorithm; they are related
to the statistical dispersion around it.

The confidence interval, or in higher dimensions, the confidence hyperrectangle, means here a hyperrect-
angle containing the mode and with a probability under the mixture distribution of value P fixed in advance.
For example, for P = 0.9 in one dimension we speak of a 90% confidence interval. Since computing error bars
for the mixture distribution is analytically difficult, we follow an approximate computational approach: we
replace the mixture distribution around the mode by a normal distribution centred in that mode and with a
certain covariance matrix. Then we compute symmetric error bars for this normal distribution, which is easy,
as we show in section 8.4.1. Section 8.4.2 deals with the problem of selecting the covariance matrix of the
approximating normal.

Ideally we would like to have asymmetric bars, accounting for possible skewness of the distribution around
the mode, but this is difficult in several dimensions. Also, in high dimensions the error bars become very
wide, since due to the curse of the dimensionality the probability contained in a fixed hypercube decreases
exponentially with the dimension (Scott, 1992).

8.4.1 Confidence intervals at the mode of a normal distribution

Consider a D-variate normal distribution N (µ,Σ) where Σ = UΛUT is the singular value decomposition2 of
its covariance matrix Σ. Given ρ > 0, R = ‖Λ−1/2UT (t− µ)‖∞ ≤ ρ represents a hyperrectangle3 with its
centre on t = µ. Its sides are aligned with the principal axes of Σ, that is, U = (u1, . . . ,uD), and have lengths
2ρ
√
λ1, . . . , 2ρ

√
λD (see fig. 8.4a). The probability P (ρ) contained in this hyperrectangle R can be computed

as follows:

P (ρ) =

∫

R
|2πΣ|− 1

2 e−
1
2 (t−µ)T Σ−1(t−µ) dt

=

∫

‖z‖∞≤ρ
|2πΛ|− 1

2 e−
1
2zT z |Λ| 12 dz

=

D∏

d=1

PN (0,1) {zd ∈ [−ρ, ρ]} =

(

erf

(
ρ√
2

))D

(8.5)

where we have changed z = Λ−1/2UT (t−µ), with Jacobian |Λ−1/2UT | = |Λ|−1/2
, and the error function erf

is defined as

erf(x)
def
=

2√
π

∫ x

0

e−t
2

dt = PN (0,1)

{

[−
√

2x,
√

2x]
}

.

2In general, the singular value decomposition of a rectangular matrix A is A = USVT with U, V orthogonal and S diagonal,
but for a symmetric square matrix U = V.

3Considering a hyperellipse E = ‖Λ−1/2UT (t − µ)‖2 ≤ ρ instead of a hyperrectangle simplifies the analysis, but we are
interested in separate intervals along each direction.
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Figure 8.4: Left : schematic of the error bars, or hyperrectangle R, in two dimensions. Right : how to obtain
error bars in the original axes by circumscribing another hyperrectangleR′ toR. It is clear that P (R′) ≥ P (R).
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Figure 8.5: Probability P of a D-dimensional hypercube of side 2ρ centred in the mode of a D-dimensional
normal distribution, from eq. (8.5). To obtain P from the table one has to raise the numbers on the left column
to power D.

From (8.5), ρ =
√

2 arg erf (P 1/D), so that for a desired confidence level given by the probability P we can
obtain the appropriate interval (see table in figure 8.5). The natural confidence intervals, or error bars, that

R gives us are of the form
∣
∣
∣
∑D
c=1 ucd(tc − µc)

∣
∣
∣ ≤ ρ

√
λd. They follow the directions of the principal axes of Σ,

which in general will not coincide with the original axes of the t1, . . . , tD variables. Of course, we can obtain a
new rectangle R′ aligned with the t1, . . . , tD axes by taking intervals ranging from the minimal to the maximal
corner of R in each direction, but obviously P (R′) ≥ P (R) and it is difficult to find P (R′) exactly or to bound
the error (see fig. 8.4b).

For the mixture with Σm = σ2ID, we have Λ − σ2ID ≥ 0 always and so the error bars have a minimal
length of 2ρσ in each principal direction.

8.4.2 Approximation by a normal distribution near a mode of the mixture

If the mixture distribution is unimodal, then the best estimate of the mixture distribution using a normal
distribution has the mean and the covariance equal to those of the mixture (eqs. (8.7) and (8.8), respectively).
However, since we want the mode to be contained in the confidence interval, we estimate the normal mean
with the mixture mode. This will be a good approximation unless the distribution is very skewed. Thus, the
covariance Σ of the approximating normal is given by eq. (8.8).

If the mixture distribution is multimodal, we can use local information to obtain the covariance Σ of
the approximating normal. In particular, at each mode of the mixture, the value of the Hessian contains
information of how flat or how peaked the distribution p(t) is around that mode. Consider a mode of the
mixture at t = ν with Hessian H. Since it is a maximum, H < 0, and so we can write the singular value
decomposition of H as H = −UΛUT where Λ > 0. Since the Hessian of a normal distribution N (µ,Σ) at its

mode is equal to − |2πΣ|−1/2
Σ−1, from eq. (8.10), equating this to our known mixture Hessian H we obtain

Σ = US−1UT where S = (2π)
D

D+2 |Λ|− 1
D+2 Λ = |2πΛ−1| 1

D+2 Λ, as can be easily confirmed by substitution.

So Σ = |2π(−H)−1|− 1
D+2 (−H)−1. Thus, we can approximate the mixture probability to second order in a

neighbourhood near its mode ν as

p(t) ≈ p(ν) +
1

2
(t− ν)TH(t− ν) = p(ν)− 1

2
(t− ν)T

(

|2πΣ|− 1
2 Σ−1

)

(t− ν).
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Using the log-density L(t) = ln p(t), call H′ the Hessian of L at a mode ν. The second-order approximation
near the mode ν

L(t) ≈ L(ν) +
1

2
(t− ν)TH′(t− ν) =⇒ p(t) = eL(t) ≈ p(ν)e

1
2 (t−ν)T H′(t−ν)

gives Σ = (−H′)−1. Note that, from eq. (8.14), H′ = 1
p(ν)H.

8.4.3 Error bars at the mode of the mixture

From the previous discussion we can derive the following algorithm. Choose a confidence level 0 < P < 1 and
compute ρ =

√
2 arg erf (P 1/D). Given a vector ν and a negative definite matrix H representing a mode of the

mixture and the Hessian at that mode, respectively, and calling Σ the covariance matrix of the mixture (from
eq. (8.8)):

• If the mixture is unimodal, then (mixture covariance method) decompose Σ = UΛUT with U orthogonal
and Λ > 0 diagonal. The D principal error bars are centred in ν, directed along the vectors u1, . . . ,uD
and with lengths 2ρ

√
λ1, . . . , 2ρ

√
λD.

• If the mixture is multimodal, then (Hessian method):

– If H is the Hessian of p(t), then decompose −H = UΛUT with U orthogonal and Λ > 0 diagonal.

Compute S = |2πΛ−1| 1
D+2 Λ. The D principal error bars are centred in ν, directed along the

vectors u1, . . . ,uD and with lengths 2ρ√
s1
, . . . , 2ρ√

sD
.

– If H is the Hessian of L(t) = ln p(t), then decompose −H = UΛUT with U orthogonal and Λ > 0
diagonal. The D principal error bars are centred in ν, directed along the vectors u1, . . . ,uD and
with lengths 2ρ√

λ1
, . . . , 2ρ√

λD
.

8.4.4 Discussion

Since we are only using second-order local information, namely the Hessian at the mode, the best we can
do is to approximate the mixture quadratically, as we have shown. This approximation is only valid in a
small neighbourhood around the mode, which can lead to poor estimates of the error bars, as fig. 8.6(left)
shows. In this case, the one-dimensional mixture looks like a normal distribution but with its top flattened.
Thus, the Hessian there is very small, which in turn gives a very large (co)variance Σ for the normal with
the same Hessian (dashed line). In this particular case, one can find a better normal distribution giving more
accurate error bars, for example the one in dotted line (which has the same variance as the mixture). But when
the mixture is multimodal, finding a better normal estimate of the mixture would require a more complex
procedure (even more so in higher dimensions). At any rate, a small Hessian indicates a flat top and some
uncertainty in the mode.

Observe that, while the directions of the bars obtained from L(t) = ln p(t) coincide with those from p(t)
always, the lengths are different in general (except when p(t) is Gaussian). Figure 8.6 illustrates the point.

8.5 Quantifying the sparseness of a Gaussian mixture

Besides finding the modes, one may also be interested in knowing whether the density is sparse—sharply
peaked around the modes, with most of the probability mass concentrated around a small region around
each mode—or whether its global aspect is flat. As we saw in section 7.3, if the Gaussian mixture under
consideration represents a conditional distribution, a sparse distribution would correspond to a functional
relationship (perhaps multivalued) while a flat distribution would correspond to independence (fig. 8.7). Of
course, these are just the two extremes of a continuous spectrum.

While the error bars locally characterise the peak widths, we can globally characterise the degree of sparse-

ness of a distribution p(t) by its differential entropy4 h(p)
def
= E {− ln p}: high entropy corresponds to flat

distributions, where the variable t can assume practically any value in its domain (fig. 8.7, right); and low
entropy corresponds to peaked distributions, where t can only assume a finite set of values (fig. 8.7, left).
This differential entropy value should be compared to the differential entropy of a reference distribution, e.g.
a Gaussian distribution of the same covariance or a uniform distribution on the same range as the inputs.

4See section 7.12.4 for reasons why the entropy is not a completely satisfactory measure of sparseness.
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Figure 8.6: Error bars for a one-dimensional mixture of Gaussian distributions. The top graphs correspond
to the bars obtained from p(t) and the bottom ones to those obtained from L(t) = ln p(t). In each graph,

the line codes are as follows. Thick solid line: the mixture distribution p(t) =
∑M
m=1

1
M (2πσ2)−

1
2 e−

1
2 (

t−µm
σ )

2

with M = 7 components, where σ = 1 and the component centroids {µm}Mm=1 are marked on the horizontal
axis. The dashed lines indicate the approximating normals using the Hessian method and the dotted ones the
approximating normals using the mixture covariance method (i.e., using eq. (8.8)). In both cases, the vertical
line(s) indicate the location of the mode(s) or mixture mean, respectively, and the horizontal one the error bars
for a confidence of 68%, i.e., the interval is two standard deviations long. On the left graph, the Hessian gives
too broad an approximation because the mixture top is very flat. On the centre graph, both methods give a
similar result. On the right graph, the mixture covariance method breaks down due to the bimodality of the
mixture. Observe how the bars obtained from p(x) do not coincide with those from ln p(t), being sometimes
narrower and sometimes wider.
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Figure 8.7: Shape of the conditional distribution of variable x given value y0 of variable y. Left : sparse
(multiply peaked), low entropy; x is almost functionally dependent on y for y = y0, with f(y0) = x0 or x1 or
x3. Right : flat, high entropy; x is almost independent of y for y = y0.
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There are no analytical expressions for the entropy of a Gaussian mixture, but in section 8.7.6 we derive
the following upper (UB1) and lower bounds (LB1, LB2):

LB1
def
=

1

2
ln

{

(2πe)D
M∏

m=1

|Σm|πm

}

LB2
def
= − ln

{
M∑

m,n=1

p(m)p(n) |2π(Σm + Σn)|−
1
2 e−

1
2 (µm−µn)T (Σm+Σn)−1(µm−µn)

}

UB1
def
=

1

2
ln
(
(2πe)D |Σ|

)
.

where Σ is the covariance matrix of the mixture, given in eq. (8.8). Other approximations to the differential
entropy of an arbitrary continuous density, that have been often used in the context of projection pursuit and
independent component analysis, were mentioned in section 4.6.1.

8.6 Conclusions

We have presented algorithms to find all the modes of a given Gaussian mixture (satisfying certain conditions;
see below) based on the intuitive conjecture that (1) the number of modes is upper bounded by the number
of components and (2) the modes are contained in the convex hull of the component centroids. While our
proof of part (1) of this conjecture, given in section 8.7.2, is only partial (for a mixture of two components
of arbitrary dimension and equal covariance), no counterexample has been found in a number of simulations.
The only other related works we are aware of (Behboodian, 1970; Konstantellos, 1980) also provided partial
proofs under various restricted conditions. All algorithms have been extensively tested for the case of spherical,
equal component covariances in simulated mixtures, in the inverse kinematics problem for the robot arm of
section 9.3 and in the missing data reconstruction experiments of section 10.1 (a speech inverse problem, the
acoustic-to-articulatory mapping), which require finding all the modes of a Gaussian mixture of about 1 000
components in over 60 dimensions for every speech frame in an utterance.

The conjecture does not hold in general when the mixture is multivariate and its components have covariance
matrices that are not isotropic and are different from each other (see section 8.7.2). In this case, the mixture
may have more modes than components and the modes may lie outside the convex hull of the centroids. In fact,
when the covariances are elongated, extra modes can appear in the tails of the components, as fig. 8.9 shows.
This makes the problem of exhaustive mode finding more difficult for this type of Gaussian mixtures, although
our algorithms can still be applied to find some of the modes—and some more could be found by starting the
algorithms from points other than the centroids, e.g. points in the components’ tails. The problem remains
open, then, for arbitrary Gaussian mixtures: bounds for the number of modes, characterisation of a region
where they lie and algorithms to find all them. However, the cases for which the conjecture seems to hold
are practically important, especially that of isotropic components. This is the case for (nonadaptive) kernel
density estimation and for GTM, which is the model we use in chapters 7, 9 and 10. And it should also hold
for the diagonal GTM model we introduced in section 2.12.4, for which the component covariance matrices
are diagonal but equal. Finally, while arbitrary Gaussian mixtures can potentially have more modes than
components, this may be the exception rather than the rule when Gaussian mixtures are used to approximate
low-dimensional manifolds, since crisscrossing of highly elongated components is unlikely5.

Given the current interest in the machine learning and computer vision literature in probabilistic models
able to represent multimodal distributions (specially Gaussian mixtures), these algorithms could be of benefit
in a number of applications or as part of other algorithms. Specifically, they could be applied to clustering and
regression problems. An example of clustering application is the determination of subclustering within galaxy
systems from the measured position (right ascension and declination) and redshifts of individual galaxies
(Pisani, 1993). The density of the position-velocity distribution is often modelled as a Gaussian mixture
(whether parametrically or nonparametrically via kernel estimation) whose modes correspond in principle
to gravitationally bound galactic structures. An example of regression application is the representation of
multivalued mappings (which are often the result of inverting a forward mapping) with a Gaussian mixture,
which we consider in chapter 7. In this approach, all variables (inputs x and outputs y of a mapping) are
jointly modelled by a Gaussian mixture and the mapping x → y is defined as the modes of the conditional

5Such crisscrossing of highly elongated components is more likely in the product-of-experts model (see fig. 1 in Hinton, 1999),
where individual components are combined multiplicatively rather than additively.
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distribution p(y|x), itself a Gaussian mixture. Scrutiny of the posterior modes in Bayesian methods is another
possible use.

The algorithms described here can be easily adapted to find minima of the mixture rather than maxima.
However one must constrain them to search only for proper minima and avoid following the improper minima
at p(t) → 0 when ‖t‖ → ∞. Also, it should be possible to derive similar algorithms for other mixtures of
bump-like distributions (localised and monotonically decreasing, but not necessarily Gaussian).

Our Matlab implementation of the mode-finding algorithms is freely available in the Internet (see appen-
dix C).

8.7 Mathematical appendix: some results about Gaussian mixtures

Here we proof several results about finite mixtures of normal distributions mentioned in this chapter. Let us
first define them and their moments.

Consider a mixture distribution (Titterington et al., 1985) of M > 1 components in RD for D ≥ 1:

p(t)
def
=

M∑

m=1

p(m)p(t|m)
def
=

M∑

m=1

πmp(t|m) ∀t ∈ RD (8.6)

where
∑M
m=1 πm = 1, πm ∈ (0, 1) ∀m = 1, . . . ,M and each component distribution is a normal probability dis-

tribution in RD. So t|m ∼ ND(µm,Σm), where µm
def
= Ep(t|m) {t} and Σm

def
= Ep(t|m)

{
(t− µm)(t− µm)T

}
>

0 are the mean vector and covariance matrix, respectively, of component m. We write p(t) and not
p(t|{πm,µm,Σm}Mm=1) because we assume that the parameters {πm,µm,Σm}Mm=1 have been estimated pre-
viously and their values fixed. Then:

• The mixture mean is:

µ
def
= Ep(t) {t} =

M∑

m=1

πmµm. (8.7)

• The mixture covariance is:

Σ
def
= Ep(t)

{
(t− µ)(t− µ)T

}
= Ep(t)

{
ttT
}
− µµT =

M∑

m=1

πm Ep(t|m)

{
ttT
}
− µµT

=

M∑

m=1

πmΣm +

M∑

m=1

πmµmµTm − µµT =

M∑

m=1

πm
(
Σm + (µm − µ)(µm − µ)T

)
.

(8.8)

These results are valid for any mixture, not necessarily of Gaussian distributions.

8.7.1 Gradient and Hessian with respect to the independent random variables

Here we obtain the gradient and the Hessian of the density function p with respect to the independent variables
t (not with respect to the parameters {πm,µm,Σm}Mm=1). Firstly let us derive the gradient and Hessian for a
D-variate normal distribution. Let t ∼ ND(µ,Σ). Then:

p(t) = |2πΣ|− 1
2 e−

1
2 (t−µ)T Σ−1(t−µ)

which is differentiable and nonnegative for all t ∈ RD. Let Σ = UΛUT be the singular value decomposition
of Σ, so that U is orthogonal and Λ > 0 diagonal. Calling z = UT (t− µ):

∂p

∂td
= p(t)

∂

∂td

(

−1

2
(t− µ)TΣ−1(t− µ)

)

= p(t)
∂

∂td

(

−1

2
(zTΛ−1z)

)

= p(t)
D∑

e=1

∂

∂ze



−1

2

D∑

f=1

z2
f

λf




∂ze
∂td

= p(t)
D∑

e=1

− ze
λe
ude,

since ∂ze/∂td = ude. The result above is the dth element of vector −p(t)UΛ−1z and so the gradient is6:

g
def
= ∇p(t) = p(t)Σ−1(µ− t). (8.9)

6For clarity of notation, we omit the dependence on t of both the gradient and the Hessian, writing g and H where we should
write g(t) and H(t).
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Taking the second derivatives:

∂

∂tc

(
∂p

∂td

)

=
∂p

∂tc

D∑

e=1

− ze
λe
ude + p(t)

D∑

e=1

−ude
λe

∂ze
∂tc

= p(t)

(
D∑

e=1

− ze
λe
uce

)(
D∑

e=1

− ze
λe
ude

)

+ p(t)

D∑

e=1

−ude
λe

uce,

which is the (c, d)th element of matrix ggT

p(t) − p(t)UΛ−1UT . So the Hessian is:

H
def
= (∇∇T )p(t) =

ggT

p(t)
− p(t)Σ−1 = p(t)Σ−1

(
(µ− t)(µ− t)T −Σ

)
Σ−1. (8.10)

It is clear that the gradient is zero at t = µ only and there H = − |2πΣ|−1/2
Σ−1 < 0, thus being a maximum.

Consider now a finite mixture of D-variate normal distributions p(t) =
∑M
m=1 p(m)p(t|m) where t|m ∼

ND(µm,Σm). By the linearity of the differential operator and defining:

gm
def
= ∇p(t|m) = p(t|m)Σ−1

m (µm − t)

Hm
def
= (∇∇T )p(t|m) =

gmgTm
p(t|m)

− p(t|m)Σ−1
m = p(t|m)Σ−1

m

(
(µm − t)(µm − t)T −Σm

)
Σ−1
m

we obtain:

Gradient g
def
= ∇p(t) =

M∑

m=1

p(m)gm =

M∑

m=1

p(t,m)Σ−1
m (µm − t) (8.11)

Hessian H
def
= (∇∇T )p(t) =

M∑

m=1

p(m)Hm =

M∑

m=1

p(t,m)Σ−1
m

(
(µm − t)(µm − t)T −Σm

)
Σ−1
m . (8.12)

8.7.1.1 Gradient and Hessian of the log-density

Call L(t)
def
= ln p(t). Then, the gradient and Hessian of L are related to those of p as follows:

Gradient ∇L(t) =
1

p
g (8.13)

Hessian (∇∇T )L(t) = − 1

p2
ggT +

1

p
H. (8.14)

Note from eq. (8.14) that, if the Hessian H of p is definite negative, then the Hessian of L is also definite
negative, since − 1

p2 gg
T is either a null matrix (at stationary points) or negative definite (everywhere else).

In this work, we will always implicitly refer to the gradient g or Hessian H of p, eqs. (8.11) and (8.12),
rather than those of L, eqs. (8.13) and (8.14), unless otherwise noted.

8.7.2 Partial proof of conjecture 8.1

Let us recall that the convex hull of the vectors {µm}Mm=1 is defined as the set

{

t : t =

M∑

m=1

λmµm with {λm}Mm=1 ⊂ [0, 1] and

M∑

m=1

λm = 1

}

.

Conjecture 8.1. Let p(t) =
∑M
m=1 p(m)p(t|m), where t|m ∼ ND(µm,Σm), be a mixture of M D-variate

normal distributions. Then p(t) has M modes at most, all of which are in the convex hull of {µm}Mm=1, if one
of the following conditions holds:

1. D = 1 (one-dimensional mixture)

2. D ≥ 1 and the covariance matrices are arbitrary but equal: Σm = Σ ∀m = 1, . . . ,M (homoscedastic
mixture).
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3. D ≥ 1 and the covariance matrices are isotropic: Σm = σ2
mID (spherical or isotropic mixture).

I have not been able to prove this conjecture in general. In the rest of this section we give: a partial proof
that the number of modes is less or equal than the number of centroids; a complete proof that the modes lie
in the convex hull of the centroids; and an example that shows that none of the two statements need hold for
arbitrary-covariance mixtures.

We first prove that (a) for Σm = Σ ∀m = 1, . . . ,M , the stationary points of the gradient of p(t) (maxima,
minima and saddle points of p(t)) lie in the convex hull of the centroids; and that (b) for M = 2 and
Σ1 = Σ2 = Σ, there are at most two maxima, which lie in the convex hull of µ1 and µ2.

Proof. Let us prove (a). Assume without loss of generality that the centroids are all different. For {λm}Mm=1 ⊂
R and

∑M
m=1 λm = 1, the set of the points

t =

M∑

m=1

λmµm =

M−1∑

m=1

λmµm +

(

1−
M−1∑

m=1

λm

)

µM = µM +

M−1∑

m=1

λm(µm − µM )

is the minimal linear manifold containing {µm}Mm=1, i.e., the hyperplane passing through all the centroids.
This is not necessarily a vector subspace, because it may not contain the zero vector. However, the set

{

y : y =

M−1∑

m=1

λm(µm − µM ) with {λm}M−1
m=1 ⊂ R

}

is a vector subspace, namely the one spanned by {µm − µM}M−1
m=1 . Then, an arbitrary point t ∈ RD can be

decomposed as t =
∑M
m=1 λmµm + w, where {λm}Mm=1 ⊂ R with

∑M
m=1 λm = 1 and w is a vector orthogonal

to that manifold, i.e., orthogonal to {µm − µM}M−1
m=1 . Let us now compute the zero-gradient points of p(t)

from eq. (8.11):

g(t) = p(t)

M∑

m=1

p(m|t)Σ−1
m (µm − t)

= p(t)

(
M∑

m=1

p(m|t)Σ−1
m

(

µm −
M∑

n=1

λnµn

)

−
M∑

m=1

p(m|t)Σ−1
m w

)

= 0.

For Σm = Σ ∀m = 1, . . . ,M this becomes

g(t) = p(t)Σ−1

(
M∑

m=1

p(m|t)
(

µm −
M∑

n=1

λnµn

)

−w

)

= 0 =⇒ v −w = 0

where v =
∑M
m=1 p(m|t)

(

µm −
∑M
n=1 λnµn

)

clearly lies in the linear manifold spanned by {µm}Mm=1 and

therefore is orthogonal to w. So v = w = 0. This proves that t =
∑M
m=1 λmµm, i.e., all stationary points

must lie in the the linear manifold spanned by the centroids.
Now let us prove that (b) for M = 2 and Σ1 = Σ2 = Σ, the gradient becomes null only in one, two or

three points, which lie in the convex hull of µ1 and µ2.

v =

M∑

m=1

p(m|t)
(

µm −
M∑

n=1

λnµn

)

=

M∑

m=1

p(m|t)µm −
M∑

n=1

λnµn

=

M∑

m=1

(p(m|t)− λm)µm =

M−1∑

m=1

(p(m|t)− λm)(µm − µM ) = 0.

is a nonlinear system of D equations with unknowns λ1, . . . , λM−1, very difficult to study in general. For
M = 2, call λ = λ1, so that λ2 = 1− λ, and π = p(1), so that p(2) = 1− π. Using Bayes’ theorem we get:

(p(1|t)− λ)(µ1 − µ2) = 0 =⇒ λ = p(1|t) =
p(1)p(t|1)

p(1)p(t|1) + p(2)p(t|2)
which reduces to the transcendental equation

λ =
1

1 + e−α(λ−λ0)
α = (µ1 − µ2)

TΣ−1(µ1 − µ2) ∈ (0,∞) λ0 =
1

2
+ ln

1− π
π
∈ (−∞,∞). (8.15)
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Figure 8.8: Three possible cases for the solutions of the equation λ = f(λ), where f(λ) = 1
1+e−α(λ−λ0) . The

solid line corresponds to f(λ) and the dashed one to λ. The right figure also shows in dotted line the sequence
of fixed-point iterations starting from λ = 1 (marked “◦”), converging to a fixed point slightly larger than 0.

It is easy to see geometrically (see fig. 8.8) that this equation can only have one, two or three roots in (0, 1),
which proves that the stationary points t = λµ1 + (1− λ)µ2 of p lie in the convex hull of {µ1,µ2}. Further,
since for M = 2 the convex hull is a line segment, in the case with three stationary points one of them cannot
be a maximum, and so the number of modes is M = 2 at the most.

In fact, solving eq. (8.15) gives these stationary points (e.g. by fixed-point iteration, see fig. 8.8 right),
and using eq. (8.12) to compute the Hessian will determine whether they are a maximum, a minimum or a
saddle-point.

Remark. Related results have been proven, in a different way, in the literature. Behboodian (1970) shows that
for M = 2 and D = 1, with no restriction on Σm, p(t) has one, two or three stationary points which all lie
in the convex hull of {µ1, µ2}. Konstantellos (1980) gives a necessary condition for unimodality for two cases:
M = 2, π1 = π2, Σ1 = Σ2 and D > 1; and M = 2 and D = 2, with no restriction on πm, Σm.

Remark. Although the previous proof makes use of formula (8.11), which is only valid for normal components,
intuitively there is nothing special about the normal distribution here. In fact, the conjecture should hold
for components of other functional forms (not necessarily positive), as long as they are bounded, piecewise
continuous and have a unique maximum and no minima (bump functions). In some cases an infinite number
of stationary points may exist (as is easily seen for e.g. triangular bumps).

Remark. Alexander Heimel, from the dept. of Mathematics at King’s College London, has sent me the following
proof that all modes are in the convex hull of the centroids for the case of a Gaussian mixture of spherical
components (of not necessarily equal variances). This result is more general than part (a) of our proof above,
which only holds for spherical covariances which are all equal.

Theorem 8.7.1 (Heimel, 2000, pers. comm.). Let {fm}Mm=1 be a set of M functions from RD to R

where each function can be written as fm(t) = gm(‖t− µm‖) for strictly monotonically decreasing functions

{gm}Mm=1 and points {µm}Mm=1. Then all the maxima of the function F
def
=
∑M
m=1 fm are inside the convex

hull of {µm}Mm=1.

Proof. By contradiction. Call H the convex hull of {µm}Mm=1. Suppose F takes a maximum at t /∈ H. Call
u the closest point in H to t. Then, it is easy to see that any point t′ in the segment between t and u is
closer to all points of H than t is. Thus fm(t′) > fm(t) ∀m = 1, . . . ,M and so F (t′) > F (t). Since in every
neighbourhood of t there are points for which F is larger, t cannot be a maximum.

The following theorem shows the equivalence of the modes’ problem for homoscedastic mixtures (where the
components have the same covariance). Thus, one can try to prove a result for the simple case of isotropic,
unit covariances (Σm = ID) and then the result will also hold for Σm = Σ arbitrary.

Theorem 8.7.2. The mixtures p(t) =
∑M
m=1 πm |2πΣ|

− 1
2 e−

1
2 (t−µm)T Σ−1(t−µm) (arbitrary but equal covari-

ances) and p(u) =
∑M
m=1 πm(2π)−

D
2 e−

1
2‖u−νm‖2

(unit covariances), related by a rotation and scaling, have
the same number of modes, which lie in the respective centroid convex hulls.

Proof. Let Σ−1 = UΛUT be the spectral decomposition of Σ−1, with U orthogonal and Λ diagonal and

positive definite. Consider the transformation u
def
= Λ

1
2 UT t (orthogonal rotation followed by scaling), with

Jacobian J =
∣
∣du
dt

∣
∣ = |Λ| 12 , and define νm

def
= Λ

1
2 UTµm. The density of u is then p(u) = p(t)J−1 =

∑M
m=1 πm(2π)−

D
2 e−

1
2‖u−νm‖2

(section A.5).
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Figure 8.9: Mixtures in dimension D ≥ 2 that have different, non-isotropic covariances do not gen-
erally verify conjecture 8.1. The graph shows a contour plot for the bicomponent mixture p(t) =
∑2
m=1

1
2 |2πΣm|−

1
2 e−

1
2 (t−µm)T Σ−1

m (t−µm) with π1 = π2 = 1
2 , µ1 = ( 0.6

0 ), µ2 = ( 0
0.6 ), Σ1 = ( 0.65 0

0 0.1 ) and
Σ2 = ( 0.1 0

0 0.65 ). This mixture has three modes (marked “4”): two nearly coincident with the centroids µm

(marked “+”) and a third one near the meeting point of the components’ principal axes. All the modes are
outside the convex hull of the centroids.

The gradient of p can be written:

∂p

∂td
=

D∑

e=1

∂p

∂ue

∂ue
∂td

=

D∑

e=1

∂p

∂ue

(

Λ
1
2 UT

)

ed
=⇒ dp

dt
= UΛ

1
2
dp

du
.

Since UΛ
1
2 is nonsingular, dpdt = 0⇔ dp

du = 0 and so the stationary points are preserved by the transformation.

Now, if t is a point in the convex hull of {µm}Mm=1 then t =
∑M
m=1 λmµm where {λm}Mm=1 ⊂ [0, 1]

and
∑M
m=1 λm = 1. So u = Λ

1
2 UT t =

∑M
m=1 λmΛ

1
2 UTµm =

∑M
m=1 λmνm which is in the convex hull of

{νm}Mm=1.

Remark. Theorems 8.7.1 and 8.7.2 show that cases 1 and 2 of conjecture 8.1 are particular cases of case 3.

Finally, figure 8.9 gives a simple example of a mixture with nonisotropic, different component covariance
matrices that has more modes than components and the modes lie outside the convex hull of the centroids. I
am grateful to Chris Williams for suggesting me this example. Another example can be seen in fig. 9.16(left):
the mode located at (−1.92,−4.7) (right at the curve elbow, revealed by the closed contours) lies just outside
the convex hull of the centroids (marked ∗). Clearly, it is possible to construct more complicated examples
where elongated components interact to create a variety of modes.

8.7.3 Convergence proof for the fixed-point mode search

Consider a D-dimensional Gaussian mixture of fixed parameters {πm,µm,Σm}Mm=1:

p(t) =

M∑

m=1

πmp(t|m) with t|m ∼ N (µm,Σm) and t ∈ RD.
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In section 8.3 we proposed the following iterative scheme to find modes of p(t):

t(τ+1) = f(t(τ)) with f(t)
def
=

(
M∑

m=1

p(m|t)Σ−1
m

)−1 M∑

m=1

p(m|t)Σ−1
m µm, (8.3′)

derived by equating to zero the gradient of p(t) with respect to t. To prove that this iterative scheme converges,
one might try to use analysis techniques; e.g. it will converge to a fixed point of f if f is a contractive mapping
in an environment of that fixed point (Isaacson and Keller, 1966). Instead, we give here a simpler proof based
on the convergence properties of the EM algorithm. I am grateful to Chris Williams for suggesting me this
proof.

Proof. The idea of the proof is to derive eq. (8.3′) as an EM algorithm. Consider the following density model
with parameters v = (v1, . . . , vD)T and fixed {πm,µm,Σm}Mm=1:

p(t|v) =

M∑

m=1

πm |2πΣm|−
1
2 e−

1
2 (t−(µm−v))T Σ−1

m (t−(µm−v)).

That is, t|v is a D-dimensional Gaussian mixture where component m has mixing proportion πm (fixed),
mean vector µm − v (µm fixed) and covariance matrix Σm (fixed). Varying v results in a rigid translation of
the whole mixture as a block rather than the individual components varying separately. Now consider fitting
this model by maximum likelihood to a data set {tn}Nn=1 and let us derive an EM algorithm to estimate the
parameters v (see section 2.5). Call zn ∈ {1, . . . ,M} the (unknown) index of the mixture component that
generated data point tn. Then:

E step The complete-data log-likelihood, as if all {zn}Nn=1 were known, and assuming iid data, is
∑N
n=1 Ln,complete(v) =

∑N
n=1 ln p(tn, zn|v) and so its expectation with respect to the current posterior

distribution is

Q(v|v(τ))
def
=

N∑

n=1

Ep(zn|tn,v(τ)) {Ln,complete(v)}

=

N∑

n=1

M∑

zn=1

p(zn|tn,v(τ)) ln{p(zn|v)p(tn|zn,v)}

=

N∑

n=1

M∑

zn=1

p(zn|tn,v(τ)) ln p(tn|zn,v) +K

where the term K
def
=
∑N
n=1

∑M
zn=1 p(zn|tn,v(τ)) lnπzn

is independent of v.

M step The new parameter estimates v(τ+1) are obtained from the old ones v(τ) as v(τ+1) =
arg maxvQ(v|v(τ)). To perform this maximisation, we equate the gradient of Q with respect to v
to zero:

∂Q

∂v
=

N∑

n=1

M∑

zn=1

p(zn|tn,v(τ))
1

p(tn|zn,v)

∂p(tn|zn,v)

∂v
= 0. (8.16)

As a function of v, p(tn|zn,v) is a Gaussian density of mean µzn
− tn and covariance Σzn

, so from
eq. (8.9) we get

∂p(tn|zn,v)

∂v
= p(tn|zn,v)Σ−1

zn
(µzn

− tn − v)

and so solving for v in eq. (8.16) results in

v(τ+1) =

(
N∑

n=1

M∑

zn=1

p(zn|tn,v(τ))Σ−1
zn

)−1 N∑

n=1

M∑

zn=1

p(zn|tn,v(τ))Σ−1
zn

(µzn
− tn).

If now we choose the data set as simply containing the origin, {tn}Nn=1 = {0}, rename z1 = m and omit
t1 = 0 for clarity, we obtain the M step as:

v(τ+1) =

(
M∑

m=1

p(m|v(τ))Σ−1
m

)−1 M∑

m=1

p(m|v(τ))Σ−1
m µm (8.17)

which is formally identical to the iterative scheme of eq. (8.3′).
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The EM algorithm for Gaussian mixtures converges from any starting point (Dempster et al., 1977; Redner
and Walker, 1984). Specifically, at every iteration τ , the iterative scheme (8.17) will either increase the log-
likelihood or leave it unchanged. The log-likelihood is

N∑

n=1

ln p(tn|v) =
N∑

n=1

ln
M∑

m=1

πmp(tn|m,v) = ln
M∑

m=1

πm |2πΣm|−1
e−

1
2 (v−µm)T Σ−1

m (v−µm)

so, correspondingly, the iterative scheme (8.3′) will monotonically increase the density value p(t) or leave it
unchanged. Thus, (8.3′) converges from any initial value of t. In principle, though, convergence can occur
to a saddle point or to a minimum as well as to a mode (in the very unlikely case where the initial value is
at a minimum, the scheme will remain stuck at it). Since both saddle points and minima are unstable for
maximisation, a small random perturbation will cause the EM algorithm to diverge from them. Thus, practical
convergence will almost always be to a mode.

8.7.4 Efficient operations with the Hessian

The Hessian and the gradient of a Gaussian mixture are a linear superposition of terms. This makes possible,
in some particular but useful cases (e.g. GTM or Gaussian kernel density estimation), to perform efficiently
and exactly (i.e., with no approximations involved) various operations required by the optimisation procedure
of section 8.2:

• If the matrix S defined below is easily invertible (e.g., if each covariance matrix Σm is diagonal, a common
situation in many engineering applications), the quadratic step of eq. (8.1) can be performed without
inverting the Hessian (theorem 8.7.4 and observation 8.7.5).

• If the number of mixture components is smaller than the dimensionality of the space, M < D, the inverse
Hessian can be computed inverting an M ×M matrix rather than a D ×D matrix (theorem 8.7.3).

Define the following matrices:

SD×D
def
= −

M∑

m=1

p(t,m)Σ−1
m

RD×M = (r1, . . . , rM ) where rm
def
=
√

p(t,m)Σ−1
m (µm − t)

TM×M
def
= IM + RTS−1R

so that RRT =
∑M
m=1 rmrTm and H = S + RRT , from eq. (8.12).

The proofs in this section and in the remaining ones will often make use of the Sherman-Morrison-Woodbury
(SMW) formula A.2.

Theorem 8.7.3. H−1 = S−1(S−RT−1RT )S−1.

Proof. By the SMW formula.

Theorem 8.7.4. H−1g = S−1HS−1g. If Σm = σ2ID then H−1g =
(
σ2

p(t)

)2

Hg.

Proof. Define an M × 1 vector v with components vm
def
=
√

p(t,m), so that Rv = g (see eq. (8.11)). Then:

H−1g = H−1Rv = S−1RT−1v = S−1R(v + RTS−1g)

= S−1g + S−1RRTS−1g = S−1(S + RRT )S−1g = S−1HS−1g

where we have used H−1R = S−1RT−1, which again can be proved using the SMW formula.

Observation 8.7.5. Since H = S+
∑M
m=1 rmrTm, the Hessian can be inverted by repeatedly using the following

particular case of the SMW formula:

AD×D,vD×1 : (A + vvT )−1 = A−1 − A−1vvTA−1

1 + vTA−1v
.

The only operation not covered here that is required by the optimisation procedure is the determination
of whether the Hessian is negative definite. This can be accomplished by checking the signs of its principal
minors (Mirsky, 1955, p. 403) or by numerical methods, such as Cholesky decomposition (Golub and van Loan,
1996, p. 143; Press et al., 1992, p. 96).
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8.7.5 Bounds for the gradient and the Hessian

Theorem 8.7.6. For a normal distribution N (µ,Σ), the norm of the gradient is bounded as 0 ≤ ‖g‖ ≤
(eλmin |2πΣ|)−1/2, where λmin is the smallest eigenvalue of Σ.

Proof. Obviously ‖g‖ ≥ 0, with g = 0 attained at t = µ. For a one-dimensional distribution N (µ, λ),

the maximum gradient norm, of value (2πλ2e)−1/2, happens at the inflexion points
∣
∣
∣
t−µ√
λ

∣
∣
∣ = 1. Using these

results, let us prove the theorem for the D-dimensional normal N (µ,Σ). Here g = Σ−1(µ − t)p(t) and
‖g‖ = ‖Σ−1(µ− t)‖ p(t). Change z = Λ−1UT (µ− t) where Σ = UΛUT is the singular value decomposition
of Σ:

‖g‖ =
∥
∥UΛ1−UT (µ− t)

∥
∥ p(t) = ‖Uz‖ |2πΣ|− 1

2 e−
1
2zT Λz = ‖z‖ |2πΛ|− 1

2 e−
1
2zT Λz

since U = (u1, . . . ,uD) is orthonormal. Consider ellipses where zTΛz = ρ2 with ρ > 0. In any of those
ellipses, the point with maximum norm (i.e., maximum distance to the origin) lies along the direction of

the smallest λd = λmin, for some7 d ∈ {1, . . . , D}. Thus, using Dirac delta notation, zc = ±δcdρλ−1/2
d

and ‖g‖ = ρλ
−1/2
d |2πΛ|−1/2

e−
1
2ρ

2

there. Now, from the result for the one-dimensional case, this expression is

maximum at ρ = 1. So the gradient norm is maximum at z∗ with components z∗c = ±δcdρλ−1/2
d for c = 1, . . . , c,

or t∗ = µ−UΛz∗ = µ± λ1/2
d ud and ‖g∗‖ = (eλmin |2πΛ|)−1/2 = (eλmin |2πΣ|)−1/2 there.

Corollary 8.7.7. If Σ = σ2ID, then ‖g‖ is maximum at the hypersphere
∥
∥µ−t

σ

∥
∥ = 1 and there ‖gmax‖ =

(eσ2(2πσ2)D)−1/2.

Theorem 8.7.8. For a mixture of Gaussians, the gradient norm is smaller or equal than the maximum gradient
norm achievable by any of the components. If Σm = σ2ID for all m = 1, . . . ,M , then ‖g‖ ≤ (eσ2(2πσ2)D)−1/2.

Proof. For the mixture and using the triangle inequality:

‖g‖ =

∥
∥
∥
∥
∥

M∑

m=1

p(m)gm

∥
∥
∥
∥
∥
≤

M∑

m=1

p(m) ‖gm‖ ≤
M∑

m=1

p(m) ‖gm,max‖ ≤
M∑

m=1

p(m) ‖g‖max = ‖g‖max

where ‖gm,max‖ is given by theorem 8.7.8 for each component m and ‖g‖max = maxm=1...,M ‖gm,max‖. Geo-
metrically, this is a result of the coalescence of the individual components.

The following theorem gives a sufficient condition for the Hessian of the mixture of isotropic Gaussians to
be negative definite.

Theorem 8.7.9. If Σm = σ2ID, then H < 0 if
∑M
m=1 p(m|t)

∥
∥
∥

µm−t

σ

∥
∥
∥

2

< 1.

Proof. Call ρm = µm−t

σ , ρm = ‖ρm‖ and H0 = −ID +
∑M
m=1 p(m|t)ρmρTm. From eq. (8.12) H = p(t)

σ2 H0.

From lemma 8.7.10, each eigenvalue of H0 is λd = −1 +
∑M
m=1 πmdp(m|t)ρ2

m where
∑D
d=1 πmd = 1 for each

m = 1, . . . ,M . A worst-case analysis gives λd ≤ −1 +
∑M
m=1 p(m|t)ρ2

m for a certain d ∈ {1, . . . , D}. Thus the

Hessian will be negative definite if
∑M
m=1 p(m|t)ρ2

m < 1.

The following lemma shows the effect on the eigenvalues of a symmetric matrix of a series of unit-rank
perturbations and is necessary to prove theorem 8.7.9.

Lemma 8.7.10. Let A be a symmetric D × D matrix with eigenvalues λ1, . . . , λD and {um}Mm=1 a set of

M vectors in RD. Then, the eigenvalues of A +
∑M
m=1 umuTm are λ′d = λd +

∑M
m=1 πmdu

T
mum for some

unknown coefficients πmd satisfying πmd ∈ [0, 1] for m = 1, . . . ,M , d = 1, . . . , D, and
∑D
d=1 πmd = 1 for each

m = 1, . . . ,M . Thus, every eigenvalue is shifted by an amount which lies between 0 and the squared norm of
the perturbing vector, for each perturbation.

Proof. A proof for the case M = 1 is given by Wilkinson (1965, pp. 97–98). The case of arbitrary M follows
by repeated application of the case M = 1.

7There may be several values of d with the same λd = λmin, but this is irrelevant for the proof.
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8.7.6 Bounds for the entropy

Theorem 8.7.11. The entropy and L2-norm for a normal distribution of mean vector µ and covariance
matrix Σ are:

• h(N (µ,Σ)) = 1
2 ln |2πeΣ|.

• ‖N (µ,Σ)‖2 = |4πΣ|−1/4
.

Theorem 8.7.12 (Information theory bounds on the entropy of a mixture). For a finite mixture

p(t) not necessarily Gaussian with mean vector µ and covariance matrix Σ:
∑M
m=1 πmh(p(t|m)) ≤ h(p(t)) ≤

1
2 ln

(
(2πe)D |Σ|

)
. Equality can only be obtained in trivial mixtures where M = 1 or t and m are independent,

i.e., all components are equal.

Proof.

• LHS inequality: by the fact that conditioning reduces the entropy (or by the concavity of the entropy;

Cover and Thomas, 1991, p. 27, 232, 483): h(p(t)) ≥ −Ep(t,m) {ln p(t|m)} =
∑M
m=1 πmh(p(t|m)).

• RHS inequality: by the fact that, for fixed mean µ and covariance Σ, the maximum entropy distribution is
the normal distribution of mean µ and covariance matrix Σ, N (µ,Σ), whose entropy is 1

2 ln
(
(2πe)D |Σ|

)

and the logarithm is in any base (Cover and Thomas, 1991, p. 225, 270).

Theorem 8.7.13 (L2-norm lower bound on the entropy). 8 For any density p: h(p) ≥ −2 ln ‖p‖2.

Proof. Since the function − ln t is convex, Jensen’s inequality gives h(p)
def
= Ep {− ln p(t)} ≥ − ln Ep {p(t)} =

−2 ln ‖p‖2.

Theorem 8.7.14. For a Gaussian mixture p(t) =
∑M
m=1 p(m)p(t|m):

‖p‖22 =

M∑

m,n=1

p(m)p(n) |2π(Σm + Σn)|−
1
2 e−

1
2 (µm−µn)T (Σm+Σn)−1(µm−µn).

Proof. ‖p‖22 = 〈p, p〉 =
∑M
m,n=1 p(m)p(n) 〈N (µm,Σm)N (µn,Σn)〉. Computing the scalar product is tedious

and is summarised as follows:

〈N (µm,Σm)N (µn,Σn)〉 =
∫

RD

p(t|m)p(t|n) dt =

∫

RD

|2πΣm|−
1
2 |2πΣn|−

1
2 e−

1
2 ((t−µm)T Σ−1

m (t−µm)+(t−µn)T Σ−1
n (t−µn)) dt =

|2πΣm|−
1
2 |2πΣn|−

1
2

∫

RD

e−
1
2 (t−µ)T (Σ−1

m +Σ−1
n )(t−µ)−(µT

mΣ−1
n +µT

nΣ−1
m )(t−µ)− 1

2 (µT
mΣ−1

n µm+µT
nΣ−1

m µn) dt =

|2πΣm|−
1
2 |2πΣn|−

1
2
∣
∣2π(Σ−1

m + Σ−1
n )−1

∣
∣
1
2×

e−
1
2 (µT

mΣ−1
n µm+µT

nΣ−1
m µn)e

1
2 (µT

mΣ−1
n +µT

nΣ−1
m )(Σ−1

m +Σ−1
n )−1(µT

mΣ−1
n +µT

nΣ−1
m )T

=

|2π(Σm + Σn)|−
1
2 e−

1
2 (µm−µn)T (Σm+Σn)−1(µm−µn)

where we have used the following facts:

∫

RD

e−
1
2 (t−a)T A(t−a)+bT (t−a) dt =

∣
∣
∣
∣

A

2π

∣
∣
∣
∣

− 1
2

e
1
2bT A−1b

Σ−1
m (Σ−1

m + Σ−1
n )−1Σ−1

n = (Σm + Σn)
−1

Σ−1
m (Σ−1

m + Σ−1
n )−1Σ−1

m = (Σm(Σ−1
m + Σ−1

n )Σ−1
m )−1 = (Σm(I + Σ−1

n Σm))−1 = Σ−1
m − (Σm + Σn)

−1

and the SMW formula.

8I am grateful to Chris Williams for suggesting to me the use of the L2-norm.

223



Corollary 8.7.15. For a finite Gaussian mixture with components t|m ∼ N (µm,Σm), m = 1, . . . ,M and
with mean vector µ and covariance matrix Σ given in section 8.7: max(LB1, LB2) ≤ h(p(t)) ≤ UB1, where:

LB1
def
=

1

2
ln

{

(2πe)D
M∏

m=1

|Σm|πm

}

LB2
def
= − ln

{
M∑

m,n=1

p(m)p(n) |2π(Σm + Σn)|−
1
2 e−

1
2 (µm−µn)T (Σm+Σn)−1(µm−µn)

}

UB1
def
=

1

2
ln
(
(2πe)D |Σ|

)
.

Equality LB1 = h(p(t)) = UB1 can only be obtained in trivial mixtures where M = 1 or µm = µ and Σm = Σ
for all m = 1, . . . ,M , in which case LB2 = 1

2 ln |4πΣ| < 1
2 ln |2πeΣ| = LB1 = h(p(t)) = UB1.

Note the limit cases:

• Σm → 0: the upper and lower bounds and the entropy tend to −∞.

• Σm →∞: the upper and lower bounds and the entropy tend to ∞.

Observe that LB1 can be smaller or greater than LB2 depending on the values of {πm,Σm}Mm=1.

Remark. From corollary 8.7.15, it is easy to proof the following generalised matrix formulation of the inequality
between the geometric mean and the arithmetic mean. If {Σm}Mm=1 are symmetric positive definite matrices

with real elements and {πm}Mm=1 are arbitrary real numbers in [0, 1] with
∑M
m=1 πm = 1, then:

M∏

m=1

|Σm|πm ≤
∣
∣
∣
∣
∣

M∑

m=1

πmΣm

∣
∣
∣
∣
∣

with equality if and only if M = 1 or some πm = 1. This result, which guarantees the concavity of the function
ln det (·), was proved by Fan (1950) using linear algebra rather than information theory.

8.7.7 Additional results

Theorem 8.7.16. tr (H) =
∑M
m=1 p(t,m)

(
(µm − t)TΣ−2

m (µm − t)− tr
(
Σ−1
m

))
.

Proof.

tr (H) = tr

(
M∑

m=1

p(t,m)Σ−1
m ((µm − t)(µm − t)T −Σm)Σ−1

m

)

=

M∑

m=1

p(t,m)
(
tr
(
(µm − t)(µm − t)TΣ−2

m

)
− tr

(
Σ−1
m

))

=

M∑

m=1

p(t,m)
(
(µm − t)TΣ−2

m (µm − t)− tr
(
Σ−1
m

))
.

Corollary 8.7.17. If Σm = σ2ID for all m = 1, . . . ,M , then tr (H) = − D
σ2 p(t) + 1

σ2

∑M
m=1 p(t,m)

∥
∥
∥

µm−t

σ

∥
∥
∥

2

.

Theorem 8.7.18.
∫

RD tr (H) dt = 0.

Proof. From theorem 8.7.16:

∫

RD

tr (H) dt =

∫

RD

M∑

m=1

−p(t,m) tr
(
Σ−1
m

)
dt +

∫

RD

M∑

m=1

p(t,m)(µm − t)TΣ−2
m (µm − t) dt

= −
M∑

m=1

p(m) tr
(
Σ−1
m

)
+

M∑

m=1

p(m)

∫

RD

p(t|m)(µm − t)TΣ−2
m (µm − t) dt.
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The latter integral can be solved by changing zm = UT
mΣ−1/2

m (µm−t), where Σm = UmΛmUT
m is the singular

value decomposition of Σm, and introducing the reciprocal of the determinant of the Jacobian,
∣
∣UT

mΣ−1/2
m

∣
∣
−1

=

|Σm|1/2 (since Um is orthogonal):

∫

RD

|2πΣm|−
1
2 e−

1
2 (t−µm)T Σ−1

m (t−µm)(µm − t)TΣ−2
m (µm − t) dt

=

∫

RD

|2πΣm|−
1
2 e−

1
2zT

mzmzTmΛ−1
m zm|Σm|

1
2 dzm = EN (0,ID)

{
D∑

d=1

z2
md

λmd

}

=
D∑

d=1

1

λmd
EN (0,ID)

{
z2
md

}

=
D∑

d=1

1

λmd
= tr

(
Λ−1
m

)
= tr

(
Λ−1
m UT

mUm

)
= tr

(
UmΛ−1

m UT
m

)
= tr

(
Σ−1
m

)
.

Thus:
∫

RD

tr (H) dt = −
M∑

m=1

p(m) tr
(
Σ−1
m

)
+

M∑

m=1

p(m) tr
(
Σ−1
m

)
= 0.

Theorem 8.7.19.
∫

RD g dt = 0.

Proof. From eq. (8.11):

∫

RD

g dt =

∫

RD

M∑

m=1

p(t,m)Σ−1
m (µm − t) dt =

M∑

m=1

p(m)Σ−1
m

∫

RD

p(t|m)(µm − t) dt

=

M∑

m=1

p(m)Σ−1
m EN (µm,Σm) {µm − t} dt = 0.

❦
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Chapter 9

Experiments with synthetic data

In this chapter we demonstrate the use of the missing data reconstruction method developed in chapter 7
with two synthetic data examples: a two-dimensional toy problem and the inverse kinematics of a two-link
robot arm. They allow investigation of the method and of the conditions under which it may fail, as well
as easy visualisation of the results. Section 9.1 describes the methodological setup followed to carry out the
experiments, while sections 9.2 and 9.3 deal with the toy and robot arm examples, respectively.

9.1 Methodological setup

Both examples are based on a known smooth forward mapping x
g−→ y where the x-variables are restricted to

a given domain. The experiment setup is the following:

• Generate a sample of data for the x-variables, compute y = g(x) and perturb with noise e to obtain
t = ( x

y ) + e. Permute at random the point indices 1, . . . , N to obtain shuffled data and avoid any effects

related to sequential correlation (although this is not really necessary). We then have a sample {tn}N
′

n=1

that we use as training set for the density model.

• By sampling a trajectory in the x-domain, generate a sequence {t(n)}Nn=1 where continuity holds. By
continuity we mean that the sampling rate is high enough (that the original trajectory could be recovered
from the sequence). To do this, generate data for the x-variables at a high enough rate and then compute
y = g(x). This gives a noiseless, continuous sequence. We can obtain a noisy, continuous sequence by
adding a small amount of noise.

• Generate a missing data mask tailored to that sequence, that is, of size N × D (section 7.2.2). Seven
different types of mask are considered to account for forward mapping approximation, mapping inversion
and general missing data patterns, as described in fig. 9.1.

• Apply the missing data mask to the original, complete sequence to obtain an incomplete sequence.
Reconstruct the incomplete sequence with our method and with other, standard methods and compare
the results in terms of squared reconstruction error and by plotting the reconstructed sequences.

As density models we used a latent variable model trained on the sample {tn}N
′

n=1 (we discarded the latent
variables and only used the distribution in observed space). The intrinsic dimensionality L was taken as the
true one, equal to the number of x-variables (strictly, equal to the number of x- or y-variables, whichever is
smaller). We used two different models:

• Factor analysis, so that the density model is a Gaussian constrained to a linear mapping. This is used
as a baseline for comparison.

• GTM, so that the density model is an isotropic Gaussian mixture constrained to a nonlinear mapping.

We used the continuity constraint C1, based on the unweighted Euclidean distance between consecutive points
(table 7.2).

The methods compared are of three types (the identifiers in typewriter font face will be used for conve-
nience in this and the next chapter):

This chapter is partly based on references Carreira-Perpiñán (1999b, 2000b).
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P0 Complete sequence (0% missing)

-6.1 6.45.4-0.8-0.7-1.8-2.2-3.1-3.7-4.4-4.5-5.6

-6.5 -3.8 -1.9 -1.4 -2.0 -3.4 -4.3 -4.8 -3.7 -1.1 3.7 6.2

PSfrag replacements

t1

t2

n = 1 2 3 4 5 6 7 8 9 10 n N

P1 t2 always missing: regression t1 → t2 (50% missing)

-6.1 6.45.4-0.8-0.7-1.8-2.2-3.1-3.7-4.4-4.5-5.6

-6.5 -3.8 -1.9 -1.4 -2.0 -3.4 -4.3 -4.8 -3.7 -1.1 3.7 6.2
PSfrag replacements

t1

t2

P2 t1 always missing: regression t2 → t1 (50% missing)

-6.1 6.45.4-0.8-0.7-1.8-2.2-3.1-3.7-4.4-4.5-5.6

-6.5 -3.8 -1.9 -1.4 -2.0 -3.4 -4.3 -4.8 -3.7 -1.1 3.7 6.2
PSfrag replacements

t1

t2

P3 t1 or t2 missing at random (75% missing)

-6.1 6.45.4-0.8-0.7-1.8-2.2-3.1-3.7-4.4-4.5-5.6

-6.5 -3.8 -1.9 -1.4 -2.0 -3.4 -4.3 -4.8 -3.7 -1.1 3.7 6.2
PSfrag replacements

t1

t2

P4 t1 or t2 missing at random (50% missing)
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Figure 9.1: Masks used for the synthetic data examples. The variables mentioned (t1, t2) are for the toy
example (section 9.2). The same scheme is used for the robot arm (section 9.3) and the articulatory-acoustic
speech data of chapter 10 as follows: in P1, P2 and P6 replace t1 with x and t2 with y as a block; in P3–P5 and
P7 replace t1 and t2 with any scalar variable. Thus, P1 means the regression x→ y, P2 the regression y→ x,
P6 either x or y are missing (but not both) and P3–P5 and P7 are general, random missing data patterns,
treating x1, . . . , xD1

, y1, . . . , yD2
equally. “Missing at random” means here that the probability that variable

t
(n)
d is missing does not depend on the values of the other variables or on whether other variables are missing;

in the parlance of the statistical treatment of missing data, this is MCAR (section 7.11.1.2). P7 represents the
practically frequent case in engineering applications where a whole run of data goes missing (e.g. a scratch on
a film or band-pass noise in speech).
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• Based on factor analysis:

fa For which mean and the mode-based methods coincide.

• Based on GTM1:

mean Single pointwise reconstruction by the conditional mean for the density model used.

gmode Single pointwise reconstruction by the global mode of the conditional distribution for the density
model used. The global mode is computed with our algorithm of chapter 8 for mode finding in
Gaussian mixtures (specifically, the gradient-quadratic one, although the fixed-point one performed
just as well). Because it finds all the modes, our algorithm guarantees that gmode really is the
global mode—unlike other algorithms (section 7.3.3), where it usually is a random mode (as rmode
below).

rmode Single pointwise reconstruction by a random mode of the conditional distribution for the density
model used. All modes of the conditional distribution are taken equally likely.

cmode Single pointwise reconstruction by the closest mode of the conditional distribution for the density
model used. The “closest mode” means the mode of the conditional distribution that is closest in
Euclidean distance to the corresponding value of the original sequence. Thus, it gives the minimal
reconstruction error (both pointwise and for the global reconstruction). It gives a lower bound of
the reconstruction error achievable by any mode-based method (gmode, rmode, grmode, dpmode)
and tells us how much usable reconstruction information is contained in the conditional modes. Of
course, in a practical problem we do not know what mode is the closest one.

grmode Single pointwise reconstruction by the mode of the conditional distribution for the density model
used that is closest in Euclidean distance to the previously reconstructed point, i.e., a greedy
minimisation of the continuity constraint (section 7.6.4).

dpmode Multiple pointwise reconstruction by the modes of the conditional distribution for the density model
used and dynamic programming minimisation of the continuity constraint to select the global re-
construction (section 7.6.3).

sampdp Multiple pointwise reconstruction by S samples of the conditional distribution for the density model
used and dynamic programming minimisation of the continuity constraint to select the global re-
construction (section 7.3.7). We took S slightly larger than the maximal number of inverse branches
of g−1 so that all the branches have a chance to contribute but without facilitating the appearance
of outliers.

meandp A combination of mean and dpmode: multiple pointwise reconstruction by the modes of the con-
ditional distribution for the density model used and dynamic programming minimisation of the
continuity constraint to select the global reconstruction except that if the conditional distribution
is unimodal, we use its mean rather than its mode. This is intended to account for skewed unimodal
conditional distributions (e.g. figure 9.4(right)).

• Based on multilayer perceptrons. We trained five different MLPs, each with a single layer of sigmoidal
hidden units but differing in the number of hidden units. The MLPs were trained to minimise the squared
reconstruction error of the same training set used to estimate the density models, using stochastic gradient
descent and small, random starting values for the weights2. By combining the outputs of these five MLPs
in different ways we defined the following methods:

mlpavg Single pointwise reconstruction by the arithmetic mean.

mlpdp Multiple pointwise reconstruction by the five MLP outputs and dynamic programming minimisation
of the continuity constraint to select the global reconstruction (i.e., like dpmode but using the MLP
outputs instead of the conditional modes).

mlpbest The global reconstruction with minimal error of all five. Like cmode, this is a lower bound, generally
unattainable in practice.

1We used Markus Svensén’s Matlab implementation of GTM (available in the Internet at http://www.ncrg.aston.ac.uk/

GTM) to estimate the GTM model parameters. We then developed our own Matlab software for construction of conditional
distributions, exhaustive mode finding, constraint optimisation by dynamic programming and other operations required by the
methods mentioned.

2We used the Netlab neural network software for Matlab, written by Ian Nabney and Christopher Bishop and freely available
at http://www.ncrg.aston.ac.uk/netlab.
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These methods are only applicable to regression problems (where the missing data pattern does not
depend on the point index n): masks P1 and P2.

The number of hidden units h was chosen so that the number of weights was similar to the number of
trainable parameters of the GTM model. If D1 and D2 are the dimensions of the x- and y-variables,
respectively (with D1 + D2 = D, the dimension of the joint variables t) then a D1-h-D2 MLP has
(D1 + 1)h+ (h+ 1)D2 ≈ Dh parameters (weights and biases), while a GTM model with F radial basis
functions (and biases) has (F + 1)D + 1 ≈ FD parameters. Thus we took h of the order of F .

Our a priori expectations are that mean and the MLP-based methods will perform similarly (see the discussion
in section 7.3.6) and that cmode will outperform gmode, rmode, grmode and dpmode (by definition). The
interesting results will be how much better cmode will be and how the mode-based methods will fare compared
to mean, particularly dpmode.

9.2 2D toy example

9.2.1 Problem setup

We consider the forward mapping g(x)
def
= x+ 3 sinx for x ∈ [−2π, 2π], which results in one-dimensional data

(L = 1) observed in D = 2 dimensions, i.e., t = (t1, t2) (fig. 9.2(left)). We generated a shuffled training
set {tn}N

′

n=1 with N ′ = 1000 points sampled from the curve with additive N (0, σ2I) noise for σ = 0.2
(fig. 9.2(centre)) and sample noisy (also with σ = 0.2) and noiseless trajectories to be reconstructed (e.g.
fig. 9.2(right)). The forward mapping g is injective only in parts of the domain and so the inverse mapping
g−1 is sometimes multivalued (specifically, it can take up to three values). The model parameters were taken
as follows (the reader is referred to sections 2.6.1, 2.6.5 and 5.4 for details):

• Factor analysis: dimension of latent space L = 1, fig. 9.3(left).

• GTM: grid of K = 200 points (also K = 20 and 60) in a latent space of dimension L = 1, scaled to
the [−1, 1] interval and grid in the same square of F = 9 Gaussian basis functions of width equal to the
separation between basis functions centres, fig. 9.3(right).

• MLP: one MLP with a single layer of h = 48 hidden units (mask P1) and five MLPs with a single layer
of h = 5, 15, 25, 35, 48 hidden units, respectively (mask P2).

For sampdp, we generated S = 6 samples per conditional distribution.
In the following figures and tables we illustrate the performance of the methods in a gamut of situations,

including reconstruction of noiseless and noisy trajectories of different lengths (N). Here is a little guided
tour. Fig. 9.3 shows the density models: GTM perfectly approximates the data density and underlying low-
dimensional manifold, unlike factor analysis. Figures 9.4 and 9.5 demonstrate the derivation of a univalued
(forward) mapping and a multivalued (inverse) mapping, respectively, with the conditional distribution of
the GTM model. Fig. 9.6 demonstrates the use of a continuity constraint to break the ambiguity of multiple
pointwise reconstructions. Fig. 9.7 compares various methods with the forward mapping (mask P1): except for
fa, all methods perform well. Fig. 9.8, for the inverse mapping (mask P2), shows the limitations of methods
based on single pointwise reconstruction (mean, gmode, mlp), while dpmode still succeeds in recovering the
original trajectory. The same happens with mask P4 in fig. 9.9. Fig. 9.10 shows for mask P2 (but the same
happens for the other masks) that grmode and sampdp do not perform well. Table 9.1 gives the errors and
lengths of the reconstructed trajectories for all methods and masks. The reader is encouraged to examine the
figure captions and then proceed to the next section.
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Figure 9.2: Data for the toy problem: univalued forward mapping t2 = g(t1) = t1 + 3 sin t1 with sometimes
multivalued inverse t1 = g−1(t2). Left : curve t = (x, x + 3 sinx)T for x ∈ [−2π, 2π]. Centre: point cloud
{tn}N

′

n=1, sampled from the curve with additive N (0, σ2I) noise for σ = 0.2 and N ′ = 1000. Right : sample
noisy trajectory {t(n)}Nn=1 with N = 20.
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Figure 9.3: Density models used for the toy problem. Both figures show the density surface (contour lines),
the trace of g : t1 → t2 (blue) and the trace of the latent variable model mapping f : x→ (t1, t2)

T (red). Left :
factor analysis: L = 1, 6 parameters, log-likelihood = −4 807, linear mapping f , Gaussian density p(t). Right :
GTM: L = 1, K = 200, 21 parameters, log-likelihood = −3 109, nonlinear mapping f , Gaussian mixture
density p(t). One 48-hidden-unit MLP (145 parameters) was trained for the forward mapping (mask P1) and
five MLPs with 5 (16), 15 (46), 25 (76), 35 (106) and 48 (145) hidden units (parameters), respectively, for the
inverse mapping (mask P2).
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Figure 9.4: Demonstration of the derivation of functional relationships from conditional distributions: uni-
modal distribution. The conditional distribution p(t2|t1) is unimodal (right graph; the scale of the vertical axis
is irrelevant and thus omitted), so both the mean and the mode are good approximations to the real value.
The conditional distribution is slightly skewed, so the mean and the mode do not coincide. The example is for
t1 = −1.1, for which g(t1) = −3.8 (left graph); compare with fig. 7.4(b). In this and the following two figures
the trace of the forward function g is drawn as a visual aid in the (t1, t2) plane; the values for t1 or t2 are
always obtained from the conditional distribution.
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Figure 9.5: Demonstration of the derivation of functional relationships from conditional distributions: mul-
timodal distribution. The conditional distribution p(t1|t2) can be multimodal (right graph; the scale of the
vertical axis is irrelevant and thus omitted), so one of the modes is the right one, but which one? We need extra
information. The example is for t2 = −3.8, for which g−1(t2) = {−5.6280,−2.8027,−1.1112} (left graph);
compare with fig. 7.4(d). Observe that the modes may have different heights and still correspond to valid
inverse values.
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Figure 9.7: Reconstruction results for the toy problem: forward mapping (mask P1). The original trajectory
is noiseless with N = 100 points and looks like the curve of fig. 9.2(left). Left : factor analysis and multilayer
perceptron. Right : GTM with K = 200, various methods. Factor analysis gives the linear regression of t2 on
t1 while the rest of the methods give the correct, nonlinear mapping.
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Figure 9.8: Reconstruction results for the toy problem: inverse mapping (mask P2). Original trajectory as in
fig. 9.7. Left : factor analysis and multilayer perceptron. Right : GTM with K = 200, various methods. Factor
analysis gives the linear regression of t1 on t2 (which has a different slope from that of t2 on t1); gmode always
tracks some part of a branch but switches discontinuously between branches; mean and mlp coincide and give a
continuous mapping that happens to track one branch due to the symmetry of the forward mapping g; dpmode,
cmode and the original trajectory practically coincide. mlp means mlpbest (which corresponded to the MLP
with 15 hidden units).
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Figure 9.9: Reconstruction results for the toy problem: 50% missing data at random (mask P4). The original
trajectory is noisy with N = 20 points, the same one as that of fig. 9.2(right). Left : factor analysis and
GTMK=200 (mean). Right : GTMK=200 (gmode, dpmode, cmode). The multilayer perceptron cannot deal with
varying patterns of missing data and so is not shown. The abrupt jumps to the global mean near (0, 0) for fa

and mean and to the global mode near (2π, 2π) for gmode occur when both t
(n)
1 and t

(n)
2 are missing. cmode

and the original trajectory practically coincide and dpmode recovers the original trajectory reasonably well.
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Figure 9.10: Reconstruction results for the toy problem: methods grmode and sampdp, inverse mapping (mask
P2). Original trajectory as in fig. 9.7. Left : grmode. Right : sampdp. Both methods perform badly, with
retracings and shortcuts on the original trajectory.
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9.2.2 Main conclusions

The main result is that, for a good density model and if continuity holds, dpmode can greatly improve over the
traditional methods mean and mlp, approaching the limit of cmode (which is close to zero error) for all patterns
of missing data; and is particularly successful for general ones even for large amounts of missing data, poor
density models or oversampled trajectories. This means that the modes contain important information about
the possible options to predict the missing values, and that application of the continuity constraint allows to
recover that information. Table 9.2 summarises the method comparison for each pattern of missing data.

Although the previous figures and tables are for particular cases, we ran the methods with many different
training sets, trajectories and masks (all randomly generated) and there were no qualitative discrepancies.
Based on them we can draw specific conclusions about the methods:

• fa is always much worse than mean for any mask, as expected, given that the forward mapping is
nonlinear.

• MLP methods: for mask P2, mlpbest comes first (as it should, by its definition), closely followed by
mlpavg and somewhat farther by mlpdp. Thus, there was no gain in using an ensemble where the members
simply differed in the architecture. Clearly, we could have tried harder to get a good ensemble, with
each member learning a different branch of the inverse mapping; but, as discussed in section 7.11.2.1,
branch determination is a tough problem.

For both masks P1 and P2, the MLP methods were practically equal to the mean (with a slightly
larger difference in multivalued mappings due to local minima). This was expected from the equivalence
between universal mapping approximators and conditional mean (section 7.3.6). However, variations can
occur depending on the actual mapping approximator and the actual density model (e.g. our MLPs do
better than the conditional mean of fa because the latter does not approximate well the true density).

• Since our GTM model is very close to the true density, the mean approximates extremely well the forward
mapping (mask P1), being univalued. It fails with the inverse mapping, being multivalued: the univalued
mean mapping travels through the midpoints of the inverse branches, blending them into a single branch.
Because of the symmetry of the forward mapping, the midpoint of these branches always happens to
coincide with one of the branches and so the result is better than it should be in a general case lacking
symmetry (where the mean will not be a valid inverse). The mean also fails for general masks, although
it is still the best3 method based on single pointwise reconstruction (the others being gmode and rmode).

• Both gmode and rmode have a larger reconstruction error than mean on the average, as predicted by
the theory (section 7.3.6). They result in discontinuous mappings, often switching branches frequently
(specially rmode), but they always provide with valid inverses, unlike the mean, because they track
branches. gmode generally outperforms rmode—the latter can be considered as the chance baseline for
single pointwise reconstruction by the modes.

• cmode was defined as the minimal-error limit for gmode, rmode, grmode and dpmode. In fact, for all
masks considered, it achieves practically zero reconstruction error, thus vastly outperforming the mean

too (except, marginally, sometimes with mask P1, where mean is optimal). Even in shuffled data (where
dpmode cannot work, since continuity is lost) cmode still contains information to get the lowest error of
all methods (but that information cannot be recovered). This demonstrates that the modes of a good
conditional distribution contain information that can potentially achieve near-zero reconstruction error.

• Much of this information is recovered by dpmode, which outperforms or equals any other method, in-
cluding mean, for any mask. Even for the forward mapping, where mean is guaranteed to be optimal on
the average, dpmode still performs as well as the mean (it actually outperforms it in table 9.1(top), but
this is an isolated instance). Its performance is degraded only slightly for very high amounts of missing
data (e.g. mask P3), where the other methods incur huge errors. For regression problems (masks P1 and
P2), dpmode may perform worse than mean in two situations analysed below: nonsmooth density models
and oversampled trajectories.

• There is virtually no difference between meandp and dpmode. This is due to the fact that the training
set contained isotropic noise, so that when the conditional distribution is unimodal, it is approximately4

3It is the best method on the average for an ideally perfect model, but it is possible to find specific instances where it is not,
e.g. it is slightly worse than gmode for masks P1 and P2 in table 9.1(top) and in fig. 9.18(right) gmode is slightly less biased than
mean at the mapping turns.

4It does not have to be symmetric because, for example, the shape of the low-dimensional manifold can produce skewness (see
section 9.2.5).
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symmetric and its mean and mode nearly coincide. For more complex types of noise meandp may improve
over dpmode.

• Both grmode and sampdp result most times in wrongly reconstructed trajectories that retrace themselves
and contain shortcuts between branches. For grmode the reason is the inability to backtrack out of a
wrong solution, as discussed in section 7.9.4, although for general missing data patterns its performance
is not much worse than that of dpmode. For sampdp there are two reasons: the inability to find a priori
a good value5 for the number of samples S, so that suboptimal candidate reconstructions are generated
and/or correct ones are missed; and the appearance of wrong trajectory reconstructions with low value
for the global constraint (see also section 9.2.3). Therefore, despite the computational economy of these
approaches, they are not recommended.

• We confirmed that shuffling the trajectory to destroy its continuity resulted in a large increase of the
reconstruction error for the methods based on constraint minimisation (dpmode, grmode, sampdp, meandp)
for all masks (except P1) but did not affect the other methods.

Two general properties arise in common for several methods:

Denoising For all methods based on conditional distributions of a density model (and also for MLPs for
masks P1–P2) a noisy trajectory is reconstructed as a smooth trajectory (for mode-based methods, the
smoother the density model the smoother the reconstruction, but not so much for the mean). This is
particularly noticeable in fig. 9.17: compare the original trajectory (top, left) with the reconstructed one
by dpmode (bottom, right). In fact, a large part of the reconstruction error is due to the noise in the
original trajectory, which has been removed from the reconstructed one. The reason is that by reducing
a conditional distribution to a point (single pointwise reconstruction) or a point per branch (multiple
pointwise reconstruction) all variation is eliminated for the given values of the present variables. This is
not to say that the noisy trajectory is reconstructed as the smooth, underlying manifold: bias may exist
in the density model (e.g. see fig.9.12(left) and section 9.2.5).

Regression is harder than varying patterns of missing data For methods based on global constraint
minimisation, such as grmode and in particular dpmode, a varying missing data pattern helps to break
the ambiguity. The reason is the changing structure in observed space of the candidate reconstructions
for varying patterns of missing data (see fig. 9.11). For mask P1 (top, right; assuming several modes,
as in the nonsmooth models of section 9.2.3), the candidate reconstructions at point n form a vertical
series (parallel to the t2 axis). As n increases, consecutive series sweep across the (t1, t2) space in a
nearly rigid motion. Thus, it is possible to have long runs of wrong candidate reconstructions that give
a short trajectory segment; these segments may have long jumps where, for example, the conditional
distribution becomes unimodal, but on the whole the wrong trajectory can be shorter than the correct
one (see, for example, the runs n = 5–7 and n = 9–13). For mask P2 (bottom, left) the same occurs;
the candidate reconstructions at point n form now a horizontal series. But for varying patterns of
missing data (bottom, right) the spatial structure of these series typically changes dramatically from n
to n + 1 (e.g. from horizontal to vertical). Thus, the runs of wrongly reconstructed points are much
shorter and when concatenated they give a longer trajectory than the correct one. This is reinforced by
having occasionally single candidates, e.g. when all variables are present. This can be seen in tables 9.1,
9.3 and 9.4 for the dpmode: large errors, associated with grossly wrong reconstructions, appear only for
nonsmooth models or oversampling for the regression-type patterns (masks P1–P2), but never for general
ones (P3–P7), even when as many as 76% of the values are missing. The generally unreliable method
grmode also performs quite well: if it gets into the wrong branch or retraces itself, it is quickly corrected
when the pattern of missing data changes.

Thus, the dpmode method is very robust for varying patterns of missing data even with not very good
density models, oversampling or large amounts of missing data.

9.2.3 Smoothness

In the previous experiments we have used a nearly ideal density model (GTM with K = 200): it approximates
the true density almost exactly and so any conditional distribution has the right number of modes and at the

5To force all mapping branches to be represented, we also tried a very high value S = 100. The resulting trajectories were
smoother but still wrong.
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Figure 9.11: Reconstruction results for the toy problem: explicit display of candidate reconstructions for
dpmode with masks P1, P2 and P4. Top, left : original trajectory (thick line), noisy with N = 20 points, the
same one as that of fig. 9.2(right). The mapping g (thin line) and the point indices n = 1, . . . , N are shown
for reference. A low N was chosen to avoid cluttering the graph. For the remaining three graphs, the symbols
used are as follows: a vertical series of squares (�) joined by a line representing the modes of t2|t1 (i.e., t1
present, t2 missing); a horizontal series of triangles (4) joined by a line representing the modes of t1|t2 (i.e.,
t1 missing, t2 present); a single filled circle (•) representing a known point (both t1 and t2 present); a single
empty circle (◦) representing a point where both t1 and t2 are missing, whose candidate reconstructions are
the K centroids of the Gaussian mixture (marked +). The reconstructed trajectory (thick line) and original
trajectory (thin line) are shown. The model used was GTMK=20 (fig. 9.12(left)). Top, right : reconstructed

trajectory for mask P1. Observe how, due to spurious modes, the fact that t
(9)
1 ≈ t(10)1 triggers a run of wrongly

reconstructed points till t(14), where there is a single mode. Bottom, left : reconstructed trajectory for mask

P2. Bottom, right : reconstructed trajectory for mask P4. Observe how the fact that for the first point t
(1)
1

and t
(1)
2 are both missing results in t̂(1) being reconstructed as the centroid closest to t̂(2). The reconstructed

trajectory is different from that of dpmode in fig. 9.9(right) because there we used GTMK=200.
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Average squared error 1
N

∑N
n=1

∥
∥t(n) − t̂(n)

∥
∥

2

Mask Factor MLP GTM with K = 200

(% missing) analysis mlpbest mlpavg mlpdp mean gmode rmode cmode grmode dpmode sampdp meandp

P1(50%) 3.8011 0.0129 0.0129 0.0129 0.0196 0.0120 0.0120 0.0120 0.0120 0.0120 0.2027 0.0196

P2(50%) 4.2702 2.1475 2.1633 2.4746 2.1184 2.0878 7.7086 0.0129 0.7529 0.0129 2.0003 0.0129

P3(76%) 15.5385 14.6874 62.8203 36.1892 0.0069 0.2534 0.1936 5.9703 0.2059

P4(56%) 11.4116 9.7848 31.4508 14.8545 0.0058 0.1512 0.0746 4.6827 0.0867

P5(25%) 2.9049 1.7891 6.5224 3.1629 0.0040 0.0191 0.0066 0.6252 0.0062

P6(50%) 4.1377 0.9555 0.8104 4.7174 0.0122 0.0122 0.0122 0.2423 0.0178

P7( 8%) 1.8476 1.5252 5.0694 2.5553 0.0007 0.0050 0.0029 0.0726 0.0027

Value of constraint C1 =
∑N−1
n=1

∥
∥t̂(n) − t̂(n+1)

∥
∥ (original sequence: 29.35)

Mask Factor MLP GTM with K = 200

(% missing) analysis mlpbest mlpavg mlpdp mean gmode rmode cmode grmode dpmode sampdp meandp

P1(50%) 15.85 28.00 28.00 28.00 27.42 28.53 28.53 28.53 28.53 28.53 26.11 27.42

P2(50%) 33.53 41.71 39.87 35.42 38.75 44.66 184.38 29.62 33.55 29.62 43.28 29.62

P3(76%) 245.66 260.70 499.68 502.31 29.36 29.85 28.65 159.11 28.54

P4(56%) 233.33 222.44 352.79 312.27 29.90 30.32 28.23 136.56 28.27

P5(25%) 166.73 100.87 157.51 133.56 29.83 30.49 29.82 62.60 29.78

P6(50%) 170.26 77.35 64.16 226.32 30.21 30.21 30.21 41.87 29.71

P7( 8%) 95.95 78.32 108.56 90.45 29.40 29.54 29.40 36.46 29.39
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Problem type (mask)
Low error High error−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Forward (P1) cmode = dpmode = mean = mlp = gmode = rmode < fa

Inverse (P2) cmode . dpmode < mean = mlp < gmode < fa < rmode

General (P3–P7) cmode < dpmode � mean � gmode = rmode = fa

Table 9.2: Reconstruction results for the toy problem: summary comparison of the methods in terms of
reconstruction error. This table was obtained from the analysis of reconstruction error tables like 9.1 for many
different, random training sets, trajectories and masks (which did not differ much from 9.1).

right locations (but see section 9.2.5). It is clear that a poor density model will degrade the performance the
method to some extent, so we need to ensure that we estimate a good enough model by appropriately choosing
the model type, number of parameters, training algorithm, etc., just as we would do with any other algorithm.

However, since the modes are sensitive to the shape of the density function, problems may arise even with
a density estimate that is qualitatively good: Gaussian mixtures, being a superposition of localised bumps,
have a tendency to develop ripple on an otherwise smooth function, as we demonstrate here for the mask P1
(forward mapping).

Figure 9.12(left) shows a GTM model of K = 20, which results in a Gaussian mixture of only 20 circular
components. The density estimate is worse than that of fig. 9.3(right) in terms of log-likelihood but still
represents well the density. What the K = 20 model has lost is smoothness: the mixture components are
quite separated from each other compared to their widths and do not coalesce enough. This results in wavy
conditional distributions having more modes than they should, such as that shown in fig. 9.12(right). Those
modes do not necessarily have a low probability value, so they cannot be easily removed by means of a rejection
threshold.

How does this affect the trajectory reconstruction? Each, or some, of the true modes along the
trajectory has unfolded into a few modes scattered in a small area around the true mode. A very good
reconstruction is still possible since some of these modes are very close to the true one. This is evidenced
by the low reconstruction error of the cmode in table 9.3(top), very similar to that of table 9.1(top), using
K = 200. The mean also achieves a reconstruction error about as low as with K = 200, being largely insensitive
to the ripple. But the error for dpmode is now 1.1226 for K = 20 and 0.4049 for K = 60, while it was 0.0120
for K = 200; observe that the values for C1 are now smaller. The problem is that this crowd of spurious
modes may well allow wrong reconstructed trajectories that have a lower global constraint value (that are
shorter) due to shortcuts that appear as horizontal and nearly vertical segments in fig. 9.13. The parameter
that governs this behaviour is the ratio between the extent of the mode scatter inside a conditional distribution
and the sampling period of the trajectory: the larger the scatter, the more likely interference becomes with
neighbouring trajectory points. Fig. 9.14 shows the variation of the reconstruction error as a function of the
trajectory index n. The large reconstruction errors for dpmode (see also fig. 9.13) appear in those areas where
the number of modes is large: roughly, the intervals [−2π,−4.5], [−1.5, 1.5] and [4.5, 2π] along the t1 axis
(compare also with fig. 9.12(left)). The mean and cmode only show a tiny increase in error in those intervals.

What patterns of missing data are affected? From the reconstruction error for the different masks,
table 9.3(top), we can see that the problem with dpmode seems confined to the forward mapping (mask P1):
the errors for the inverse mapping (mask P2) and for general missing data patterns (masks P3–P7) are barely
larger than those of table 9.1(top). This can be explained as follows:

• The likely reason why dpmode does not suffer from a nonsmooth model for mask P2 is the particular
geometry of the forward mapping chosen: t2 varies much faster than t1 almost everywhere6 and so, when
consecutive Gaussian centroids are widely separated from each other, they are nearly stacked parallel to
the t2 axis (e.g. in the interval [−1.5, 1.5] in fig. 9.12(left)). This results in spurious modes in p(t2|t1)
but not in p(t1|t2), as can be observed in fig. 9.15. Therefore, in general the dpmode should also suffer
from nonsmooth models for mask P2.

6Concretely, for t = (x, x + 3 sin x)T we have
∣
∣
∣

dt1
dx

∣
∣
∣ = 1 and

∣
∣
∣

dt2
dx

∣
∣
∣ = |1 + 3 cos x| and so t2 varies faster than t1 except for

t1 ∈ [− 3π
2

,−3.98] ∪ [−2.3,−π
2
] ∪ [ π

2
, 2.3] ∪ [3.98, 3π

2
] where 2.3 = arccos (− 2

3
) and 3.98 = −2.3 + 2π. This is a small region, only

23% of [−2π, 2π], the domain of t1. Besides, precisely in those intervals the Gaussian centroids are densely packed because the
training set used has more points there (since we sampled t1 uniformly) and so no spurious modes appear there either.
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• For general missing data patterns (masks P3–P7), the explanation is as in the previous section: the
subsets of missing variables usually change from point n to point n+1 and thus the probability of getting a

run of several points whose conditional distributions have spurious modes decreases. That is, t
(n)

M(n) |t(n)

P(n)

may have spurious modes, e.g. if in that region t
(n)

M(n) vary faster than t
(n)

P(n) ; but t
(n+1)

M(n+1) |t(n+1)

P(n+1) may

not have because M(n) 6=M(n+1) most times. Therefore, in general the dpmode should not suffer from
nonsmooth models for masks P3–P7.

Also, the lack of smoothness does not affect every single conditional distribution (e.g. in fig. 9.12(left), p(t2|t1 =
4
3π) remains unimodal, as it should be). The effect is confined to areas of space where the density is lower
(the underlying mapping is more stretched out) and mixture components are more separated from each other
with spurious modes arising. In fig. 9.12(left) these areas are the intervals mentioned before.

Do separate, full covariance parameters help? One might think that Gaussian components with sep-
arate, full-covariance parameters would adapt better to the true density shape by aligning themselves to the
local structure of the low-dimensional manifold and setting their widths independently from each other. How-
ever, spurious modes arise again where the components join, as fig. 9.16 demonstrates. A further problem of
a different kind altogether is that training Gaussian mixtures with separate covariances for each component is
much more difficult than having shared covariances because of the singularities of the log-likelihood surface.
Using the Netlab package, we trained Gaussian mixtures with an EM algorithm; the initial values for the
centroid locations were obtained with the k-means algorithm. Except for mixtures with very few components
(M < 10), EM almost always converged to a singularity of the log-likelihood: a component sits on top of a
training set point and its covariance matrix goes to zero, increasing the log-likelihood without bounds. Simple
heuristics, like resetting to some value the covariance matrix and centroid location of a component if it be-
comes singular, either did not succeed in avoiding singularities or resulted in very poor density estimates. The
estimated models of fig. 9.16 were obtained by using a careful initialisation: the centroids were distributed
uniformly along the low-dimensional manifold and the covariance matrices were set to the true noise covariance
of the data (σ2I for σ = 0.2, fig. 9.2(centre)). We also observed, by visually inspecting the conditional distri-
bution, that there seems to be an optimal number of components that obtains the smoothest model. For our
case, it was between M = 10 and M = 20; for M = 5 the conditional distribution was typically bimodal and
for M = 50 it had many spurious modes. Thus, in practice and for high-dimensional cases, it may be difficult
to obtain an accurate, smooth model using a Gaussian mixture with a separate covariance parameter for each
component. Still, a possible advantage is that, for the same number of parameters, a mixture of full-covariance
Gaussians will have fewer components than a mixture of spherical Gaussians. So, while the resulting pdf may
not be smoother, the number of spurious modes—limited by the number of components—may be smaller.

Conclusion If the density model is not smooth, the conditional distribution presents spurious modes which
may give rise to wrong solutions of the dynamic programming search. In this case, the reconstruction error with
dpmode for regression problems (P1, P2) usually exceeds that of the conditional mean. For general patterns
of missing data (P3–P7) the error increase is small. The mean is barely affected in any case. Removing
low-probability modes does not help in general. Section 7.9.1 suggests some possible solutions for the lack-of-
smoothness problem.

9.2.4 Over- and undersampling

We experimented with very small and very large values of the sampling rate of the trajectory for method
dpmode. A very small sampling rate is one close to the Nyquist rate (around 1

π along the t1-axis, or N ≈ 4, in
our case); a very large sampling rate is one whose period is much smaller than the noise (normal with σ = 0.2,
or say N ≈ 200, in our case). That is, we used very small and very large values of N while keeping the start
and end points of the trajectory near [−2π,−2π] and [2π, 2π], respectively, as in fig. 9.2(right). The results
were as follows.

Undersampling For N = 20, dpmode still reconstructs well the trajectory, but for very small rates, e.g.
N = 10, dpmode starts finding wrong reconstructed trajectories, particularly for the worse GTM models
(K = 20). This is clearly due to a lack of enough information to reconstruct the trajectory.
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Figure 9.12: Effect on the conditional distribution of a nonsmooth GTM density model. Left : GTM model
as in fig. 9.3(right) with L = 1, K = 20, 21 parameters, log-likelihood = −3 468. The mixture components
do not interact much at some places. Right : conditional distribution p(t2|t1 = 5.39) for several models.
The conditional distribution should have a unique mode at the location marked; the ideal model GTMK=200

achieves this, but as the number of mixture components K decreases, the unimodal distribution spreads and
develops a ripple. This results in more modes than should really exist, scattered around the location of the
true mode; while spurious, these modes may have a high probability value. The factor analysis conditional
distribution is always smooth and unimodal, but wrong.
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Figure 9.13: Reconstruction results for nonsmooth GTM density models: forward mapping (mask P1). Com-
pare with fig. 9.7(right). Left : GTM with L = 1, K = 20, 21 parameters, log-likelihood = −3 468, various
methods. Right : GTM with L = 1, K = 60, 21 parameters, log-likelihood = −3 120, various methods. For
low K, the loss of density smoothness in some areas of data space results in quantisation errors. dpmode

degrades more than the other methods because the increase of spurious modes enables the appearance of short
trajectories with larger reconstruction error.
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Figure 9.14: Reconstruction error for nonsmooth GTM density models as a function of the sequence index n:

forward mapping (mask P1). The data are for a noisy trajectory of N = 100 points. Top two graphs: t
(n)
1

and t
(n)
2 for the original trajectory. Bottom graph: number of modes of the conditional distribution t

(n)
2 |t

(n)
1 .

Rest of graphs: reconstruction error
∥
∥t(n) − t̂(n)

∥
∥

2
for the respective method. GTM models: K = 20 (cyan),

K = 60 (green) and K = 200 (red). The large errors in dpmode are confined to specific areas where the number
of modes is high for K = 20 and 60.
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Figure 9.15: Reconstruction error for nonsmooth GTM density models as a function of the sequence index n:
inverse mapping (mask P2). The data are for the same trajectory of fig. 9.14, but note the different scale in the
vertical axes. Graphs as in fig. 9.14 except for bottom graph: number of modes of the conditional distribution

t
(n)
1 |t

(n)
2 . GTM models: K = 20 (cyan), K = 60 (green) and K = 200 (red). The number of modes remains

correct (1 to 3 depending on the number of branches), unlike in fig. 9.14 (where there should be always only
one, but in some places there were up to 7). This is an artefactual effect due to the idiosyncrasies of the
forward mapping and the training set used. In general, the dpmode may have large errors for mask P2 in some
areas of the space.
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Average squared error 1
N

∑N
n=1

∥
∥t(n) − t̂(n)

∥
∥

2

Mask GTM with K = 20 GTM with K = 60

(% missing) mean gmode rmode cmode grmode dpmode sampdp meandp mean gmode rmode cmode grmode dpmode sampdp meandp

P1(50%) 0.0956 0.1659 2.0207 0.1609 2.1708 1.1226 0.3732 1.1338 0.0186 0.0261 0.4234 0.0183 0.7655 0.4049 0.2035 0.4037

P2(50%) 2.2376 3.3735 8.1796 0.1048 3.8005 0.1093 2.1427 0.1094 2.1561 2.2564 4.8978 0.0171 0.7595 0.0171 1.3864 0.0171

P3(76%) 14.8596 58.0260 31.1647 0.1566 1.0583 0.2272 8.5859 0.2285 14.7026 62.6840 24.7689 0.0200 0.3549 0.1164 3.2333 0.1250

P4(56%) 9.7731 28.7667 21.0178 0.1168 0.5550 0.1181 2.5967 0.1198 9.7969 31.3769 17.2085 0.0184 0.4607 0.1344 2.3082 0.1354

P5(25%) 1.8337 6.1947 7.9984 0.0510 0.0984 0.0510 0.6293 0.0517 1.7963 6.5038 2.9059 0.0075 0.0530 0.0075 0.3818 0.0078

P6(50%) 1.1561 1.6307 3.3248 0.1261 0.3900 0.1350 0.5803 0.1389 0.9572 0.9752 4.0446 0.0212 0.0997 0.0406 0.1829 0.0408

P7( 8%) 1.5348 4.7046 2.4713 0.0124 0.0220 0.0124 0.2547 0.0132 1.5319 5.0580 3.8420 0.0013 0.0041 0.0013 0.2613 0.0011

Value of constraint C1 =
∑N−1
n=1

∥
∥t̂(n) − t̂(n+1)

∥
∥ (original sequence: 29.35)

Mask GTM with K = 20 GTM with K = 60

(% missing) mean gmode rmode cmode grmode dpmode sampdp meandp mean gmode rmode cmode grmode dpmode sampdp meandp

P1(50%) 25.04 31.05 107.12 31.04 26.86 26.74 27.12 26.29 27.44 29.96 49.32 29.86 26.58 26.34 25.90 26.01

P2(50%) 53.25 111.52 213.24 33.94 35.48 33.93 46.50 33.92 43.02 45.12 179.68 30.02 33.94 30.02 40.29 30.02

P3(76%) 259.56 478.92 555.13 37.73 42.12 33.90 161.56 33.92 261.58 498.99 492.10 29.57 33.29 29.16 140.82 29.07

P4(56%) 221.31 332.63 375.82 36.09 42.12 35.76 97.25 36.02 222.59 352.74 383.20 30.10 32.65 28.38 115.31 28.29

P5(25%) 102.65 157.68 240.67 35.64 37.68 35.64 60.72 35.74 102.16 157.32 149.64 29.96 32.17 29.96 47.03 29.94

P6(50%) 85.09 92.18 177.95 44.19 50.42 43.20 56.61 43.79 79.63 71.42 204.97 31.05 33.02 30.70 34.77 30.42

P7( 8%) 79.23 106.05 103.92 31.03 32.40 31.03 46.34 31.26 78.73 108.44 111.49 29.43 29.78 29.43 43.12 29.41
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Figure 9.16: Gaussian mixtures with components with separate, full covariance parameters also give non-
smooth densities. Compare with fig. 9.12. Left : Gaussian mixture of M = 20 components: 119 parameters,
log-likelihood = −3 053. Right : the conditional distribution p(t2|t1 = 5.39) (the same value of t1 as in
fig. 9.12(right)) for various mixtures is multimodal, but it should have a unique mode at the location marked.
The results presented correspond to mixtures with different numbers of components: M = 5 (29 parame-
ters, log-likelihood = −3 404), M = 10 (59 parameters, log-likelihood = −3 159), M = 20 (119 parameters,
log-likelihood = −3 053) and M = 50 (299 parameters, log-likelihood = −2 894). They were trained on the
1 000-point set of fig. 9.2(centre) with the EM algorithm with carefully chosen starting parameters (the density
models obtained with a k-means initialisation were quite worse).

Oversampling For very large rates, e.g. N = 1000, dpmode can give wrongly reconstructed trajectories
that retrace themselves and have shortcuts for masks P1 and P2 although it still reconstructs well for P3–
P7. Table 9.4 gives the reconstruction errors for all GTM models and all masks and fig. 9.17 shows some
representative cases:

• For the forward mapping (mask P1), reconstruction remains good for smooth models; but for nonsmooth
ones (such as the case K = 60 shown in fig. 9.17(top, right)) the existence of spurious modes introduces
quantisation errors and allows the appearance of low-C1 trajectories with characteristic horizontal seg-
ments, as in fig. 9.13. That is, a shorter trajectory is obtained by moving along one axis for a while
(retracing the horizontal segments several times) and then switching to another segment than by mov-
ing in all directions while slowly drifting on. These quantisation errors only occur in the region where
spurious modes appear (footnote 6).

• For the inverse mapping (mask P2), dpmode breaks down independently of the smoothness of the density
model (fig. 9.17(bottom, left)), i.e., even with the ideal model GTMK=200, which provides all the right
candidate reconstructions and only them. In terms of trajectory length, it pays better to spend more
time retracing in one branch and then switching occasionally to another branch than to faithfully remain
on the correct branch at each time.

• For general missing data patterns (masks P3–P7), even for high amounts of missing data (76% for
P3, fig. 9.17(bottom, right)), dpmode reconstructs the trajectory very well independently of the model
smoothness. The explanation is again the variation of missing variables subsets from point to point,
which makes wrong reconstructions be longer than the correct one.

In summary, oversampling seems: (1) not to affect the dpmode for general missing data patterns (for both
smooth and nonsmooth density models); (2) to introduce quantisation errors for forward (univalued) mappings
but only in some areas, with the overall reconstruction being correct (the smoother the model, the lower the
error); and (3) to severely degrade the quality of the reconstruction for inverse (multivalued) mappings due to
shortcuts and retracings (for both smooth and nonsmooth density models).
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Figure 9.17: Reconstruction results for an oversampled trajectory with dpmode. Top, left : original trajectory
with N = 1000 points. The trajectory resembles a random walk superimposed on a slow drift along the data
manifold. Top, right : forward mapping (mask P1) with GTMK=60. The horizontal segments are retraced many
times, while the diagonal links between them are typically taken only once. Bottom, left : inverse mapping
(mask P2) with GTMK=200. The arcs contained in a branch of g−1, such as the one for t1 ∈ [−π3 , 0] and

t2 ∈ [−π3 − 3
√

2
2 , 0], are retraced many times while the shortcuts between them are typically taken only once.

Bottom, right : 76% missing values at random (mask P3) with GTMK=200. The spike-like structures occur in
the few cases when both t1 and t2 are present; otherwise, the modes of the conditional distribution always fall
on the underlying manifold.

246



Average squared error 1
N

∑N
n=1

∥
∥t(n) − t̂(n)

∥
∥

2

Mask GTM with K = 20 GTM with K = 60 GTM with K = 200

(% missing) mean dpmode mean dpmode mean dpmode

P1(50%) 0.2673 0.6488 0.2202 0.1918 0.2205 0.2314

P2(50%) 2.5027 5.8372 2.3177 9.8833 2.3179 8.9765

P3(76%) 14.2588 0.2769 14.1821 0.1273 14.1855 0.1772

P4(56%) 7.1915 0.1627 7.1526 0.0820 7.1381 0.1104

P5(25%) 1.9719 0.0884 1.9232 0.0393 1.9286 0.0720

P6(50%) 1.3260 0.1720 1.2067 0.0904 1.2087 0.1605

P7( 8%) 0.6926 0.0212 0.6746 0.0087 0.6719 0.0100

Value of constraint C1 =
∑N−1
n=1

∥
∥t̂(n) − t̂(n+1)

∥
∥ (original sequence: 349.73)

Mask GTM with K = 20 GTM with K = 60 GTM with K = 200

(% missing) mean dpmode mean dpmode mean dpmode

P1(50%) 430.64 241.28 470.46 312.65 470.32 489.63

P2(50%) 519.35 275.04 389.94 256.96 357.30 253.92

P3(76%) 2357.47 236.92 2361.82 165.31 2360.02 174.98

P4(56%) 2186.05 354.09 2158.10 271.71 2155.54 300.27

P5(25%) 1120.76 400.35 1097.67 330.81 1098.67 373.81

P6(50%) 904.32 390.59 844.79 312.94 839.76 412.54

P7( 8%) 418.42 341.72 415.49 337.94 413.13 338.13

Table 9.4: Reconstruction results for the toy problem with an oversampled trajectory: average squared error
and global constraint value (trajectory length) for a noisy sequence {t(n)}Nn=1 with N = 1000 points shown in
fig. 9.17(top, left). Only the values for dpmode are given, as well as those of mean to represent the baseline of the
optimal single pointwise reconstruction method. {t̂(n)}Nn=1 is the reconstructed trajectory by the corresponding
method. The results are for three GTM models of K = 20, 60 and 200, respectively.

The main reason is that the original trajectory is polygonally very long7 (high C1) but is not long in
terms of actual displacement—being a random walk superimposed on a slow drift, it twists around itself many
times in a region of size σ. Thus, if there are multiple pointwise candidate reconstructions, there often exist
shorter trajectories containing multiple retracings of a branch segment and infrequent branch switchings. The
quality of the density model is not really at fault here: it is a characteristic of the global constraint chosen.
Generally speaking, length minimisation algorithms often result in zig-zag, jagged patterns (e.g. the elastic
net, section 4.9.2) which may or may not be desirable.

Interestingly, we found that the trajectories were correctly reconstructed if we used the squared Euclidean
distance instead of the Euclidean distance in the value of C1.

The example shows clearly the denoising property of the method: the reconstructed trajectory is more
similar to the underlying manifold than to the original, noisy trajectory (the more so the smoother the density
model is; compare with the smooth bits in fig. 9.17(top, right) forK = 60). Note how the average reconstruction
error is larger for the noisy trajectory in table 9.4 than the corresponding error for the noiseless trajectory in
in table 9.1. A small spike in the tips of the turns is noticeable, as in fig. 9.8(right) or in fig. 9.10(left) (see
section 9.2.5).

7The 1 000-point trajectory of fig. 9.17(top, left) is 12 times longer than the 100-point one of table 9.1.
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9.2.5 Other effects

Reconstruction error in specific places The reconstructed trajectories tend to show a slight error in
specific places:

• At the trajectory ends, e.g. in fig. 9.7. This is due to the GTM density estimate being slightly imper-
fect in the domain boundaries (see fig. 9.3(right)). The MLP estimate is also slightly imperfect there
(fig. 9.7(left)).

• At the trajectory turns, e.g. in fig. 9.8(right) for dpmode, in fig. 9.10(left) for grmode or in fig. 9.13(left)
for mean. The error consists of cutting short through the turns (for all methods) for mask P1 and, less
noticeably, of a spike right at the tip of the turns (for grmode and dpmode) for mask P2.

– For mean (and also partially for the other methods) this “cutting-short” effect is due, again, to slight
imperfections of the GTM density estimate. The Gaussian components interact more strongly in
the convex side of the turn, pile up there and bias the mean (see fig. 9.18 and compare with
fig. 9.12(left)). The same effect happens when bending a rubber bar: the rubber stretches on the
concave side of the bend and compresses and wrinkles on the convex side. This is particularly
remarkable with a nonsmooth model such as that of fig. 9.12(left) because the width (variance) of
each component is larger: observe how the underlying mapping f tends to cut short the turns of the
forward mapping g. For grmode and dpmode the “cutting-short” effect is related to the continuity
constraint too: cutting through turns of the original trajectory saves trajectory length. This is
particularly remarkable in fig. 9.9(right) and fig. 9.13.

– The spike effect only occurs in multivalued mappings with multiple pointwise reconstruction meth-
ods based on all the modes (dpmode, grmode). The spike is the premature blending of two inverse
branches into one branch. As the two branches approach their intersection point, the bumps asso-
ciated with the two respective modes of the conditional distribution interact and blend into a single
unimodal bump before the intersection point (see fig. 9.19).

The effect size (“cutting-short” bias and spike length) is larger the larger the component variance (σ2)
is; in turn, this is larger the noisier the training set is and the fewer components (K) are used. However,
while the “cutting-short” bias would disappear with a perfect density model, the spike would not. Such
spikes will always happen in multimodal distributions except for the unrealisable case of perfectly sparse
distributions, i.e., delta mixtures (see section 7.12.4 on sparseness).

All variables missing With general missing data patterns, the case of all variables (t1, t2) missing at a
point n in the sequence results in two different behaviours:

• Single pointwise reconstruction methods prescribe reconstructing them with a fixed value: the mean
of the joint density model for fa and mean and its global mode for gmode. This produces large jumps
to that fixed value and thus inflates the reconstruction error (fig. 9.9). One could think of improving
it by choosing a point near the previous or next point (assuming they can be reconstructed), e.g. by
interpolation or simply by replicating that value. In fact this is implicitly a continuity constraint.

• Multiple pointwise reconstruction methods prescribe reconstructing them with all the modes of the joint
density model, of which there are 19, 33 and 6 for K = 20, 60 and 200, respectively. This adds more
flexibility and reduces the reconstruction error, since the jumps are now to one of those modes and
are therefore shorter. Even better results are obtained by using all K centroids8 instead of the modes,
particularly for very smooth density models where the components coalesce strongly and decrease the
number of modes.

Strictly, though, the case of all variables missing is just a particular case, the most extreme one, of a range of
missingness patterns.

9.3 Robot arm inverse kinematics

9.3.1 Introduction to the problem

The inverse kinematics of a robot arm is a prototypical example of a mapping inversion problem, with a
well-defined forward mapping and a multivalued inverse mapping (Bernstein, 1967; Asada and Slotine, 1986;

8This could also be applied to mean or gmode.
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Figure 9.18: Effect of an imperfect density model at trajectory turns, particularly for mask P1: turns are cut
short and bias appears. Left : conditional distributions t2|t1 for GTMK=20 for several values of t1 (only the
region [− 4π

3 ,−0.25] × [−5,−1] is shown). The Gaussian components interact strongly in the convex side of
the mapping (above the curve) and the resulting conditional distribution is skewed towards the convex side.
This drives the mean away from the true mapping, inwards of its convex side, thus cutting it short. The mode
remains slightly closer to the true mapping because it is less affected by the skewness (see fig. 9.4(right)).
The graph shows the mapping g (dashed line), the conditional distributions (thin solid lines) and their means
(+) and modes (•). Right : the mean and modes of each t2|t1 for a larger region (the dotted square marks
the previous region) for a much finer sampling of t1. For Gaussian mixtures, the bias size depends on the
component variance; the bias is zero with the true density. Note that the conditional distributions (p(t2|t1)
for fixed t1) are not equal to sections of the joint distribution (p(t1, t2) for fixed t1) and so the heights of the
curves are not comparable to each other.
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Figure 9.19: Effect of nonsmooth, multimodal conditional distributions for mask P2: spike where inverse
branches meet. Left : conditional distributions t1|t2 for GTMK=200 for several values of t2 (the same re-
gion is shown as in fig. 9.18). As the two inverse branches approach each other, the two bumps in the
conditional distribution coalesce. The conditional distribution becomes unimodal at t2 ≈ −4.55 rather than
t2 = − arccos 1

3 − 2
√

2 ≈ −4.74 which is where the branches meet. Right : the modes of each t1|t2 for a much
finer sampling of t2. The length of the spike depends on the noise level of the training data (and on the
variance of the density model). For zero noise, all conditional distributions are delta mixtures and the spike
disappears; for nonzero noise, the spike appears even with a perfect density model. For nonsmooth models,
spurious modes may appear that unfold the ideal branches. Other comments as in fig. 9.18.
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Figure 9.20: Left : schematic of a two-link, planar robot arm of joint angles (θ1, θ2) and end-effector position
(x1, x2). Right : two different configurations of the joint angles that yield the same end-effector position.

Craig, 1989; Atkeson, 1989). The forward mapping g gives the position in Cartesian coordinates x of the end
effector (the hand of the robot arm) given the angles θ at its joints. For the two-joint, planar arm of fig. 9.20,

θ =
(
θ1
θ2

)
∈ A g−→ x = ( x1

x2
) ∈ C where A is the actuator or articulator space and C def

= g(A) the Cartesian, task
or work space (i.e., the region reachable by the end effector), and always dimA ≥ dim C. If dimA > dim C the
manipulator is called redundant. Define:

Forward kinematics Transformation from joint9 angles to end-effector positions. For fig. 9.20 we have:

x1 = l1 cos θ1 + l2 cos(θ1 + θ2) (9.1a)

x2 = l1 sin θ1 + l2 sin(θ1 + θ2) (9.1b)

where the lengths l1 and l2 are known and constant. In the human arm case they are not constant and

represent muscle lengths, so that the forward kinematics are (θ, l)
g−→ x, but we will concentrate on the

simple case.

Inverse kinematics Transformation from the desired end-effector position to the corresponding joint angles.
For equations (9.1) it can be obtained analytically (Asada and Slotine, 1986; Atkeson, 1989):

θ2 = arccos

(
x2

1 + x2
2 − l21 − l22
2l1l2

)

(9.2a)

θ1 = arctan

(
x2

x1

)

− arctan

(
l2 sin θ2

l1 + l2 cos θ2

)

. (9.2b)

Thus, there are two solutions (“elbow up” and “elbow down”) depending on what quadrant θ2 is chosen
from (fig. 9.20(right)).

Forward dynamics Transformation from the torques applied at the joints to movement (positions, velocities
and accelerations of joint angles): τ → θ, θ̇, θ̈.

Inverse dynamics Transformation from a desired pattern of motion to the activation commands necessary
to achieve that motion.

Asada and Slotine (1986) and Atkeson (1989) give the equations for the forward and inverse dynamics of
the arm of fig. 9.20. The planning problem, not considered here, consists of determining a trajectory in the
workspace that will achieve some goal (e.g. moving an object from one location to another while avoiding
obstacles). The control problem consists of specifying the appropriate commands in the actuator space that
will produce a desired trajectory in the workspace. Motor learning can be viewed as building an accurate
inverse model of the motor apparatus. Biologically, that we can view a target in space, close our eyes and

9Joint here is a noun meaning the physical junction between two links of the robot arm (thus joint (angle) variables = angles
at the joints). It should not be confused with the adjective joint meaning conjunct, which is the sense we have used in chapter 7
(thus density model of the joint variables = density model of all the variables taken together, not density model of the joint
angles).
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Figure 9.21: Trajectory of the robot arm end effector to be reconstructed. Left : trajectory in actuator space
(θ1, θ2). Right : trajectory in work space (x1, x2) and three sample robot arm configurations. The training set
used is shown in black dots: on the left graph it is a uniform cloud in actuator space; on the right graph it
delineates the work space (the region reachable by the end effector).

move our hand to that target suggests that we have an internal representation of the transformation from
desired hand positions to joint angles and muscle lengths (Atkeson, 1989). In speech research, internal models
for the transformation from desired acoustic signal to vocal tract configuration have also been suggested (see
section 10.1.2).

Analytical inversion of the kinematic equations can be done for some simple arms but not in general.
Several methods exist (for reviews, see for example Atkeson, 1989 or DeMers and Kreutz-Delgado, 1996
and references therein): standard numerical analysis techniques for solving nonlinear systems of equations,
algorithmic methods or neural networks. These methods alone do not work well because the inverse mapping
is multivalued. In general, the problem of inverting forward mappings which are continuous, smooth and
nonlinear is ill-posed in two senses: globally, because of the existence of multiple solution branches; and (for
manipulators with redundant degrees of freedom) locally, because the solution branches are typically manifolds
with dimension equal to the number of redundant degrees of freedom (DeMers and Kreutz-Delgado, 1996).
When generating commands for a series of points in a desired trajectory, the resulting trajectory must avoid
inefficient or impossible movements of the arm. Studies of trajectory formation have considered cost functions
such as minimum energy, minimum torque, minimum jerk (third derivative of the position) and minimum
acceleration (second derivative) (Nelson, 1983).

9.3.2 Experiments

As a demonstration of our method, we will apply it to the inverse kinematics of the arm of fig. 9.20 and
equations (9.1), disregarding the dynamics and considering constant link lengths (l1 = 0.8, l2 = 0.2). This
particular problem, or slight variations of it, have been often used in the pattern recognition literature (MacKay,
1992b; Bishop, 1994; Neal, 1996; Cohn, 1996; Rohwer and van der Rest, 1996). We will use a very simple cost
function: continuity in the space (θ,x).

A training set of N ′ = 1000 points was generated by sampling uniformly the actuator space A = [0.3, 1.2]×
[π2 ,

3π
2 ], then applying the forward mapping and finally adding normal spherical noise of standard deviation

σ = 0.05. We trained the following models:

• MLP: one MLP with a single layer of h = 48 hidden units (mask P1; 242 parameters) and five MLPs
with a single layer of h = 5, 15, 25, 35, 48 hidden units, respectively (mask P2; between 27 and 242
parameters).

• Factor analysis: latent space of dimension L = 2 (15 parameters).
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• GTM: latent space of dimension L = 2, 15×15 latent grid and 7×7 RBF grid (201 parameters, K = 225
spherical Gaussian components).

For sampdp, we generated S = 6 samples per conditional distribution.
We then reconstructed the trajectory of fig. 9.21 with N = 34 points, which was manually designed

and to which small normal noise (σ = 0.01) was added. The masks were generated as in section 9.1. The
reconstruction results, given in table 9.5, show a similar behaviour to that observed in results of the toy
experiments: dpmode beats the other methods (in particular, the mean and the MLPs, both of which perform
very similarly) and its performance is often close to the bound of cmode, even for high amounts of missing
data. The largest error for dpmode occurs for the inverse mapping (mask P2; also note the very low C1-value),
which confirms that regression problems, when multivalued, are harder than general missing data patterns. All
methods perform equally well in the univalued, forward mapping (mask P1). The number of modes at every
point in the trajectory is given in figures 9.22 and 9.23: while it is correct for the forward mapping (which is
univalued), there are many modes for the inverse mapping (which is uni- or bivalued). This means that the
density model is not smooth, although in this case it does not seem to affect the dpmode.

These results demonstrate that, in this problem, the continuity constraint C alone can allow good recon-
struction with dpmode. However, since the forward mapping is known, it can perfectly be incorporated in the
constraint (section 7.5.3 and term F in eq. (7.2)) to improve the reconstruction quality.

❦
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Average squared error 1
N

∑N
n=1

∥
∥t(n) − t̂(n)

∥
∥

2

Mask Factor MLP GTM with K = 225

(% missing) analysis mlpbest mlpavg mlpdp mean gmode rmode cmode grmode dpmode sampdp meandp

P1(50%) 0.0130 0.0007 0.0007 0.0007 0.0014 0.0017 0.0017 0.0017 0.0017 0.0017 0.0027 0.0014

P2(50%) 0.7690 0.6371 0.6394 0.6325 0.6767 1.2998 1.4603 0.0057 3.4837 0.3230 0.4602 0.3230

P3(74%) 0.7369 0.7084 1.9592 1.7930 0.0072 0.2395 0.0928 0.1366 0.0928

P4(50%) 0.4136 0.3655 1.1159 1.1873 0.0045 0.4156 0.1092 0.0717 0.1094

P5(25%) 0.2297 0.1486 0.1539 0.2371 0.0029 0.0343 0.0074 0.0147 0.0080

P6(50%) 0.4033 0.3511 0.9107 0.7333 0.0037 0.1979 0.0239 0.1120 0.0236

P7( 5%) 0.1964 0.1940 0.4122 0.3314 0.0017 0.0092 0.0023 0.0104 0.0023

Value of constraint C1 =
∑N−1
n=1

∥
∥t̂(n) − t̂(n+1)

∥
∥ (original sequence: 7.21)

Mask Factor MLP GTM with K = 225

(% missing) analysis mlpbest mlpavg mlpdp mean gmode rmode cmode grmode dpmode sampdp meandp

P1(50%) 7.2 7.2 7.2 7.2 7.3 7.3 7.3 7.3 7.3 7.3 7.2 7.3

P2(50%) 2.9 4.7 4.8 4.5 5.8 19.2 34.9 7.1 4.5 3.5 6.8 3.5

P3(74%) 21.5 21.2 42.3 36.3 7.6 6.8 5.6 10.5 5.6

P4(50%) 25.5 24.1 40.3 43.6 7.3 8.1 6.3 9.2 6.3

P5(25%) 14.4 12.6 12.4 14.5 7.3 7.7 7.0 7.4 7.0

P6(50%) 12.8 11.8 22.2 20.9 7.3 8.1 7.0 8.4 6.9

P7( 5%) 12.6 12.7 16.7 15.7 7.4 7.7 7.4 8.2 7.4
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Figure 9.23: Reconstruction error as a function of the sequence index n: inverse mapping (mask P2). The
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large, which indicates ripple in the conditional distribution.
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Chapter 10

Experiments with real-world data: the
acoustic-to-articulatory mapping
problem

In this chapter, we apply our reconstruction algorithm to a version of the acoustic-to-articulatory mapping, a
well-known mapping inversion problem of speech research. It is a complex, high-dimensional task that helps to
further understand the performance of the algorithm. Before the description and discussion of the experimental
results of section 10.2, we give some background of the problem and its significance for speech perception and
automatic speech recognition (ASR) in section 10.1.

10.1 The acoustic-to-articulatory mapping problem

We describe the problem of articulatory inversion, its relation with the motor theory of speech perception,
computational approaches for its solution and speech models incorporating articulatory information.

10.1.1 The problem

Broadly speaking, the acoustic-to-articulatory mapping problem consists of determining the vocal tract shape
that produced a certain acoustic signal. The forward mapping, from a vocal tract shape or articulatory
configuration to the acoustics, is univalued but nonlinear and many-to-one, which makes its inversion difficult
(see fig. 10.1). The problem is also further complicated by the fact (among others) that the articulatory and

This chapter is partly based on references Carreira-Perpiñán and Renals (1999); Carreira-Perpiñán (2000b).
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Figure 10.1: The acoustic-to-articulatory mapping problem: one vocal tract configuration produces a unique
acoustic signal, but certain acoustic signals may be produced by multiple vocal tract configurations.
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acoustic variables are not as clear cut as in, say, the robot arm problem of section 9.3. However, the problem
is very important from both engineering and perceptual points of view.

10.1.1.1 Forward mapping: sound propagation in the vocal tract

The vocal tract acts as an acoustic filter that modifies the spectrum of the excitation signal at the glottis.
From the point of view of articulatory synthesis one has to model the following elements (Fant, 1970; Flanagan,
1972; Schroeter and Sondhi, 1994):

Geometry of the vocal/nasal tract The vocal tract can be idealised as a straightened, nonuniform acous-
tic tube extending from the glottis (x = 0) to the lips (x = L) whose cross-section area function A(x)
varies continuously but slowly as a function of time. Information about its geometry may be obtained
from X-ray measurements.

Wave propagation in the tract It can be described by Webster’s horn equation (first derived by Bernoulli,
Euler and Lagrange in the XVIII century). This is a second-order linear differential equation for the
pressure (and volume velocity) as a function of x for a glottal signal and a given A(x). Its solutions
are plane waves, i.e., pressure and velocity are constant in a plane perpendicular to the tract axis. The
equation is valid as long as the greatest cross-dimension of the tract is appreciably less than a wavelength,
which means for frequencies smaller than 4 kHz. Nonlinear effects are important with turbulent flow (high
Reynolds or Mach number), which happens through the vocal cords or through narrow constrictions as
in fricatives1. The equation can be extended to account for effects of energy loss due to viscous friction,
thermal conduction and yielding tract walls.

Sound sources and their interaction with the tract This requires a nonlinear model of the glottis (vo-
cal cords).

Therefore the shape of the vocal tract is completely specified at any one time by the area function A(x).
The direct problem, i.e., to determine the volume velocity and pressure of the air given A(x) and

certain other parameters, can be solved for any given boundary conditions at the lips and glottis. That is,
the articulatory configuration plus the glottal source causally determine the acoustics. This allows speech
synthesis from articulatory parameters, and is usually straightforward but computationally expensive. The
inverse problem, i.e., to obtain articulatory information (in particular A(x)) from acoustic information
extracted from the speech signal, does not have a unique solution: the transfer function of the vocal tract does
not uniquely specify the area function2 and so the acoustic signal at the lips does not either. There are two
kinds of nonuniqueness:

• Different tract shapes may have or almost have the same transfer function, thus producing the same
acoustic signal for the same given input at the glottis.

• The same acoustic signal may be produced by two different tract shapes with appropriate inputs at the
glottis, i.e., changes in the source can compensate for certain changes of the tract transfer function.

Most models address only the former. The only way to deal with the nonuniqueness problem is to use
constraints on the area function, particularly temporal continuity.

10.1.1.2 Articulatory variables and their properties

The articulatory configuration or vocal tract shape can be represented in various ways depending on the
purpose of the inversion, but in any case it should give a reasonably complete description of the shape of
the vocal tract. The area function A(x) is such a complete description but for computational convenience a
finite set of articulatory variables3 is used. This can be achieved by discretising the area function or by using

1The main characteristics of speech sounds are (Ladefoged, 2000; Rabiner and Juang, 1993): voicedness, where the tract
is excited by vibrating vocal cords (e.g. vowels, diphthongs); frication, where the tract is excited by turbulence due to flow
through a narrow constriction (e.g. p2qsr t�r u�r v�r w9r x�p ); plosiveness (stops), where the tract is excited by sudden release of pressure (e.g.p2y�r z�r {(r |�r }�r ~�p ); nasality, where part or all of the flow is diverted into the nasal tract (e.g. p2�Cr ��r ��p ); silence, where there is no
excitation (e.g. during stop closures).

2The acoustic input impedance of the vocal tract at either end of the tract does uniquely specify the area function (for lossless
vocal tracts only). But such information is not easily measurable.

3In the acoustic-to-articulatory mapping literature the representation of the vocal tract is usually called articulatory features
or parameters or configuration or shape and the representation of the speech signal is usually called acoustic features. We will
generally call them articulatory variables and acoustic variables in accordance with the rest of this thesis.
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instead the positions of particular articulators or landmarks of articulators, such as the tongue tip, tongue
body, jaw, velum, lip opening, etc. Ladefoged (1980) has suggested a set of 16 articulatory parameters which
are necessary and sufficient to uniquely characterise all the sounds of every known language, but most studies
use fewer than 10 and restrict them to the midsaggittal plane (the plane of fig. 10.1).

The articulators are masses accelerated with finite forces and occupy space, so they are subject to mechan-
ical constraints. Various kinds of constraints have been proposed: static, which discard physically unrealisable
articulatory configurations (e.g. ‘tongue tip cannot go through the roof of the mouth’); dynamic, in that they
change continuously and slowly with the time; and others such as those derived from the economy of skilled
movements (Nelson, 1983), e.g. minimal muscle effort or work.

Data for the articulatory variables and their constraints can be derived from measurements with X-rays
or EMA (section 7.10.5) or from articulatory models. An articulatory model is a geometric model of the
vocal tract in terms of several parameters. For example, in the articulatory model of Mermelstein (1973)
the parameters are the locations of tongue body centre, velum, tongue tip, jaw, lips and hyoid. The model
allows the computation of the area function A(x) that results from given values of the parameters; such
area functions can then be used in Webster’s horn equation. Articulatory models are aimed at representing
mechanical constraints of the vocal tract and so they can be used to generate feasible vocal tract configurations
(i.e., not all values of the parameters are allowed). The most favoured models are those of Mermelstein (1973),
Coker (1976) and Maeda (1982). They are primarily based on (often two-dimensional) X-ray studies of the
vocal tract. For the purpose of articulatory inversion one can use the articulatory parameters directly rather
than the area functions.

Besides the squared reconstruction error, or root-mean-square (RMS) error, two other measures of quality
of articulatory recovery are often used:

• Pearson product-moment correlation, which quantifies for a given articulator the similarity in shape
between two trajectories regardless of magnitude, i.e., whether they rise and fall in synchrony:

r
def
=

cov {a, b}
stdev {a} stdev {b} =

∑N
n=1 (a(n) − a)(b(n) − b)

√
(
∑N
n=1 (a(n) − a)2

)(
∑N
n=1 (b(n) − b)2

) ∈ [−1, 1] (10.1)

for two sequences {a(n)}Nn=1 and {b(n)}Nn=1 of means a and b, respectively.

• In the context of automatic speech recognition (ASR), some measure of articulatory gesture or phoneme
recognition, such as a phone classification score.

10.1.1.3 Acoustic variables and their properties

The raw acoustic signal as a function of time is not convenient because of its high sampling rate (normally
around 20 kHz) and variability (due to inter- and intraspeaker variability, noise and coarticulation). Depending
on the problem, other representations (Rabiner and Juang, 1993; Gold and Morgan, 2000) are used that result
in a vector time series with a rate of the order of 100 Hz (closer to that of the articulators). In decreasing
order of closeness to the vocal tract shape:

Formants The formants are the resonances of the vocal tract and are therefore very closely related to its
shape, changing slowly with time and showing relatively simple phonemic transitions. Besides, they
are quite robust to noise. However, they cannot be generally used: they are not always visible in the
spectrum (e.g. when a narrow constriction decouples the rear cavity, as in fricatives) and they are difficult
to extract reliably. The formants have been often used in studies of the acoustic-to-articulatory mapping
for vowels.

Linear predictive coding (LPC) performs spectral analysis on speech frames with an all-pole filter. It
provides a good approximation to the vocal tract spectral envelope for voiced speech and achieves a
reasonable source-vocal tract separation. It is less effective for unvoiced and transient regions of speech.
Other variations of LPC are line spectral frequencies (LSF) and line spectral pairs (LSP).

Filter banks The speech signal is passed through a bank of several independent but overlapping bandpass
filters collectively spanning the frequency range of interest. Thus, the output of each filter is a short-time
spectral representation of the signal at the filter’s centre frequency at the current time frame.
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Auditory-based cepstral representations A smoothed short-term spectrum is derived from a filter bank
that has been designed according to some model of the auditory system. The features are decorrelated
with a linear transformation which also separates out pitch, spectral detail and spectral tilt. The most
common variants are the mel cepstrum4 (MFCC) and perceptual linear prediction (PLP) (Hermansky,
1990), which provide very similar features; a more recent proposal are modulation-filtered spectrogram
(MSG) features (Kingsbury et al., 1998), developed for speech recognition robust to acoustic interference
such as additive noise and reverberation. In addition to the cepstral coefficients, estimates of their
velocities and accelerations are often used to account for dynamic features of speech. Most current ASR
systems use this representation. However, cepstra are sensitive to noise (because of the logarithmic
compression and subsequent spread over all features by the linear transformation), to coarticulation
and speaker-dependent; and they present complex transitions and discontinuities where the excitation
changes.

Thus, while the raw acoustic waveform is continuous in time, the acoustic variables generally are not, even
for representations like LSPs which are closer to the formants. And articulatory trajectories that differ only
slightly can result in very different acoustic utterances. Deng et al. (1997) mention a good, well-known example:
stop epenthesis after nasals. This occurs when an extra silence and burst are introduced in the acoustic signal
due to variation in timing between adjacent velic and oral closures. For example, the realisation of the word
“princess” as � H#/25A�
2��:��s� or � H#/25A���s:���� depends on whether the velum is raised before or after the release of the
alveolar stop, and the amount of desynchronisation varies continuously (as observed in articulatory data).
Accounting for this in the acoustic domain is far more difficult than in the articulatory domain, requiring
either to assume an extra stop phoneme for the word in question or to extend the acoustic model of the nasal
to include the epenthetic stop.

In many of the computational approaches for the acoustic-to-articulatory mapping problem, an acoustic
distance is required, i.e., a distance between acoustic vectors. Many such distances have been proposed in the
speech literature, often quite complex to make them more relevant to human perception (distortion measures).
For filterbank and cepstral vectors, an L1, L2 or covariance weighted spectral difference is often used; for LPC
coefficients, the likelihood ratio distance is more appropriate (Rabiner and Juang, 1993, chapter 4). Likewise,
an articulatory distance is required, and several have been proposed, with the Euclidean one being often
used.

10.1.1.4 Example of the nonuniqueness

Many examples of the nonuniqueness of the acoustic-to-articulatory mapping have been given in the literature,
resulting from both articulatory models and human experiments (Schroeter and Sondhi, 1994). A familiar
demonstration are ventriloquists, who can produce intelligible speech without moving the lips. Another often-
cited example is that of the approximant consonant

���0�
of American English (the ‘r’ as in ‘beaker’, ‘perk’, ‘rod’

or ‘street’) (Westbury et al., 1998; Espy-Wilson et al., 2000). Speakers of rhotic dialects of American English
use many different articulatory configurations for

�����
, which are all acoustically characterised by an extremely

low frequency of the third formant (often close to that of the second formant). These configurations expose
an ante/sub-lingual cavity and involve three constrictions: in the pharynx, along the palate and at the lips.
The configurations differ most in the palatal constriction and have traditionally been divided into contrasting
categories of retroflex (tongue tip raised, tongue dorsum lowered) and bunched (tongue dorsum raised, tongue
tip lowered), but there really seems to exist a continuum between them. These different configurations occur
both within and across speakers: some speakers may use one type of configuration exclusively while others
switch between two or three different types in different phonetic contexts and according to prosodic variables.

Computational models have also confirmed the nonuniqueness of the acoustic-to-articulatory mapping.
Atal et al. (1978) found articulatory regions (fibers) that map onto a single acoustic point by linearising the
forward mapping in a small neighbourhood and extending it in small steps. They found that many sounds
can be produced by many different vocal tract shapes.

Finally, from a theoretical standpoint, the nonuniqueness appears for lossless vocal tracts with fixed bound-
ary conditions: the area functions A(x) and 1/A(L− x) (where L is the vocal tract length) produce the same
transfer function. For lossy vocal tracts, it is not clear whether the nonuniqueness remains, but practically
more than one area function produce very similar transfer functions.

4The (complex) cepstrum of a signal is the Fourier transform of the log of the signal spectrum (which is itself the Fourier
transform of the signal).
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10.1.1.5 Coarticulation

Coarticulation broadly refers to the fact that a phonological segment is not realised identically in all contexts,
but often apparently varies to become more like an adjacent or nearby segment (Hardcastle and Hewlett,
1999). It can be anticipatory (a later segment influences an earlier one) or carryover (vice versa). For example,
the English phoneme

�����
is articulated further forward on the palate before a front vowel ( � � ��576�� ‘key’) and

further back before a back vowel ( � � ��@�6�� ‘caw’); and will have a lip position influenced by the following vowel
(e.g. rounded in � � ��� @�6�� ‘caw’). As another example, in velopharyngeal coarticulation nasality spreads from a
consonant to a neighbouring vowel: compare the

��G��
in

�(G&���
and

��G&�$�
.

The reason for coarticulation is that the vocal tract cannot move from one target configuration to the
next one instantaneously, so instead of keeping each phoneme as an invariant articulation and then slowly
moving to the next, the articulators follow a faster, more graceful trajectory. The higher the coarticulation
the more fluent the sequence and the more difficult it is to isolate individual phonemes. The same happens in
handwriting.

Coarticulation is thought to have advantages for perception: spreading the effect of a phoneme to a
larger interval makes it more likely to be spotted and several phonemes may be processed in parallel. Thus,
coarticulation could be an adaptation of the human communication system to maximise the transmission rate
at its bottleneck: the slow-moving articulators. However, coarticulation makes each acoustic unit depend
heavily on its context, which makes speech recognition difficult. Dealing with coarticulation should be much
easier in its native, articulatory domain than in the acoustic one.

There is a parallelism in terms of planning between an utterance and a robot arm trajectory in that
targets must be met: in the utterance, these are acoustic targets given by the phonemic transcription of
the utterance, while in the robot arm these are physical locations through which the end-effector must pass
(perhaps avoiding obstacles). The targets are given in the acoustic or work space and result in corresponding
targets in the articulatory space. However, in speech the articulatory targets do not necessarily have to be
fully realised for speech to be intelligible, particularly in fast speech styles, as shown by coarticulation.

10.1.1.6 Critical vs non-critical articulators (“don’t care” values)

The concept of critical articulators refers to the fact that, for a given production, the movement of a small
subset of articulators is crucial, while the movement of the rest is not. For example, the acoustics, particularly
the formants, are more sensitive to place and degree of constriction than to the rest of the area function. One
reason for this is that the coefficients of Webster’s horn equation are functions of the logarithm of the area
function. Recasens’ work on coarticulation in Catalan (reviewed in Hardcastle and Hewlett, 1999, chapters 2
and 4) showed that the more an articulator is involved in producing a consonant, the less susceptible it is to
coarticulatory influences from adjacent vowels.

Papcun et al. (1992) demonstrated empirically that critical articulators are less susceptible to coarticulation
and have a greater range of variation than noncritical articulators, which are freer to vary or play along. They
used real articulatory data (recorded with an X-ray microbeam) and trained a neural net to learn the mapping
from acoustics5 (bark scaled FFT bins) to articulators’ positions (lower lip, tongue tip and tongue dorsum)
for the English stop consonants

��H+� P+� �� � � �$� "#�
. The critical articulators were the lower lip for bilabials (

��H+� P$�
),

the tongue tip for alveolars (
���� �$�

) and the tongue dorsum for velars (
���!� "#�

). By comparing the articulatory
trajectories inferred by the neural net with the original ones, they found good correlation (r ≈ 0.9) for the
critical articulators of each consonant type and bad correlation (r = 0.19 to 0.78) for the noncritical ones, but
higher RMS error for the critical than for the noncritical ones. They hypothesise that intra-speaker variability
of non-critical articulators could be caused by principled differences (such as differences in phrasal stress) or
considered as noise; while inter-speaker variability could result from the fact that each speaker has acquired
idiosyncratic patterns of noncritical articulator movement but shares patterns of critical articulator movement
with other speakers.

Another case of “don’t care” values occurs during silence intervals in the speech (e.g. during stop closures),
in which the output spectrum is similar to that of the background noise and does not contain any information
regarding the shape of the vocal tract.

“Don’t care” values also occur in the robot arm problem (section 9.3). For example, Jordan (1990) considers
the case of a robot with two arms: if at some moment there is only one target to manipulate, the arm which is
not manipulating the target is free to move; but it may move towards a future target to anticipate a movement
and so make the transition to the next configuration easier (faster, requiring less energy, etc.). Coarticulation

5Rather than using as input the acoustic vector of a single frame, they used a sequence of 25 frames (around 200 ms), which
they called context frame.
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is the analog case in speech production. The same phenomena should occur if the vocal tract is extended to
include facial features (section 7.10.4).

10.1.1.7 Significance for speech processing

The constraints of the speech production system (such as slow, continuous dynamics, coarticulation, identifi-
cation of critical articulators and speaker-dependent characteristics such as vocal tract length) can be better
represented by an articulatory representation of speech than by an acoustic one. An articulatory representation
should be useful for:

• Speech recognition: traditional speech recognisers have problems with nasals, voiced and unvoiced stops
and voiced and unvoiced fricatives, for which spectrograms are very similar, discriminatory features
concentrate on very few transitionary frames and the spectrum between transitionary frames is ambiguous
or useless. They also have problems with the effects of prosody and coarticulation, which they partially
alleviate by using context-sensitive models (e.g. diphones), but at the cost of using many parameters.

The addition of articulatory features to acoustic features in HMMs has been shown to increase recognition
performance over acoustic features alone (Zlokarnik, 1995a). We review some more sophisticated models
using production information in section 10.1.4.

• Coding and text-to-speech synthesis: an articulatory representation has lower requirements than an
acoustic one for transmission rate and storage because of the slow dynamics of the articulators. Articu-
latory trajectories are also closer to a phonetic transcription.

• Visualisation of vocal tract features and training aids for the deaf, etc. (as in chapter 5 with the EPG
data).

In summary, some aspects of speech processing should be simpler in the articulatory domain. Since usually
only the acoustic signal is readily available, articulatory inversion becomes necessary.

10.1.2 The motor theory of speech perception

Irrespectively of any mathematical or engineering approach, how the human brain may perform articulatory
inversion is unknown6. We briefly review the well-known motor theory of speech and note an interpretation
in terms of latent variables.

The basic motivation for speech theory is that people can both perceive speech and produce speech. It
seems unparsimonious to assume that the speaker-listener employs two entirely separate processes, one for
encoding language and the other for decoding it. A simpler assumption is that there is only one process
with appropriate links between sensory and motor components. Speech is then assumed to be perceived by
processes that are involved not only in auditory perception but also in speech production.

The motor theory (Liberman et al., 1967; Liberman and Mattingly, 1985) was originally proposed to try to
account for perceptual invariance in the face of highly variable, context-dependent, acoustic cues. Experiments
show that there is typically lack of correspondence between acoustic cue and perceived phoneme, which rules
out the use of acoustic cues as perceptual primitives. For example, coarticulation effects, the fact that any
particular acoustic segment will likely to be cueing more than one phoneme at a time. In several cases it
appears that perception mirrors articulation more closely than sound. This supports the assumption that the
listener uses the inconstant sound as a basis for finding his way back to the articulatory gestures that produced
it.

The motor theory makes two basic claims: (1) the existence of an invariant motor code of phonetic gestures
shared by speech perception and production; and (2) the existence of an innate, specialised module in the brain
responsible for the translation between phonetic gestures and acoustic patterns. Let us examine these claims
in more detail.

The existence of a motor code The objects of speech perception are the intended phonetic gestures of
the speaker, represented in the brain as invariant motor commands that call for movements of the articulators
through certain linguistically significant configurations. These gestural commands are the physical reality un-
derlying the traditional phonetic notions (such as tongue backing, lip rounding or jaw raising) that provide the

6Likewise, how the brain solves other motor problems, like arm control, is the subject of active research (for a recent review see
Wolpert and Ghahramani, 2000). Concepts similar to those proposed by the motor theory appear there too, such as postulated
motor primitives or forward and inverse internal models.
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basis for phonetic categories. They are the elementary events of speech production and perception. Phonetic
segments are simply groups of one or more of these elementary events; thus � P�� consists of a labial stop gesture
and � S�� of that same gesture combined with a velum-lowering gesture. Phonologically, of course, the gestures
themselves must be viewed as groups of features, such as labial, stop or nasal, but these features are attributes
of the gestural events, not events as such. To perceive an utterance, then, is to perceive a specific pattern of
intended gestures (more or less altered due to coarticulation and other effects).

As a detailed example of how a phoneme would be broken down, from a production point of view, into
a sequence of possibly overlapping subphonemic elements, consider the articulation of

��P$�
(Liberman et al.,

1967):

1. Closing and opening the upper vocal tract in such a way as to produce the manner feature characteristic
of the stop consonants.

2. Closing and opening the vocal tract specifically at the lips, thus producing the placed feature termed
bilabiality.

3. Closing the velum to provide the feature of orality.

4. Starting vocal fold vibration simultaneously with the opening of the lips, appropriately to the feature of
voicing.

Other phonemes could be described using these and other gestures:��H$�
has features 1, 2 and 3 but differs in 4 in that vocal fold vibration begins some 50 or 60 milliseconds
after opening the lips.��So�
has features 1, 2 and 4 but differs in 3 in that the velum hangs open to produce the feature of nasality.���;�
has features 1, 3 and 4 but differs in place of articulation.

Therefore, a phonetic, or motor, gesture can be defined as a class of movements by one or more articulators
that results in a particular, linguistically significant deformation over time of the vocal tract. A gesture may
be effected by several articulators for several reasons:

• A gesture may require the collaboration of several articulators. For example, lip rounding is a collabo-
ration of the lower lip, the upper lip and the jaw.

• A single articulator may participate in the execution of two different gestures at the same time. For
example, the lips may be simultaneously rounding and closing in the production of a labial stop followed
by a rounded vowel, as in � P�>�� .
• Prosody effects. For example, producing a stressed syllable requires a greater displacement of some or

all of the active articulators than when producing an unstressed one.

• Linguistically irrelevant factors, notably speaking rate, affect the trajectory and phasing of the component
movements.

The existence of a specialised module for the interface between speech perception and speech
production The existence of a motor code implies the existence of an intimate link between speech percep-
tion and speech production. In the motor theory, this link is innate, not learned, and is implemented by a
specialised module of the brain. Thus, perception of the gestures occurs in a specialised mode different from
the auditory mode.

Computation of the phonetic gestures from the acoustic signal by a cognitive process does not seem rea-
sonable. This justifies the need in the motor theory for a modular account of linguistic perception and the
assumption of the existence of a special-purpose computational device that relates gestural properties to
acoustic patterns. The conversion from acoustic signal to gesture (i.e., a form of articulatory inversion) is done
automatically, so that listeners perceive phonetic structures without mediation by, or translation from, the
auditory appearances that the sounds might, on purely psychoacoustic grounds, be expected to have.

The motor theory assumes that adaptations of the motor system for controlling the organs of the vocal tract
took precedence in the evolution of speech over the development of a perceiving system. These adaptations
made possible not only to produce phonetic gestures, but also to coarticulate them so that they could be
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produced rapidly. A perceiving system, specialised to take account of the complex acoustic consequences,
developed concomitantly.

As biological basis for this specialised module, the motor theory proposes the existence of several neural
networks—those that supply control signals to the articulators and those that process incoming neural patterns
from the ear—with overlapping activity, so that information is correlated by these networks and passed through
them in either direction.

10.1.2.1 Problems of the motor theory

The motor theory looks for a hidden representation of the speech message in terms of articulatory gestures,
with information flowing in both directions (articulators → acoustics and acoustics → articulators), passing
through the gestural representation. However, the idea of a gestural representation runs into a number of
problems. A major shortcoming of the theory is the difficulty of rigorously defining, in physical terms, a
particular gesture, due to the complications posed by coarticulation and other factors. This makes the motor
gestures hardly more satisfactory as perceptual primitives than the acoustic cues. Further, categorising one
group of the infinite number of possible articulatory movements as lip rounding and another as lip closure
is entirely a priori. Besides, experiments in language acquisition in newborns have showed that structures of
speech perception occur well before those of production.

Thus, while the mere ability of humans to listen and speak suggests that some sort of representation of
the speech message must exist in the brain, it does not seem plausible that this representation is in terms of
articulatory gestures, as the motor theory assumes. Several recent papers debating whether speech is controlled
by auditory-acoustic goals or by articulatory goals appear in the Journal of the Acoustic Society of America
99(3):1680–1741 (March 1996); a summary is given by McGowan and Faber (1996).

There exist other feature-based theories, e.g. in phonology. In the theory of articulatory phonology of
Browman and Goldstein (1992), the basic units of phonological contrast are called gestures and are also
abstract characterisations of articulatory events, each with an intrinsic duration. Utterances are modelled
as organised patterns of gestures, called constellations, in which gestural units may overlap in time. Thus,
utterances differ from one another in the particular set of gestures they use or in how those gestures are
organised, and the same gesture may have different acoustic consequences, depending on other concurrent
gestures. The patterns of overlapping organisation can be used to account for several types of phonological
variation, including coarticulation. Again, a listener must have a mechanism to recover the underlying gestures
from the varying acoustics.

10.1.2.2 A latent-variable view

Regardless of its biological validity, the motor theory and other feature-based theories like that of Browman
and Goldstein (1992) are computationally attractive and have been used as the motivation for several ASR
approaches, some of which we have described in this thesis (e.g. Papcun et al., 1992; Erler and Freeman, 1996;
Richards and Bridle, 1999). We point out here that the motor theory can be formulated as a latent variable
model. Let us imagine the existence of a more abstract representation, neither expressed in terms of acoustic
cues nor of articulatory gestures, and whose biological basis would reside in neural networks with bidirectional
links with both the auditory and the articulatory systems. This could be implemented with a latent variable
model trained in an unsupervised way with both acoustic and articulatory data (the latent variables would not
necessarily be interpretable as a neural code); and the links between all three domains (acoustic, articulatory
and the hidden representation) would be implemented by conditional probability rules.

10.1.3 Computational approaches

Webster’s horn equation allows the computation of the acoustic signal resulting from a given area function for
some glottal excitation, i.e., the articulatory-to-acoustic (forward) mapping, but not its inverse. Decades of
research have been dedicated to computing this inversion. Levinson and Schmidt (1983) started their paper
saying that

The direct determination from a speech signal of the corresponding articulatory parameters, such
as area functions or other representations of vocal tract shape, is a long standing problem in speech
research.

Almost 20 years later, the problem of articulatory inversion is still unresolved, particularly for unvoiced sounds.
Much of the work on it has been reviewed by Schroeter and Sondhi (1994), so we restrict ourselves here to the
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most important approaches as well as some of the more recent ones. Further review material can be found in
some of the references cited in this section.

Many articulatory inversion methods can be used with the analysis-by-synthesis procedure, which is an
optimisation closed loop in which the spectrum of the synthesised speech is compared to the real one at
consecutive speech frames. For each frame, an optimisation procedure tries to minimise an acoustic distance
between the two signals. In other words: take a starting articulator configuration x0; compute the forward
mapping g(x0); backpropagate the error (acoustic distance) between the original speech y and the synthe-
sised speech g(x0) to obtain an improved articulatory vector x1; iterate till convergence. The optimisation is
initialised with an articulatory vector x0 obtained by some articulatory inversion method (e.g. from a code-
book), which should be good to avoid local minima of the distance—which, in fact, is the major problem of
this framework. Also, if the starting articulatory vector was good enough, one could avoid the optimisation
loop altogether. Analysis-by-synthesis methods usually include as main parts an articulatory model (which
describes the geometry of the oral cavity), an articulatory synthesiser (vocal tract model that simulates the
physics of sound generation in that cavity), an optimisation algorithm with an error measure, and a spectral
estimation algorithm (acoustic variables).

Three approaches to the acoustic-to-articulatory mapping are particularly important:

Dynamic programming search in a large articulatory codebook The use of articulatory codebooks
was introduced by Larar, Schroeter, and Sondhi (1988) and its search by dynamic programming by
Schroeter and Sondhi (1989). Earlier work by Atal et al. (1978) contains precursory ideas for codebooks.
An articulatory codebook is a fixed, very large (M > 100 000 entries) table of M vocal tract shapes
(obtained either from measurements with X-ray, EMA, etc. or by sampling an articulatory model) and
their respective acoustic output. It disregards glottal excitation. The whole codebook is scanned at
every speech frame and the optimal path found by dynamic programming7 to minimise a cost function
of the form (a particular case of eq. (7.2)):
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(10.2)

where y represent original acoustic vectors, (x̂, ŷ) represent codebook vectors (with ŷ
def
= g(x̂)), g is

the known8 articulatory-to-acoustic mapping, the C term is the continuity constraint (applied solely to
the articulatory variables) and the F term is the forward mapping constraint (applied to all variables,
but the articulatory ones cancel out). Thus, the C term is based on an articulatory distance (typically
Euclidean) while the F term is based on an acoustic distance (of which many variations exist in the
speech literature; section 10.1.1.3). Another constraint that has often been used for the articulators
(e.g. Shirai and Kobayashi, 1986; Sorokin, 1992; Yehia and Itakura, 1996) is muscle effort, given by a
quadratic function of the displacement of the articulators (see section 7.5):

D1∑

d=1

cd(x
(n)
d − xd)2 (10.3)

where xd is the equilibrium position of the dth articulator and cd is a coefficient of tissue elasticity. It
can be extended to a Mahalanobis distance or some other distance between the articulatory vector x(n)

and the constant equilibrium vector x. Determination of the acoustic-articulatory cost weight λ has been
tried in various heuristic ways (Schroeter and Sondhi, 1994).

Although there are heuristic techniques to speed up the search (such as selecting at each frame only the
M ′ best acoustic fits, with M ′ of the order of 1 000), since M is so large, the dynamic programming
search is very slow and must be limited to around N = 20 frames (= 200 ms of speech for a frame shift
of 10 ms), having a computational complexity of O(NM 2).

7This use of dynamic programming must be distinguished from the dynamic time warping algorithm (Rabiner and Juang,
1993, pp. 200–240), in which dynamic programming and various forms of constraints are applied in pattern comparison for speech
recognition purely in the acoustic domain. There, the goal is to align in time and normalise the distance between two speech
patterns (sequences of spectral vectors) of possibly different durations (number of vectors in the sequence). The constraints try to
ensure that there is a proper time alignment by avoiding time reversal (monotonicity constraint) and obtaining a smooth alignment
path between the starting point and the end point, both of which are fixed and given by the sequences’ length (continuity, slope,
endpoint and global path constraints).

8“Known” means that either it can be derived analytically from a physical model or it can be reliably approximated from data
for the inputs and outputs.
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Dynamic programming search of codebooks is currently the most accurate method of articulatory inver-
sion. Its disadvantages are the large size of the codebook, which consequently takes a large storage and
results in a slow search (of the order of 300× slower than real time for a 100 000-entry codebook in a
40-MFLOP computer; Schroeter and Sondhi, 1994); and the difficulty of constructing a good codebook.
Generating the codebook is a careful process that requires:

• A method to obtain training vectors that adequately span both the articulatory and the acoustic
spaces. This can be done in two ways:

– From measurements (e.g. X-rays): the difficulty is to thoroughly span the articulatory space,
since such measurements are a finite collection of one-dimensional trajectories designed in the
acoustic space.

– By finely sampling an articulatory model: this needs to eliminate unfeasible shapes. Another
way is to interpolate along an articulatory trajectory determined by some predefined, “root”
shapes, but this usually leaves areas of the articulatory space uncovered.

• A method to cluster the training vectors. Quantisation is attained by a clustering algorithm, which
can be complicated and time-consuming depending on the acoustic distance used. For example, an
intermediate point between two sample points may be associated with an unfeasible articulatory
configuration and so standard k-means does not work.

• A definition of distances in both spaces, articulatory and acoustic.

Global parametric mappings with more or less sophisticated architectures, such as polynomials, radial
basis functions or neural networks (trained with codebook vectors or measured data). Neural networks
are faster and more compact than codebooks, but produce worse mappings, which is not surprising in
view of the nonuniqueness of the mapping (section 7.3.4). An example using neural networks (though
not the first one) was that of Papcun et al. (1992), described in section 10.1.1.6.

Methods based on local acoustic-to-articulatory mappings These methods try to split the acoustic
space into regions such that each region maps one-to-one to a corresponding region in the articulatory
space (branch determination step). Inside each region, a function approximator is used, trained in a
supervised way using the data (or codebook) vectors that fall in the region. In particular, Rahim et al.
(1993) (building on unpublished work by Parthasarathy and Sondhi described by Schroeter and Sondhi,
1994) cluster the training data as described in section 7.11.2.1 resulting in Ny = 32 acoustic clusters
each containing Nx = 4 articulatory subclusters. They then fit a different MLP with 26 hidden units
in each of the NxNy = 128 clusters. At the dynamic programming search stage (which is carried out
every 15 pitch periods), first the centroids of the Nx = 4 clusters are searched for the one closest to a
given acoustic vector; then the Ny = 32 mappings for the selected acoustic cluster are used to compute
Ny mapped articulatory vectors, which are declared as possible candidates. Rahim et al. claim that
the ensemble is 20 times more efficient than a codebook method both in memory and lookup time with
results of similar quality. An extra advantage over the codebook is that, after having been trained using
the codebook, the MLPs can be bootstrapped from natural speech. The disadvantages of this method
were mentioned in section 7.11.2.1:

• There is no guarantee that the local mappings are one-to-one inside every region, and determining
the regions is difficult in high dimensions.

• Nx and Ny are ad-hoc parameters (e.g. given an acoustic vector, why should there be precisely Ny

candidates?).

• Training the MLP ensemble is difficult. Rahim et al. try several heuristic approaches to determine
which MLP to adjust for a given speech frame.

Other methods have been recently proposed. In the analysis-by-synthesis technique of McGowan (1994)
the articulatory model is the ASY articulatory synthesiser from the Haskins Laboratories (Rubin et al., 1981),
which is based on the articulatory model of Mermelstein (1973). The acoustics are represented by the first
three formants. A task dynamics model (Saltzman and Kelso, 1987) is added to further constrain the articu-
latory model: rather than articulatory trajectories, the task dynamics model uses “tract variables,” which are
variables describing constriction locations and degrees (that are more relevant than other parts of the vocal
tract for determining the acoustics). The complexity of the task dynamics model makes difficult the use of
derivative-based optimisation methods such as gradient descent. Thus, optimisation is performed by a genetic
algorithm (Goldberg, 1989) with fitness = 1/error, where the error is the sum of squared errors for the first
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three formants. A disadvantage of genetic algorithms is that the parameters for optimisation must be coded
into finite length strings (chromosomes) and this discretises the parameter space (to 6 bits per variable in his
case). Using simulated data for

����P�BF�
and

�����#BF�
the method recovers most parts of an original articulatory

trajectory but has trouble in obtaining precise timing, which is imputed to the lack of additional acoustic
information, such as the RMS amplitude.

The approach of Sorokin and collaborators (see Sorokin, 1992; Sorokin et al., 2000 and references therein)
is also an analysis-by-synthesis technique, where the inversion is considered from the point of view of standard
regularisation theory (Tikhonov and Arsenin, 1977) for ill-posed problems (see chapter 6). In regularisation
theory, the ill-posedness of an inverse problem is broken by the use of constraints. Sorokin et al. (2000)
propose several types of constraints, most of which have been implicitly or explicitly used earlier in the
acoustic-to-articulatory mapping problem; these include bounds on muscle forces, articulatory parameters
and area functions, mutual dependence of the articulatory parameters (i.e., low intrinsic dimensionality) or
complexity of planning and programming motor commands. The Tikhonov regularisation framework results
in a cost function of the form acoustic fitness plus articulatory constraints, just as in eq. (10.2), and so the
approach does not differ much from dynamic programming search of articulatory codebooks. Sorokin et al.
have proposed articulatory models for vowels and fricatives that take into account a condition of non-turbulent
air flow, given by a threshold for the Reynolds number, and minimise muscle effort as in eq. (10.3); and specific
optimisation algorithms, since they use the uniform (L∞) norm as acoustic distance between the formants,
which is not differentiable.

Yehia and Itakura (1996) consider a simplified version of the acoustic-to-articulatory mapping problem
where the acoustics are given by the first M formant frequencies and the articulator configurations by the first
2M coefficients of the Fourier cosine series expansion of the log-area function, for a known vocal tract length.
Work by Mermelstein (1967) and Schroeder (1967) showed that a one-to-one relationship holds approximately
between the first M odd Fourier coefficients of the area function and the first M formants and set to zero the
M even Fourier coefficients, which are undetermined. Yehia and Itakura apply a quadratic cost function to
the area function (representing minimal effort, like Sorokin, 1992) to obtain those M even coefficients; this is
done at each frame, using the Newton-Raphson method, and no continuity constraint is used. Their results
using a small corpus of French vowels are just barely better than those of Mermelstein (1967). This is not
surprising since this approach simply converts the one-to-many mapping into a one-to-one mapping without
even the guarantee that a solution branch is selected.

Based on the idea that speech production realises articulatory targets while subject to coarticulation,
Blackburn and Young (2000) propose a method to produce a smooth articulatory trajectory given a time-
aligned phonetic string. The trajectory is obtained from the requirement that it passes through soft regions
of articulatory space given by each phoneme but keeping articulatory effort low. The soft regions are obtained
by replacing the distribution of articulatory positions at the midpoint of a given phoneme (obtained from
X-ray data) with an independent Gaussian distribution for each articulator. This is a variation of earlier
work by Keating, who used hard windows (i.e., uniform distributions rather than Gaussian). The requirement
that articulatory effort be low is attained by allowing the articulatory trajectory to under- or overshoot the
midpoints (articulatory targets), resulting in a trajectory that is a smoothed version of the polygonal line
joining the midpoints. This is in effect a coarticulation model, similar in its goal to that of Bakis (1993) (see
section 10.1.4). The RMS errors for the recovered articulators’ positions were around 35% of their standard
deviation on the average. The selection of soft regions can be seen as a conditional mean method and one
would expect it to perform similarly to an MLP with errorbars. Thus, for multimodal distributions, known to
exist for the articulatory-to-acoustic mapping, the mean of the Gaussian may lie in an incorrect articulatory
value.

Summarising, state-of-the-art articulatory inversion in terms of accuracy is obtained by dynamic program-
ming search of a large, carefully constructed articulatory codebook, at an enormous computational cost in
storage and time. A carefully prepared ensemble of neural networks approaches codebook performance and is
fast.

10.1.4 Speech recognition models that incorporate production information

Hidden Markov models and variants of them9 are currently the unrivalled method for automatic speech recogni-
tion. Like neural networks, HMMs are complex generic statistical models that could be used for the description
of many physical phenomena because the strong assumptions that they make can usually be overcome by hav-

9In particular, hybrid recognisers based on neural nets and HMMs, which share the advantages of the two frameworks and
often deliver superior performance (Bourlard and Morgan, 1994).
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ing a large number of parameters and of training data. But there is a limit to what models based on acoustic
information alone can do. The performance of HMMs degrades dramatically when the speech style changes, the
speaker changes or there is noise10, all of which occur in spontaneous speech in natural environments. Several
people (e.g. Rose et al., 1996, Deng et al., 1997 and Deng, 1998) have suggested the addition of e.g. linguistic
or production information to acoustic models. In particular, the advantages of articulatory representations
discussed earlier and the availability of articulatory data from X-ray and EMA measurements have recently
led to several models that incorporate articulatory constraints (not necessarily approaching the articulatory
inversion). We briefly review some here.

Zlokarnik (1995a) has provided empirical evidence that straightforward addition of articulatory informa-
tion to an acoustic HMM improves recognition performance. Simultaneously recorded acoustic and articula-
tory data (the positions of several articulators, recorded by EMA) were combined to make up an acoustic-
articulatory feature vector on a speaker-dependent isolated word recognition task with an HMM. Compared
with a purely acoustic HMM, using acoustic and articulatory data both for training and testing reduced
the error rate by 60%; and using articulatory measurements only during the training and implementing an
acoustic-to-articulatory mapping with an MLP during the testing phase, the error rate could be reduced by a
relative percentage of 18% to 25%. In another experiment, Zlokarnik (1995b) showed that of the first three
time derivatives (velocities, accelerations and jerks) of the articulators’ positions, accelerations perform best
for ASR. Although this is surprising, since in the acoustic domain, acceleration features perform worse than
static features, it confirms the importance of the role of articulatory forces in speech production.

Other variations of HMMs that use articulatory information in more sophisticated ways (e.g. forbidding
transitions) were discussed in section 7.11.5. But, given the continuous nature of the temporal variation of the
articulators, it seems more natural to use models of the style of Kalman filters rather than HMMs.

Bakis (1993) (see also Bakis, 1991) proposed a generic speech production model that can be seen as an
acoustic recognition model, such as an HMM, augmented by an analysis-by-synthesis technique. Given an
acoustic waveform to be recognised, the acoustic model proposes a hypothesis, i.e., a phoneme transcription.
An abstract, deterministic articulatory model then takes as input this transcription and synthesises acoustic
features that can be compared with similar features computed from the actual speech. The abstract artic-
ulatory model works as follows. First, the phonetic string is transformed into an idealised target path in a
multidimensional Euclidean space via a table lookup; this path is piecewise constant, with abrupt transitions
at phoneme boundaries. Then, this path is transformed into a realised articulatory path in the same multidi-
mensional Euclidean space via convolution with a FIR filter; this path is a smoothed version of the target path
and results in bounded first and second derivatives of the articulators’ motion (and in correspondingly bounded
forces), thus modelling coarticulation. Finally, acoustic vectors are generated from the realised articulatory
path via a neural network in the form of MFCCs or any other suitable acoustic representation. Therefore, the
details of the vocal tract model are left to be determined empirically from data and only the general properties
are specified: coarticulation is implemented by an empirical FIR filter (with memory) rather than described in
terms of masses, forces and viscous damping; and the articulatory-to-acoustic mapping is implemented by an
empirical neural network (memoryless nonlinear function) rather than derived from Webster’s horn equation.
The components of both the acoustic model (HMM) and the articulatory model (lookup table, filter, neural
net) are parametric. The parameters are adjusted from prior knowledge and empirical information to minimise
the mean square error of the acoustic vectors (using conjugate gradients, the gradient being computed by the
chain rule). Further prior knowledge can be included as penalty terms on the parameters in the objective
function. The time-aligned phonetic transcription is given as input at training time, while at recognition time
it is proposed as a hypothesis to be tested.

In this model, then, the abstract space consists of a finite collection of targets—basically, an articulatory
codebook—that acts as a scaffolding on which to create smooth trajectories. An important problem is thus
how to select the dimensionality of the articulatory space and the number of phonetic targets, which must be
given by the user. Presumably the number of phonetic targets is related to the number of different phonemes
in the language or training set under consideration, but it needs not be necessarily equal (e.g. consider the
case of diphthongs and allophones). Determining the dimensionality of the articulatory space is probably a
similar problem to that of determining the map dimensionality in multidimensional scaling (section 4.10.1.1).

Bakis seems never to have implemented this interesting model in practice. Recently, Richards and Bridle
(1999) have implemented essentially the same model, with two minor variations: the abstract articulatory
model (which they rename hidden dynamic model) and the acoustic model are not trained jointly, but become

10In section 7.10.6 we described some research on occluded speech recognition based purely on acoustic models. Also, several
techniques have been devised in the speech recognition literature that partially alleviate the problem of speaker adaptation, e.g.
by maximum a-posteriori estimation (Gauvain and Lee, 1994) or maximum likelihood linear regression (Leggeter and Woodland,
1995).
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separate entities, with the articulatory model being used to rescore N -best lists of hypotheses; and the realised
articulatory path is obtained via a second-order symmetrical (forward-backward) low-pass filter with one
time constant per articulatory dimension and phonetic target. This filter, which is a simple form of Kalman
smoother, controls how much to undershoot a target: the larger the time constant, the more undershooting
and smoothing; in the zero limit, the transitions are discontinuous and there is no smoothing. The filter is
symmetrical so that the centre of transitions occurs at phone boundaries. Thus, the articulatory model remains
deterministic and does not deal with time alignment (unknown time scales in phone durations). Richards and
Bridle also show the necessity of a nonlinear articulatory-to-acoustic mapping: if a linear one is used instead,
the model fails to produce continuous transitions. In an evaluation of the approach with a conversational
speech recognition task with the Switchboard corpus (Picone et al., 1999), improvements in terms of word
error rate compared to a standard acoustic HMM only occur if, as well as the most likely hypotheses, the
reference transcription is given (which is unavailable in practice). This proves that the articulatory model has
information not in the acoustic HMM, although it remains to be seen how to actually use it.

Deng (1998) has proposed a stochastic approach combining the two contrasting aspects of speech: phono-
logical (characterised by the discrete nature of phonemes) and phonetic (characterised by the continuous nature
of the vocal tract). The basic structure of the model is the same as that of Bakis (1993): the phonemic string
is realised in a continuous, dynamical system and nonlinearly mapped onto the acoustic, observable features.
Specifically, the model consists of the following levels: (1) a language model which provides the probability for
an arbitrary word sequence p(W = w1 · · ·wN ); (2) a phonological or pronunciation model based, rather than
on phones (as most speech recognisers are), on overlapping features (Browman and Goldstein, 1992), which
provides the probability p(F |W ) for a feature-overlapping pattern F of an entire utterance given its word se-
quence; and (3) a phonetic model which provides the probability p(O|F,W ) of an observed acoustic trajectory
O, based on the task dynamics model of Saltzman and Kelso (1987), which is implemented with a smooth
linear dynamical system (with memory) and a nonlinear articulatory-to-acoustic mapping (memoryless, such
as an MLP or RBF net). Consequently, inference about the word transcription W given the acoustics O is done
via Bayes’ rule as in HMMs. But here the dependence of the acoustic sequence on the word sequence is more
complex, involving the intermediate stage of continuous variables at the phonetic level where the articulatory
constraints are applied. This complex stochastic model, containing nonlinear functions and dynamical systems,
seems to be trainable for maximum likelihood given observed acoustic data by a generalised EM algorithm—a
surprising fact in view of the intractability that is invariably associated with the marginalisation of complex
distributions. An evaluation of a version of this model with the mentioned Switchboard corpus (Picone et al.,
1999) gave very similar results to those of the hidden dynamic model implemented by Richards and Bridle
(1999).

King and Wrench (1999) and Frankel et al. (2000) have modelled the articulatory trajectories with a linear
dynamical model (of 4 to 13 dimensions for the hidden space) and implemented the inversion mapping with a
neural network similar to that of Papcun et al. (1992) but with the addition of recurrence via context units
in a hidden layer, which results in smoother trajectories. They have used TIMIT sentences with acoustic and
EMA data from the MOCHA database (section 7.10.5) in a recognition task. The results using acoustics plus
recovered articulators’ positions were considerably worse than using acoustics plus the real articulatory data or
just using acoustic HMMs. One possible reason they adduce for this is that the segmentation based on acoustic
information (data forced-aligned with an HMM, which assumes that state and phone boundaries are strictly
synchronised with articulatory events) differs from the segmentation based on articulator positions: they
observed a slight asynchrony between changes in articulatory gestures and HMM-produced phone boundaries.

In summary, while the articulatory trajectories contain information that can be used to improve automatic
speech recognition, the integration of production and acoustic models has so far not attained this goal.

10.2 Experiments with electropalatographic and acoustic data

At the time when this research was being carried out, we did not have access to articulatory data that
appropriately represented the vocal tract, either synthetic (from an articulatory model) or measured (with
X-ray or EMA). Instead, we used the electropalatographic (EPG) data from the ACCOR database, as in
chapter 5, together with the simultaneously recorded acoustic waveform. The EPG characterises well the
pattern of tongue-palate contact but is an incomplete representation of the vocal tract, and so many phonemes
are indistinguishable in the EPG. For example, in fig. 5.6, the EPG labelled

��BF�
can result from many other

vowels (and even from silence intervals), while those of
��"#�

and
�����

or
��0�

and
���;�

are almost interchangeable.
Conversely, from the nonuniqueness of the acoustic-to-articulatory mapping it is also reasonable to assume
that in certain cases one phoneme may be produced with more than one different EPG. Consequently, our
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“EPG-to-acoustic” mapping is many-to-many.
The EPG data present two further disadvantages:

• While the articulatory configurations are continuous in time, the EPG not always are11: the tongue
may make or lose contact with the palate in many points at almost the same time, flipping the value
of many components of the EPG vector between consecutive frames; and undersampling of the EPGs
occasionally happens (e.g. fig 5.20). However, the EPG sequence generally shows a slow variation, as
can be confirmed visually—e.g. fig. 5.2—or numerically—e.g. for the utterance of fig. 10.2, the maximal
number of flipped components between consecutive frames is 9, occurring just once; and only for 3% (15
frames) more than 5 are flipped.

• Computationally, the EPG vectors have a high dimensionality, 62 in our case. A good vocal tract
representation can be obtained with fewer than 20 dimensions (corresponding to the two-dimensional
positions of 10 articulators). This results in a very high amount of missing data for the mapping acoustic
→ EPG (84%).

10.2.1 Experiment setup

Training data The ACCOR database (appendix B) contains data for the acoustic waveform (sampled at
20 kHz with 16 bits per sample) and the EPG frames (sampled at 200 Hz with 62 bits per sample) for several
utterances and speakers. We extracted 12th-order perceptual linear prediction (PLP) coefficients (Hermansky,
1990) from the waveform (plus the log-gain, which we use in some experiments) with the RASTA program
(Hermansky and Morgan, 1994); we used a window size of 25.6 ms and a step of 5 ms to match the EPG
sampling rate. Thus, out data variables are:

• Articulatory variables: 62-dimensional real EPG vector (a small amount of random noise was added to
the original, binary EPGs to ensure that the data set was full-rank and so avoid potentially singular
covariance matrices in factor analysis), rate 200 Hz.

• Acoustic variables: 12-dimensional real PLP vector, rate 200 Hz.

The concatenation of these two vectors gives us a 74-dimensional data vector t ∈ T . We used 10 shuffled
sentences (1, 3–5 and 9–14) for training, resulting in 8 270 data vectors, and the rest (2 and 6–8) for testing,
all for speaker RK. In another set of experiments, the silence intervals at the beginning and end (but not
inside12) of each sentence were manually removed. This resulted in 5 544 data vectors for training.

Figure 10.2 shows the acoustic waveform, log-energy (or log-gain) and PLP coefficients (1 to 12) for one
utterance. The silence intervals are clearly visible in the waveform and energy graphs. The PLP coefficients
are quite jagged, especially those of high order: the continuity properties of the articulators are largely lost in
them.

The masks used are as in chapter 9 (fig. 9.1): P1 (P2) means EPG (PLP) present and P3–P7 are general
missing data patterns.

Models We trained MLPs as universal approximators, factor analysis as linear baseline and GTM as non-
linear latent variable model providing a multimodal density model:

• MLP: for each of masks P1 and P2, five MLPs with a single layer of h = 5, 15, 25, 35, 48 hidden units,
respectively (between 387 and 3 612 parameters).

• Factor analysis: latent space of dimension L = 9 (789 parameters).

• GTM: latent space of dimension L = 2, 30 × 30 latent grid and 7 × 7 RBF grid (3 701 parameters,
K = 900 spherical Gaussian components). Another set of experiments was run with a 20×20 latent grid
(same number of parameters, K = 400).

The latent variables are then an abstract representation of the underlying low-dimensional manifold of the
combined EPG-PLP data (fig. 10.3).

The methods used (mean, dpmode, mlpavg, etc.) are as in chapter 9. For sampdp we used S = 10 samples.
In the continuity constraint C1 for dpmode and grmode we used the Euclidean distance in data space as well

11As in chapter 5, we consider the EPGs as real, rather than binary, vectors and define continuity in terms of the Euclidean
distance (which is equivalent to the Hamming distance for binary vectors).

12Short silence intervals inside the utterance (such as interword pauses) could be removed by thresholding the waveform energy.
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Figure 10.2: Temporal plots of the waveform, log-gain and PLP coefficients for the utterance “We tore down
the outbuildings” (N = 579 points including the silence intervals at the beginning and end of the utterance,
N = 343 without them). The units in the vertical axes are unimportant and thus omitted. Note the silence
intervals in the waveform and log-energy plots and the jagged aspect of the PLP curves.
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Figure 10.3: Schematic of a latent variable model where the observed data consists of EPG patterns and PLP
coefficients; compare with fig. 2.6.

as various weighted Euclidean distances described later; we did not use a constraint by forward articulatory-
to-acoustic mapping (resulting in the acoustic fitness term F in eq. (10.2)) because we do not have such a
mapping: both the EPG → PLP and PLP → EPG mappings are multivalued.

Most approaches to the acoustic-to-articulatory mapping problem use sophisticated processing of the acous-
tic data, tailored acoustic distances and rules to apply specific treatments to certain situations (e.g. silence
frames, fricatives) and very often are restricted to specific articulators or specific sound types (e.g. excluding
unvoiced frames or considering only vowels) rather than spontaneous speech. Our experimental setup is very
simple, partly because this is only a preliminary study and the data used, being an incomplete representa-
tion of the vocal tract, does not warrant such an effort; and partly because we believe that the approach
should be equally applicable to all sound types—except silence intervals, where the vocal tract shape is fully
unconstrained (although there may be some anticipatory movement).

Before describing the reconstruction results, we demonstrate multiple pointwise reconstruction.

10.2.2 Multivalued reconstruction in observed space

In fig. 10.4 we reconstruct parts of the EPG frame given other parts of it using the modes of the conditional
distribution for the GTM model (K = 400). Note how the reconstructed pattern is slightly different when
the left half is given than when the right half is given, revealing asymmetry in the tongue movement. When
the bottom half is given, the distribution for the top half happens to be multimodal, with several patterns
(corresponding to vowels and alveolars) becoming possible. This example demonstrates that reconstruction via
the conditional distribution can be applied to any combination of present and missing variables; if an observed
variable is neither in the present nor in the missing subset, it is integrated over, as the PLP variables are in
this example.

10.2.3 Reconstruction results

The reconstruction results were similar for all the test (and also training) utterances. We give detailed tables
and graphs only for the utterance “We tore down the outbuildings” (number 6), which is a typical represen-
tative. From the results for all utterances, we can draw the following conclusions:

• fa performs almost as well as the mean, independently of the mask: the error of fa was lower than that
of the mean 35% of the times and was usually not much higher the rest of the times.

• MLP methods: mlpbest tended to perform better than mlpavg and this better than mlpdp, but there
was little difference in reconstruction error. For mask P2 the MLPs performed always quite worse than
cmode; for mask P1, both cmode and the MLPs performed very similarly. For both P1 and P2, the MLPs
performed nearly always better than the mean.
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Figure 10.4: Reconstruction of single EPG frames. We use the GTM model (K = 400) to compute the
distribution of the EPG part greyed out (the missing values) conditional on the EPG part which is not greyed
out (the present values). Its modes are given to the right of the arrow, labelled with their normalised probability
if there is more than one mode. In the case where the top half was given, there were additional modes of very
small normalised probability value. In all four cases, the mean (marked ∗) coincided approximately with one
of the modes. Note the left-right asymmetry in most of the reconstructed EPGs, even when the present part
was symmetric.

• gmode was almost always worse than dpmode but better than rmode (around 20% lower reconstruction
error).

• cmode was always much better than mean and fa.

• dpmode was almost always worse, and considerably so, than mean for mask P2; very similar for P1; and
always better, and considerably so, for P3–P7, being only second to its bound cmode.

• sampdp was nearly always quite worse than dpmode; meandp was nearly always equal to dpmode.

• grmode was almost always worse than dpmode, but only slightly so (around 10% higher reconstruction
error).

In summary, dpmode is always the best method with random missing data patterns (P3–P7) but has problems
with some of the regression problems, particularly P2 (PLP→ EPG). For this mask, the number of modes per
point can be very high (a significant fraction of the number of components K, see fig. 10.6; this also increases
enormously the reconstruction time, see later) which indicates that the GTM model is not smooth. While the
error of dpmode is sensitive to the number of components K (see below), the fact that the MLPs performed
better than the mean and that even fa was almost as good as the mean suggests that the GTM model estimate
used is quite poor. This is probably due to the low latent dimensionality assumed (L = 2, for computational
reasons), which is certainly quite lower than that of the speech signal (usually considered around 5). Although
even a poor model like this still contains information useful for reconstruction, as evidenced by the low error
of cmode, the presence of lots of spurious modes makes it impossible to use. Observe in table 10.1 the very
short C1-value for dpmode (85.84) in mask P2 compared to that of the original utterance (255.75).

The results also confirm that, in any case, the methods gmode, rmode, grmode and sampdp perform badly.

Further experiments We performed further experiments with the following results:

• Rounding the reconstructed EPG values to {0, 1} always increases considerably the error (unsurprisingly).

• Using a GTM model with fewer components (K = 400) generally increases the error of most mode-based
strategies (particularly cmode) but does not affect much the mean and gmode. It does not seem to affect
positively or negatively to sampdp and rmode, which perform as badly as with K = 900. This confirms
that the mode-based schemes are more sensitive to the goodness of the model than the mean.
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Figure 10.5: Reconstruction error as a function of the time (or sequence index n): mapping EPG → PLP
(mask P1). Utterance “We tore down the outbuildings” (N = 579 points) reconstructed by models trained
without (red) and with silence and log-gain (green). Top two graphs: waveform and log-gain. Bottom graph:

number of modes of the conditional distribution t
(n)
PLP|t

(n)
EPG. Rest of graphs: reconstruction error

∥
∥t(n) − t̂(n)

∥
∥

2

for the respective method. The GTM model has K = 900.

273



0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75

0

20

40

60

0

20

40

60

0

20

40

60

0

20

40

60

0

20

40

60

0

20

40

60

0

200

400

PSfrag replacements

time (s)
w

av
ef

or
m

lo
g-

ga
in

er
ro

r
m
l
p

er
ro

r
f
a

er
ro

r
m
e
a
n

er
ro

r
g
m
o
d
e

er
ro

r
d
p
m
o
d
e

er
ro

r
c
m
o
d
e

#
m

o
d
es

Figure 10.6: Reconstruction error as a function of the time (or sequence index n): mapping PLP → EPG
(mask P2). Utterance “We tore down the outbuildings” (N = 579 points) reconstructed by models trained
without (red) and with silence and log-gain (green). All graphs and models as in fig. 10.5 except for bottom

graph: number of modes of the conditional distribution t
(n)
EPG|t

(n)
PLP. Note the different scales in the vertical

axes; and how, for all methods, the reconstruction errors usually match the silence intervals (at the beginning,
end or inside the utterance).
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Average squared error 1
N

∑N
n=1

∥
∥t(n) − t̂(n)

∥
∥

2

Mask Factor MLP GTM with K = 900

(% missing) analysis mlpbest mlpavg mlpdp mean gmode rmode cmode grmode dpmode sampdp meandp

P1(16%) 0.3185 0.3063 0.3102 0.2977 0.2843 0.3040 0.2983 0.2399 0.2784 0.2821 0.4726 0.2821

P2(84%) 5.7824 5.6305 5.4522 5.6407 5.5576 7.8321 9.2272 2.4032 9.3540 8.4136 8.9014 8.4136

P3(75%) 2.9885 3.1947 3.6480 4.0173 2.2315 2.7525 2.4717 3.8426 2.4717

P4(51%) 1.7364 1.8605 1.9608 2.1005 1.5297 1.6673 1.6100 2.1844 1.6098

P5(25%) 0.8000 0.8151 0.8498 0.8832 0.6948 0.7436 0.7178 0.8843 0.7178

P6(51%) 3.1221 3.0183 4.2263 5.0106 1.4511 1.8598 1.6953 3.5229 1.6953

P7( 7%) 0.3889 0.4398 0.5347 0.5477 0.2100 0.2434 0.2208 0.4307 0.2207

Value of constraint C1 =
∑N−1
n=1

∥
∥t̂(n) − t̂(n+1)

∥
∥ (original sequence: 255.75)

Mask Factor MLP GTM with K = 900

(% missing) analysis mlpbest mlpavg mlpdp mean gmode rmode cmode grmode dpmode sampdp meandp

P1(16%) 228.68 231.17 231.40 230.23 231.63 232.53 258.75 234.31 230.41 230.03 323.65 230.03

P2(84%) 125.47 122.53 152.82 120.42 155.89 363.73 825.86 210.18 120.01 85.84 614.36 85.84

P3(75%) 513.14 562.12 632.38 701.99 428.48 426.06 389.70 691.67 389.73

P4(51%) 478.28 490.53 511.08 543.52 437.50 438.50 424.78 588.05 424.75

P5(25%) 428.04 421.18 429.22 443.11 390.51 390.65 386.46 458.10 386.48

P6(51%) 501.34 490.74 609.49 801.95 380.64 361.81 346.91 643.00 346.91

P7( 7%) 270.11 272.98 282.74 304.86 262.21 261.42 259.42 303.01 259.40
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Problem type (mask)
Low error High error−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

EPG → PLP (P1) cmode ≈ mlp < dpmode . mean . gmode . fa < rmode

PLP → EPG (P2) cmode � mlp < mean . fa < dpmode < gmode < rmode

General (P3–P7) cmode < dpmode � mean . fa ≈ gmode < rmode

Table 10.2: Reconstruction results for the EPG-to-PLP mapping problem: summary comparison of the meth-
ods in terms of reconstruction error. Compare with table 9.2.

• Removing the gain from the density model and the start and end silence intervals from the data reduces
the error of all methods considerably (compare the curves in figures 10.5 and 10.6 for reconstruction
including silence and log-gain with those not including them). The reason is that the gain is independent
of the EPG variables, reflecting only the amplitude of glottal excitation; and that during silent intervals
(when the glottal excitation is zero) the EPG vectors are unconstrained by the acoustics. This is equally
applicable to any other articulatory variables.

From figures 10.5 and 10.6 we can observe that the effects of removing the silence intervals are:

– To reduce the reconstruction error for P1 (by half), although not for P2.

– To increase the number of modes, due to the Gaussian components that were located on areas of
space corresponding to silence.

Figure 10.6 shows that, after the silence intervals at the beginning and end have been removed, large
errors mainly occur at the short silence intervals inside the utterance. Such intervals can be detected by
thresholding the gain and eliminated from the reconstruction process (but we did not do this).

Also, notice in fig. 10.6 how the reconstruction error curves for both models (trained with / without
silence and log-gain) nearly coincide for all methods during the non-silence intervals. The explanation is
as follows. For the models trained with the log-gain and with silence, the Gaussian components basically
go to one of two areas of data space, corresponding to silence and non-silence intervals, respectively;
while for the models trained without the log-gain and without silence, all Gaussian components model
only non-silence intervals. Given the gain and the PLP coefficients, the models trained with the log-gain
and with silence can reconstruct the EPG vectors in non-silence intervals practically as well as the models
trained without the log-gain and without silence. That is, in the latter case the mapping is PLP→ EPG
while in the former case it is (PLP, gain) → EPG, and the gain is acting as a discriminative variable.
Thus, both models perform similarly in non-silence intervals. This does not happen in fig. 10.5 because
there only the EPG variables are present, not the gain. That is, the models trained with the log-gain and
with silence cannot know anymore, given the EPGs alone, whether the interval corresponds to silence or
not.

• Using various weighted Euclidean distances (e.g. zeroing the weights of the PLP or the EPG variables)
did not alter the errors in general (less than 5%). Using a Mahalanobis distance based on the covariance
matrix (either that of the whole training set for all utterances or a separate one for each utterance), which
is equivalent to sphering the data, did not improve the results either13. One would have expected that
using zero weight for the PLP vectors (i.e., a purely articulatory distance), which are not very continuous,
would have reduced the error. Therefore, the fact that the results with dpmode are practically insensitive
to the distance used again indicates that the proliferation of modes caused by the nonsmooth GTM
model makes it impossible to select the correct ones.

10.2.4 Computational performance

Table 10.3 and figure 10.7 give the reconstruction time for a 1.73-second utterance (that of fig. 10.2, without
start or end silence intervals) for the methods mean, grmode and dpmode. The bottleneck of the mode-based
methods is the mode-finding procedure run at every frame, which takes longer the more missing variables there
are (particularly when the EPG variables are missing). The longest times correspond to P2, where the 62
EPG variables are always missing; for a real acoustic-to-articulatory mapping problem, the time would be far

13Neither scaling nor sphering solve in general the problem of using different units for each variable (fig. 2.8). This needs a
diagonal GTM model (section 2.12.4), which accounts for different scales along each axis in the noise locally (although such scales
are constant over the data space).
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Reconstruction time (seconds)

Mask threshold = 1
100 threshold = 1

20 threshold = 1
10 threshold = 1

5
(% missing) mean grmode dpmode grmode dpmode grmode dpmode grmode dpmode

P1(16%) 1.83 1.84 1.89 1.58 1.62 1.51 1.52 1.44 1.46
P2(84%) 1.45 523.58 527.38 202.53 204.50 112.06 112.68 54.76 53.78
P3(75%) 1.45 57.01 57.23 37.22 37.50 29.76 29.88 21.99 23.03
P4(51%) 1.59 6.13 6.20 4.42 4.47 3.68 3.72 2.84 2.87
P5(25%) 1.74 2.21 2.24 1.77 1.82 1.60 1.62 1.45 1.47
P6(51%) 1.61 301.77 300.53 117.08 120.66 66.18 66.60 31.11 31.25
P7( 7%) 0.42 71.95 72.45 69.35 67.66 64.74 66.66 62.34 62.48

Reconstruction error 1
N

∑N
n=1

∥
∥t(n) − t̂(n)

∥
∥

2

Mask threshold = 1
100 threshold = 1

20 threshold = 1
10 threshold = 1

5
(% missing) mean grmode dpmode grmode dpmode grmode dpmode grmode dpmode

P1(16%) 0.2919 0.2951 0.2935 0.2906 0.2929 0.2895 0.2941 0.2903 0.2960
P2(84%) 5.8094 9.9276 9.9251 10.1307 9.5446 9.5212 8.8867 8.1065 8.1206
P3(75%) 3.1482 2.7991 2.6490 2.8705 2.7278 2.8989 2.7895 2.9353 2.8415
P4(51%) 1.9147 1.7337 1.6942 1.7943 1.7679 1.8210 1.8048 1.8711 1.8500
P5(25%) 0.8694 0.7840 0.7635 0.8130 0.8008 0.8288 0.8227 0.8414 0.8359
P6(51%) 3.1562 1.8389 1.7431 2.0661 1.9883 2.4008 2.5410 2.7907 2.9043
P7( 7%) 0.4238 0.2788 0.2432 0.3102 0.2655 0.2997 0.2653 0.2696 0.2835

Table 10.3: Reconstruction time and error for the EPG-PLP mapping problem for the utterance “We tore
down the outbuildings” with N = 343 points (1.73 seconds), without start and end silence intervals and
without log-gain, with model GTMK=400. The values are given for methods mean, grmode and dpmode, for
various values of the threshold for removal of low-probability components; the higher the threshold, the larger
the error but the less computing time. The computer used was a Compaq XP1000 workstation with an Alpha
21264 CPU at 667 MHz and 768 megabytes of RAM memory. For the GTMK=900 model, the reconstruction
times were generally 2–6 times longer and the errors 5% lower on the average (using GTMK=400 as baseline).

shorter (roughly comparable to those of P4 or P5), since only around 20 variables or fewer would be missing.
The extra time spent by the dpmode in the dynamic programming search over that of the grmode is negligible.
For small amounts of missing data, the dpmode takes little longer than the mean.

The reconstruction times can be considerably reduced (down to one tenth for P2 and P6) with a mild
increase in reconstruction error (less than 17%) by raising the threshold for removal of low-probability compo-
nents (section 8.2.3): the default threshold of 1

100 means that all components of the conditional distribution
whose posterior probability is less than 1

100 th of the largest posterior probability are removed. An appropriate
value of this threshold should be carefully determined for the application under consideration. Note how,
contrarily to all other masks, for P2 the error consistently decreases when raising the threshold! This indicates
a very large number of spurious, low-height modes caused by a nonsmooth model.

10.2.5 Discussion

We have presented experiments for a mapping inversion problem similar to that of the acoustic-to-articulatory
mapping, using EPG data for the articulatory variables and PLP coefficients for the acoustic ones, with
a continuity constraint based on the Euclidean distance for both EPG and PLP variables and no further
preprocessing. The results for general missing data patterns have been similar to those of the previous chapter,
with the dpmode method attaining the lowest reconstruction error of all methods. A major difference has
occurred for the mapping PLP → EPG, where the dpmode has performed worse than mean, mlp and fa, due
to several factors: a poor, nonsmooth density model derived from a GTM model with too low dimensionality
of the latent space and using a spherical rather than diagonal noise model (partial improvements should
be expected if using a mixture of diagonal Gaussians); a very high dimensionality of the missing variables
(62), far higher than that of the real acoustic-to-articulatory mapping problem; and the fact that the EPGs
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Figure 10.7: Reconstruction time and error for the EPG-PLP mapping problem for the same utterance as
in table 10.3. For clarity and to highlight the dependence of the reconstruction time (left graph) and recon-
struction error (right graph) on the threshold for removal of low-probability components, only the curves for
method dpmode and masks P1–P3 and P6 are shown. When raising the threshold, the reconstruction time
decreases considerably, while the reconstruction error increases only slightly or, for mask P2, even decreases.

are largely undetermined by the acoustics for many phonemes. These results are not representative of what
should be expected for a genuine acoustic-to-articulatory mapping, which we leave for future research using
measured articulatory data that has become recently available (section 7.10.5). The reconstruction times for
the different masks give an indication of the performance as a function of the amount of missing variables for
a high-dimensional, heavily unconstrained problem.

More generally in the scope of the acoustic-to-articulatory mapping problem and of speech research, we
highlight the following properties of our method:

• The method does not break the nonuniqueness of the mapping by learning one branch of it or an average
of the branches: it directly addresses the nonuniqueness by representing all branches and selecting the
appropriate one only at reconstruction time.

• Both acoustic and articulatory data are used for training, but only the acoustics are necessary for testing.
This allows the combination of the method with acoustic models for ASR, e.g. by using an articulatory-
acoustic HMM, where the articulatory features are filled in by our method given the acoustic ones.

• A well known problem with codebook-based methods for the acoustic-to-articulatory mapping is that the
codebook vectors must be feasible articulatory configurations. In principle, the same problem can happen
in our approach: a mode of the conditional distribution might correspond to an unfeasible articulatory
configuration. This would be a symptom of a poor density model that assigns high probability mass to
areas that should be devoid of data: perhaps due to a bad local minimum or to under- or overfitting.
Whether this is a serious problem can only be ascertained in a practical implementation with articulatory
data.

• The relative freedom that characterises noncritical articulators to adopt different configurations should
be accounted for by our method as a multiplicity of modes in the corresponding conditional distribution.
If the noncritical articulators are really widely unconstrained for a given phonetic context then recovering
the actual configuration is not important, but if they are constrained to some extent by the anticipation
of a future, critical stage so that the configuration is determined by the context, then the global constraint
(continuity, muscle effort, etc.) may select the correct mode.

• Speech research has concentrated so far on one of two situations: either missing articulatory variables
and present acoustic variables (articulatory inversion, section 10.1) or partially present acoustic variables
disregarding articulatory variables (recognition of occluded speech, section 7.10.6). The combination of
both (“robust articulatory inversion” or even “robust ASR with articulatory information”) has not
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been investigated. For the purpose of reconstruction, our method can integrate both and any other
combination seamlessly without any modification.

• If using a latent variable model for the combined articulatory and acoustic data, it may be argued that,
since the articulatory variables (causally) determine the acoustic ones, one could use the articulatory
variables as latent variables; the mapping f from latent to observed space would then be interpretable
as the articulatory-to-acoustic mapping. The reason for not doing this is that the chosen articulatory
variables will also have a low intrinsic dimensionality resulting from the dependence of each articulator
on the others. A unified representation of the articulatory-acoustic data is obtained by using a common
set of abstract latent variables—which might be interpretable in terms of articulatory gestures after all.

❦
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Chapter 11

Conclusions

We conclude the thesis with some comments about our general approach, a discussion of the contributions of
the thesis and a suggestion for future work.

11.1 General approach of the thesis

Pattern recognition This is a thesis on pattern recognition: the aim of the methods proposed or reviewed
in it is to find structure or information about a system by learning a flexible model from data observed
in that system, with or without knowledge of the domain, by using generic properties that most physical
systems have (e.g. dependence between variables, such as continuity). Such algorithms may not tell about
the true, underlying nature of the system, but they can simulate the observed behaviour—just as we can very
accurately simulate one period of the function sinx with a fifth-degree polynomial or the planets’ trajectories
with a system of epicycles (as in Ptolemy’s geocentric model).

This does not mean that we reject domain knowledge. On the contrary, its judicious inclusion is desirable
(although sometimes a pattern recognition algorithm may work better in practice than a physically-derived
one). It does not mean either that the abstract representation of a pattern recognition model (e.g. its pa-
rameter estimates) are never interpretable in physical terms. For example, if carefully designed to avoid
non-identifiability (e.g. by regularising it) a latent variable model can indeed be interpretable.

Probabilistic models Most of the models discussed in this thesis, in particular latent variable models,
are probabilistic (also called stochastic or generative), i.e., they define a probability density for the data.
Probabilistic models have well known advantages over non-probabilistic ones:

• There is a well-defined objective function, the likelihood, which allows the development of principled
estimation techniques that optimise the objective function (such as gradient methods or, better still, EM
algorithms); and to compare the method with other probabilistic methods and to construct statistical
tests. Ideally, the likelihood should be combined with a prior distribution on the parameters for Bayesian
model comparison.

• To combine several probabilistic methods in a mixture, which is again a probabilistic model and has the
power of building a complex global model out of simple local ones.

• To predict any variable(s) as a function of any other variable(s) by using conditional probabilities. That
is, arbitrary classification, regression and missing data reconstruction (see chapter 7).

Therefore, probabilistic models are perhaps the most principled way to deal with the stochastic variability that
appears in nearly all practical applications. However, they have disadvantages with respect to non-probabilistic
models, mainly that it is harder to obtain a density model than a function and that the computations are
usually more complex.

Bayesian analysis One step further in probabilistic modelling is Bayesian analysis, where probability dis-
tributions are defined not just for the latent and observed variables but also for the parameters. Inference
is then carried out by Bayes’ theorem as usual but requires integrating over the parameters’ distributions.
Perhaps the greatest benefit of Bayesian methods is in model selection. However, their full application is very
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complicated theoretically and computationally—one just needs to see how complex it can get for the simple
case of a univariate Gaussian mixture using a hierarchical prior model (Richardson and Green, 1997). The
problem is in the marginalisation of complicated multivariate densities, just as in section 2.4 but now includ-
ing the parameters as well. Besides, approximate Bayesian schemes are of debatable efficacy when compared
with other model selection methods in real applications. Thus, while we subscribe in spirit to the Bayesian
framework, we have refrained from using it in this thesis because of these difficulties: our models use point
estimates for the parameters obtained by maximum likelihood (possibly with regularisation terms) and the
only random variables are the latent and observed variables.

11.2 Contributions of this thesis

The main contributions of this thesis are:

• Some extensions to the theory of latent variable models (chapter 2):

– The investigation of the definition and properties of the dimensionality reduction and reconstruction
mappings in continuous latent variable models and mixtures of them: continuity and why the
dimensionality reduction mapping is not the inverse of the mapping from latent to observed space.

– Some theoretical results for continuous latent variable models regarding identifiability, independence
relations and entropy.

– The extension of the GTM model to a diagonal noise model and the derivation of an associated
EM algorithm for maximum likelihood estimation (section 2.12.4). A diagonal noise model is useful
when the observed variables have different local scales of dispersion, which cannot be accounted for
by sphering the data. At the time of this writing, a Matlab implementation is not yet available.

• Two contributions to Bernoulli mixtures (chapter 3):

– The proof that the log-likelihood surface has no singularities of infinite value, which implies that
the EM algorithm for Bernoulli mixtures (known since Wolfe, 1970) converges to proper maxima
from almost every starting point. The existence of infinite-value or boundary singularities in other
mixtures makes estimation difficult in practice, as is well known, and we have given empirical
examples for mixtures of factor analysers (section 5.4.4.1) and Gaussian mixtures (section 9.2.3).

– Empirical evidence and some theoretical discussion that, while Bernoulli mixtures are non-identifiable
in theory (and so different values for the parameters can give rise to exactly the same distribution)
they are usually identifiable in practice. This restores confidence in interpreting parameters esti-
mated from samples for this type of mixtures. We also remind the fact that, for models which are
identifiable in theory (such as Gaussian mixtures), practical identifiability may not always hold.

• The application of latent variable models to electropalatographic (EPG) data, specifically the following
results (chapter 5):

– That linear dimensionality reduction methods (factor analysis, PCA) can be used to adaptively
derive EPG indices. Some of these indices roughly coincide with previously proposed, non-adaptive
EPG indices for data reduction, but others are new and better reflect the pattern of tongue-palate
contact of the speaker under consideration.

– That a two-dimensional, nonlinear model (GTM) performs better than any of the other models
(which use higher dimensions) in terms of log-likelihood, reconstruction error and visualisation.
We propose the two-dimensional representation of GTM as a map of EPG categories that can be
used to investigate articulatory dynamics (e.g. transition between categories, which can result in
undersampling discontinuities) or in speech therapy and language learning.

– That the intrinsic dimensionality of the EPG data is probably lower than previous estimates that
set it to 5 or more dimensions, but that the intrinsic manifold is nonlinear. This is relevant for
articulatory phonetics and the acoustic-to-articulatory mapping problem.

– That continuous latent variable models perform well with EPG data despite the binary character
of the latter.
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• The definition of the problem of missing data reconstruction for sequential data and the proposal, eval-
uation and probabilistic interpretation of an algorithm for its solution (chapter 7). As far as we know,
the definition of the general problem is new; in fact, we have not yet found an actual practical instance
of interest of it. Similar but not identical problems have been approached in the past by others: re-
gression and classification with missing inputs (e.g. recognition of occluded speech) and inference with
missing data. We have also suggested and partially investigated the application of the method to some
specific practical problems. A particularly important novel feature of our method is the emphasis in
preserving the nonuniqueness of the plausible values of a missing variable (rather than ignoring it) and
its implementation as the modes of a conditional distribution.

• The application of the missing data reconstruction method to a toy problem, a robot arm inverse kine-
matics problem and an EPG-acoustic mapping problem (chapters 9 and 10). Given that these problems
are either of very small size or of low practical interest, they must be regarded as evaluations of the
method, rather than solutions of real-world problems.

• The introduction of the concept of sparseness of a distribution (sections 7.3.1, 7.12.4 and 8.5), of par-
ticular interest for conditional distributions, to express the degree to which the conditioned-on variables
determine the conditioned variables; the investigation of conditions that a quantitative measure of sparse-
ness should satisfy; the proposal of entropy as an acceptable, though not perfect, sparseness measure; and
the derivation of lower and upper bounds for the entropy of a Gaussian mixture (which is not analytically
computable).

• Several results about the modes of Gaussian mixtures (chapter 8), as follows. The proposal and partial
proof of a conjecture for a type of finite mixtures of Gaussian distributions: that the number of modes
is upper bounded by the number of components in the mixture and that the modes are contained in
the convex hull of the component centroids. The development and analysis of two iterative algorithms
for exhaustive mode finding in Gaussian mixtures inspired by that conjecture: one based on gradient-
quadratic search and the other one on fixed-point search, both of proven efficacy (from toy problems
that can be visualised to large problems of 900 components and 75 dimensions). The derivation of
approximate error bars (confidence intervals) for the location of each mode.

Apart from their use in our reconstruction method, the mode-finding algorithms are generally applicable
to other problems, such as clustering (e.g. determination of subclustering within galaxy systems) or
Bayesian analysis (scrutiny of the posterior modes).

• Some of the review material is of interest by its novelty, extension or because it straddles different fields:

– Chapter 2 is an up-to-date, unifying review of continuous latent variable models: the definition in
terms of prior distribution in latent space, mapping from latent to observed space and noise model
allows a clear comparison of all known types of continuous latent variable models. The only existing
treatments of latent variable models have been given in the statistics literature; these include spe-
cialised books on factor analysis (for example, Harman, 1967; McDonald, 1985; Basilevsky, 1994),
specialised books on latent variable models (for example, Lazarsfeld and Henry, 1968; Everitt, 1984;
Bartholomew, 1987; Berkane, 1997) or chapters of books on multivariate analysis (for example, Mar-
dia et al., 1979; Krzanowski, 1988; Morrison, 1990). Such literature deals with both discrete and
continuous observed and latent variables, but the treatment of the case where both observed and
latent variables are continuous is always restricted to linear-normal methods (factor analysis, non-
probabilistic PCA) and with an emphasis on interpretability rather than dimensionality reduction.
Our review fills this gap by dealing with recent models developed in the statistical learning litera-
ture (GTM, independent component analysis, independent factor analysis) and by emphasising the
dimensionality reduction ability of continuous latent variable models and mixtures of them.

– Chapter 4 is quite comprehensive, bringing together aspects usually found in different fields, such
as the geometry of high-dimensional Euclidean spaces or space-filling curves. The discussion of
multidimensional scaling methods, based on either straight-line or geodetic distances, is particu-
larly extensive. The chapter also introduces an idea for using discrete variables for dimensionality
reduction.

– In chapter 6, our goal is not to give a comprehensive treatment of inverse problem theory (which
is well covered in, e.g. Tarantola, 1987; Parker, 1994; Engl et al., 1996; Scales and Smith, 1998;
Snieder and Trampert, 1999) but to introduce it to the pattern recognition community, where it is
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often taken to mean mapping inversion; to show when an inverse problem reduces to a mapping
inversion problem (namely, when we have locally independent inverse problems); and to show the
links between latent variable models and Bayesian inverse problem theory.

– The review of the acoustic-to-articulatory mapping problem of section 10.1 updates that of Schroeter
and Sondhi (1994). Of particular interest is the survey of recent speech models that incorporate
production information. We also give a view of the motor theory in terms of latent variables.

• The Matlab implementation of several of the algorithms and tools (see appendix C for details).

11.3 Directions for further work

• Specifically for latent variable model theory:

– Development of nonlinear models with locally varying noise model, i.e., where the parameters of
the noise model depend on the latent variables. This is desirable because using a fixed noise model
results in an intermediate covariance that does not fit the data well in some areas of data space.
However, this extension is difficult analytically and besides would suffer from two computational
problems: the appearance of infinite-value singularities in the log-likelihood surface, to which the
EM algorithm can be easily attracted; and a larger demand for training data, particularly in models
that sample the latent space (such as GTM).

– The development of latent variable models for periodic variables. This is desirable because mod-
elling a periodic observed variable with a nonperiodic latent variable results in a discontinuous
dimensionality reduction mapping. An application of this would be a dimension-reduction model of
maps of mammal visual cortex (Swindale, 1996), where one of the “observed” variables, the orien-
tation of a line in the visual field, is periodic in [0, π). GTM can be extended to deal with periodic
variables (Chris Williams, pers. comm.).

• Integration of latent variable models, which have the ability for dimensionality reduction and missing
data reconstruction, with sequence or time series models. This is something we have not actually done
in this thesis: our application of latent variable models to sequential data—dimensionality reduction of
EPG data in chapter 5 and missing data reconstruction of various types of trajectories in chapters 9
and 10—has not modelled its temporal evolution. Such integration would be particularly useful in
automatic speech recognition, which can be improved by reconstructing the articulatory configuration
and adding it to the acoustics.

• Development of practical, reliable algorithms for model selection regarding the dimensionality of the
latent space—a problem related to the estimation of the intrinsic dimensionality of a data set. The
problem, which is not new, is difficult for several reasons:

– If using the simplest technique of model selection, trial-and-error to find the best dimensionality,
the computation time is high and the curse of the dimensionality limits the maximal dimensionality
that can be implemented (depending on each method). But, more importantly, this technique is not
well grounded—it amounts to inspecting the dependence on the number of dimensions used of the
likelihood, reconstruction error, stress or some other fitness measure—and can result in unreliable
estimates of the intrinsic dimensionality, more so if the model is not suitable for the data.

– None of the more sophisticated techniques, such as cross-validation, minimum description length,
minimum message length or Bayesian analysis, is generally successful. The Bayesian framework is
the most principled one, but it is analytically intractable for any model of moderate complexity.
Practical implementation of Bayesian techniques is a subject of active research in statistics and
pattern recognition.

– It is dependent on prior information that we often do not really know how to express, e.g. how much
of the variation is noise and how much intrinsic? Do we need a two-dimensional linear model or a
one-dimensional nonlinear one? This is further complicated by our lack of intuition of the geometry
of high-dimensional Euclidean spaces.

• Development of continuous latent variable models (and generally density models and mapping approxi-
mators) whose computational complexity is affected as little as possible by the curse of the dimensionality
while keeping a high degree of flexibility. As the previous suggestion, this is neither a new nor an easy
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problem, but it is certainly of crucial practical relevance. On the other hand, as processing power in-
creases, we may be able to work comfortably with intrinsic dimensions up to a value good enough for
many applications. For example, 3 should be enough for a moderately complex robot arm, while speech
may require more than 5.

• Our method for missing data reconstruction is very general and so could have many practical applica-
tions. We have described some in the thesis in some detail: decoding of neural population activity for
hippocampal place cells; wind field retrieval from scatterometer data; inverse kinematics and dynam-
ics of a redundant manipulator; the acoustic-to-articulatory mapping; audiovisual mappings for speech
recognition; and recognition of occluded speech.

We have also hinted at several extensions of the missing data reconstruction algorithm in chapter 7:

– Multidimensional constraints, e.g. for data with continuity over a field rather than along a curve.

– Use of different constraint types, e.g. smoothness, forward mapping or quadratic potential energy.

– The use of bump finding instead of mode finding, which could be much faster and robust. One
difficulty is that, unlike modes, bumps are not well defined.

– The estimation of smooth density models whose conditional distributions do not contain spurious
modes.

– The treatment of unbounded horizon problems, where the sequence is infinite.

– The treatment of discontinuities in the data, either intrinsic or due to undersampling.

❦

284



Appendix A

Mathematical formulae

This appendix contains a collection of well-known mathematical results, stated without demonstration, that
are used throughout the thesis. The reader is referred to standard texts on calculus, algebra, probability theory
and information theory for proofs and background material.

A.1 Matrix identities

Definition A.1.1 (Penrose). The pseudoinverse matrix (or generalised inverse, or Moore-Penrose inverse)
of a p× q matrix A is the q × p matrix A+ that verifies the following conditions:

AA+ and A+A are symmetric (A.1a)

AA+A = A (A.1b)

A+AA+ = A+ (A.1c)

It can be proven that A+ exists and is unique for any matrix (Bjerhammar, 1973).

Theorem A.1.1 (Partitioned matrices). If A =
(

A11 A12

A21 A22

)
is a matrix partitioned in blocks, then:

(i) |A| =
∣
∣A11

∣
∣
∣
∣A22 −A21 A−1

11 A12

∣
∣ =

∣
∣A22

∣
∣
∣
∣A11 −A12 A−1

22 A21

∣
∣.

(ii) If all the necessary inverses exist, the inverse A =
(

A11 A12

A21 A22

)

is given by

A11 = (A11 −A12 A−1
22 A21 )−1 A12 = −A11A12 A−1

22 = −A−1
11 A12 A22

A22 = (A22 −A21 A−1
11 A12 )−1 A21 = −A22A21 A−1

11 = −A−1
22 A21 A11.

Theorem A.1.2 (Sums of products). Given Ap×p, Bp×q, Cq×q and Dq×p, if all the necessary inverses
exist:

(A + BCD)−1 = A−1 −A−1B(C−1 + DA−1B)−1DA−1 (A.2)

|A + BD| = |A|
∣
∣Ip + A−1BD

∣
∣ = |A|

∣
∣Iq + DA−1B

∣
∣ . (A.3)

Eq. (A.2) is the Sherman-Morrison-Woodbury (SMW) formula.

For proofs see e.g. Golub and van Loan (1996) or simply confirm them by substitution.

Theorem A.1.3 (Matrix differentiation). Let A = (aij) be a square matrix and A−1 def
= (a−1

ij ) its inverse:

∂

∂aij
ln |A| = a−1

ji

∂

∂aij
a−1
lm = −a−1

li a
−1
jm

∂f

∂a−1
ij

= −
∑

l,m

ajm

(
∂f

∂alm

)

ali. (A.4)

To prove the previous identities, use the cofactors. For example, |A| = ∑

j aij cof aij for any row i. Then:

∂

∂aij
ln |A| = cof aij

|A| ⇒
∂

∂A
ln |A| = (adjA)T

|A| = (AT )−1.
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A.2 Moments and cumulants of a distribution

The moments and cumulants of the density p(x) of a random variable x are defined as follows:

Moment of order m: µm(p) = Ep(x) {xm} = dm

dsm Ep(x) {esx}
∣
∣
s=0

.

Cumulant of order m: km(p) = dm

imdsm ln Ep(x)
{
eisx

}∣
∣
s=0

, with i =
√
−1.

The cumulant of order 4 is called the kurtosis of the distribution1,

k4 = µ4 − 4µ3µ1 − 3µ2
2 + 12µ2

1µ2 − 6µ4
1,

and indicates how peaked and heavy-tailed the distribution is. For symmetric zero-mean distributions µ2 is
the variance and k4 = µ4 − 3µ2

2 (sometimes written as k4 = µ4

µ2
2
− 3). We define the following for symmetric

and unimodal distributions:

• A mesokurtic distribution has zero kurtosis, like the normal.

• A supergaussian or leptokurtic distribution has positive kurtosis, that is, its peak is higher and its tails
heavier than those of the normal distribution of the same variance.

• A subgaussian or platykurtic distribution has negative kurtosis, that is, its peak is lower and its tails
lighter than those of the normal distribution of the same variance.

A.3 Properties of the normal distribution

Theorem A.3.1. Let x ∼ Np(µ,Σ). Then:

(i) Aq×p ⇒ Ax + b ∼ Nq(Aµ + b,AΣAT ).

(ii) Σ−1/2(x− µ) ∼ Np(0, I).

(iii) Σ = σ2I and AAT = I⇒ Ax ∼ Nq(Aµ, σ2I).

(iv) Partitioning x = ( x1
x2

) as p = r + s and correspondingly µ =
(µ1

µ2

)
and Σ =

(
Σ11 Σ12

Σ21 Σ22

)
, then:

x1 ∼ Nr(µ1,Σ11) x2|x1 ∼ Ns
(
µ2 + Σ21 Σ−1

11 (x1 − µ1),Σ22 −Σ21 Σ−1
11 Σ12

)
.

For proofs see e.g. Mardia et al. (1979).

A.4 Information theory properties

For proofs and a thorough treatment of information theory see e.g. Cover and Thomas (1991).

Definition A.4.1. Given discrete random variables X, Y and Z, the following functionals, depending only on
the distribution of the associated variable(s), are defined (in all cases the expectations are taken with respect
to the joint distribution of all variables involved, unless indicated):

• Entropy H(X) = E
{

ln 1
p(X)

}

: a measure of the uncertainty in a random variable, or a measure of the

amount of information required on the average to describe it.

• Conditional entropy H(X|Y ) = E
{

ln 1
p(X|Y )

}

.

• Joint entropy H(X,Y ) = E
{

ln 1
p(X,Y )

}

.

• Kullback-Leibler distance, or directed divergence, or relative entropy D (p‖q) = Ep

{

ln p(X)
q(X)

}

: a measure

of the distance between two distributions p and q, or a measure of the inefficiency (in bits of a code if
the logarithm is in base 2) of assuming that the distribution is q when it is p.

1Sometimes the standardised kurtosis is employed, obtained by dividing k4 by the squared variance σ4, and is often expressed

as
Ep(s){(s−µ)4}

σ4 − 3.
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• Conditional relative entropy D (p(Y |X)‖q(Y |X)) = Ep

{

ln p(Y |X)
q(Y |X)

}

.

• Mutual information I(X;Y ) = E
{

ln p(X,Y )
p(X)p(Y )

}

: a measure of the amount of information that one random

variable contains about another one, or of the reduction in the uncertainty of one random variable due
to the knowledge of the other.

• Conditional mutual information I(X;Y |Z) = E
{

ln p(X,Y |Z)
p(X|Z)p(Y |Z)

}

.

Theorem A.4.1. Properties of the entropy, Kullback-Leibler distance and mutual information:

(i) H(X) ≥ 0.

(ii) H(Y |X) 6= H(X|Y ) in general.

(iii) H(X,Y ) = H(X) +H(Y |X) and H(X,Y |Z) = H(X|Z) +H(Y |X,Z).

(iv) H(X|Y ) ≤ H(X) with equality if and only if X and Y are independent: conditioning reduces entropy.
Note that this is only true in the average, since for a particular value y of Y it can happen that H(X|Y =
y) be greater, equal or smaller than H(X).

(v) H(X,Y ) ≤ H(X) +H(Y ) with equality if and only if X and Y are independent: independence bound on
entropy.

(vi) I(X;Y ) ≥ 0 with equality if and only if X and Y are independent.

(vii) I(X;Y |Z) ≥ 0 with equality if and only if X and Y are independent given Z.

(viii) I(X;Y ) = I(Y ;X): X says as much about Y as Y says about X.

(ix) I(X;Y ) = H(X)−H(X|Y ): reduction in the uncertainty of X due to the knowledge of Y .

(x) I(X;Y ) = H(X) +H(Y )−H(X,Y ).

(xi) I(X;X) = H(X): entropy = self-information.

A.5 The Jacobian

For a function f : U → RD with U open in RL, the derivative f ′ = ∂f
∂x is a linear mapping from RL to RD. Its

matrix of partial derivatives J(x0)
def
=
(
∂f
∂x

)∣
∣
x0

= (jdl) with jdl = ∂fd

∂xl

∣
∣
x0

is called Jacobian matrix or simply

Jacobian and its determinant J(x0) is called Jacobian determinant or, confusingly enough, Jacobian as well:

J : RL −→ R

x0 7→ J(x0) = |J(x0)| .

When we use the term Jacobian in this work, the context will make clear what meaning we refer to.
A point x is called singular if the Jacobian of f at x is singular (or equivalently if the derivative f ′ at x is

not surjective). Otherwise it is called regular.

If we assume probability distributions on RL and RD, then the transformation x
f−→ t distorts the space RL,

but the probability of a hyperrectangle is conserved: p(x)dx = p(t)dt. Thus p(t) = p(f(x)) = p(x) |J(x)|−1

where J(x) is the Jacobian of f at x. This gives a recipe to compute the density induced by a transformation.

A.6 The inverse function theorem

Intuitively, the inverse function theorem allows to solve the equation f(x) = t locally and besides gives x as a
smooth function of t.

Theorem A.6.1 (Inverse function theorem). Let U be an open subset of RL and f : U → RD be a
continuously differentiable function. Let x0 ∈ U be a point where the linear function f ′(x0) : RL → RD is
invertible (or, equivalently, the Jacobian of f is nonsingular). Then there exists an open neighbourhood W so
that V = f(W) is open in RD and f |W :W → V (the restriction of f to W) is a diffeomorphism.
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Figure A.1: Examples of manifolds.

An inverse function may also exist when the Jacobian of f at x0 is singular, e.g. for f(x)
def
= x3 at x0 = 0.

An alternative formulation (derived from theorem A.7.1) of the inverse function theorem that remarks the
dimensionality of the image space is the following:

Theorem A.6.2. If t ∈ RD is a regular value of the continuously differentiable function f : U → RD with U
open in RL, then f−1(t) is empty or it is a submanifold of U of dimension L−D.

Spivak (1965, pp. 34–43) gives proofs and more background about this central result and its relative, the
implicit function theorem.

A.7 Manifolds in RD

This section (which is mainly based on the book by Spivak, 1965) briefly formalises the concept of L-dimensional
manifold in RD. The main idea to keep in mind is that, while a manifold of RD itself is just a subset of RD,
it has a dimension from a geometrical point of view. Indeed, an L-dimensional manifold in RD is a subset of
RD that has only L degrees of freedom, i.e., that can be described with only L coordinates. For example, if
we restrict ourselves to the case of vector subspaces, a vector subspace of dimension L can be described by a
system of L linearly independent vectors (a basis); the projection of a vector t of the subspace onto that basis
gives L real numbers, which are the coordinates of t in the coordinate system of that basis. Needless to say,
the election of the coordinate system is not unique.

Let us now define more formally the previous ideas. First, we introduce the following naming convention:

• We will call L-manifold an L-dimensional manifold in RD.

• We will consider that a mapping is differentiable if and only if it is continuous and has continuous
derivatives of all orders.

• A diffeomorphism h is a differentiable mapping h : U −→ V between two open sets U ,V ⊂ RD with
differentiable inverse h−1.

Definition A.7.1. M⊂ RD is an L-manifold if and only if for all t ∈M the following condition holds:

(M) There exist two open sets U ,V ⊂ RD with t ∈ U and a diffeomorphism h : U −→ V such that:

h(U ∩M) = V ∩ (RL × {0}) = {y ∈ V : yL+1 = · · · = yD = 0}.

For example, in RD:

• A point is a 0-manifold.

• An L-dimensional vector subspace is an L-manifold.

• The hollow D-sphere is an (D − 1)-manifold.

• Any open subset is an D-manifold.

Figure A.1 shows two examples of manifolds.
Most manifolds can be expressed by a functional formula, like the hollow unit D-sphere:

∑D
d=1 t

2
d = 1. The

following theorem helps to find the dimension in those cases.
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Figure A.2: Coordinate system of a 2-manifold in R3.

Theorem A.7.1. Let A be an open subset in RD and g : A −→ RL differentiable. If the Jacobian g′(t) of g
has rank L for g(t) = 0, then g−1(0) is an (D − L)-manifold of RD.

For example, SD1 = g−1(0) for g : RD −→ R defined as g(t) = ‖t‖2 − 1 =
∑D
d=1 t

2
d − 1.

The following theorem introduces the concept of coordinate system of a manifold.

Theorem A.7.2. M⊂ RD is an L-manifold of RD if and only if for all t ∈M the following condition holds:

(C) There exist two open sets U ⊂ RD, W ⊂ RL with t ∈ U , and a differentiable one-to-one mapping
f :W −→ RD such that:

1. f(W) =M∩U .

2. The Jacobian f ′(x) has rank L for all x ∈ W.

3. f has a continuous inverse f−1 : f(W) −→W.

f is called a coordinate system around t. f and U ∩M define the coordinate neighbourhood ofM.
Figure A.2 illustrates the point.

Finally we introduce the manifolds-with-boundaries.

Definition A.7.2. M ⊂ RD is an L-manifold-with-boundary if and only if for all t ∈ M either condition
(M) or the following condition hold:

(M’) There exist U , V open subsets of RD with t ∈ U and a diffeomorphism h : U −→ V such that:

h(U ∩M) = V ∩ (HL × {0}) = {y ∈ V : yL ≥ 0 and yL+1 = · · · = yD = 0}

and h(t) has its Lth component equal to 0. HL def
= {t ∈ RL : tL ≥ 0} is the half-space of RL.

This definition separates a manifold M into two disjoint sets:

• The boundary of M, ∂M def
= {t ∈M : (M’) holds}, which is a (L− 1)-manifold.

• The rest, M\ ∂M = {t ∈M : (M) holds}, which is an L-manifold.

Figure A.3 gives two examples of manifolds-with-boundaries.

❦
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Appendix B

The ACCOR database

The EUR-ACCOR database (ESPRIT II Basic Research Actions 3279 and 7098; Marchal and Hardcastle,
1993) was designed for the cross-language study of coarticulation. It contains different kinds of measurements
(electropalatography, pneumotachography, laryngography and some electromagnetic articulography, as well as
the original acoustic signal) for utterances, isolated words and nonsense items spoken by several subjects in
seven different European languages (French, English, German, Italian, Catalan, Swedish and Irish Gaelic) and
varying speech styles (slow, fast, etc.).

The EPG data consists of 62-bit frames sampled at 200 Hz. Each subject was encouraged to wear the
artificial palate for a least a 3 hour period prior to recording to become accustomed to the feel of the device
in the mouth. The acoustic waveform was sampled at 20 kHz with 16 bits per sample.

Table B.1 shows the sentences used in our experiments and table B.2 the 6 different subjects used from
the English EPG database (all English native speakers but with different accents).

I am grateful to Dr. Alan Wrench for providing me with the ACCOR data and for clarifying some technical
questions about it.

❦
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Number Sentence and phonemic transcription if available Duration (s)

1 The hostess should always wear clean gloves���&��J O#��?.�������'2����J @�4A����%-J ��:��-J ��4A5A��J "�4�E���%�� 4.05

2 When the song’s the thing, the cast can’t sing 3.90

3 All the keys have been handed out, Bill��J @�4 �&�-J �.5�%QO#���oP#5A��J O;BM���#����J G�?
�J P���4�� 3.41

4 I prefer Kant to Hobbes for a good bedtime book�(G&�!H#/2�9J �8K�J ��BM�
�2��J O#D�P#%C����/��-J "#?.��J P$:���2G&��S�J P$?���� 4.00

5 Fred can go, Susan can’t go, and Linda is uncertain��J ��/������.����"���?N�&�oJ ��>#%�����J �.<#�
F"���?N�
��������J 4����;���Q��%C���+J �2K�����$� 4.83

6 We tore down the outbuildings 2.92

7 Bella ran past the school, then came towards us 4.09

8 The cold front is expected to pass this way on Sunday 4.21

9 The catalogue lists just his own brand of tyre���&��J ��B����4�D�"�J 4����s2�QJ ,CE��s�O���%-J ��?���J P�/2BM���N����J �G&����� 4.16

10 Put your hat on the hatrack and your coat in the cupboard 4.00

11 She climbed up to see behind the clock 3.25

12 It’s a good thing he’s not just fooling around 3.50

13 Stats by such a student will surely be trashed after tests 5.16

14 The lads showed us a strategy for trimming his moustache surreptitiously 5.23

Table B.1: ACCOR database sentences used in the experiments. Nicolaidis and Hardcastle (1994) give detailed
annotations of some of the utterances (I am grateful to Prof. Hardcastle for sending me a copy of this report).

Speaker Sex Accent
FG female Southern English
HD female Northern English
KM female Southern English
PD male Southern English
RK male Southern English
SN female Southern English

Table B.2: Speakers recorded for the English EPG ACCOR database.
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Appendix C

WWW files

The following online material is available from my web page at http://www.dcs.shef.ac.uk/~miguel:

• This thesis and some publications resulting from it.

• A BibTEX file containing the bibliography for the thesis. Most of the entries contain also the abstract,
keywords, URL (if the reference is available online), related software and other additional information.

• Associated Matlab software:

– Factor analysis and varimax rotation (section 2.6.1).

– Principal component analysis (section 2.6.2).

– Mixture of multivariate Bernoulli distributions (chapter 3).

– Tools for imaging EPG frames (chapter 5).

– Mode-finding algorithm and error bars computation (chapter 8).

Further Matlab software of more difficult encapsulation, such as the extensions to GTM for sequence
reconstruction and the continuity constraint implementation with dynamic programming, is available
directly from the author (email miguel@dcs.shef.ac.uk).

❦
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