
Chapter 6

Inverse problems and mapping
inversion

6.1 Introduction

The concepts of “inverse problem” and “mapping inversion” are often used interchangeably in the machine
learning literature, although they denote different things. The aim of this chapter is: to introduce the area of
(Bayesian) inverse problem theory; to compare it with general Bayesian analysis and in particular with latent
variable models; and to differentiate it from the problems of mapping inversion and mapping approximation.

Section 6.2 defines inverse problem theory, explains the reasons for non-uniqueness of the solution and
reviews Bayesian inverse problem theory, including the topics of the choice of prior distributions, stability
and regularisation. It also describes several examples of inverse problems in some detail to clarify the theory
and its interpretation. Section 6.3 compares Bayesian inverse problem theory with general Bayesian analysis
and in particular with latent variable models. Section 6.4 defines (statistical) mapping inversion, mapping
approximation and universal mapping approximators.

6.2 Inverse problem theory

6.2.1 Introduction and definitions

Inverse calculations involve making inferences about models of physical systems from data1. The scientific
procedure to study a physical system can be divided into three parts:

1. Parameterisation of the system: discovery of a minimal set of model parameters2 whose values completely
characterise the system.

2. Forward modelling : discovery of the physical laws allowing, for given values of the parameters, predictions
of some observable or data parameters to be made.

3. Inverse modelling : use of actual measurements of the observed parameters to infer the values of the
model parameters. This inference problem is termed the inverse problem.

The model parameters conform the model spaceM, the observable parameters conform the data space D and
the union of both parameter sets conforms the parameter space X = D×M. See section 6.2.3.1 for a further
interpretation of the model parameters.

Usually the forward problem is a well-defined single-valued relationship (i.e., a function in the mathematical
sense) so that given the values of the model parameters the values of the measured parameters are uniquely

1Tarantola (1987) claims that inverse problem theory in the wide sense has been developed by people working with geophysical
data, because geophysicists try to understand the Earth’s interior but can only use data collected at the Earth’s surface. However,
inverse problems appear in many other areas of physics and engineering, some of which are briefly reviewed in section 6.2.4.

2The term parameters is used in inverse problem theory to mean both the variables and the parameters of a model, as these
terms are usually understood in machine learning. Throughout this chapter, we will keep the notation and naming convention
which is standard in inverse problem theory. In section 6.3 we discuss the point of view of probabilistic models.
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identified. This is often due to causality in the physical system. But often this forward mapping is many-to-
one, so that the inverse problem is one-to-many: given values of the observed parameters, there is more than
one model (possibly an infinite number) that corresponds to them.

Thus, if g :M→D is the forward mapping, then d = g(m) is unique given m, but its inverse g−1(d) can
take several values for some observed d ∈ D.

The example in section 6.2.4.1 illustrates this abstract formulation.

6.2.1.1 Types of inverse problems

Inverse problems can be classified as:

Continuous Most inverse problems are of this type. The model to be estimated is a continuous function in
several variables. For example, the mass density distribution inside the Earth as a function of the space
coordinates.

Discrete There is a finite (actually numerable) number of model parameters to be estimated. Sometimes
the problem itself is discrete in nature, e.g. the location of the epicentre in the example 6.2.4.1, which
is parameterised by the epicentre coordinates X and Y . But most times, the problem was originally
continuous and was discretised for computational reasons. For example, one can express the mass density
distribution inside the Earth as a parameterised function in spherical coordinates (perhaps obtained as
the truncation of an infinite parameterised series) or as a discrete grid (if the sampling length is small
enough).

In this chapter we deal only with discrete inverse problems. Tarantola (1987) discusses both discrete and
continuous inverse problems.

6.2.1.2 Why the nonuniqueness?

Nonuniqueness arises for several reasons:

• Intrinsic lack of data: for example, consider the problem of estimating the density distribution of matter
inside the Earth from knowledge of the gravitational field at its surface. Gauss’ theorem shows that there
are infinitely many different distributions of matter density that give rise to identical exterior gravitational
fields. In this case, it is necessary to have additional information (such as a priori assumptions on the
density distribution) or additional data (such as seismic observations).

• Uncertainty of knowledge: the observed values always have experimental uncertainty and the physical
theories of the forward problem are always approximations of the reality.

• Finiteness of observed data: continuous inverse problems have an infinite number of degrees of freedom.
However, in a realistic experiment the amount of data is finite and therefore the problem is underdeter-
mined.

6.2.1.3 Stability and ill-posedness of inverse problems

In the Hadamard sense, a well-posed problem must satisfy certain conditions of existence, uniqueness and
continuity. Ill-posed problems can be numerically unstable, i.e., sensitive to small errors in the data (arbitrarily
small changes in the data may lead to arbitrarily large changes in the solution).

Nonlinearity has been shown to be a source of ill-posedness (Snieder and Trampert, 1999), but linearised
inverse problems can often be ill-posed too due to the fact that realistic data is finite. Therefore, inverse
problems in general might not have a solution in the strict sense, or if there is a solution, it might not be
unique or might not depend continuously on the data. To cope with this problem, stabilising procedures such
as regularisation methods are often used (Tikhonov and Arsenin, 1977; Engl et al., 1996). Bayesian inversion
is, in principle, always well-posed (see section 6.2.3.5). Mapping inversion (section 6.4) is also a numerically
unstable problem but, again, probabilistic methods such as the one we develop in chapter 7 are well-posed.

6.2.2 Non-probabilistic inverse problem theory

For some inverse problems, such as the reconstruction of the mass density of a one-dimensional string from
measurements of all eigenfrequencies of vibration of the string, an exact theory for inversion is available (Snieder
and Trampert, 1999). Although these exact nonlinear inversion techniques are mathematically elegant, they
are of limited applicability because:
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• They are only applicable to idealistic situations which usually do not hold in practice. That is, the
physical models for which an exact inversion method exists are only crude approximations of reality.

• They are numerically unstable.

• The discretisation of the problem caused by the fact that the data are only available in a finite amount
makes the problem underdetermined.

Non-probabilistic inversion methods attempt to invert the mathematical equation of the forward mapping
(for example, solving a linear system of equations by using the pseudoinverse). These methods cannot deal
with data uncertainty and redundancy in a natural way, and we do not deal with such methods here. A more
general formulation of inverse problems is obtained using probability theory.

6.2.3 Bayesian inverse problem theory

The standard reference for the Bayesian view of (geophysical) inversion is Tarantola (1987), whose notation we
use in this section; the standard reference for the frequentist inverse theory is Parker (1994); other references
are Scales and Smith (1998) and Snieder and Trampert (1999).

In the Bayesian approach to inverse problems, we use physical information about the problem, plus possibly
uninformative prior distributions, to construct the following two models:

• A joint prior distribution ρ(d,m) in the parameter space X = D×M. This prior distribution is usually
factorised as ρD(d)ρM(m), because by definition the a priori information on the model parameters is
independent of the observations. However, it may happen that part of this prior information was obtained
from a preliminary analysis of the observations, in which case ρ(d,m) might not be factorisable. If no
prior information is available, then an uninformative prior may be used (see section 6.2.3.2).

• Using information obtained from physical theories we solve the forward problem, deriving a deterministic
forward mapping d = g(m). If a noise model f (typically normal) is applied, a conditional distribution
θ(d|m) = f(d − g(m)) may be derived. For greater generality, the information about the resolution
of the forward problem is described by a joint density function θ(d,m). However, usually θ(d,m) =
θ(d|m)µM(m), where µM(m) describes the state of null information on model parameters.

Tarantola (1987) postulates that the a posteriori state of information is given by the conjunction of the two
states of information: the prior distribution on the D ×M space and the information about the physical
correlations between d and m. The conjunction is defined as

σ(d,m)
def
=
ρ(d,m)θ(d,m)

µ(d,m)
(6.1)

where µ(d,m) is a distribution representing the state of null information (section 6.2.3.2). Thus, all available
information is assimilated into the posterior distribution of the model given the observed data, computed by
marginalising the “joint posterior distribution” σ (assuming factorised priors ρ(d,m) and µ(d,m)):

σM(m) =

∫

D
σ(d,m) dd = ρM(m)L(m) (6.2)

where the likelihood function L, which measures the data fit, is defined as:

L(m)
def
=

∫

D

ρD(d)θ(d|m)

µD(d)
dd.

Thus, the “solution” of the Bayesian inversion method is the posterior distribution σM(m), which is unique
(although it may be multimodal and even not normalisable, depending on the problem). Usually a maximum
a posteriori (MAP) approach is adopted, so that we take the model maximising the posterior probability σ:

mMAP
def
= maxm∈M σM(m).

Likewise, the posterior distribution in the data space is calculated as

σD(d) =

∫

M
σ(d,m) dm =

ρD(d)

µD(d)

∫

M
θ(d|m)ρM(m) dm

which allows to estimate posterior values of the data parameters (recalculated data).
In practice, all uncertainties are described by stationary Gaussian distributions:
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• likelihood L(m) ∼ N (g(m),CD)

• prior ρM(m) ∼ N (mprior,CM).

A more straightforward approach that still encapsulates all the relevant features (uninformative priors and
an uncertain forward problem) is simply to obtain the posterior distribution of the model given the observed
data as

p(m|d) =
p(d|m)p(m)

p(d)
∝ p(d|m)p(m). (6.3)

This equation should be more familiar to statistical learning researchers.

6.2.3.1 Interpretation of the model parameters

Although the treatment of section 6.2.3 is perfectly general, it is convenient to classify the model parameters
into one of two types:

• Parameters that describe the configuration or state of the physical system and completely characterise
it. In this case, they could be called state variables as in dynamical system theory. We represent them
as a vector s. Examples of such parameters are the location of the epicentre in example 6.2.4.1 or
the absorption coefficient distribution of a medium in CAT (example 6.2.4.3). These parameters are
independent, in principle, of any measurements taken of the system (such as a particular projection in
CAT or a measurement of the arrival time of the seismic wave in example 6.2.4.1).

• Parameters that describe the experimental conditions in which a particular measurement of the system
was taken. Thus, for each measurement dn we have a vector cn indicating the conditions in which it
was taken. For example, in 2D CAT (example 6.2.4.3) one measurement is obtained from a given X-ray
source at plane coordinates x, y and at an angle θ; thus cn = (xn, yn, θn) and the measurement dn is
the transmittance. In example 6.2.4.1, one measurement is taken at the location (xn, yn) of station n;
and so on. If there are N measurements, then the model parameters are {cn}Nn=1 (in addition to the s
model parameters) and one can postulate prior distributions for them to indicate uncertainties in their
determination. However, usually one assumes that there is no uncertainty involved in the conditions
of the measurement and takes these distributions as Dirac deltas. Of course, the measured value dn
can still have a proper distribution reflecting uncertainty in the actual measurement. In this way, the
estimation problem is simplified, because all {cn}Nn=1 model parameters are considered constant, and
only the s model parameters are estimated.

From a Bayesian standpoint, there is no formal difference between both kinds of model parameters, state s and
experimental conditions c—or between model parameters m and data parameters d, for that matter—because
probability distributions are considered for all variables and parameters of the problem.

Thus, if there are N measurements, the forward mapping is d = g(m) with d = (d1, . . . ,dN ) and m
including both kinds of parameters (state variables and experimental conditions): m = (s, c1, . . . , cN ). Usually
the measurements are taken independently, so that

ρD(d) =

N∏

n=1

ρD,n(dn) µD(d) =

N∏

n=1

µD,n(dn)

and the forward mapping decomposes into N equations dn = gn(s, cn). Thus θ(d|m) =
∏N
n=1 θn(dn|s, cn) =

∏N
n=1 f(dn − gn(s, cn)) and the likelihood function factorises as L(m) =

∏N
n=1 Ln(m) with

Ln(m)
def
=

∫

Dn

ρD,n(dn)θn(dn|m, cn)

µD,n(dn)
ddn.

6.2.3.2 Choice of prior distributions

The controversial matter in the Bayesian approach is, of course, the construction of prior distributions. Usual
ways to do this are (Jaynes, 1968; Kass and Wasserman, 1996):

• Define a measure of information, such as the entropy, and determine the distribution that optimises it
(e.g. maximum entropy).
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• Define properties that the noninformative prior should have, such as invariance to certain transformations
(Jeffreys’ prior). For example, for a given definition of the physical parameters x, it is possible to find
a unique density function µ(x) which is form invariant under the transformation groups which leave the
fundamental equations of physics invariant.

• The previous choices, usually called “objective” or “noninformative,” are constructed by some formal
rule, but it is also possible to use priors based on subjective knowledge.

In any case, the null information distributions are obtained in each particular case, depending on the coordinate
systems involved, etc. However, the choice of a noninformative distribution for a continuous, multidimensional
space remains a delicate problem. Bernardo and Smith (1994, pp. 357–367) discuss this issue.

6.2.3.3 Bayesian linear inversion theory

Assuming that all uncertainties are Gaussian, if the forward operator is linear, then the posterior distribution
σ will also be Gaussian. This is equivalent to factor analysis, which is a latent variable model where the prior
distribution in latent space is Gaussian, the mapping from latent onto data space is linear and the noise model
in data space is Gaussian.

Linear inversion theory is well developed and involves standard linear algebra techniques: pseudoinverse,
singular value decomposition and (weighted) least squares problems. Tarantola (1987) gives a detailed expo-
sition.

6.2.3.4 Bayesian nonlinear inversion theory

Almost all work in nonlinear inversion theory, particularly in geophysics, is based on linearising the problem
using physical information. Usual linearisation techniques include the Born approximation (also called the
single-scattering approximation), Fermat’s principle and Rayleigh’s principle (Snieder and Trampert, 1999).

6.2.3.5 Stability

In the Bayesian approach to inverse problems, it is not necessary in principle to invert any operators to
construct the solution to the inverse problem, i.e., the posterior probability σ. Thus, from the Bayesian point
of view, no inverse problem is ill-posed (Gouveia and Scales, 1998).

6.2.3.6 Confidence sets

Once a MAP model has been selected from the posterior distribution σ, confidence sets or other measures of
resolution can be extracted from σ(mMAP). Due to the mathematical complexity of this posterior distribution,
only approximate techniques are possible, including the following ones:

• The forward operator g is linearised about the selected model mMAP, so that the posterior becomes nor-
mal: σ(m) ∼ N (mMAP,C

′
M). The posterior covariance matrix C′

M is obtained as C′
M = (GTC−1

D G +
C−1

M )−1, where G is the derivative3 of g with respect to the model parameters evaluated at mMAP. This
has the same form as the posterior covariance matrix in latent space of a factor analysis, as in eq. (2.59),
where G would be the factor loadings matrix Λ.

• Sampling the posterior distribution with Markov chain Monte Carlo methods (Mosegaard and Tarantola,
1995).

6.2.3.7 Occam’s inversion

In Occam’s inversion (Constable et al., 1987), the goal is to construct the smoothest model consistent with
the data. This is not to say that one believes a priori that models are really smooth, but rather that a more
conservative interpretation of the data should be made by eliminating features of the model that are not
required to fit the data. To this effect, they define two measures:

3The linearised mapping g(mMAP) + G(m−mMAP) is usually called Fréchet derivative in inverse problem theory, and is the
linear mapping tangent to g at mMAP.
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• A measure of data fit (irrespective of any Bayesian interpretation of the models):

d(m,d)
def
= (g(m)− d)TC−1

D (g(m)− d),

that is, the Mahalanobis distance between g(m) and d with matrix C−1
D .

• A measure of model smoothness: ‖Rm‖, where R is a Tikhonov roughening operator (Tikhonov and
Arsenin, 1977), e.g. a discrete second-difference operator, such as

R =











−2 1 0 0 . . . 0 0 0
1 −2 1 0 . . . 0 0 0
0 1 −2 1 . . . 0 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 0 . . . 1 −2 1
0 0 0 0 . . . 0 1 −2











. (6.4)

Then, Occam’s inversion finds a model being both smooth and fitting well the data by solving the optimisation
problem:

min
m∈M

‖Rm‖ subject to d(m,d) ≤ ε

for some tolerance ε. Practically, due to the distance d being a quadratic form, this can be conveniently
implemented as a weighted least-squares problem with a Lagrange multiplier to control the tradeoff between
model smoothness and data fit: for fixed λ, solve the weighted, regularised least-squares problem

min
m∈M

(g(m)− d)TC−1
D (g(m)− d) + λ(m−mprior)

TRTR(m−mprior). (6.5)

Then, increase λ until (g(m)− d)TC−1
D (g(m)− d) > ε.

Clearly, Occam’s inversion is a particular case of Bayesian inversion, in which the uncertainty distributions
are taken as Gaussians (with the appropriate covariance matrix) and the prior distribution over the models
is used as a smoothness regularisation term by taking C−1

M = λRTR. However, Bayesian inversion is more
general than Occam’s inversion in that the prior distributions allow to introduce physical knowledge into the
problem. Gouveia and Scales (1997) compare Bayes’ and Occam’s inversion in a seismic data problem.

6.2.3.8 Locally independent inverse problems

In the general statement of inverse problems, the data parameters d depend on all the model parameters m
which in turn are a continuous function of some independent variables, such as the spatial coordinates x. Thus
m = m(x) and d = g(m). A single datum parameter depends on the whole function m(·), even if that datum
was measured at point x only.

Sometimes we can assume locally independent problems, so that a datum measured at point x depends
only on the value of m(x), not on the whole function m for all x. If we have N measurements {dn}Nn=1 at
points {xn}Nn=1 and we discretise the problem, so that we have one model parameter mn at point xn, for
n = 1, . . . , N , then:

θ(d|m) =

N∏

n=1

ϑ(dn|mn) =⇒ θ(d,m) ∝ ρM(m)

N∏

n=1

ϑ(dn|mn) (6.6)

where the distribution ϑ is the same for all parameters because the function g is now the same for all values of

m. This is equivalent to inverting the mapping x→m(x)
g−→ d(m(x)) at data values d1, . . . ,dN and obtaining

values m1 = g−1(d1), . . . ,mN = g−1(dN ). This approach is followed in the example of section 6.2.4.2. We
deal with problems of this kind in section 6.4.1 and give examples. However, this simplification cannot be
applied generally. For example, for the CAT problem (section 6.2.4.3) a measurement depends on all the points
that they ray travels through.

If we also assume an independent prior distribution for the parameters, ρM(m) =
∏N
n=1 %M(mn), then

the complete inverse problem factorises into N independent problems:

θ(d|m) ∝
N∏

n=1

%M(mn)ϑ(dn|mn).
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Figure 6.1: A seismic event takes place at time τ = 0 at location (X,Y ) and the seismic waves produced are
recorded by several seismic stations of Cartesian coordinates {(xn, yn)}Nn=1 at times {dn}Nn=1. Determining
the location of the epicentre from the wave arrival times is an inverse problem.

.

6.2.4 Examples of inverse problems

To clarify the concepts exposed, we briefly review some examples of inverse problems, some of which have a
rich literature.

6.2.4.1 Locating the epicentre of a seismic event

We consider the simplified problem4 of estimating the epicentral coordinates of a seismic event (e.g. a nuclear
explosion), depicted in fig. 6.1. The event takes place at time τ = 0 at an unknown location (X,Y ) on the
surface of the Earth (considered flat). The seismic waves produced by the explosion are recorded in a network
of N seismic stations of Cartesian coordinates {(xn, yn)}Nn=1, so that dn = dn is the observed arrival time of
the seismic wave at station n. The waves travel at a velocity v in all directions.

The model parameters to be determined from the data parameters {dn}Nn=1 are:

• State parameters: the coordinates of the epicentre (X,Y ).

• Experimental condition parameters: the coordinates of each station (xn, yn), the time of the event τ and
the wave velocity v.

Thus m = (s, c1, . . . , cN ) = (X,Y, τ, v, x1, y1, . . . , xN , yN ). Assuming that the station coordinates, the time of
the event and the wave velocity are perfectly known, we can drop them and avoid defining prior distributions
for them, so that m = (X,Y ).

Given (X,Y ), the arrival times of the seismic wave at the stations can be computed exactly as dn =
gn(X,Y ) = 1

v

√

(xn −X)2 + (yn − Y )2 for n = 1, . . . , N , which solves the forward problem. Determining the
epicentre coordinates (X,Y ) from the arrival times at the different stations is the inverse problem, whose
complete solution is given by Tarantola (1987).

6.2.4.2 Retrieval of scatterometer wind fields

A satellite can measure the amount of backscatter generated by small ripples on the ocean surface, in turn
produced by oceanic wind fields. The satellite scatterometer consists of a line of cells, each capable to detect
backscatter at the location to which it is pointing. At a given position in space of the satellite, each cell records
a local measurement. A field is defined as a spatially connected set of local measurements obtained from a
swathe, swept by the satellite along its orbit. For example, for the ESA satellite ERS-1, which follows a polar

4This example is adapted from problem 1.1 of Tarantola (1987, pp. 85–91).
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orbit, the swathe contains 19 cells and is approximately 500 km wide. Each cell samples an area of around
50× 50 km, with some overlap between samples.

The backscatter σ0 is a three-dimensional vector because each cell is sampled from three different direc-
tions by the fore, mid and aft beams, respectively. The near-surface wind vector u is a two-dimensional,
quasicontinuous function of the oceanic spatial coordinates (although see comments about the wind continu-
ity in section 7.9.6). Both σ0 and u contain noise, although the noise in σ0 is dominated by that of u. A
backscatter field is written as Σ0 = (σ0

i ) and a wind field as U = (ui).
The forward problem is to obtain σ0 from u and is single-valued and relatively easy to solve. The inverse

problem, to obtain the wind field from the backscatter, is one-to-many and no realistic physically-based local
inverse model is possible. The aim of the inversion is to produce a wind field U that can be used in data
assimilation for numerical weather prediction (NWP) models. The most common method for inversion is to
use lookup tables and interpolation. Following the standard Bayesian approach of inverse problem theory
described in section 6.2.3, Cornford and colleagues5 (Cornford et al., 1999a; Nabney et al., 2000; Evans et al.,
2000) model the conditional distribution p(Σ0|U) and the prior distribution of the wind fields p(U). The
prior is taken as a zero-mean normal, p(U) ∼ N (0,KU). The conditional distribution of the backscatter
field Σ0 given the wind field U can be factorised into the individual distributions at each point in the region
(i.e., at each cell) as p(Σ0|U) =

∏

i p(σ
0
i |ui) because theoretically there is a single-valued mapping u → σ0.

However, rather than using a physical forward model to obtain a noise model p(σ0|u), which is difficult, they
use Bayes’ theorem to obtain p(σ0|u) ∝ p(u|σ0)/p(u), the factor p(σ0) being constant for a given data, and
they model p(u|σ0) as a mixture density network (Bishop, 1994), which is basically a universal approximator
for conditional densities (see section 7.11.3). Applying Bayes’ theorem again, the posterior distribution is

p(U|Σ0) ∝ p(U)
∏

i

p(ui|σ0
i )

p(ui)
.

Given a backscatter field Σ0, the corresponding wind field is determined by MAP: a mode of p(U|Σ0) is found
using a conjugate gradients method.

The fact that this inverse problem can be factorised into independent mapping inversion problems (see
section 6.4.1) and the quasicontinuous dependence of the wind on the space coordinates make this problem
amenable to the technique described in chapter 7.

6.2.4.3 Computerised tomography

The aim of computerised tomography (Herman, 1980) is to reconstruct the spatially varying absorption coeffi-
cients within a medium (e.g. the human body) from measurements of intensity decays of X-rays sent through
the medium. Typically, X-rays are sent between a point source and a point receiver which counts the number
of photons not absorbed by the medium, thus giving an indication of the integrated attenuation coefficient
along that particular ray path (fig. 6.2). Repeating the measurement for many different ray paths, conveniently
sampling the medium, the spatial structure of the attenuation coefficient can be inferred and so an image of
the medium can be obtained.

The transmittance ρn (the probability of a photon of being transmitted) along the nth ray is given by:

ρn
def
= exp

(

−
∫

Rn

m(x(sn)) dsn

)

where:

• m(x) is the linear attenuation coefficient at point x and corresponds to the probability per unit length
of path of a photon arriving at x being absorbed.

• Rn is the ray path, identified by the coordinates of the X-ray source and its shooting angle (ray paths
of X-rays through an animal body can be assimilated to straight lines with an excellent approximation).

• dsn is the element of length along the ray path.

• x(sn) is the current point considered in the line integral along the ray (in Cartesian or spherical coordi-
nates).

5Papers and software can be found in the NEUROSAT project web page at http://www.ncrg.aston.ac.uk/Projects/NEUROSAT.
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Figure 6.2: Setup for 2D X-ray tomography. A source sends a beam of X-rays through the object under
study. Each individual X-ray is attenuated differently according to its path through the object. The X-rays
are measured by an array of receivers, thus providing with a projection of the object. By rotating the source or
having several sources surrounding the object we obtain several projections. Reconstructing the object density
from these projections is the inverse problem of tomography.

Defining the data

dn
def
= − ln ρn =

∫

Rn

m(x(sn)) dsn (6.7)

gives a linear relation between the data dn and the unknown function m(x). Eq. (6.7) is the Radon transform
of the function m(x), so that the tomography problem is the problem of inverting the Radon transform.

Thus, here the model parameters are the attenuation m(x) in the continuous case, or m = (mijk) in a
discretised version, and the observed parameters are the measured log-transmittance dn. Given m(x), the
forward problem is solved by the linear equation (6.7).

Similar problems appear in non-destructive testing and in geophysics. For example, in geophysical acoustic
tomography the aim is to compute the acoustic structure of a region inside the Earth from seismic measure-
ments. This allows, for example, to detect gas or oil deposits or to determine the radius of the Earth’s metallic
core. Acoustic waves are generated by sources at different positions inside a borehole and the travel times of
the first wave front to receivers located in other boreholes around the region under study are recorded. The
main difference with X-ray tomography is that the ray paths are not straight (they depend on the medium
structure and are diffracted and reflected at boundaries), which makes the forward problem nonlinear. Acous-
tic tomography is an inverse scattering problem, in which one wants to determine the shape or the location of
an obstacle from measurements of waves scattered by the obstacle.

Unlike example 6.2.4.2, this inverse problem does not factorise into independent mapping inversion problems
and thus is not approachable by the technique of chapter 7.

6.3 Inverse problems vs Bayesian analysis in general

In Bayesian analysis in general, a parametric model is a function p(x;Θ) where x are the variables of interest
in the problem and Θ the parameters, which identify the model. One is interested in inferences about both
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Bayesian inverse problem theory Latent variable models

Data space D Observed or data space T
Model space M Latent space X
Prior distribution of models ρM(m) Prior distribution in latent space p(x)

Forward mapping g :M→D Mapping from latent space
onto data space f : X → T

Uncertainty in the forward
mapping θ(d|m) = f(d− g(m))

Noise model p(t|x) = p(t|f(x))

Table 6.1: Formal correspondence between continuous latent variable models and Bayesian inverse problem
theory.

the parameters and the data, e.g. prediction via conditional distributions p(x2|x1), etc. Bayesian inference is
often approximated by fixing the parameters to a certain value given a sample {xn}Nn=1 of the data, e.g. via
maximum a posteriori (MAP) estimation:

ΘMAP
def
= arg max

Θ
p(Θ|x) = arg max

Θ
p(x|Θ)p(Θ). (6.8)

The model parameters m and the observed parameters d of inverse problem theory correspond to the
parameters Θ and the problem variables x, respectively, of the Bayesian analysis in general. Bayesian inference
about the model parameters m, as shown in section 6.2.3, coincides with equation 6.8. But the emphasis is
solely in inferences about the parameter estimates, i.e., how to find a single value of the model parameters
that hopefully approximates well the physical reality. Thus, inverse problem theory is a one-shot inversion
problem: use as much data as required to find a single value mMAP. Even if a second inversion is performed,
we would expect the new inverse value of the model parameters to be close to the previous one—assuming
that the system has not changed, i.e., assuming it is stationary or considering it in a fixed moment of time.

6.3.1 Inverse problems vs latent variable models

As an interesting example of the differences in interpretation between inverse problem theory and general
Bayesian inference, let us consider continuous latent variable models as defined in chapter 2. As mentioned
before, estimating the parameters of any probabilistic model can be seen as an inverse problem. But even
when these parameters have been estimated and fixed, there is a formal parallelism between latent variable
models and Bayesian inverse problem theory (in fact, all the estimation formulas for factor analysis mirror
those of linear inverse problem theory). In latent variable models, we observe the data variables t ∈ T and
postulate a low-dimensional space X with a prior distribution p(x), a mapping from latent space onto data
space f : X → T and a noise model in data space p(t|x) = p(t|f(x)). Thus, the model here means the whole
combined choice of the prior distribution in latent space, p(x), the noise model, p(t|x), and the mapping
from latent onto data space, f , as well as the dimensionality of the latent space, L. And all these elements
are equipped with parameters (collectively written as Θ) that are estimated from a sample in data space,
{tn}Nn=1. Table 6.1 summarises the formal correspondence between continuous latent variable models and
Bayesian inverse problem theory.

The choice of model parameters to describe a system in inverse problem theory is not unique in general,
and a particular choice of model parameters is a parameterisation of the system, or a coordinate system. Two
different parameterisations are equivalent if they are related by a bijection. Physical knowledge of the inverse
problem helps to choose the right parameterisation and the right forward model. However, what really matters
is the combination of both the prior over the models and the forward mapping, ρM(m)θ(d|m), because this
gives the solution to the Bayesian inversion. The same happens in latent variable models: what matters is
the density in observed space p(t), which is the only observable of the problem, rather than the particular
conceptualisation (latent space plus prior plus mapping) that we choose. Thus, we are reasonably free to choose
a simple prior in latent space if we can have a universal approximator as mapping f , so that a large class of
p(t) can be constructed. Of course, this does not preclude using specific functional forms of the mapping and
distributions if the knowledge about the problem suggests so.

We said earlier that inverse problem theory is a one-shot problem in that given a data set one inverts the
forward mapping once to obtain a unique model. In continuous latent variable models, the latent variables
are interpreted as state variables, which can take any value in their domain and that determine the observed
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variables of the system (up to noise). That is, when the system is in the state x, the observed data is f(x)
(plus the noise). The model remains the same (same parameters Θ, same prior distribution, etc.) but the
marginal distribution of the latent and observed variables p(x, t) can be used to make inferences about t
given x (forward problem, related to the deterministic and now estimated mapping f : X → T ) and about x
given t (inverse problem, or dimensionality reduction), for different values of x and t. Thus, once the latent
variable model has been fixed (which requires estimating any parameters it may contain, given a sample in
data space) it may be applied any number of times to different observed data and give completely different
posterior distributions in latent space, p(x|t)—unlike in inverse problem theory, where different data sets are
expected to correspond to the same model.

The particular case of independent component analysis (ICA), discussed in section 2.6.3, cannot be con-
sidered as an inverse problem because we do not have a forward model to invert. Even though we are looking
for the inverse of the mixing matrix Λ (so that we can obtain the sources x given the sensor outputs t), Λ is
unknown. ICA finds a particular linear transformation A and a nonlinear function f that make the sources
independent, but we do not either invert a function (the linear transformation Λ) or estimate an inverse from
input-output data ({xn, tn}Nn=1).

6.4 Mapping inversion

Consider a function6 f between sets X and Y (usually subsets of RD):

f : X −→ Y
x 7→ y = f(x).

Mapping inversion is the problem of computing the inverse x of any y ∈ Y:

f−1 : Y −→ X
y 7→ x = f−1(y).

f−1 may not be a well-defined function: for some y ∈ Y, it may not exist or may not be unique. When f−1

is to be determined from a training set of pairs {(yn,xn)}Nn=1, perhaps obtained by sampling X and applying
a known function f , the problem is indistinguishable from mapping approximation from data: given a
collection of input-output pairs, construct a mapping that best transforms the inputs into the outputs.

A universal mapping approximator (UMA) for a given class of functions F from RL to RD is a set U of
functions which contains functions arbitrarily close (in the squared Euclidean distance sense, for definiteness)
to any function in F , i.e., any function in F can be approximated as accurately as desired by a function in
U . For example, the class of multilayer perceptrons with one or more layers of hidden units with sigmoidal
activation function or the class of Gaussian radial basis function networks are universal approximators for
continuous functions in a compact set of RD (see Scarselli and Tsoi, 1998 for a review). The functions in U
will usually be parametric and the optimal parameter values can be found using a learning algorithm. There
are important issues in statistical mapping approximation, like the existence of local minima of the error
function, the reachability of the global minimum and the generalisation to unseen data. But for our purposes
in this last part of the thesis what matters is that several kinds of UMAs exist, in particular the multilayer
perceptron (MLP), for which practical training algorithms exist, like backpropagation.

A multivalued mapping assigns several images to the same domain point and is therefore not a function
in the mathematical sense. Among other cases, multivalued mappings arise when computing the inverse of
an injective mapping (i.e., a mapping that maps different domain points onto a same image point)—a very
common situation. That is, if the direct or forward mapping verifies f(x1) = f(x2) = y then both x1 and x2 are
inverse values of y: f−1(y) ⊇ {x1,x2}. UMAs work well with univalued mappings but not with multivalued
mappings. In chapter 7 we give a method for reconstruction of missing data that applies as a particular case
to multivalued mappings, and we compare it to UMAs as well as other approaches for mapping approximation
like vector quantisation (section 7.11.4) and conditional modelling (section 7.11.3).

6.4.1 Inverse problems vs mapping inversion

Mapping inversion is a different problem from that of inverse problem theory: in inverse problem theory, one
is interested in obtaining a unique inverse point x which represents a model of a physical system—of which

6We use the term function in its strict mathematical sense: a correspondence that, given an element x ∈ X , assigns to it one
and only one element y ∈ Y. We use the term mapping for a correspondence which may be multivalued (one-to-many).
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we observed the values y ∈ Y. In mapping inversion, we want to obtain an inverse mapping f−1 that we can
use many times to invert different values y ∈ Y.

In section 6.2.3.8 we saw that the Bayesian inverse problem theory could be recast to solve such a mapping
inversion problem. We rewrite eq. (6.6) with a simplification of the notation and decompose the model
parameters m into parameters of state s and experimental conditions cn, m = (s, c1, . . . , cN ):

p(s, c1, . . . , cN |d1, . . . ,dN ) ∝ p(s, c1, . . . , cN )

N∏

n=1

p(dn|s, cn)

where p(dn|s, cn) = f(dn − g(cn; s)) and g is the known forward mapping. This can be interpreted as a
function g which maps cn into dn and has trainable parameters s. However, {cn}Nn=1 are unknown parameters
themselves, not data. We are interested in constructing an inverse mapping g−1 given a data set consisting of
pairs of values {(xn,yn)}Nn=1 so that yn = g(xn) for a mapping g (not necessarily known). Clearly, in these
terms the distinction between inverse and forward mapping disappears and the problem, as before, becomes a
problem of mapping approximation.

Practitioners of inverse problem theory may object that by considering the forward mapping unknown we
are throwing away all the physical information. But the theorems about universal approximation of mappings
and about universal approximation of probability density functions support the fact that, given enough data,
we can obtain (ideally) a good approximation of the joint density of the observed data and thus capture the
information about the forward mapping too. This has the added flexibility of making inferences about any
group of variables given any other group of variables by constructing the appropriate conditional distribution
from the joint density—which includes both the forward and inverse mappings.

Two well-known examples of mapping inversion problems with one-to-many inverse mappings (often re-
ferred to as inverse problems in the literature) are the inverse kinematics problem of manipulators
(the robot arm problem) (Atkeson, 1989) and the acoustic-to-articulatory mapping problem of speech
(Schroeter and Sondhi, 1994). We describe them and apply to them our own algorithm later in this thesis.

❦
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450 in Lecture Notes in Physics. Springer-Verlag, Berlin, 1995. Proceedings of the International Workshop
held at Nice, France, 27–30 June 1994.

B. W. Silverman. Density Estimation for Statistics and Data Analysis. Number 26 in Monographs on Statistics
and Applied Probability. Chapman & Hall, London, New York, 1986.

L. Sirovich and M. Kirby. Low-dimensional procedure for the identification of human faces. J. Opt. Soc. Amer.
A, 4(3):519–524, Mar. 1987.

D. S. Sivia. Data Analysis. A Bayesian Tutorial. Oxford University Press, New York, Oxford, 1996.

R. Snieder and J. Trampert. Inverse Problems in Geophysics. Samizdat Press, 1999. Freely available from
http://samizdat.mines.edu/snieder_trampert/.

S. A. Solla, T. K. Leen, and K.-R. Müller, editors. Advances in Neural Information Processing Systems,
volume 12, 2000. MIT Press, Cambridge, MA.

V. N. Sorokin. Determination of vocal-tract shape for vowels. Speech Communication, 11(1):71–85, Mar. 1992.

V. N. Sorokin, A. S. Leonov, and A. V. Trushkin. Estimation of stability and accuracy of inverse problem
solution for the vocal tract. Speech Communication, 30(1):55–74, Jan. 2000.

C. Spearman. General intelligence, objectively determined and measured. Am. J. Psychol., 15:201–293, 1904.

D. F. Specht. A general regression neural network. IEEE Trans. Neural Networks, 2(6):568–576, Nov. 1991.

M. Spivak. Calculus on Manifolds: A Modern Approach to Classical Theorems of Advanced Calculus. Addi-
son-Wesley, Reading, MA, USA, 1965.

M. Spivak. Calculus. Addison-Wesley, Reading, MA, USA, 1967.

M. Stone. Toward a model of three-dimensional tongue movement. J. of Phonetics, 19:309–320, 1991.

N. V. Swindale. The development of topography in the visual cortex: A review of models. Network: Compu-
tation in Neural Systems, 7(2):161–247, May 1996.

A. Tarantola. Inverse Problem Theory: Methods for Data Fitting and Model Parameter Estimation. Elsevier
Science Publishers B.V., Amsterdam, The Netherlands, 1987.

J. B. Tenenbaum. Mapping a manifold of perceptual observations. In Jordan et al. (1998), pages 682–688.

J. B. Tenenbaum, V. de Silva, and J. C. Langford. A global geometric framework for nonlinear dimensionality
reduction. Science, 290(5500):2319–2323, Dec. 22 2000.

G. Tesauro, D. S. Touretzky, and T. K. Leen, editors. Advances in Neural Information Processing Systems,
volume 7, 1995. MIT Press, Cambridge, MA.

R. J. Tibshirani. Principal curves revisited. Statistics and Computing, 2:183–190, 1992.

A. N. Tikhonov and V. Y. Arsenin. Solutions of Ill-Posed Problems. Scripta Series in Mathematics. John
Wiley & Sons, New York, London, Sydney, 1977. Translation editor: Fritz John.

M. E. Tipping and C. M. Bishop. Mixtures of probabilistic principal component analyzers. Neural Computation,
11(2):443–482, Feb. 1999a.

M. E. Tipping and C. M. Bishop. Probabilistic principal component analysis. Journal of the Royal Statistical
Society, B, 61(3):611–622, 1999b.

311



D. M. Titterington, A. F. M. Smith, and U. E. Makov. Statistical Analysis of Finite Mixture Distributions.
Wiley Series in Probability and Mathematical Statistics. John Wiley & Sons, New York, London, Sydney,
1985.

L. Tong, R.-W. Liu, V. C. Soon, and Y.-F. Huang. The indeterminacy and identifiability of blind identification.
IEEE Trans. Circuits and Systems, 38(5):499–509, May 1991.

V. Tresp, R. Neuneier, and S. Ahmad. Efficient methods for dealing with missing data in supervised learning.
In Tesauro et al. (1995), pages 689–696.

A. Treves, S. Panzeri, E. T. Rolls, M. Booth, and E. A. Wakeman. Firing rate distributions and efficiency of
information transmission of inferior temporal cortex neurons to natural visual stimuli. Neural Computation,
11(3):601–632, Mar. 1999.

A. Treves and E. T. Rolls. What determines the capacity of autoassociative memories in the brain? Network:
Computation in Neural Systems, 2(4):371–397, Nov. 1991.

A. C. Tsoi. Recurrent neural network architectures — an overview. In C. L. Giles and M. Gori, editors,
Adaptive Processing of Temporal Information, volume 1387 of Lecture Notes in Artificial Intelligence, pages
1–26. Springer-Verlag, New York, 1998.

UCLA. Artificial EPG palate image. The UCLA Phonetics Lab. Available online at http://www.humnet.

ucla.edu/humnet/linguistics/faciliti/facilities/physiology/EGP_picture.JPG, Feb. 1, 2000.

N. Ueda, R. Nakano, Z. Ghahramani, and G. E. Hinton. SMEM algorithm for mixture models. Neural
Computation, 12(9):2109–2128, Sept. 2000.

A. Utsugi. Hyperparameter selection for self-organizing maps. Neural Computation, 9(3):623–635, Apr. 1997a.

A. Utsugi. Topology selection for self-organizing maps. Network: Computation in Neural Systems, 7(4):
727–740, 1997b.

A. Utsugi. Bayesian sampling and ensemble learning in generative topographic mapping. Neural Processing
Letters, 12(3):277–290, Dec. 2000.

A. Utsugi and T. Kumagai. Bayesian analysis of mixtures of factor analyzers. Neural Computation, 13(5):
993–1002, May 2001.

V. N. Vapnik and S. Mukherjee. Support vector method for multivariate density estimation. In Solla et al.
(2000), pages 659–665.

S. V. Vaseghi. Advanced Signal Processing and Digital Noise Reduction. John Wiley & Sons, New York,
London, Sydney, second edition, 2000.

S. V. Vaseghi and P. J. W. Rayner. Detection and suppression of impulsive noise in speech-communication
systems. IEE Proc. I (Communications, Speech and Vision), 137(1):38–46, Feb. 1990.

T. Villmann, R. Der, M. Hermann, and T. M. Martinetz. Topology preservation in self-organizing feature
maps: Exact definition and measurement. IEEE Trans. Neural Networks, 8(2):256–266, Mar. 1997.

W. E. Vinje and J. L. Gallant. Sparse coding and decorrelation in primary visual cortex during natural vision.
Science, 287(5456):1273–1276, Feb. 18 2000.

H. M. Wagner. Principles of Operations Research with Applications to Managerial Decisions. Prentice-Hall,
Englewood Cliffs, N.J., second edition, 1975.

A. Webb. Statistical Pattern Recognition. Edward Arnold, 1999.

A. R. Webb. Multidimensional scaling by iterative majorization using radial basis functions. Pattern Recog-
nition, 28(5):753–759, May 1995.

E. J. Wegman. Hyperdimensional data analysis using parallel coordinates. J. Amer. Stat. Assoc., 85(411):
664–675, Sept. 1990.

312



J. R. Westbury. X-Ray Microbeam Speech Production Database User’s Handbook Version 1.0. Waisman Center
on Mental Retardation & Human Development, University of Wisconsin, Madison, WI, June 1994. With
the assistance of Greg Turner & Jim Dembowski.

J. R. Westbury, M. Hashi, and M. J. Lindstrom. Differences among speakers in lingual articulation for American
English

�����
. Speech Communication, 26(3):203–226, Nov. 1998.

J. Weston, A. Gammerman, M. O. Stitson, V. Vapnik, V. Vovk, and C. Watkins. Support vector density
estimation. In Schölkopf et al. (1999a), chapter 18, pages 293–306.

J. Whittaker. Graphical Models in Applied Multivariate Statistics. Wiley Series in Probability and Mathemat-
ical Statistics. John Wiley & Sons, New York, London, Sydney, 1990.

P. Whittle. On principal components and least square methods of factor analysis. Skand. Aktur. Tidskr., 36:
223–239, 1952.

J. Wiles, P. Bakker, A. Lynton, M. Norris, S. Parkinson, M. Staples, and A. Whiteside. Using bottlenecks
in feedforward networks as a dimension reduction technique: An application to optimization tasks. Neural
Computation, 8(6):1179–1183, Aug. 1996.

J. H. Wilkinson. The Algebraic Eigenvalue Problem. Oxford University Press, New York, Oxford, 1965.

P. M. Williams. Using neural networks to model conditional multivariate densities. Neural Computation, 8
(4):843–854, May 1996.

B. Willmore, P. A. Watters, and D. J. Tolhurst. A comparison of natural-image-based models of simple-cell
coding. Perception, 29(9):1017–1040, Sept. 2000.

R. Wilson and M. Spann. A new approach to clustering. Pattern Recognition, 23(12):1413–1425, 1990.

J. H. Wolfe. Pattern clustering by multivariate mixture analysis. Multivariate Behavioral Research, 5:329–350,
July 1970.

D. M. Wolpert and Z. Ghahramani. Computational principles of movement neuroscience. Nat. Neurosci., 3
(Supp.):1212–1217, Nov. 2000.

D. M. Wolpert and M. Kawato. Multiple paired forward and inverse models for motor control. Neural Networks,
11(7–8):1317–1329, Oct. 1998.

A. A. Wrench. A multi-channel/multi-speaker articulatory database for continuous speech recognition research.
In Phonus, volume 5, Saarbrücken, 2000. Institute of Phonetics, University of Saarland.

F. Xie and D. van Compernolle. Speech enhancement by spectral magnitude estimation —a unifying approach.
Speech Communication, 19(2):89–104, Aug. 1996.

L. Xu, C. C. Cheung, and S. Amari. Learned parametric mixture based ICA algorithm. Neurocomputing, 22
(1–3):69–80, Nov. 1998.

E. Yamamoto, S. Nakamura, and K. Shikano. Lip movement synthesis from speech based on hidden Markov
models. Speech Communication, 26(1–2):105–115, 1998.

H. H. Yang and S. Amari. Adaptive on-line learning algorithms for blind separation — maximum entropy and
minimum mutual information. Neural Computation, 9(7):1457–1482, Oct. 1997.

H. Yehia and F. Itakura. A method to combine acoustic and morphological constraints in the speech production
inverse problem. Speech Communication, 18(2):151–174, Apr. 1996.

H. Yehia, T. Kuratate, and E. Vatikiotis-Bateson. Using speech acoustics to drive facial motion. In Ohala
et al. (1999), pages 631–634.

H. Yehia, P. Rubin, and E. Vatikiotis-Bateson. Quantitative association of vocal-tract and facial behavior.
Speech Communication, 26(1–2):23–43, Oct. 1998.

G. Young. Maximum likelihood estimation and factor analysis. Psychometrika, 6:49–53, 1940.

313



S. J. Young. A review of large vocabulary continuous speech recognition. IEEE Signal Processing Magazine,
13(5):45–57, Sept. 1996.

K. Zhang, I. Ginzburg, B. L. McNaughton, and T. J. Sejnowski. Interpreting neuronal population activity
by reconstruction: Unified framework with application to hippocampal place cells. J. Neurophysiol., 79(2):
1017–1044, Feb. 1998.

R. D. Zhang and J.-G. Postaire. Convexity dependent morphological transformations for mode detection in
cluster-analysis. Pattern Recognition, 27(1):135–148, 1994.

Y. Zhao and C. G. Atkeson. Implementing projection pursuit learning. IEEE Trans. Neural Networks, 7(2):
362–373, Mar. 1996.

I. Zlokarnik. Adding articulatory features to acoustic features for automatic speech recognition. J. Acoustic
Soc. Amer., 97(5):3246, May 1995a.

I. Zlokarnik. Articulatory kinematics from the standpoint of automatic speech recognition. J. Acoustic Soc.
Amer., 98(5):2930–2931, Nov. 1995b.

314


