
Chapter 2

The continuous latent variable
modelling formalism

This chapter gives the theoretical basis for continuous latent variable models. Section 2.1 defines intuitively
the concept of latent variable models and gives a brief historical introduction to them. Section 2.2 uses a simple
example, inspired by the mechanics of a mobile point, to justify and explain latent variables. Section 2.3 gives
a more rigorous definition, which we will use throughout this thesis. Section 2.6 describes the most important
specific continuous latent variable models and section 2.7 defines mixtures of continuous latent variable models.
The chapter discusses other important topics, including parameter estimation, identifiability, interpretability
and marginalisation in high dimensions. Section 2.9 on dimensionality reduction will be the basis for part II
of the thesis. Section 2.10 very briefly mentions some applications of continuous latent variable models for
dimensionality reduction. Section 2.11 shows a worked example of a simple continuous latent variable model.
Section 2.12 give some complementary mathematical results, in particular the derivation of a diagonal noise
GTM model and of its EM algorithm.

2.1 Introduction and historical overview of latent variable models

Latent variable models are probabilistic models that try to explain a (relatively) high-dimensional process in
terms of a few degrees of freedom. Historically, the idea of latent variables arose primarily from psychometrics,
beginning with the g factor of Spearman (1904) and continuing with other psychologists such as Thomson,
Thurstone and Burt, who were investigating the mental ability of children as suggested by the correlation and
covariance matrices from cognitive tests variables. This eventually led to the development of factor analysis.
Principal component analysis, traditionally not considered a latent variable model, was first thought of by
Pearson (1901) and developed as a multivariate technique by Hotelling (1933). Latent structure analysis,
corresponding to models where the latent variables are categorical, originated with Lazarsfeld and Henry
(1968) as a tool for sociological analysis and had a separate development from factor analysis until recently.
Bartholomew (1987) gives more historical details and references.

The statistics literature classifies latent variable models according to the metric (continuous) or categorical
(discrete) character of the variables involved, as table 2.1 shows. Also, in a broad sense many probabilistic
models commonly used in machine learning can be considered as latent variable models inasmuch as they
include probability distributions for variables which are not observed: mixture models (where the variable
which indexes the components is a latent variable), hidden Markov models (the state sequence is unobserved),

This chapter is an extended version of references Carreira-Perpiñán (1996, 1997).

Observed variables
Metrical Categorical

Metrical Factor analysis Latent trait analysis
Latent

variables Categorical
Latent profile analysis Latent class analysis

Analysis of mixtures

Table 2.1: Classification of latent variable models (adapted from Bartholomew, 1987).
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Helmholtz machines (Dayan et al., 1995) (the activations of each unit), elastic nets (Durbin et al., 1989) (the
tour knots), etc. In this chapter we will concentrate exclusively on latent variable models where both the
latent and the observed variables are continuous (although much of the general treatment applies to discrete
variables too), going much further than the linear-normal model of factor analysis. In some points discrete
variables will appear as a result of a Monte Carlo discretisation. The latent class model where the observed
variables are binary and there is a single discrete latent variable corresponds to the mixture of multivariate
Bernoulli distributions, which is discussed in chapter 3 and used in chapter 5.

In this work, we follow (with minor variations) the theoretical framework currently accepted in statistics for
latent variable models, for which two good references are Everitt (1984) and Bartholomew (1987). However,
these works do not include any of the more recent latent variable models such as GTM, ICA or IFA, and they
do not discuss issues of importance in machine learning, such as the continuity of the dimensionality reduction
mapping or the mixtures of continuous latent variable models. The work of MacKay (1995a) on density
networks, which is the name he uses for nonlinear latent variable models, was pioneering in the introduction of
the latent variable model framework to the machine learning community (in spite of an odd choice of journal).

The traditional treatment of latent variable models in the statistics literature is (Krzanowski, 1988):

1. formulate model (independence and distributional assumptions)

2. estimate parameters (by maximum likelihood)

3. test hypotheses about the parameters

which perhaps explains why most of the statistical research on latent variables has remained in the linear-
normal model of factor analysis (with a few exceptions, e.g. the use of polynomial rather than linear functions;
Etezadi-Amoli and McDonald, 1983; McDonald, 1985): rigorous analysis of nonlinear models is very difficult.
Interesting developments concerning new models and learning algorithms have appeared in the literature of
statistical pattern recognition in the 1990s, as the rest of this chapter will show.

Traditionally, most applications of latent variables have been in psychology and the social sciences, where
hypothesised latent variables such as intelligence, verbal ability or social class are believed to exist; they have
been less used in the natural sciences, where often most variables are measurable (Krzanowski, 1988, p. 502).
This latter statement is not admissible under the generative point of view exposed in sections 2.2 and 2.3,
whereby the processes of measurement and stochastic variation (noise) can make a physical system appear
more high-dimensional than it really is. In fact, factor analysis has been applied to a number of “natural
science” problems (e.g. in botany, biology, geology or engineering) as well as other kinds of latent variable
models recently developed, such as the application of GTM to dimensionality reduction of electropalatographic
data (Carreira-Perpiñán and Renals, 1998a) or of ICA to the removal of artifacts in electroencephalographic
recordings (Makeig et al., 1997). Besides that, the most popular technique for dimensionality reduction,
principal component analysis, has recently been recast in the form of a particular kind of factor analysis—thus
as a latent variable model.

Whether the latent variables revealed can or cannot be interpreted (a delicate issue discussed in sec-
tion 2.8.1), latent variable models are a powerful tool for data analysis when the intrinsic dimensionality of
the problem is smaller than the apparent one and they are specially suited for dimensionality reduction and
missing data reconstruction—as this thesis will try to demonstrate.

2.2 Physical interpretation of the latent variable model formalism

In this section we give a physical flavour to the generative view of latent variables. This generative view will
be properly defined in section 2.3 and should be compared to the physical interpretation given below.

2.2.1 An example: eclipsing spectroscopic binary star

We will introduce the idea of latent variables through an example from astronomy, that of eclipsing spectroscopic
binary stars (Roy, 1978). A binary system is a pair of stars that describe orbits about their common centre of
mass, the two components being gravitationally bound together. An eclipsing spectroscopic binary is viewed
as a single star because the components are so close that they cannot be resolved in a telescope, but its double
nature can be revealed in several ways:

• If the orbit plane contains or is close to the line of sight, the components will totally or partially eclipse
each other, which results in regular diminutions in the binary star’s brightness.
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• The Doppler effect1 of the orbital velocities of the components produces shifts to red and blue on the
spectral lines of the binary star.

A well-known example of this kind of star system is Algol (β Per), which is actually a ternary system.
We will consider a simplified model of eclipsing spectroscopic binary star, in which one star (the primary

star) is much more massive than the other, thus remaining practically stationary in the centre-of-mass system.
The secondary star follows an elliptical orbit around the primary one, which is located at one of the foci.
Figures 2.1 and 2.2 show the trajectory of the secondary star and the basic form of the variation with the
polar angle θ (true anomaly) of:

• The radial velocity vr of the secondary star (i.e., the projection of the velocity vector along the line
of sight from the Earth), to which the spectrum shift is proportional. We are assuming a stationary
observer in Earth, so that the measured radial velocity must be corrected for the Earth’s orbital motion
about the Sun.

• The combined brightness B.

We would like to provide a scenario which, though idealised, is very close to an experimental situation that
an astronomer could find. Thus, we are ignoring complicated effects, such as the facts that: the shape of both
stars can be far from spherical, as they can fill their lobes (bounded by the Roche limit); the stars do not
have uniform brightness across their discs, but decreasing towards the limb (limb darkening); the relativistic
advance of the periastron with time; the perturbation due to third bodies; etc. Thus, the true theoretical
curve for the brightness will not be piecewise linear and the actual curve will vary from one binary system to
another, but it will always conserve the form indicated in fig. 2.2: a periodic curve with two falls corresponding
to the eclipses. Similarly, the spectral shift will be a periodic oscillating function.

Now, an astronomer could collect a number of paired measurements (B, vr) and construct with them
brightness and radial velocity (or spectrum) curves such as those of fig. 2.2 (although perhaps replacing
the true anomaly θ by a more natural variable in this case, such as the time t at which the measurement
was collected). Detailed analysis of the brightness and spectrum curves under the laws of Kepler can provide
knowledge of the eccentricity and inclination of the orbit, the major semiaxis, the radii, masses and luminosities
of the stars, etc.

The knowledge of the astronomer that all measured variables (B and vr) depend on a single variable, the
true anomaly θ, is implicit. That is, given θ, the configuration of the binary system is completely defined and
so are the values of all the variables we could measure: B, vr, even r, etc.

Now let us suppose that we have such a collection of measurements but that we do not know anything about
the underlying model that generated them, i.e., we do not know that the observed brightness and spectral shifts
are (indirectly) governed by Kepler’s law. Let us consider the following question: could it be possible that,
although we are measuring two variables each time we observe the system, just one variable (not necessarily B
or vr) would be enough to determine the configuration of the system completely?2 More concisely: could the
number of degrees of freedom of the binary system be smaller than the number of variables that we measure
from it?

As we discuss in section 4.4, this is a very difficult question to answer if the measurements are corrupted by
noise or if each measurement consists of more than about 3 variables. But if we plotted the collection of pairs
(B, vr) in a plane coordinate system, with each variable being associated with one axis, we would observe the
following fact (fig. 2.3 left): the points do not fall all over the plane, spanning an extensional (two-dimensional)
area, but fall on a curve (dotted in the figure). If we accept that our instruments are imperfect, so that each
point is slightly off the position where it should be, we would observe a situation like that of fig. 2.3 right: the
points now occupy an extensional area (several oval patches), but it is apparent that the region over which the
measurements fall is still a curve. This gives away the fact that the system has only one degree of freedom,
however many different, apparently unrelated variables we want to measure from it. In this example, the
intrinsic dimensionality of the binary system is one but we measure two variables.

Accepting that the intrinsic dimensionality of a system is smaller than the number of variables that we
measure from it, the latent variable framework allows the construction of a generative model for the system.

1If a source emitting radiation has a velocity v relative to the observer, the received radiation that normally has a wavelength

λ when the velocity relative to the observer is 0 will have a measured wavelength λ′ with λ′−λ
λ

= v
c
, where c is the speed of light

and the source is approaching for v < 0 and receding for v > 0. Thus, the Doppler shift is defined as ∆λ
λ

= v
c
, being positive for

red shift and negative for blue shift.
2Of course we could argue that two variables could not be enough to determine the system configuration completely, but we

will suppose that this is not the case.
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anomaly θ for the binary system of fig. 2.1. The units of the vertical axis of the graph have been normalised
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the secondary star has a very small radius compared to that of the primary one.
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Figure 2.3: Plots of a number of measurements (B, vr) in a coordinate system where the brightness goes in
abscissas and the radial velocity in ordinates. The left graph corresponds to an ideal, noiseless measuring
device: the measurements fall exactly on a curve. Due to the discontinuity of the brightness B, the curve
in (B, vr) space consists of several disconnected segments. The right graph corresponds to a real, noisy
measuring device: the measurements still fall approximately on a curve, but now span a truly two-dimensional
area. Again, due to the discontinuity of the brightness B, we observe several patches.

This generative model can, under certain circumstances, mimic the behaviour of the system inasmuch as it is
a black box that generates data.

2.2.2 Physical interpretation of latent variables: measurement and noise

We can give a physical interpretation to the latent variable model formalism, to be defined more rigorously
in section 2.3. Consider a (physical) system governed by L independent variables (or degrees of freedom)
x1, . . . , xL, which we can represent as an L-dimensional vector x = (x1, . . . , xL)T taking values in a certain
subset S of RL, called latent or state space (we will consider only continuous variables). That is, every state of
the system is given by a particular vector x in state space S. The variables x1, . . . , xL can be called generalised
coordinates in classical mechanics or quantum numbers in quantum mechanics. In our example of the eclipsing
spectroscopic binary star, the latent or state space is given by the variable θ varying continuously in the [−π, π]
interval3.

The intrinsic dimensionality L of the system is unknown to the observer, who designs an experimental setup
that allows to obtain one observation of the physical system by measuring a fixed number D of variables on
it. Usually the number of observed variables D will be bigger (perhaps much bigger) than the true number of
degrees of freedom L, because the observer needs to capture as much information from the system as possible.
Any measured variable must be a function of the latent variables, so that we can represent the operation
of obtaining one observation from the system by a measurement mapping f : S ⊂ RL −→ M ⊂ RD. We
will assume that the measurement mapping f is nonsingular4, so that the observed variables will span an
L-dimensional manifold M = f(S) in RD; this manifold will be nonlinear in general. We refer to RD as data
or observed space. In our example of the eclipsing spectroscopic binary star, the observed variables would be
the brightness B and the radial velocity vr (or the spectral shift ∆λ), which span a nonlinear one-dimensional
manifold in R2, i.e., a plane curve. That is, if we plotted each observation in a two-dimensional coordinate
system, with one axis being the brightness B and the other one the radial velocity vr, all the points would fall
on a curve instead of filling the plane or a two-dimensional region of it. This would make apparent the true
dimensionality of the system (or, to be more strict, a lower bound of the true dimensionality).

Another set of observed variables, not measurable in practice for an eclipsing spectroscopic binary star,
could be the x and y coordinates of the position vector of the secondary star drawn from the primary star (or

3One could argue that the state of the system is specified by the position variable θ and the velocity (ṙ, θ̇), but for our example
both ṙ and θ̇ are a function of θ.

4We say that a mapping f is nonsingular if the dimension of the image of f is equal to the dimension of its domain: dimS =
dim f(S). If f is linear, this means that the matrix associated with f is full-rank, or equivalently, that the image variables are
linearly independent. If f is nonlinear, its Jacobian must be full-rank. See section A.7 for a discussion of L-manifolds in RD.
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the polar coordinates (r, θ)!), which span precisely the elliptical orbit of figure 2.1. Yet another set of observed
variables could be obtained by taking a picture of the binary system (again not possible practically for our
example) and digitising it at N ×N pixels; thus, D = N 2 could be made as large as desired, but the intrinsic
dimension of the data, equal to the dimension of the generating process, would always be 1.

The mapping f describes an ideal measurement process, in which each point in latent space is exactly
mapped onto a point in the L-dimensional manifoldM in observed space. Thus, it would be possible to invert
f and, for any point in M, recover its corresponding point in latent space (again assuming that L < D and
that f is invertible): f−1 : M ∈ RD −→ S ∈ RL. However, a real measurement process will introduce an
error so that, for a latent point x, the observer will measure a point f(x) + e in data space, where e ∈ RD

is the error. The nature of this error is stochastic, i.e., repeated measurements of the system being in the
same state would give different points in data space, even though the mapped point would be the same. The
measurement error will hide to some extent the true, low-dimensional nature of the data, transforming the
L-dimensional manifold M into a D-dimensional region in data space. The higher the error level, the more
distortion M will suffer. It is customary to refer to this error as noise. We can assume that it follows a
certain probability law, prescribed by a density function p(t|x), which gives the probability that latent point
x will be observed as data point t; we call this the noise model. The distribution of the noise will usually be a
relatively generic, symmetric, zero-mean distribution, such as a normal N (f(x),Σ), but any other distribution
is acceptable if there is a reason for it (e.g. if one suspects that the error is systematic, a skewed distribution
will be necessary).

2.2.3 Probabilities and trajectories

Here we analyse the probability distribution associated with planar movement5. This is an example intended
to show how complex probability distributions of latent variables can arise even in a simple situation.

Assume we have a curve C parameterised by a certain variable θ; in this section, we will consider plane
polar coordinates (r, θ) with r(θ) ≥ 0 and −π ≤ θ ≤ π. We assume that any point of the curve C has a
unique corresponding value of the variable θ, i.e., that r(θ) is invertible. We assume that a moving object is
following the curve C with a certain instantaneous velocity of modulus v(θ) ≥ 0 at each point (r(θ), θ). Given
r(θ) and v(θ), we want to find a function p(θ) that gives at each point the probability density of finding the
moving object at that point, i.e., the probability density of seeing the point under a given polar angle θ. That
is, if we took a number of pictures of the object, we would find it more often in those parts of the curve
where the velocity is small, or in those values of the variable θ for which the trajectory r(θ) varies quickly.
Then, p(θ) dθ is, by definition of probability density function, the probability that the object is in the interval
(θ, θ+ dθ). This probability will be proportional to the time dt that the object takes to move from (r(θ), θ) to
(r(θ + dθ), θ + dθ): p(θ) dθ ∝ dt. Assuming that the velocity is constant during the infinitesimal time interval
dt, the arc length corresponding to the displacement dr will be ds = v dt, where ds = |dr| and dr = d |r|
(see fig. 2.4). From the figure, we have ds =

√

(dr)2 + (r dθ)2, where dr = d |r| is the variation in the radial

5Naturally, movement is not the only reason why probability distributions can appear in physics.
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Figure 2.5: Examples of trajectories and the distributions generated by them. Each row represents a choice
of the moduli of the radius vector r(θ) and the velocity v(θ) as functions of the polar angle θ, and each choice
produces a certain probability distribution p(θ) of finding a mobile point at a certain polar angle θ. For each
row, the figure on the left shows the trajectory (r(θ), θ) in polar coordinates for −π ≤ θ ≤ π (thick line) and
the graph on the right the form of the functions r(θ) (dashed line), v(θ) (dotted line) and p(θ) (solid line). All
rows assume constant velocity modulus v except the first one, which assumes the Keplerian velocity (2.2).
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direction and r dθ the variation in the tangential one. Then:

p(θ) ∝ dt

dθ
=

1

v

ds

dθ
=

1

v

√
(
dr

dθ

)2

+ r2 =
1

v

√

ṙ2 + r2. (2.1)

This function must be normalised dividing by
∫

1
v

√
ṙ2 + r2 dθ, the integral extended over the domain of θ. We

can see from eq. (2.1) that the probability of finding the object in an interval (θ, θ + dθ) will be higher when:

• its velocity v(θ) is small there, or

• the distance to the origin r(θ) is high, or

• the trajectory varies quickly in the interval (θ, θ + dθ), i.e., the radial velocity ṙ is large;

all in accordance with intuition. The trajectories for which the probability density is constant, when the point
moves uniformly in θ-space, are given by the solutions r(θ), v(θ) of the differential equation k2v2 = r2 + ṙ2

for k ∈ R+. For example, for constant velocity this equation has two different solutions (where R = kv is a
positive constant):

• r = R, i.e., a circle centred at the origin;

• r2 + ṙ2 = R2 ⇒ r = R |sin(θ − θ0)|, i.e., a circle passing through the origin.

For the familiar case of closed-orbit Keplerian movement of a two-body problem, the moduli of the radius
vector and the velocity vary as a function of the polar angle θ as follows:

r(θ) =
a(1− ε2)
1 + ε cos θ

v(θ) =

√

µ

(
2

r
− 1

a

)

. (2.2)

That is, the trajectory is an ellipse of eccentricity 0 ≤ ε < 1 and major semiaxis a with a focus in the origin
and µ = G(M + m), where G is the gravitational constant and M and m the masses of both bodies (Roy,
1978). According to the law of areas (Kepler’s second law), the area swept by the radius vector per unit
time is constant, i.e.,

∣
∣ r×dr
dt

∣
∣ = constant (from fig. 2.4,

∣
∣ 1
2r× dr

∣
∣ is the area of the triangle OPQ). Expanding

r = rur and dr = dr ur + r dθ uθ in the radial and tangential directions we obtain r2 dθ
dt = constant. From here

and from the fact that p(θ) ∝ dt
dθ we obtain p(θ) ∝ r2. The same result can be obtained by substituting the

expressions for v and r from eq. (2.2) into eq. (2.1). Taking into account the following integral (Gradshteyn
and Ryzhik, 1994):

∫ π

−π

dθ

(1 + ε cos θ)2
=

2π

(1− ε2)3/2 ,

the exact expression for p(θ) turns out to be:

p(θ) =
(1− ε2)3/2

2π

1

(1 + ε cos θ)2
=

r2

2πa2
√

1− ε2
.

Figure 2.5 shows the trajectory and the form of the variation of r, v and p with θ for the example of
Keplerian closed movement and for other trajectories for constant velocity. Observe how many different forms
the distribution p(θ) can take, all physically possible, even for this simple example of planar movement. If we
consider θ as a latent variable and the point coordinates (x, y) (for example) as observed variables, then p(θ)
will be the prior distribution in latent space, as defined in section 2.3. Therefore, the distribution in latent
space can be very complex, contrasting with the simple prior distributions of the latent variable models of
section 2.6 (all of which are either normal of uniform, except for ICA). See sections 2.3.2 and 2.8 for a further
discussion of this issue.

2.3 Generative modelling using continuous latent variables

In latent variable modelling the assumption is that the observed high-dimensional data is generated from an
underlying low-dimensional process. The high dimensionality arises for several reasons, including stochastic
variation and the measurement process. The objective is to learn the low dimensional generating process
(defined by a small number of latent or hidden variables) along with a noise model, rather than directly
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learning a dimensionality reducing mapping. We will consider that the latent variables are mapped by a fixed
transformation into a higher-dimension observed space (measurement procedure) and noise is added there
(stochastic variation). In contrast with this generative, bottom-up point of view, statisticians often consider
latent variable models from an explanatory, top-down point of view (Bartholomew, 1987): given the empirical
correlation between the observed variables, the mission of the latent variables is to explain those correlations
via the axiom of local independence (explained in section 2.3.1); i.e., given an observed distribution, find a
combination of latent distribution and noise model that approximates it well.

We will consider that both the observed and the latent variables are continuous. Call T ⊆ RD the D-
dimensional data or observed space6. Consider an unknown distribution p(t) in data space, for t ∈ T , of
which we only see a sample {tn}Nn=1 ⊂ T . In latent variable modelling we assume that the distribution in data
space T is actually due to a small number L < D of latent variables acting in combination. We refer to this
L-dimensional space as the latent space X ⊆ RL.

Thus, a point x in latent space X is generated according to a prior distribution p(x) and it is mapped onto
data space T by a smooth, nonsingular mapping f : X → T . BecauseM = f(X ) is an L-dimensional manifold
in T , in order to extend it to the whole D-dimensional data space we define a distribution p(t|x) = p(t|f(x))
on T , called the noise or error model. Figure 2.6 illustrates the idea of latent variable models.

The joint probability density function in the product space T ×X is p(t,x) and integrating over the latent
space gives the marginal distribution in data space:

p(t) =

∫

X
p(t,x) dx =

∫

X
p(t|x)p(x) dx. (2.3)

This is called the fundamental equation of latent variable models by Bartholomew (1984). Thus, a
model is essentially a specification of p(x) and p(t|x)—the specification of the mapping f can be absorbed
into that of p(t|x). The only empirical evidence available concerns p(t) through the sample {tn}Nn=1 and so
the only constraint on p(x) and p(t|x), apart from the need to be nonnegative and integrate to 1, is given by
eq. (2.3). In general, there are many combinations of p(x) and p(t|x) that can satisfy (2.3) for a given p(t).

Eq. (2.3) can also be seen as a continuous mixture model (Everitt and Hand, 1981), with the latent variable
x “indexing” continuously the mixture component. In fact, any density function can be considered as a mixture
density where extra variables have been integrated over.

Eq. (2.3) (or, for that matter, any marginalisation) can also be seen as a particular case of a Fredholm
integral equation of the first kind. A Fredholm integral equation of the first kind (in one dimension) has the
form:

f(t) =

∫ ∞

−∞
K(t, x)g(x) dx

6In the statistical literature the variables in the data space are usually called manifest variables.
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Figure 2.7: Graphical model representation of latent variable models. Left : the axiom of local independence.
Right : a latent variable model with D = 5 observed variables and L = 2 latent variables. The dotted line
indicates that the latent variables may or may not be independent in a particular model.

where the function K(t, x) is called the kernel and both K and f are known while g is unknown. If all
functions are probability densities and specifically K(t, x) ≡ p(t|x) we obtain eq. (2.3). Note the similarity of
the Fredholm integral equation with a matrix equation f = Kg, whose solution is g = K−1f . In fact, most
inverse problems (to which chapter 6 is dedicated) are Fredholm integral equations of the first kind. Press
et al. (1992, chapter 18) contains a brief discussion of numerical methods for Fredholm and Volterra integral
equations and further references.

2.3.1 Noise model: the axiom of local independence

If the latent variables are to be efficient in representing faithfully the observed variables, we should expect
that, given a value for the latent variables, the values of any group of observed variables are independent of the
values of any other group of observed variables. Otherwise, the chosen latent variables would not completely
explain the correlations between the observed variables and further latent variables would be necessary. Thus,
for all d, e ∈ {1, . . . , D},

p(td|te,x) = p(td|x)⇒ p(td, te|x) = p(td|te,x)p(te|x) = p(td|x)p(te|x)

and we obtain that the distribution of the observed variables conditioned on the latent variables, or the noise
model, is factorial (the subindex in pd emphasises that the component distributions pd(td|x) need not be the
same):

p(t|x)
def
=

D∏

d=1

pd(td|x). (2.4)

That is, for some L ≤ D, the observed variables are conditionally independent given the latent variables. This
is usually called the axiom of local (or conditional) independence (Bartholomew, 1984; Everitt, 1984). It
will prove very convenient in section 7.12.3 because choosing factorial noise models simplifies the calculations
of conditional distributions considerably.

It should be noted that, rather than an assumption, the axiom of local independence is a definition of what
it means to have fully explained the joint distribution of the observed variables in terms of the latent ones.
The aim is to find the smallest number of latent variables L ≤ D for which it holds (it does, trivially, for
L = D by taking xd ≡ td, provided that (2.3) is satisfied). However, in practice one will need to try several
values of L and select the best one.

Thus said, there have been some suggestions of models that violate the axiom of linear independence.
One example has been proposed for the output distribution of a hidden Markov model: Gopinath et al. (1998)
model the output distribution of state s as a factor analyser with nondiagonal covariance matrix ΣT = UΨsU

T

where Ψs is diagonal and U is an orthogonal matrix shared among states. It is not clear why this constrained
covariance model should have any advantage over other parameter-tying methods (Young, 1996) or over using
a mixture of factor analysers as output distribution (Saul and Rahim, 2000b).

The graphical model (Jensen, 1996; Jordan, 1998; Pearl, 1988; Whittaker, 1990) representing the local
independence is shown in fig. 2.7 (left). Fig. 2.7 (right) shows the graphical model for a latent variable model
with D = 5 and L = 2.

Regarding the actual choice of the functional form of the noise model p(t|f(x)), it seems reasonable to use
a density function with the following properties:
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Figure 2.8: Sphering does not yield spherical local noise in general, as demonstrated here via a mixture of two
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to local spherical noise (unknown, since the local noise is unknown in advance). Each normal distribution is
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2 and
µ and Σ are the mean and covariance matrix, respectively, of the mixture, computed as in section 8.7.

• It is centred at f(x), which would be the only possible point in the absence of noise:

∀x ∈ X : E {t|x} = f(x). (2.5)

This is a relaxed form of the self-consistency condition (4.2) of principal curves.

• It decays gradually as the distance to f(x) increases, according to some parameter related to the noise
covariance. However, it need not be symmetric around f(x).

• It assigns nonzero density to every point in the observed space, for two reasons:

– No region of the observed space should have null probability unless knowledge about the problem
at hand dictates otherwise.

– Noise models which have a distribution with finite support (i.e., assigning nonnull probability only
to points inside a finite neighbourhood of the centre, f(x)) make very difficult to compute the data
distribution, p(t). This is so because the integration in latent space (2.3) to compute p(t) for a
given observed point t is restricted to those latent points x for which the neighbourhood of f(x)
contains t (so that p(t|x) > 0).

• It should have a diagonal covariance matrix to account for different scales in the different observed
variables t1, . . . , tD. This latter aspect cannot be overcome in general by sphering the data and using an
isotropic noise model, because if the data has clusters, the intercluster distances affect the covariances;
fig. 2.8 illustrates this with a simple example. The same happens if the data manifold is nonlinear. For
cases where the dispersion attains orders of magnitude, a logarithmic transformation may be helpful.

In all the specific latent variable models discussed in section 2.6 (except ICA, which assumes no noise
in its standard formulation) a normal noise model is assumed (thus symmetric), whose covariance matrix is
either diagonal (factor analysis, IFA) or spherical (PCA, GTM). This is primarily due to the mathematical
tractability of the multivariate normal distribution with respect to linear combinations, marginalisation and
conditioning and its closure with respect to those operations—which simplifies the computation of integral (2.3)
and the derivation of an EM algorithm for parameter estimation. It also adds flexibility to the model, since
p(t) ends up being a Gaussian mixture, which is a universal density approximator7 (although the model itself
may not be; see below). Yet another justification comes from the central limit theorem: if the noise is due to

7However, for mixtures the shape of each component is not crucial for density approximation, as is well known from kernel
density estimation (Titterington et al., 1985; Scott, 1992), as long as there is a high enough number of components. Most localised
kernels (decreasing from the central point) give rise to universal density approximators.
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the combined additive action of a number of uncontrolled variables of finite variance, then its distribution will
be asymptotically normal.

However, one disadvantage of the normal distribution is that its tails decay very rapidly, which reduces
robustness against outliers: the presence of a small percentage of outliers in the training set can lead to
significantly poor parameter estimates (Huber, 1981). Besides, many natural distributions have been proven
to have long tails and would be better modelled by, say, a Student-t distribution or by infinite-variance members
of the Lévy family8, such as the Cauchy (or Lorentzian) distribution (Casti, 1997; Shlesinger et al., 1995).
Another potential disadvantage of the normal distribution is its symmetry around the mean, when the noise is
skewed. Skewed multivariate distributions may be obtained as normal mixtures or as multivariate extensions
of univariate skewed distributions9, but in both cases the analytical treatment may become very complicated—
even if the axiom of local independence is followed, in which case a product of univariate skewed distributions
may be used.

It should be noted that the noise may depend on the point in latent space (or on the point in data space).
For example, in the binary system of section 2.2.1, the noise in the apastron area (point A in fig. 2.1) may
be smaller than in the periastron area and its surroundings (points C to K) due to the interference with the
central star. If, say, a normal noise model N (f(x),Ψ) is assumed, then its covariance Ψ should be a function of
x too: Ψ = Ψ(x) (fig. 2.9). However, this would require implementing Ψ(x) via some function approximator
(e.g. a multilayer perceptron) and the mathematical treatment becomes very complicated. None of the models
described in section 2.6 implement a noise model dependent on x, and therefore none of them would be able to
represent a data distribution such as the one depicted in fig. 2.9. For example, GTM could probably capture
the mapping f but would only find an average value for the noise covariance, thus missing the data density. In
principle one could think that GTM could approximate any smooth density function, since the data density
has the same form as a kernel estimator: eq. (2.8) or eq. (2.43) where the components are spherical Gaussian
kernels of width, or smoothing parameter, σ. However, in the kernel estimator the kernel centres are free to
move in data space while in GTM they are constrained by the mapping f . Therefore, GTM is not a universal
density approximator.

In latent variable models that use a constant noise model and a sampled latent space, like GTM, another
disadvantage appears. The observed space distribution is a mixture in which all components have the same
noise model, but are located at different places in observed space, as in eq. (2.8). Since the width of each
component is the same, those areas of observed space that have low probability (few samples) will be assigned
few, widely separated components compared to high-probability areas. As a result, the density estimate in
those low-probability areas will not be smooth, presenting a characteristic ripple that gives rise to spurious
modes, as discussed in section 7.9.1. This phenomenon is well-known in kernel density estimation with fixed-
width kernels (Silverman, 1986, pp. 17–18) and is particularly noticeable in the tails of the distribution being
approximated.

2.3.1.1 Latent variable models and principal curves

Hastie and Stuetzle (1989) define principal curves (reviewed in section 4.8) as smooth curves (or, in general,
manifolds) that pass through the middle of a data set and satisfy the self-consistence condition (4.2), which
we reproduce here for convenience:

∀x ∈ X : E {t|F(t) = x} = f(x) (4.2)

where the projection or dimensionality reduction mapping F : t ∈ T −→ X is defined as the point in X whose
image by f is closest to t in the Euclidean distance in T . Ignoring boundary effects, F−1(x) (the points in T
projecting on x) will be a subset of the manifold orthogonal to M = f(X ) at f(x), as fig. 2.10 shows.

8The Lévy, or stable, family of probability distributions (Feller, 1971, sec. VI.1–3) is defined as F{PN (x)} def
= F{e−N|x|β},

where F is the Fourier transform of the probability PN (x) for N-step addition of random variables and β ∈ (0, 2). Closed-forms
for the pdf are only known in a few cases. All its members have an infinite variance and are scale invariant. The case β = 1 gives a
Cauchy distribution and the limit case β = 2 gives the Gaussian distribution. The addition of N Lévy-distributed random variables
follows a Lévy distribution. Lévy’s theorem states that the addition of a number of random variables follows asymptotically a
Lévy distribution (the Gaussian distribution if all the random variables have finite variance).

9Few useful multivariate extensions of nonnormal distributions exist. One such extension may be the multivariate skew-normal
distribution SN (Σ, α) discussed by Azzalini and Capitanio (1999), with density:

p(t)
def
= 2φD(t;Σ)Φ(αT t) t ∈ R

D

where φD is the D-variate pdf of the normal distribution with zero mean and covariance Σ, Φ is the univariate cdf of the standard
normal distribution N (0, 1) and the parameter α ∈ RD partly regulates the skewness, with α = 0 giving the symmetric N (0,Σ).
This extension has some interesting properties, such as the fact that its marginal distributions are skew-normal too.
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We can see that the principal curve self-consistency condition (4.2) is more restrictive than condition (2.5)
(verified by unbiased latent variable models) in that the expectation is restricted to the set F−1(x) rather than
to the whole data space T . In other words, the (unbiased) latent variable model condition (2.5) means that
p(t|x) is centred at f(x) for any x ∈ X , whereas the principal curves self-consistency condition (4.2) means
that p(t|x) restricted to the points in T projecting onto x (which is a subset of the normal hyperplane to M
at f(x)) is centred at f(x) for any x ∈ X .

Clearly then, redefining self-consistency as condition (2.5) and considering both t and x as random variables
turns the principal curve into a latent variable model. This is what Tibshirani (1992) did, seeking to eliminate
the bias intrinsic to the standard definition of principal curves. He then approached the estimation problem
as nonparametric estimation of a continuous mixture (section 2.5.2) and, by assuming a diagonal normal
distribution for p(t|f(x)), reduced it to EM estimation of a Gaussian mixture. As mentioned in section 2.5.2,
this has the disadvantage of defining the principal curve f only through a finite collection of points in X rather
than as a smooth function defined for all points in X .

Under a generative view, such as that adopted for latent variable models (section 2.3), the self-consistency
condition (4.2) is unnatural, since it means that for a point that has been generated in latent space and mapped
onto a data space point t, the error added to t must be “clever” enough to perturb the point t in a direction
orthogonal to the manifold M at t and do so with mean zero! This only seems possible in the trivial case
where the tangent manifold is constant in direction, i.e., the principal curve has curvature zero. This is the
case of the principal component subspaces and normal distributions, in which case latent variable models and
principal curves coincide.

2.3.2 Prior distribution in latent space: interpretability

Given any prior distribution px(x) of the L latent variables x, it is always possible to find an invertible
transformation g to an alternative set of L latent variables y = (y1, . . . , yL) = g(x) having another desired
distribution py(y):

X g−→ Y f ′−→ T
f

The mapping from the new latent space onto the data space becomes f ′ = f ◦g−1, i.e., t = f(x) = f(g−1(y)) =

f ′(y) and the new prior distribution of the y variables becomes py = px |Jg|−1
, where Jg

def
=
(
∂gl

∂xk

)

is the

Jacobian of the transformation g. That is, given a space X with a distribution px, to transform it into a space
Y with a distribution py we apply10 an invertible mapping g : X → Y of Jacobian |Jg| = px

py
. For example, if

x are independently and normally distributed, transforming yl = exl for l = 1, . . . , L means that yl follow a
log-normal distribution.

Thus, fixing the functional form of the prior distribution in latent space is a convention rather than an
assumption11. However, doing so requires being able to select f and pd(t|x) from a broad class of functions so
that eq. (2.3) still holds. GTM (section 2.6.5) is a good example: while it keeps the prior p(x) simple (discrete
uniform), its mapping f is a generalised linear model (which has universal approximation capabilities).

In particular, we can choose the latent variables to be independent12 and identically distributed, px(x)
def
=

∏L
l=1 p(xl). Unfortunately, while this is a particularly simple and symmetric choice for prior distribution in

latent space, it does not necessarily simplify the calculation of the difficult L-dimensional integral (2.3), which
is a major shortcoming of the latent variable modelling framework (see section 2.4).

We coincide with Bartholomew (1985) that the latent variables must be seen as constructs designed to
simplify and summarise the observed variables, without having to look for an interpretation for them (which
may exist in some cases anyway): all possible combinations of p(x) and p(t|x) are equally valid as long as they
satisfy eq. (2.3). Thus, we do not need to go into the issue of the interpretation of the latent variables, which
has plagued the statistical literature for a very long time without reaching a general consensus.

Another issue is the topology of the true data manifold. For the one-dimensional example of figure 2.13,
the data manifold is a closed curve (an ellipse). Thus, modelling it with a latent space that has the topology
of an open curve (e.g. an interval of the Cartesian coordinate x) will lead to a discontinuity where both ends of

10Unfortunately, this is terribly complicated in practice, since solving the nonlinear system of partial differential equations∣
∣
∣

∂y

∂x

∣
∣
∣ = px

py
to obtain y = g(x) will be impossible except in very simple cases.

11The choice of a prior distribution in the latent space is completely different from, and much simpler than, the well-known
problem of Bayesian analysis of choosing a noninformative prior distribution for the parameters of a model (mentioned in sec-
tion 6.2.3.2)

12When g is linear and y1, . . . , yL are independent, this is exactly the objective of independent component analysis (section 2.6.3).
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the curve join: it is impossible to have a continuous mapping between spaces with different topological charac-
teristics without having singularities, e.g. mapping a circle onto a line. A representation using a periodic latent
variable is required13 (e.g. the polar angle θ). Although some techniques exist for Gaussian mixture modelling
of periodic variables (Bishop and Nabney, 1996), all the latent variable models considered in section 2.6 assume
non-periodic latent variables.

A flexible and powerful representation of the prior distribution can be obtained with a mixture:

p(x)
def
=

M∑

m=1

p(m)p(x|m)

which keeps the marginalisation in data space (2.3) analytically tractable (if the component marginals are):

p(t) =

∫

X
p(t|x)p(x) dx =

M∑

m=1

p(m)

∫

X
p(t|x)p(x|m) dx. (2.6)

By making the latent space distribution more complex we can have a simpler mapping f . The independent
factor analysis model of Attias (1999), discussed in section 2.6.4, uses this idea, where p(x) is a product of
Gaussian mixtures, the mapping is linear and the noise model is normal.

2.3.3 Smooth mapping from latent onto data space: preservation of topographic
structure

In section 2.3 we required the mapping f : X → T to be smooth, that is, continuous and differentiable. There
are two reasons for this:

• Continuity: this, by definition, will guarantee that points which lie close to each other in the latent
space will be mapped onto points which will be close to each other in data space. In the context of
Kohonen maps and similar algorithms for dimensionality reduction this is called topology or topography
preservation (although quantifying this topography preservation is difficult; Bauer and Pawelzik, 1992;
Martinetz and Schulten, 1994; Kohonen, 1995; Bezdek and Pal, 1995; Goodhill and Sejnowski, 1997;
Villmann et al., 1997; Bauer et al., 1999). It expresses the essential requirement that a continuous
trajectory followed by a point in latent space will generate a continuous trajectory in data space (without
abrupt jumps). The question of whether the dimensionality reduction mapping from data space onto
latent space is continuous will be dealt with in section 2.9.2.

• (Piecewise) differentiability: this is more of a practical requirement in order to be able to use derivative-
based optimisation methods, such as gradient descent.

The more general the class of functions from which we can pick f is (expressed through its parameters), the
more flexible the latent variable model is (in that more data space distributions p(t) can be constructed for
a given prior p(x), eq. (2.3)), but also the more complex the mathematical treatment becomes and the more
local optima appear. The quality of the local optima found for models which are very flexible can be dreadful,
as that shown in fig. 2.13 for GTM. The problem of local optima is very serious since it affects all local
optimisation methods, i.e., methods that start somewhere in parameter space and move towards a nearby
optimum, such as the EM algorithm and gradient or Newton methods. The only way for such methods to find
a good optimum is to start them from many different locations, but this really does not guarantee any good
results.

In section 2.3 we also required the mapping f to be nonsingular (as defined in section 2.2.2). This is to
ensure that the manifold M = f(X ) has the same dimension as the latent space X ; otherwise we would be
wasting latent variables.

2.4 The problem of the marginalisation in high dimensions

The latent variable framework is very general, accomodating arbitrary mappings and probability distributions.
However, this presents insurmountable mathematical and computational difficulties—particularly in the ana-
lytical evaluation of integral (2.3) but also when maximising the log-likelihood (2.9)—so that the actual choice

13It is not enough that a curve self-intersects, as it nearly happens in plot A of fig. 2.13: the almost coincident end points f(x1)
and f(xK) of the model manifold correspond to the widely separated end latent grid points x1 and xK .
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is limited. In fact, the only14 tractable case in arbitrary dimensions seems to be when both the prior in latent
space p(x) and the noise model p(t|x) are Gaussian (or mixtures of Gaussians) and the mapping f linear; or
when p(x) is a mixture of Dirac deltas (as a result of Monte Carlo sampling) and the mapping is nonlinear; or
when p(t|x) is a Dirac delta15. Combinations of these give the specific latent variable models of section 2.6.

Conditioning or marginalising a multivariate distribution, such as the joint distribution p(t,x) of eq. (2.3),
requires the evaluation of an integral in several dimensions of the form:

I(u) =

∫

V
f(u,v)p(v) dv u ∈ U ⊆ RU , v ∈ V ⊆ RV . (2.7)

This integral cannot be evaluated analytically for most forms of the function f and the distribution p(v). In
this case, a conceptually simple but computationally expensive workaround is to approximate it by Monte
Carlo integration, as MacKay (1995a) suggested. For the case (2.7) this means sampling K times in the space

V from p(v) and approximating I(u) ≈ 1
K

∑K
k=1 f(u,vk), with an error of order 1/

√
K (Press et al., 1992,

section 7.6). However, the sample size K in a space of V dimensions grows exponentially with V , as does
the hypervolume of the V -dimensional region (this is basically the curse of the dimensionality, discussed in
section 4.3). This severely limits the practical use of Monte Carlo methods. However, it should be noted that
K is not a parameter of the model (it does not take part in the estimation) and so increasing it does not
produce overfitting.

For eq. (2.3) Monte Carlo sampling yields

p(t) ≈ 1

K

K∑

k=1

p(t|xk) (2.8)

with {xk}Kk=1 drawn from p(x). GTM (section 2.6.5) uses this method with a uniform p(x). For the log-
likelihood gradient ∇ΘL of eq. (2.10) Monte Carlo sampling yields

∇ΘL(Θ) ≈
N∑

n=1

∑K
k=1∇Θp(tn|xk,Θ)
∑K
k=1 p(tn|xk,Θ)

.

The aim of integral (2.3) is not to obtain the numerical value of p(t) at a given t, but to obtain an analytical
expression for p(t) dependent on the parameters Θ (section 2.5). This is so because to estimate the model
parameters (e.g. by an EM algorithm) we generally need to be able to take the derivative of p(t|Θ) with
respect to Θ.

2.5 Parameter estimation

The prior in latent space p(x), the smooth mapping f and the noise model p(t|x) are all equipped with
parameters16 which we collectively call Θ. Once their functional forms are fixed, we have freedom to set the
parameters to those values that agree best with the data sample. These parameters are optimised, typically
to maximise the likelihood of the observed data given the parameters, p(tn|Θ). This approach has the well-
known problems of overfitting and model selection and could be overcome by a Bayesian treatment. In a
Bayesian treatment, a prior distribution is placed on the parameters and all subsequent inferences are done
by marginalising over the parameters:

p(t,x) =

∫

p(t,x|Θ)p(Θ) dΘ

where p(Θ) is the prior parameter distribution or the posterior parameter distribution after having seen some
data {tn}Nn=1. However, this adds an extra degree of intractability to that of eq. (2.3) and approximations
are required. For example, there is current interest in approximate Bayesian inference using Markov chain

14One might think that using uniform distributions may simplify the mathematics. However, while they do simplify the
expression of the integrand in (2.3), they complicate the integration region, preventing further treatment for any kind of mapping
(Carreira-Perpiñán, 1997).

15This is the zero-noise case, which is not interesting since data space points not in f(X ) receive zero density (although the
standard formulation of ICA has zero noise).

16Strictly, the dimensionality L of the latent space is also a parameter of the latent variable model, but we will consider it fixed
to some value, due to the practical difficulty of optimising it jointly with the other parameters.
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Monte Carlo methods (Besag and Green, 1993; Brooks, 1998; Gilks et al., 1996; Neal, 1993) and variational
methods (Jordan et al., 1999), and this has been applied to some latent variable models, such as principal
component analysis (Bishop, 1999) and mixtures of factor analysers (Ghahramani and Beal, 2000; Utsugi and
Kumagai, 2001). However, these are still preliminary results and the potential gain of using the Bayesian
treatment (notably the autodetection of the optimal number of latent variables and mixture components) may
not warrant the enormous complication of the computations, at least in high dimensions. In this thesis we will
only consider maximum likelihood estimation unless indicated otherwise.

The log-likelihood of the parameters given the sample {tn}Nn=1 is (assuming t1, . . . , tN independent and
identically distributed random variables):

L(Θ)
def
= ln p(t1, . . . , tN |Θ) = ln

N∏

n=1

p(tn|Θ) =

N∑

n=1

ln p(tn|Θ) (2.9)

which is to be maximised under the maximum likelihood criterion for parameter estimation. This will provide
with a set of values for the parameters, Θ∗ = arg maxΘ L(Θ), corresponding to a (local) maximum of the
log-likelihood. The log-likelihood value L(Θ∗) allows the comparison of any two latent variable models (or,
in general, any two probability models), however different these may be (although from a Bayesian point of
view, in addition to their likelihood, one should take into account a prior distribution for the parameters and
the evidence for the model; MacKay, 1995b).

One maximisation strategy is to find the stationary points of the log-likelihood (2.9):

∇ΘL(Θ) =
N∑

n=1

1

p(tn|Θ)
∇Θp(tn|Θ) = 0 (2.10)

but maximum likelihood optimisation is often carried out using an EM algorithm (Dempster et al., 1977;
McLachlan and Krishnan, 1997), which is usually simpler and is guaranteed to increase the log-likelihood
monotonically. In the EM approach to latent variable models, the latent variables {xn}Nn=1 (one per data
point) are considered missing17. If their values were known, estimation of the parameters (e.g. the Λ matrix
in eq. (2.14)) would be straightforward by least squares. However, for a given data point tn we do not know
the value of xn that generated it. The EM algorithm operates in two steps which are repeated alternatively
until convergence:

E step computes the expectation of the complete data log-likelihood with respect to the current posterior
distribution p(xn|tn,Θ(τ)) (i.e., using the current parameter values), traditionally notated Q(Θ|Θ(τ)):

Q(Θ|Θ(τ))
def
=

N∑

n=1

Ep(xn|tn,Θ(τ)) {Ln,complete(Θ)} where Ln,complete(Θ)
def
= ln p(tn,xn|Θ).

Thus, we average over the missing latent variables {xn}Nn=1, effectively filling in their unknown values.
Computing Ln,complete(Θ) is possible because the joint distribution p(t,x|Θ) is known for the latent
variable model in question.

M step determines new parameter values Θ(τ+1) that maximise the expected complete-data log-likelihood:

Θ(τ+1) = arg max
Θ

Q(Θ|Θ(τ)).

This increases the log-likelihood L(Θ) unless it is already at a local maximum.

The standard EM algorithm has some disadvantages:

• It is a batch algorithm. However, by interpreting EM as an alternating maximisation of a negative
free-energy-like function (Neal and Hinton, 1998), it is possible to derive online EM algorithms, suitable
for online learning (e.g. in sequential tasks, where the data come one at a time).

• Its slow convergence after the first few steps, which are usually quite effective. Also, the greater the
proportion of missing information, the slower the rate of convergence of EM (Dempster et al., 1977).
However, methods for accelerating it are available; see, for example, Meng and van Dyk (1997), McLach-
lan and Krishnan (1997) and references therein.

17Depending on the model, additional missing variables may have to be introduced. For example, the component labels for
mixture models.
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Despite these shortcomings, EM usually remains the best choice for parameter estimation thanks to its relia-
bility.

For a general choice of prior in latent space, mapping between latent and data space and noise model the
log-likelihood surface can have many local maxima of varying height. In some cases, some or all of those
maxima are equivalent, in the sense that the model produces the same distribution (and therefore the same
log-likelihood value at all the maxima), i.e., the model is not identifiable (section 2.8). This is often due to
symmetries of the parameter space, such as permutations (e.g. PCA) or general rotations of the parameters
(e.g. factor analysis). In those cases, the procedure to follow is to find a first maximum likelihood estimate of
the parameters (in general, by some suitable optimisation method, e.g. EM, although sometimes an analytical
solution is available, as for PCA) and then possibly apply a transformation to them to take them to a canonical
form satisfying a certain criterion (e.g. varimax rotation in factor analysis).

2.5.1 Relation of maximum likelihood with other estimation criteria

Least squares Using the least-squares reconstruction error as objective function for parameter estimation
gives in general different estimates as the maximum likelihood criterion, although the latter usually results
in a low reconstruction error. If we consider the unobserved values {xn}Nn=1 as fixed parameters rather than
random variables and assume that the noise model is normal with isotropic known variance, then a penalised
maximum likelihood criterion results in

N∑

n=1

‖tn − f(xn)‖2 + penalty term on f

which coincides with the spline-related definition of principal curves given by Hastie and Stuetzle (1989),
mentioned in section 4.8.

Kullback-Leibler distance For N →∞, the normalised log-likelihood of Θ converges in probability to its
expectation by the law of large numbers:

LN (Θ)
def
=

1

N

N∑

n=1

ln p(tn|Θ)
P−→ L∞(Θ)

def
= Ept {ln p(t|Θ)}

=

∫

T
pt(t) ln p(t|Θ) dt = −h(pt)−D(pt‖p(·|Θ))

(2.11)

for any Θ. Since the entropy of the data distribution h(pt) does not depend on the parameters Θ, maximising
the log-likelihood is asymptotically equivalent to minimising the Kullback-Leibler distance to the data density.

2.5.2 Relation with nonparametric estimation of continuous mixtures

As mentioned in section 2.3, the fundamental equation (2.3) can be interpreted as a continuous mixture model
for t, where x is the mixing variable. Assume that the functional form of p(t|x) is known and depends on f(x)
and on parameters θ(x). The log-likelihood of this model is (call px the density of the mixing variable x):

L(px, f ,θ)
def
=

N∑

n=1

ln

∫

X
p(tn|f(x),θ(x))p(x) dx.

Results from the theory of mixtures (Laird, 1978; Lindsay, 1983) dictate that for fixed f and θ the nonpara-
metric maximum likelihood estimate for p(x) uniquely exists and is discrete with at most N support points
(where N is the sample size). Denote these support points by {xm}Mm=1 ⊂ X where M ≤ N . This results then
in

p(t;Θ) =
M∑

m=1

pmp(t|fm,θm) (2.12)

where Θ
def
= {pm, fm,θm}Mm=1 contains the values of f , θ and px at the M unknown support points:

fm
def
= f(xm) θm

def
= θ(xm) pm

def
= p(xm).
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Model
Prior in latent

space p(x)
Mapping f

x→ t
Noise model

p(t|x)
Density in observed

space p(t)

Factor analysis (FA) N (0, I) linear
diagonal
normal

constrained
Gaussian

Principal component
analysis (PCA)

N (0, I) linear
spherical
normal

constrained
Gaussian

Independent component
analysis (ICA)

unknown
but factorised

linear Dirac delta depends

Independent factor
analysis (IFA)

product of 1D
Gaussian mixtures

linear normal
constrained

Gaussian mixture
Generative topographic
mapping (GTM)

discrete
uniform

generalised
linear model

spherical
normal

constrained
Gaussian mixture

Table 2.2: Summary of specific continuous latent variable models.

So we end up with a parametric finite mixture model of M components and parameters Θ which must be
estimated from the sample {xn}Nn=1: {pm} are the mixing proportions and, for each component m, fm and
θm could be (for example) location and covariance parameters. Note that the log-likelihood is not a function
of the support points {xm}Mm=1, but only of Θ. An obvious choice of optimisation algorithm would be EM
(Redner and Walker, 1984; McLachlan and Krishnan, 1997).

The nonparametric approach to parameter estimation in latent variable models has an important disadvan-
tage: it only finds the values of f and px at the support points. To obtain their values at other, intermediate,
points—which is necessary to perform dimensionality reduction and reconstruction (section 2.9)—they must
be smoothed or interpolated using the known values, {fm}Mm=1 for f and {pm}Mm=1 for px. This is as hard
a problem as the original one of estimating f parametrically. A less important disadvantage is that of the
singularities of the log-likelihood due to the use of separate parameters for each component: if fm becomes
equal to some data point tn, then if its variance parameter θm → 0 then L → ∞. This requires regularising
the model.

Although the expression for p(t) in eq. (2.12) looks similar to the one obtained by Monte Carlo sampling
of the latent space, eq. (2.8), there is an important difference: the Monte Carlo method preserves a parametric
form for the mapping f , which the nonparametric method has lost.

Knowing that the number of support points is at most N is not useful in practice, since fitting a mixture
of more than N components (each with separate parameters) to N data points would result in overfitting as
well as being computationally expensive.

2.6 Specific latent variable models

A latent variable model is specified by the functional forms of:

• the prior in latent space p(x)

• the smooth mapping f : X → T from latent space to data space

• the noise model in data space p(t|x)

all of which are equipped with parameters (as before, we omit them for clarity). As mentioned in section 2.4,
analytically tractable models can be obtained by clever combinations of (mixtures of) normal distributions
with linear mappings or mixtures of Dirac deltas with nonlinear mappings.

We describe here several well-known specific latent variable models. Table 2.2 gives a summary of them.
In all cases the parameters of the model may be estimated using the EM algorithm (in the case of PCA, an
analytical solution is known as well). In all cases T ≡ RD and X ≡ RL except for GTM, which uses a discrete
prior latent space.

Latent variable models can be classified as linear and nonlinear according to the corresponding character
of the mapping f . We call a latent variable model normal when both the prior in latent space and the noise
model are normal. Thus, factor analysis and principal component analysis (defined below) are linear-normal
latent variable models.
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2.6.1 Factor analysis (FA)

Factor analysis18 (Bartholomew, 1987; Everitt, 1984) uses a Gaussian distributed prior and noise model, and
a linear mapping from data space to latent space. Specifically:

• The latent space prior p(x) is unit normal:

x
def∼ N (0, I) (2.13)

although there exist varieties of factor analysis where these factors are correlated. The latent variables
x are often referred to as the factors.

• The mapping f is linear:

f(x)
def
= Λx + µ. (2.14)

The columns of the D×L matrix Λ are referred to as the factor loadings. We assume rank (Λ) = L, i.e.,
linearly independent factors.

• The data space noise model is normal centred at f(x) with diagonal covariance matrix Ψ:

t|x def∼ N (f(x),Ψ). (2.15)

The D diagonal elements of Ψ are referred to as the uniquenesses.

The marginal distribution in data space can be computed analytically and it turns out to be normal with a
constrained covariance matrix (theorems 2.12.1 and A.3.1(iv)):

t ∼ N (µ,ΛΛT + Ψ). (2.16)

The posterior in latent space is also normal:

x|t ∼ N
(

A(t− µ), (I + ΛTΨ−1Λ)−1
)

(2.17)

A = ΛT (ΛΛT + Ψ)−1 = (I + ΛTΨ−1Λ)−1ΛTΨ−1. (2.18)

The reduced-dimension representative (defined in section 2.9.1) is taken as the posterior mean (coinciding with
the mode) and is usually referred to as the Thomson scores:

F(t)
def
= E {x|t} = A(t− µ). (2.19)

The dimensionality reduction mapping F is linear and therefore smooth. As discussed in section 2.9.1.1, factor
analysis with Thomson scores does not satisfy the condition that F◦ f be the identity, because AΛ 6= I, except
in the zero-noise limit.

If we apply an invertible linear transformation g with matrix R to the factors x to obtain a new set of
factors y = Rx, the prior distribution p(y) is still normal (theorem A.3.1(i)), y ∼ N (0,RRT ), and the new
mapping becomes t = f ′(y) = f(g−1(y)) = ΛR−1y + µ (section 2.3.2). That is, the new factor loadings
become Λ′ = ΛR−1. If R is an orthogonal matrix, i.e., R−1 = RT , the new factors y will still be independent
and Ψ′ = Ψ diagonal; this is called an orthogonal rotation of the factors in the literature of factor analysis.
If R is an arbitrary nonsingular matrix, the new factors y will not be independent anymore; this is called
an oblique rotation of the factors. Thus, from all the factor loadings matrices Λ, we are free to choose that
which is easiest to interpret according to some criterion, e.g. by varimax rotation19. However, we insist that,
provided that the model p(t) remains the same, all transformations—orthogonal or oblique—are equally valid.
Section 2.8.1 further discusses this issue.

The log-likelihood of the parameters20 Θ = {Λ,Ψ,µ} is obtained as the log-likelihood of a normal distri-
bution N (µ,Σ) of covariance Σ = ΛΛT + Ψ:

L(Λ,Ψ) = −N
2

(
D ln 2π + ln |Σ|+ tr

(
SΣ−1

))
(2.20)

18Our Matlab implementation of factor analysis (EM algorithm, Rao’s algorithm, scores, χ2-test, etc.) and varimax rotation is
freely available in the Internet (see appendix C).

19Varimax rotation (Kaiser, 1958) finds an orthogonal rotation of the factors such that, for each new factor, the loadings are
either very large or very small (in absolute value). The resulting rotated matrix Λ′ has many values clamped to (almost) 0, that
is, each factor involves only a few of the original variables. This simplifies factor interpretation.

20The maximum likelihood estimate of the location parameter µ is the sample mean t. If the covariance matrix of p(t) in
eq. (2.16) was unconstrained, the problem would be that of fitting a normal distribution N (µ,Σ) to the sample {tn}N

n=1. In this
case, the maximum likelihood estimates for µ and Σ would be the natural ones: the sample mean t and the sample covariance
matrix S, respectively (Mardia et al., 1979).
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where S
def
= 1

N

∑N
n=1 (tn − t)(tn − t)T is the sample covariance matrix and t

def
= 1

N

∑N
n=1 tn the sample mean.

The log-likelihood gradient is:

∂L
∂Λ

= −N(Σ−1(I− SΣ−1)Λ)
∂L
∂Ψ

= −N
2

diag
(
Σ−1(I− SΣ−1)

)
.

The log-likelihood has infinite equivalent maxima resulting from orthogonal rotation of the factors. Apart
from these, it is not clear whether the log-likelihood has a unique global maximum or there exist suboptimal
ones. In theory, different local maxima are possible and should be due to an underconstrained model (e.g. a
small sample), but there does not seem to be any evidence in the factor analysis literature about the frequency
of multiple local maxima with actual data. Rubin and Thayer (1982), Bentler and Tanaka (1983) and Rubin
and Thayer (1983) give an interesting discussion about this21.

The parameters of a factor analysis model may be estimated using an EM algorithm (Rubin and Thayer,
1982):

E step: This requires computing the moments:

E {x|tn} = A(τ)(tn − µ)

E
{
xxT |tn

}
= I−A(τ)Λ(τ) + A(τ)(tn − µ)(tn − µ)T (A(τ))T

for each data point tn given the current parameter values Λ(τ) and Ψ(τ).

M step: This results in the following update equations for the factor loadings Λ and uniquenesses Ψ:

Λ(τ+1) =

(
N∑

n=1

tn E {x|tn}T
)(

N∑

n=1

E
{
xxT |tn

}T

)−1

Ψ(τ+1) =
1

N
diag

(
N∑

n=1

tn tTn −Λ(τ+1) E
{
x|tn

}
tTn

)

where the updated moments are used and the “diag” operator sets all the off-diagonal elements of a
matrix to zero.

The location parameter µ is estimated by the sample mean, and does not need to take part in the EM
algorithm.

Apart from EM, there are a number of other methods for maximum likelihood parameter estimation for
factor analysis, such as the methods of Jöreskog (1967)22 or Rao (Morrison, 1990, pp. 357–362). Also, in
common with other probabilistic models, factor analysis may be implemented using an autoencoder network,
with weights implementing a recognition and a generative model: a special case of the Helmholtz machine
having two layers of linear units with Gaussian noise, and trained with the wake-sleep algorithm23 (Neal and
Dayan, 1997).

There are also estimation criteria for factor analysis other than maximum likelihood, e.g. principal factors
(Harman, 1967) or minimum trace factor analysis (Jamshidian and Bentler, 1998).

2.6.2 Principal component analysis (PCA)

Principal component analysis24 (PCA) can be seen as a maximum likelihood factor analysis in which the
uniquenesses are constrained to be equal, that is, Ψ = σ2I is isotropic. This simple fact, already reported
in the early factor analysis literature, seems to have gone unnoticed until Tipping and Bishop (1999b) and
Roweis (1998) recently rediscovered it. Indeed, a number of textbooks and papers (e.g. Krzanowski, 1988,

21Rubin and Thayer (1982), reanalysing an example with 9 observed variables, 4 factors and around 36 free parameters in which
Jöreskog had found a single maximum with the LISREL method, claimed to find several additional maxima of the log-likelihood
using their EM algorithm. By carefully checking the gradient and the Hessian of the log-likelihood at those points, Bentler
and Tanaka (1983) showed that none except Jöreskog’s were really maxima. This is disquieting in view of the large number of
parameters used in pattern recognition applications.

22The method of Jöreskog (1967) is a second-order Fletcher-Powell method. It is also applicable to confirmatory factor analysis,
where some of the loadings have been set to fixed values (usually zero) according to the judgement of the user (Jöreskog, 1969).

23Strictly speaking, Neal and Dayan (1997) give no proof that wake-sleep learning works for factor analysis, only empirical
support that it usually does in some simulations.

24Our Matlab implementation of principal component analysis is freely available in the Internet (see appendix C).
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p. 502 or Hinton et al., 1997, beginning of section III) wrongly quote that “PCA does not propose a model for
the data” as a disadvantage when compared with factor analysis.

The approach of considering an isotropic noise model in factor analysis had already been adopted in
the Young-Whittle factor analysis model (Young, 1940; Whittle, 1952) and its maximum likelihood solution
assuming σ known found analytically (Anderson, 1963; Basilevsky, 1994, pp. 361–363). Lawley (1953) and
Anderson and Rubin (1956) showed that stationary points of the log-likelihood as a function of the loadings
Λ and uniqueness σ2 occur at the value of eq. (2.28), although they did not prove it to be global maximum,
which Tipping and Bishop (1999b) did. In addition to this direct solution, Roweis (1998) and Tipping and
Bishop (1999b) give an EM algorithm for estimating Λ and σ2.

Consider then the factor analysis model of the previous section with an isotropic error model. There exists
a unique (although possibly degenerate, if some eigenvalues are equal) maximum likelihood estimate closely
related to the L principal components of the data25. If the sample covariance matrix is decomposed as S =
UVUT , with V = diag (v1, . . . , vD) containing the eigenvalues (ordered decreasingly) and U = (u1, . . . ,uD)
the associated eigenvectors, then Λ = UL(VL − σ2I)1/2 with UL = (u1, . . . ,uL), VL = diag (v1, . . . , vL) and

σ2 = 1
D−L

∑D
j=L+1 vj . Therefore eqs. (2.13)–(2.19) become:

x
def∼ N (0, I) (2.21)

f(x)
def
= Λx + µ (2.22)

t|x def∼ N (f(x), σ2I) (2.23)

t ∼ N (µ,ΛΛT + σ2I) (2.24)

x|t ∼ N
(
A(t− µ), σ2V−1

L

)
(2.25)

A = V−1
L (VL − σ2I)1/2UT

L (2.26)

F(t)
def
= E {x|t} = A(t− µ) (2.27)

with maximum likelihood estimates:

Λ = UL(VL − σ2I)1/2 σ2 =
1

D − L
D∑

j=L+1

vj . (2.28)

The Thomson scores give F(t) = E {x|t} = A(t− µ), which still does not satisfy the condition that F ◦ f be
the identity, except in the zero-noise limit (σ → 0), as discussed in section 2.9.1.1.

Thus, in the latent variable model scenario PCA does define a probability model. Still, PCA is not usually
constructed as a probability model but as a reconstruction and dimensionality reduction technique, since its
most attractive property is that it is the linear mapping that minimises the least squares reconstruction error
of a sample. We describe this aspect of PCA in section 4.5.

Since the noise model variance σ2 is the same for all observed variables, the directions of the columns of
Λ will be more influenced by the variables that have higher noise—unlike with factor analysis, which should
be able to separate the linear correlations from the noise. The PCA model is then more restricted than the
factor analysis one. However, in many practical situations the directions Λ found by factor analysis and PCA
do not differ much.

The log-likelihood of the estimate (2.28) is26

L(Λ, σ2) = −N
2

(

D(1 + ln 2π) + ln |S|+ (D − L) ln
a

g

)

(2.29)

where a and g are the arithmetic and geometric means of the D − L smallest eigenvalues of the sample
covariance matrix S. Although there is an EM algorithm that finds the L principal components by maximising
the log-likelihood (Tipping and Bishop, 1999b; Roweis, 1998), the fastest way to perform PCA is via numerical
singular value decomposition (Golub and van Loan, 1996; Press et al., 1992).

Again, as in factor analysis, it is possible to orthogonally rotate the latent variables keeping the same
distribution.

25To differentiate it from conventional PCA, where no probabilistic model is explicitly defined and only a linear orthogonal
projection is considered (section 4.5), this latent variable model is called probabilistic PCA by Tipping and Bishop (1999b) and
sensible PCA by Roweis (1998). We do not deem necessary to use and additional, different name for what is essentially the same
thing, so in this thesis we will only use the name PCA and the context will make clear what aspect we mean—probability model
or linear mapping.

26As with factor analysis, the maximum likelihood estimate of the location parameter µ is the sample mean t.
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For a fixed data set, PCA has the property of additivity, insofar that the principal components obtained
using a latent space of dimension L are exactly the same as the ones obtained using a latent space of dimension
L− 1 plus a new, additional principal component. However, this additivity property does not necessarily hold
for either PCA followed by (varimax) rotation or for factor analysis. That is, the factors found by a factor
analysis of order L are, in general, all different from those found by a factor analysis of order L − 1. That
means that one can only talk about the joint collection of L factors (or the linear subspace spanned by them).

2.6.3 Independent component analysis (ICA)

Independent component analysis (ICA) or blind source separation consists of recovering independent sources
given only sensor observations that are unknown linear mixtures of the sources (Comon, 1994; Cardoso, 1998;
Hyvärinen, 1999b; Hyvärinen et al., 2001). Its basic formulation is as follows. Denote the time variable by
τ (continuous or discrete). Call x(τ) ∈ RL the L time-varying source signals27, assumed independent and
zero-mean. Call t(τ) ∈ RD the D data signals, measured without noise and with instantaneous mixing28 (that

is, there is no time delay between source l mixing into channel d). Then t(τ)
def
= Λx(τ), where ΛD×L is the

mixing matrix and D ≥ L (although we will assume D = L in most of this section29). The goal of ICA is,
given a sample {tn}Nn=1 of the sensor outputs, to find a linear transformation AL×D (separating matrix ) of the
sensor signals t that makes the outputs u(τ) = At(τ) = AΛx(τ) as independent as possible. If Λ was known,
A = Λ+ = (ΛTΛ)−1ΛT (assuming rank (Λ) = L) would recover the sources exactly, but Λ is unknown; all
we have is a finite set of realisations of the sensor outputs {tn}Nn=1.

If we take the sources x = (x1, . . . , xL)T as the latent variables and the sensor outputs t = (t1, . . . , tD)T as
the observed variables, ICA can be seen as a latent variable model with the following elements (the dependence
on the time τ is omitted for clarity):

• The prior distribution in latent space X = RL is factorised but unknown: p(x) =
∏L
l=1 pl(xl).

• The mapping between latent and observed space is linear: t = Λx.

• The noise model is a Dirac delta, i.e., the observed variables are generated without noise: p(t|x) =

δ(t−Λx) =
∏D
d=1 δ(td −

∑L
l=1 adlxl). However, we can imagine that noise is an independent source and

segregate it from the other sources.

Therefore, the only free parameter in the latent variable model is the matrix ΛD×L = (λdl) (or AL×D = Λ+ =
(ald)), but it is also necessary to determine the unknown functions {pl(xl)}Ll=1. How to deal with this unknown
prior distribution is what makes ICA different from the other latent variable models discussed here. Ideally one
would learn the functions {pl}Ll=1 nonparametrically, but this is difficult. For practical estimation, all current
methods use a fixed functional form for the latent space prior distribution with or without parameters. A
flexible parametric model of the prior distribution is a Gaussian mixture and this gives rise to the IFA model
of section 2.6.4.

The very effective infomax learning rule of Bell and Sejnowski (1995) is the following online iterative
algorithm:

A(τ+1) = A(τ) + ∆A(τ+1) (2.30)

∆A(τ+1) ∝ ((A(τ))T )−1 + g(u)tT (2.31)

where t is a sensor output, u
def
= A(τ)t, g(u)

def
= (g(u1), . . . , g(uL))T and g(u)

def
=

∂ ln |f ′(u)|
∂u . The choice of the

nonlinear function f : R→ R is critical since it can be proven (see below and Bell and Sejnowski, 1995) that
p(xl) ∝ |f ′(xl)|. That is, f is the one-dimensional cumulative distribution function in latent space and fixing
its form is equivalent to assuming a prior distribution p(xl) for the latent variables (the sources). Taking
g(u) = −2u (or equivalently f = erf) means assuming normally distributed sources, x ∼ N (0, I) (although
with a Dirac-delta noise model), which gives second-order decorrelation only—in which case using factor
analysis would have been enough. The use of a nonlinear function, whose Taylor series expansion has terms of
many orders, may be more sensitive to the right higher-order statistics of the inputs. In practice, a sigmoidal
function is chosen, such as the logistic function. Several forms of the nonlinearity f are summarised in table 2.3.
The computationally simpler nonlinearities, such as the logistic function or the hyperbolic tangent, assume

27Instead of time-varying sources x(τ) one can consider space-varying sources x(x, y), such as images.
28If time delays are considered, the problem is called blind deconvolution rather than blind separation.
29The case D < L (more sources than sensors) is called overcomplete representation and has been advocated because of its

greater robustness to noise, sparsity and flexibility in matching structure in the data (Amari, 1999; Lewicki and Sejnowski, 2000).
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Nonlinearity name f(u) f ′(u) g(u)
def
= ∂

∂u ln |f ′(u)| = f ′′(u)
f ′(u) Kurtosis k4

Logistic 1
1+e−u f(1− f) 1− 2f +

Generalised logistic fp(1− f)r
(
p
f − r

1−f

)

fp(1− f)r
{

+, p, r > 1
−, p, r < 1

Hyperbolic tangent tanhu 1− f 2 −2f +

Generalised tanh 1− |f |r −r |f |r−1
sgn (f)

{
+, r < 2
−, r > 2

e−u
2/2 coshu −u+ tanhu −

Error function erf u 2√
π
e−u

2 −2u 0

Generalised erf e−|u|r −r |u|r−1
sgn (u)

{
+, r < 2
−, r > 2

Arctangent arctanu 1
1+u2 − 2u

1+u2 +∞

cdf of Student’s t
Γ( 1

2 (r+1))√
πrΓ( 1

2 r)

(

1 + u2

r

)− r+1
2 − (r+1)u

u2+r
6
r−4

Table 2.3: Different nonlinearities f and their associated slopes f ′ and functions g for the infomax rule (2.31).
The kurtosis is that of the associated p.d.f. in latent space, p(u) ∝ |f ′(u)|. If f(u) is omitted, it is defined as
∫ u

−∞ f ′(v) dv. f = erf gives the normal distribution and f = arctan the Cauchy one. In all cases p, r > 0.

supergaussian (positive kurtosis) source distributions and thus are not suitable for subgaussian ones. A better
nonlinearity in those cases is the one given by g(u) = −u + tanhu. However, Bell and Sejnowski claim that
most real-world analog signals are supergaussian. Subgaussian source separation is a topic of current research
(e.g. Lee et al., 1999).

The rule (2.31) is nonlocal, requiring a matrix inversion, and thus does not seem biologically plausible.
Being a standard gradient descent, it is also noncovariant: different variables have different units. However,
rescaling the gradient by a metric matrix ATA, we obtain a natural gradient algorithm (Yang and Amari,
1997; Amari and Cichoki, 1998):

∆A ∝ (I + g(u)uT )A (2.32)

which is simpler and converges faster. Batch algorithms are also much faster, such as FastICA (Hyvärinen,
1999a), which is based on a fixed-point iteration.

The rule (2.31), or approximate versions of it, can be justified from several points of view:

Information maximisation In the low noise case, the infomax principle states that if the mutual information
between the inputs t and the outputs y of a processor is maximum, then the output distribution p(y)
is factorial (Linsker, 1989; Nadal and Parga, 1994). Consider a single-layer feedforward neural network

with inputs t = (t1, . . . , tD)T , net inputs u
def
= At and outputs yl

def
= f(ul), l = 1, . . . , L, where AL×D is a

matrix of adjustable parameters and f a fixed invertible (thus monotonic) and differentiable nonlinearity.
Maximising the mutual information I(y, t) by varying the parameters A is equivalent to maximising the
output entropy h(y):

I(y, t)
def
= h(y)− h(y|t)⇒ ∂

∂A
I(y, t) =

∂

∂A
h(y)

because h(y|t) does not depend on A. Taking into account that py(y) = pt(t) |J(t,y)|−1
(where

J(t,y) =
(
∂yl

∂td

)

is the Jacobian of the transformation), p(ul) = p(yl) |f ′(ul)| and h(y)
def
= −Epy {ln py},

we obtain the rule (2.31) with g(u)
def
=

∂ ln |f ′(u)|
∂u .

The maximum entropy is obtained when each yl is distributed uniformly (assuming {yl}Ll=1 are amplitude-
bounded random variables), in which case p(ul) = p(yl) |f ′(ul)| ∝ |f ′(ul)|. That is, f is the c.d.f. of ul.

Finally, observe that the output y of our single-layer neural network is used only for minimising the
mutual information. We are really interested in u, which are the recovered sources.

Maximum likelihood estimation MacKay (1996) shows for the case L = D that the infomax algorithm
can be derived by maximising the log-likelihood of the ICA latent variable model by gradient ascent.
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Let us compute the probability distribution induced in the observed space for the particular case L = D
by marginalising the joint distribution as in eq. (2.3):

p(t) =

∫

X
p(t|x)p(x) dx =

∫

X
δ(t−Λx)p(x) dx = |Λ|−1

p(Λ−1t) = |Λ|−1
L∏

l=1

pl

(
D∑

d=1

λ−1
ld td

)

.

So we get:

as a function of Λ: ln p(t|Λ) = − ln |Λ|+
L∑

l=1

ln pl

(
D∑

d=1

λ−1
ld td

)

as a function of A = Λ−1: ln p(t|A) = ln |A|+
L∑

l=1

ln pl

(
D∑

d=1

aldtd

)

.

Calling u
def
= At and g(u)

def
=
(
d ln p1(u1)

du1
, . . . , d ln pL(uL)

duL

)T

and using the matrix differentiation identi-

ties (A.4) we obtain the gradient of the log-likelihood:

∂

∂λdl
ln p(t|Λ) = −ald − ul

L∑

l′=1

al′dgl′(ul′)

∂

∂ald
ln p(t|Λ) = λdl + gl(ul)td

which coincides with the infomax one, eq. (2.31).

An alternative derivation from a maximum likelihood estimation point of view has been given by Pearl-
mutter and Parra (1996) and Cardoso (1997). Consider a parametric model pΘ(t) for the true sensor
distribution pt(t). Eq. (2.11) shows that maximising the log-likelihood of Θ is equivalent to minimis-
ing the Kullback-Leibler distance to the data density pt(t). Assuming A and Λ invertible, and (a)
since H(pt) is independent of A and (b) the Kullback-Leibler divergence is invariant under invertible
transformations (t = Λx and u = At), maximum likelihood estimation produces:

∆A ∝ ∂L(Θ)

∂A

(a)
= − ∂

∂A
D (pt(t)‖pΘ(t))

(b)
= − ∂

∂A
D(p(x)‖pΘ(u))

which coincides with the infomax rule of eq. (2.31).

Negentropy maximisation and projection pursuit From a projection pursuit point of view (section 4.6),
ICA looks for linear projections where the data become independent. Girolami et al. (1998) show that
negentropy maximisation projection pursuit performs ICA on sub- or supergaussian sources and leads
exactly to the infomax rule (2.31). Negentropy of a distribution of density p is defined as the Kullback-
Leibler divergence between p and the Gaussian distribution pN with the same mean and covariance as
p: D (p‖pN ). It is zero if p is normal and positive otherwise.

Cumulant expansion If u and x are symmetrically distributed and approximately normal, their mutual
information can be approximated using a Gram-Charlier or Edgeworth polynomial expansion (Kendall
and Stuart, 1977) of fourth order in terms of the cumulants (Comon, 1994) and used as objective function
for gradient ascent. However, this method requires more computations than the infomax algorithm and
gives worse separation—an order higher than 4 is necessary to improve separation.

Nonlinear PCA Karhunen and Joutsensalo (1994) show that a neural network trained by least squares to
compute the function Af(At) on prewhitened data can separate signals. Girolami and Fyfe (1999) show
that its cost function is approximately equivalent to that of the cumulants method.

2.6.4 Independent factor analysis (IFA)

Independent factor analysis (Attias, 1998, 1999) uses a factorial Gaussian mixture prior, a linear mapping
from data space to latent space and a normal noise model30. Specifically:

30Similar approaches have also been proposed that use mixture models for the source density: Pearlmutter and Parra (1996)
(mixture of logistic densities, gradient descent) and Moulines et al. (1997) and Xu et al. (1998) (Gaussian mixture, EM algorithm).
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• Each latent variable is modelled independently of the others as a mixture of Ml one-dimensional Gaus-
sians:

p(x)
def
=

L∏

l=1

pl(xl) pl(xl)
def
=

Ml∑

ml=1

p(ml)p(xl|ml) xl|ml
def∼ N (µl,ml

, vl,ml
). (2.33)

Thus the latent space prior p(x) is a product of one-dimensional Gaussian mixtures, which results in a
mixture of L-dimensional diagonal Gaussians but with constrained means and covariance matrices (since
a general mixture of diagonal Gaussians need not be factorised):

p(x) =
∑

m

p(m)p(x|m)







m
def
= (m1, . . . ,mL)

p(m) =
∏L
l=1 p(ml)

x|m def∼ N (µm,Vm) with

{

µm

def
= (µ1,m1

, . . . , µL,mL
)T

Vm
def
= diag (v1,m1

, . . . , vL,mL
) .

(2.34)

The summation over m includes all combinations of tuples m = (m1, . . . ,mL) where ml = 1, . . . ,Ml for
each l = 1, . . . , L.

• The mapping f is linear (the data space distribution is assumed zero-mean, which can be obtained by
centring the data sample before fitting the model):

f(x)
def
= Λx. (2.35)

We assume rank (Λ) = L.

• The data space noise model is normal centred at f(x) with covariance matrix Φ:

t|x def∼ N (f(x),Φ). (2.36)

Thus, factor analysis (and PCA) is a particular case of IFA where Φ is diagonal and each pl(xl) is N (0, 1).
The marginal distribution in data space can be computed analytically and turns out to be a constrained

mixture of Gaussians (eq. (2.6) and theorems 2.12.1 and A.3.1(iv)):

p(t) =
∑

m

p(m)p(t|m) t|m def∼ N (Λµm,ΛVmΛT + Φ). (2.37)

The posterior in latent space is also a mixture of Gaussians:

p(x|t) =
∑

m

p(m|t)p(x|m, t)







p(m|t) = p(t|m)p(m)
∑

m′ p(t|m′)p(m′)

(x|m, t)
def∼ N (νm,t,Σm)

{

Σm
def
= (ΛTΦ−1Λ + V−1

m )−1

νm,t
def
= Σm(ΛTΦ−1t + V−1

m µm).

(2.38)

The reduced-dimension representative can be taken as the posterior mean, which is simple to compute (and it
need be computed in each iteration of the EM algorithm):

F(t)
def
= E {x|t} =

∑

m

p(m|t)νm,t. (2.39)

Since the posterior (2.38) can be asymmetric or multimodal, one could take its mode instead (which could
be computed iteratively with the algorithms of chapter 8). In the limit of zero noise, the reduced-dimension
representative can be taken as the projection via the pseudoinverse Λ+ = (ΛTΛ)−1ΛT , as in ICA.

Attias (1999) gives an EM algorithm for IFA. Taking the limit Φ→ 0 in it results in an EM algorithm for
PCA, as presented by Tipping and Bishop (1999b) and Roweis (1998). Attias (1999) also gives an EM and a
generalised EM algorithm for noiseless IFA (Φ = 0). The latter results in a combination of a rule similar to
the infomax rule (2.31) for updating the mixing matrix and update rules for the Gaussian mixture parameters
similar to those of the standard EM algorithm for a Gaussian mixture. That is, it combines separating the
sources x1, . . . , xL with learning their densities.

Again, a major disadvantage of the IFA model is that the number of parameters grows exponentially with
the dimensionality of the latent space: the prior distribution for the latent variables includes

∏L
l=1 (2Ml − 1)

parameters, which is O(eL). Attias (1999) proposes a variational approximation of the EM algorithm that
reduces the number of operations—but the number of parameters remains O(eL).
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2.6.5 The generative topographic mapping (GTM)

The generative topographic mapping (GTM) (Bishop, Svensén, and Williams, 1998b) is a nonlinear latent
variable model which has been proposed as a principled alternative to self-organising feature maps (Kohonen,
1995). Specifically:

• The L-dimensional latent space X is discrete31. The prior in latent space, p(x), is discrete uniform,
assigning nonzero probability only to the points {xk}Kk=1 ⊂ RL, usually arranged in a regular grid (for
visualisation purposes):

p(x)
def
=

1

K

K∑

k=1

δ(x− xk). (2.40)

This discrete prior can be seen as a fixed approximation of a continuous, uniform distribution in a
hyperrectagle of RL (see section 2.4 on Monte Carlo sampling).

• The mapping f is a generalised linear model:

f(x)
def
= Wφ(x), (2.41)

where W is a D × F matrix and φ an F × 1 vector of fixed basis functions.

• The noise model p(t|x) is an isotropic normal centred at f(x):

t|x def∼ N (f(x), σ2I). (2.42)

The marginal distribution in data space is a constrained mixture of Gaussians (in the sense that the Gaussian
centres cannot move independently, but only by changing the mapping f through W):

p(t) =
1

K

K∑

k=1

p(t|xk), (2.43)

and the posterior in latent space is discrete:

p(xk|t) =
p(t|xk)

∑K
i=1 p(t|xi)

. (2.44)

The reduced-dimension representative can be taken as the posterior mean or the posterior mode, both of
which can be easily computed since the posterior distribution is discrete. The mean and the mode can be
quite different from each other if the posterior distribution is multimodal. The dimensionality reduction
mapping F for the posterior mode is not continuous in general, although it will be approximately continuous if
the posterior distribution (2.44) is unimodal and sharply peaked for most points in data space (section 2.9.2).

The log-likelihood of the parameters Θ = {W, σ2} is

L(W, σ2) =

N∑

n=1

ln
1

K

K∑

k=1

p(tn|xk;W, σ2) =

N∑

n=1

ln
1

K(2πσ2)
D
2

K∑

k=1

e−
1

2σ2 ‖tn−Wφ(xk)‖2

and is known to contain a number of suboptimal maxima (see fig. 2.13 for some examples).
The parameters of a GTM model may be estimated using the EM algorithm:

E step This requires computing the responsibility Rnk = p(xk|tn) of each latent space point xk having
generated point tn using eqs. (2.40)-(2.44) with the current parameter values W(τ) and σ(τ).

M step This results in the following update equations for the parameters W and σ, respectively:

ΦTG(τ)Φ(W(τ+1))T = ΦT (R(τ))TT (2.45a)

(σ(τ+1))2 =
1

ND

K∑

k=1

N∑

n=1

R
(τ)
nk ‖tn − f(xk)‖2 (2.45b)

where Φ
def
= (φ1, . . . ,φK)T , T

def
= (t1, . . . , tN )T , R is an N × K matrix with elements Rnk and G is a

K ×K diagonal matrix with elements gkk =
∑N
n=1Rnk. Solving for W requires (pseudo-)inverting the

matrix ΦTGΦ at each iteration.
31Strictly, the latent space is continuous and p(x) is a density, but we will call it “discrete uniform” for short (see also sections 2.4

and 2.9.2).
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A simple regularised version of GTM to control the mapping f is obtained by placing an isotropic Gaussian

prior distribution of variance λ−1 on the mapping weights W = (wdf ), W|λ def∼ N (0, λ−1I). This leads to a
maximum a posteriori (MAP) estimator:

LMAP(W, σ2) = L(W, σ2)− Nλ

2
‖W‖2 (2.46)

where λ is the regularisation coefficient, ‖W‖2 =
∑D
d=1

∑F
f=1 w

2
df and an additive term independent of W

and σ2 has been omitted. This results in a modified M step of the EM algorithm:

(ΦTG(τ)Φ + λσ2I)(W(τ+1))T = ΦT (R(τ))TT.

An approximate Bayesian treatment of the hyperparameter λ is given by Bishop et al. (1998a) and Utsugi
(2000).

The major shortcoming of GTM is that, being based on (fixed) Monte Carlo sampling of the latent space
mentioned in section 2.4, both the number of latent grid points K and the number of basis functions F required
for the generalised linear model (2.41) grow exponentially with the dimension of the latent space, L. This limits
the practical applicability of GTM to about 2 latent variables. Another shortcoming, shared by most global
methods (i.e., that find an estimate for the whole data space) that are very flexible parameterised models, is
the fact that the EM estimate very often converges to very bad local maxima, as those shown in the lower half
of fig. 2.13; for twisted manifolds, a good maximum can only be reached it starting EM from a small region of
the parameter space.

The density networks of MacKay (1995a) are a model similar to GTM: the mapping f is implemented
by a multilayer perceptron, all the distributions are assumed isotropic Gaussian and a Monte Carlo fixed
sampling is necessary to obtain p(t). The log-likelihood is maximised with a conjugate gradients method. Like
GTM, this approach suffers from the exponential complexity of the Monte Carlo sampling. MacKay applies
density networks to a discrete problem, modelling a protein family. The insight of (Bishop et al., 1998b) is
to implement the mapping f with a generalised linear model, which results in a tractable M step of the EM
algorithm, since only the weights of the linear layer have to be estimated.

GTM pursues a similar goal as Kohonen’s self-organising maps (to adapt a topographical arrangement of
knots to a data distribution) but with the important advantage that it defines a probabilistic model for the
data and dimensionality reduction and reconstruction mappings. Table 4.4 compares succintly both models.

2.6.5.1 Extensions to GTM

Bishop et al. (1998a) propose several extensions to the GTM model:

• A manifold-aligned noise model, where the covariance matrix of the noise model (2.42) is not isotropic
anymore but approximately aligned (depending on the value of η below) with the manifold M = f(X )
locally at each mapped point f(x):

t|x def∼ N (f(x),Σ(x)) Σ(x)
def
= σ2I + η

L∑

l=1

∂f

∂xl

(
∂f

∂xl

)T

where the new hyperparameter η must be adjusted manually and Σ(x) is computed only at the points
{xk}Kk=1. The goal is to ensure that the variance of the noise distribution in directions tangential to
the manifold is never significantly less than the square of the typical distance between neighbouring
points f(xk), so that there is a smooth distribution along the manifold even when the noise variance
perpendicular to the manifold becomes small.

It would seem that this model violates the axiom of local independence (section 2.3.1), since Σ(x) is
not diagonal and so the noise model would not be factorised anymore. However, the model can be
derived from taking the model with factorised axis-aligned noise, but approximating the uniform density
by a grid of Gaussians (rather than deltas) and then linearising the manifold about the centre of each
Gaussian (Chris Williams, pers. comm.).

It remains to be seen whether this approach has any advantages over using a mixture of linear-normal
latent variable models (since each GTM mixture component represents now a local linear subspace).

• Modelling of discrete observed variables by defining a Bernoulli or multinomial noise model depending
on f(x) via a logistic or softmax function, respectively. However, estimation of the parameters via the
EM algorithm is much more difficult, requiring nonlinear optimisation in the M step.
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• A semilinear model where some of the latent variables are discretised and mapped with the generalised
linear model (2.41) as in the standard GTM model and the rest are continuous and mapped linearly.

• An incremental EM algorithm based on the approach of Neal and Hinton (1998).

• Approximate Bayesian inference for the regularisation parameter λ of eq. (2.46), using the Laplace
approximation (MacKay, 1992a), i.e., a local Gaussian approximation at the mode of the posterior
distribution of the parameters W. The Laplace approximation breaks down when the posterior parameter
distribution is multimodal or skewed—a likely situation when training data is scarce (Richardson and
Green, 1997). Utsugi (2000) uses a Gibbs sampler and an ensemble learning method to approximate
Bayesian inference.

• A Gaussian process formulation.

Further extensions by other authors include:

• Marrs and Webb (1999) propose an average generalised unit-speed constraint on f to preserve geodetic
distances in data space (outlined in section 2.8.3).

• We propose a diagonal noise GTM model (dGTM), where the noise model covariance is diagonal rather
than spherical: t|x ∼ N (f(x),Ψ) with Ψ = diag (ψ1, . . . , ψD). In section 2.12.4 we show that the EM
algorithm remains the same except for eq. (2.45b), which becomes D equations:

ψ
(τ+1)
d =

1

N

K∑

k=1

N∑

n=1

R
(τ)
nk (tnd − fd(xk))2 d = 1, . . . , D (2.45b’)

and the responsibilities Rnk depend on Ψ rather than on σ2.

A diagonal noise model is necessary to account for different scales and noise levels in the different data
variables t1, . . . , tD (which in general cannot be overcome by presphering the data, as fig. 2.8 shows).

2.7 Finite mixtures of latent variable models

Finite mixtures (Everitt and Hand, 1981) of latent variable models can be constructed in the usual way as32

p(t)
def
=

M∑

m=1

p(m)p(t|m) (2.47)

where:

• p(t|m), m = 1, . . . ,M are latent variable models based on latent spaces Xm of dimension Lm (not
necessarily equal), i.e.,

p(t|m) =

∫

Xm

p(t,x|m) dx =

∫

Xm

p(t|x,m)p(x|m) dx

where p(x|m) is the prior distribution in the latent space of the mth component, p(t|x,m) its noise
model and fm : Xm → T its mapping from latent space into data space.

• p(m) are the mixing proportions.

The joint density is p(t,x,m) = p(t|x,m)p(x|m)p(m) and the finite mixture distribution can be expressed as
the marginalisation of p(t,x,m) over x and m:

p(t) =

M∑

m=1

∫

Xm

p(t,x,m) dx =

M∑

m=1

p(m)

∫

Xm

p(t|x,m)p(x|m) dx =

M∑

m=1

p(m)p(t|m).

The advantage of finite mixtures of latent variable models is that they can place different latent variable
models in different regions of data space, where each latent variable model models locally the data. This
allows the use of simple local models (e.g. linear-normal, like factor analysis or principal component analysis)
that build a complex global model (piecewise linear-normal). In other words, finite mixtures of latent variable
models combine clustering with dimensionality reduction.

32The IFA model results in a data space distribution (2.37) with the same form as eq. (2.47). But in the IFA model the mixture
takes place in the latent space while here it takes place in the data space.
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2.7.1 Parameter estimation

Once the model is formulated and the functional forms of each latent variable model are fixed, estimation of
the parameters can be done by maximum likelihood. As usual with mixture models, the mixing proportions
are taken as parameters p(m) = πm and included in the estimation process; one parameter πm is not free due

to the constraint
∑M
m=1 πm = 1.

Maximum likelihood estimation can be conveniently accomplished with an EM algorithm, where for each
data point tn the missing information is not only the values of the latent variables xn (as in section 2.5), but
also the index of the mixture component that generated tn:

E step This requires computation of the responsibility Rnm = p(m|tn) of each component m having generated
point tn using Bayes’ theorem:

Rnm =
p(tn|m)p(m)

p(tn)
=

πmp(tn|m)
∑M
m=1 πmp(tn|m)

where p(t|m) is given by the latent variable model with the parameter values of the current iteration.

M step This results in several update equations for the parameters. The update equations for the mixing
proportions are independent of the type of latent variable model used:

π(τ+1)
m =

1

N

N∑

n=1

R(τ)
nmπ

(τ)
m .

The equations for the rest of the parameters (from the individual latent variable models) depend on the specific
functional form of p(t|x,m) and p(x|m), but often they are averages of the usual statistics weighted by the
responsibilities and computed in a specific order.

2.7.2 Examples

Ghahramani and Hinton (1996) construct a mixture of factor analysers where each factor analyser, of Lm
factors, is characterised by two kinds of parameters: the mean vector µm ∈ RLm and the loadings matrix Λm

(containing Lm loading vectors), in addition to the mixing proportion πm. All analysers share a common noise
model diagonal covariance matrix Ψ for simplicity (although this implies a loss of generality). They give an EM
algorithm for estimating the parameters {{πm,µm,Λm}Mm=1,Ψ} by maximum likelihood from a sample. As
with many other mixture models, the log-likelihood surface contains singularities (where the covariance matrix
of a component model tends to zero and the lilkelihood tends to infinity) to which the EM algorithm can be
attracted (see sections 3.2.2 and 5.4.4.1). Hinton et al. (1997) also used a mixture of factor analysers to model
handwritten characters, where each factor analyser was implemented via an autoencoder. McLachlan and Peel
(2000, chapter 8) give an AECM algorithm33 for a mixture of factor analysers where each component has a
different, diagonal covariance matrix Ψm. Utsugi and Kumagai (2001) derive Bayesian estimation algorithms
using a Gibbs sampler and its deterministic approximation for this same model. Ghahramani and Beal (2000)
apply a variational approximation of Bayesian inference to the model of Ghahramani and Hinton (1996) to
automatically determine the optimal number of components M and the local dimensionality of each component
Lm.

Tipping and Bishop (1999a) define mixtures of principal component analysers and give for them
an EM algorithm and a simpler and faster generalised EM algorithm. They show good results in image
compression and handwritten digit recognition applications, although the reconstruction error attained is in
general larger than that attained by a nonprobabilistic mixture of PCAs trained to minimise the reconstruction
error (the VQPCA algorithm of Kambhatla and Leen, 1997, discussed in section 4.7). This is reasonable
since the probabilistic mixture of PCAs is trained to maximise the log-likelihood rather than minimise the
reconstruction error.

A mixture of diagonal Gaussians and a mixture of spherical Gaussians can be seen, as limit cases, as
a mixture of factor analysers with zero factors per component model and a mixture of principal component
analysers with zero principal components per component model, respectively. Thus, Gaussian mixtures explain
the data by assuming that it its exclusively due to noise—without any underlying (linear) structure.

33The alternating expectation conditional-maximisation (AECM) algorithm (Meng and van Dyk, 1997) replaces the M-step of
the EM algorithm by a number of computationally simpler conditional maximisation steps and allows the specification of the
complete data to be different on each such step.
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Bishop and Tipping (1998) use hierarchical mixtures of latent variable models with a two-dimensional
latent space to visualise the structure of a data set at different levels of detail; for example, a first, top level
can show the general cluster structure of the data while a second level can show the internal structure of the
clusters, and so on. The tree structure of the hierarchy can be built iteratively by the user in a top-down way.

Section 4.7 mentions other local models for dimensionality reduction not based on mixtures of latent
variable models.

2.7.3 Comparison with Gaussian mixtures

In general, mixtures of latent variable models whose distribution in data space p(t) results in a Gaussian
mixture (such as mixtures of factor analysers or PCAs) have two advantages over usual mixtures of Gaussian
distributions:

• Each component latent variable model locally models both the (linear) mapping and the noise, rather
than just the covariance.

• They use fewer parameters per component, e.g. D(L + 1) for a factor analyser versus D(D+1)
2 for a

Gaussian (of course, L should not be too small for the model to remain good).

A small number of free parameters requires less computation and less training data (thus reducing the risk of
overfitting when data is scarce). Using an unconstrained Gaussian mixture requires more parameters because
each mixture component has its own covariance matrix. The total number of parameters can be reduced by
one of the following approaches:

• Using diagonal or even spherical components (which still are universal density approximators, as full-
covariance mixtures are; Titterington et al., 1985; Scott, 1992).

• Using parameter tying or sharing (Young, 1996). This method, very popular in the literature of speech
recognition based on hidden Markov models, consists of allocating a pool of parameters, typically covari-
ance matrices, to be shared by several or all the components of the mixture. Thus, several components
may have the same covariance matrix but different means and mixture proportions. However, the training
algorithm—often EM-based—becomes considerably complex and the task of deciding what parameters
to tie is not straightforward.

Exactly what approach (full, diagonal or spherical covariance; and unconstrained, latent variable or parameter-
tied mixture) is more efficient depends on each particular case; “efficient” here means to use as few parameters
as possible to achieve a given performance (such as approximation error, classification error, word error rate,
etc.). Saul and Rahim (2000b) give an EM algorithm for hidden Markov models whose output distribution is a
mixture of factor analysers and show good performance with a reduced number of parameters when compared
with other methods.

2.8 Identifiability, interpretability and visualisation

Identifiability of a class of probabilistic models refers to the existence of a unique characterisation for any
model in that class, i.e., to the fact that no two different values of the model parameters give rise to the same
distribution (Titterington et al., 1985; Everitt and Hand, 1981; McLachlan and Peel, 2000). For example, the
class of finite mixtures of uniform distributions is not identifiable, as a simple counterexample shows. The
following three mixtures produce the same distribution:
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1

6
U(1, 2) (2.48c)

since f1(t) = f2(t) = f3(t) for all t ∈ (−∞,∞).
For a mixture distribution, the parameters include the number of mixture components too. Thus, identifi-

ability is defined formally as follows for mixtures (and, as a particular case, for non-mixture models):
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Definition 2.8.1. A class of finite mixtures parameterised by Θ is said to be identifiable if for any two
members

p(t;Θ)
def
=

M∑

m=1

πmp(t; θm) p(t;Θ∗)
def
=

M∗
∑

m=1

π∗
mp(t; θ

∗
m)

then p(t;Θ) = p(t;Θ∗) for all t ∈ T if and only if M = M∗ and πm = π∗
m and θm = θ∗m for m = 1, . . . ,M

(perhaps with a reordering of the indices). Trivial cases where πm = 0 or θm = θm′ for some m, m′ are
disregarded, being exactly represented by a mixture with fewer components.

Consider the example of equations (2.48). Given a sample {tn}Nn=1 generated from f1, we cannot tell from
which of f1, f2 or f3 it was generated (given the sample alone). Estimating the parameters of a uniform
mixture with two components could end up (approximately) in any of f1 or f2 or not work at all, depending
on the algorithm used, the starting point if it is iterative, etc. The sample could be interpreted as coming from
two populations (in the case of f1 and f2) or from three (in the case of f3). Thus, if we want (1) to be able
to interpret in a unique way the parameters estimated from a sample, and (2) to avoid that the estimation
procedure may break down in case of ill-posedness, then the model class being considered must be identifiable.

However, theoretical identifiability is not the whole story:

• The existence of local, suboptimal maxima of the log-likelihood (or other objective function) makes very
difficult to obtain the global maximum—for example, when estimating a Gaussian mixture or a GTM
model (fig. 2.13).

• Theoretical identifiability does not guarantee practical identifiability, as discussed in section 3.3.3.2.

Non-identifiability often arises with discrete distributions, for the following reason: if there are C categories
we cannot set up more than C − 1 independent equations (because

∑
p(c) = 1) and hence can only determine

C−1 parameters at most. Fortunately, with continuous distributions—the case that concerns us—it is usually
not a problem.

Identifiability is a mathematical property that depends on the choice of model and there are no general
necessary and sufficient conditions for all models. The identifiability of the latent variable models of section 2.6,
if known, is discussed below, while that of finite mixtures of multivariate Bernoulli distributions (which are
used in chapter 5) is discussed separately in section 3.3. A further treatment of the identifiability of mixtures
is given by Titterington et al. (1985).

2.8.1 Interpretability

The factor analysis literature, especially regarding social science applications, has debated the issue of the
interpretability of factors for decades. The problem arises from the fact that factor analysis is non-identifiable
with respect to orthogonal rotations of the factors.

As noticed in section 2.3.2, in an ideal latent variable model we could adjust freely both the latent space
prior distribution pl(x) and the mapping f via an invertible transformation g of the latent space, so that we
could have infinitely many equivalent combinations (pl, f), all giving rise to the same data distribution p(t) in
eq. (2.3). In other words, we could have infinitely many different coordinate systems, each one with its one
interpretation, equally able to explain the data. In more practical latent variable models only some restricted
kinds of indeterminacy will exist (such as orthogonal rotations in factor analysis) but the point remains: there
is no empirical ground to prefer one model over another if both give rise to the same p(t).

The key matter is that the only variables with a real existence are the observed variables and that the
latent variables are sheer mathematical constructs subordinated to explaining the observed ones in a compact
way (Bartholomew, 1987; Everitt, 1984). Therefore, one should not try to reify the latent variables34 or look
too hard for an interpretation of the estimated parameters if the model under consideration belongs to an
non-identifiable class. Also, one should not attribute a causal nature to the latent variables: the generative
view of section 2.3 is just a convenient conceptualisation of the probabilistic latent variable framework.

In contrast, let us mention the technique of principal variables (McCabe, 1984), related to principal
component analysis, whose aim is to select a subset of variables that contain, in some sense, as much information
as possible. The principal variables can be readily interpreted because they are observed variables—unlike the
principal components, which are linear combinations of the observed variables.

34Although in some particular cases this may be possible. For example, Kvalheim (1992) claims that, in chemistry, latent
variables are often interpretable and independently verifiable.
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However, what can be interpretable is the manifold in data space spanned by the mapping from latent
onto data space, M = f(X ). This manifold is invariant under a coordinate change, while the coordinates
themselves (the latent variables) are not. As an example, consider PCA: what reason is there to choose a
particular basis of the hyperplane spanned by the principal components? Besides, sample-based estimates of the
principal components can vary considerably, in particular when the covariance matrix has several eigenvalues
of approximately the same value, since the directions of the associated eigenvectors will be strongly influenced
by the noise. But the subspace spanned by those principal components is still unique and thus identifiable
and interpretable.

Another issue is that often the model assumptions are wrong for the problem under consideration, due to
the nature of the relationship between variables being unknown or to the mathematical impossibility of using
an appropriate but overly complex model. Consider, for example, fitting a principal component analysis to
the data of figure 2.13. Interpretation of the estimated parameters in such a situation may be completely
misleading. Yet another difficulty lies in whether the number of parameters in the model and the way it is
estimated from a data set can lead to overfitting.

Fortunately, in machine learning applications the data is usually of a very high dimensionality and the
relationships between variables is nonlinear, so that more often than not the user does not have strong precon-
ceptions about what the latent variables should be. Besides, as a consequence of the philosophical approach
of statistical machine learning, which pursues to simulate the behaviour of a system, the utility of a model
is related to how well it can extract the structure of a high-dimensional data set—irrespective of whether it
actually matches the true underlying system (always an idealisation anyway) or just mimicks it. Of course,
overfitting remains a difficult problem.

To summarise:

• In the ideal case where we know the model from which the data comes (i.e., we know the number of
latent variables and the functional forms for the prior distribution in latent space, the mapping and the
noise model) and all is necessary is to fit its parameters, we need to check the issues of identifiability
and overfitting.

• If we are guessing the model, apart from the identifiability and overfitting we need to assess the model’s
goodness, which is very difficult in high-dimensional cases when there are nonlinear relationships. For
example, the noise can easily mask nonlinear relationships when using a linear model.

2.8.2 Identifiability of specific latent variable models

2.8.2.1 Factor analysis

From section 2.6.1 we know that:

• If L > 1 then an orthogonal rotation of the factors produces the same data distribution, so that factor
analysis is non-identifiable with respect to orthogonal rotations. If L = 1 then the rotation becomes a
sign reversal, which is irrelevant.

• If we consider a generalised view of factor analysis where the factors are distributed normally but not
necessarily N (0, I), then factor analysis is non-identifiable with respect to any invertible linear transfor-
mation of the factors.

In confirmatory factor analysis, where some elements of the loading matrix Λ are fixed, the rotation indeter-
minacy may disappear. In explanatory factor analysis, where all elements of Λ are free, one usually applies a
restriction to make it identifiable. The most typical one is to choose the factors so that the first factor makes
a maximum contribution to the variance of the observed variables, the second makes a maximum contribution
subject to being uncorrelated with the first one, and so on. This can be shown to be equivalent to choosing Λ
such that ΛTΨ−1Λ is diagonal and has the effect of imposing 1

2L(L− 1) constraints, so that the total number
of free parameters becomes

D
︸︷︷︸

Ψ

+ DL
︸︷︷︸

Λ

+
1

2
L(L− 1)
︸ ︷︷ ︸

constraints

which for consistency must be smaller or equal than the number of elements in the covariance matrix, 1
2D(D+

1), i.e., 1
2 ((D − L)2 − (D + L)) must be positive, which gives an upper bound for the number of factors to be

extracted.
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Since scale changes of the data (t′ = Dt with D diagonal) result in an irrelevant scale change of the factors
and the uniquenesses, the same results are obtained whether using the covariance matrix or the correlation
matrix.

2.8.2.2 PCA

PCA as defined in section 2.6.2 only differs from factor analysis in the noise model and is constrained to produce
the principal components in decreasing order of their associated variance, i.e., ΛT (σ2I)−1Λ is diagonal from
eq. (2.28). Thus, PCA is always identifiable except when several eigenvalues of the sample covariance matrix
are equal, in which case the corresponding eigenvectors (columns of UL) can be rotated orthogonally inside
their own subspace at will.

Unlike with factor analysis, with PCA different results are obtained whether using the covariance matrix
or the correlation matrix because there is a single uniqueness parameter shared by all data variables. PCA
does depend on the scale, so one has to decide whether to sphere the data or not.

2.8.2.3 ICA

Arbitrary scaling, reordering or in general invertible linear mapping of the latent variables (sources) gives
rise to the same observed (sensor) distribution: (Λ,x), (ΛV,V−1x), (ΛP,PTx) and (ΛR,R−1x) all produce
the same distribution p(t) if V is diagonal nonsingular, P is a permutation matrix and R is nonsingular.
However, only scaling and reordering are acceptable indeterminacies, because they do not alter the “waveform
of the signals” or their statistical properties (independence in particular). Thus, it can be proven that the
identifiability of the ICA model (up to reordering and rescaling) is guaranteed if (Tong et al., 1991; Comon,
1994):

• At most one source is distributed normally (since the sum of two normals is itself normal, it would not
possible to separate the individual components in a unique way).

• There are fewer sources than sensors: L ≤ D.

• The mixing matrix is full-rank: rank (Λ) = L.

2.8.2.4 Other latent variable models

To our knowledge, no identifiability results are known for GTM, IFA or mixtures of factor analysers or principal
component analysers—but suboptimal local maxima of the log-likelihood do exist for all of them.

2.8.3 Visualisation

A different matter from interpretability is visualisation of data. While all coordinate systems related by an
invertible map (reparametrisation) are equivalent for dimensionality reduction, some may be more appropriate
than others in that the structure in the data is shown more clearly. Rigid motion transformations (translation,
rotation or reflection) have a trivial effect on visualisation, since our visual system can still recognise the
structure in the data, but invertible transformations that alter the distances between points (distortions) can
both make apparent but also completely mask clusters or other accidents in the data.

It is possible to include constraints in the latent variable model being used to ensure that the interpoint
distances in data space are approximately preserved in the latent space. These constraints affect exclusively
the mapping f . However, if the prior distribution in latent space is not flexible enough to represent a large
class of distributions (and it is not for factor analysis, PCA and GTM, since it is fixed) then by constraining
f we are reducing the class of distributions that the model can approximate.

These distortion constraints are different from the usual smoothness constraints: the latter force the man-
ifold M = f(X ) traced by the function f to be smooth but do not care about the coordinate system (the
parametrisation); they usually bound (in a soft fashion) the second derivative of f . In contrast, the distortion
constraints do not care whether the manifold M is smooth or rough, but force the distances in data space to
be preserved in latent space. How this is done depends on how the distance between two data space points is
defined: as geodetic distance (i.e., following the shortest path between the two points along the data manifold,
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in which case it is appropriate to use a unit-speed parametrisation35 that bounds the first derivative of f) or
as Euclidean distance (i.e., following the straight line segment joining both points freely in the data space,
whether it goes out of the data manifold or not). This consideration enters the realm of distance-preserving
methods and multidimensional scaling, briefly described in section 4.10.

Such distortion constraints can be incorporated as a regularisation term in the log-likelihood or, equiv-
alently, viewed as a prior distribution on the parameters of f . In any case they lead to the appearance of
hyperparameters that control the relative importance of the fitting term (log-likelihood) and the regularisa-
tion term (distortion constraint). Determining good values for the hyperparameters is a well-known problem
that we will meet several times in this thesis, but on which we shall not dwell.

For example, it has been observed that the estimates found by GTM often give a distorted view of the
data due to the latent space stretching like a rubber sheet (Tenenbaum, 1998; Marrs and Webb, 1999). This
metric distortion is revealed by high values of an appropriately defined magnification factor. A magnification
factor M(x) is a scalar function dependent on the latent space point that measures the local distortion at
latent space point x induced by the mapping f : X → T . Bishop et al. (1997b) defined it in the usual sense of
differential geometry as the ratio of hypervolumes in the data space and the latent space, equal to the Jacobian

of the mapping f : M(x;W)
def
= dVT

dVX
= Jf =

√

|KTWTWK| where (K)fl
def
=

∂φf

∂xl
. A value of one for this

magnification factor corresponds to no distortion (although Marrs and Webb (1999) have pointed out that
it can also be one for some distortions; their slightly different definition of the magnification factor is given
below). Marrs and Webb (1999) implement an average generalised unit-speed constraint in GTM’s function f
to preserve geodetic distances:

Ep(t)
{
KTWTWK

}
= IL

which for a one-dimensional latent space (L = 1) reduces to E
{∥
∥ df
dx

∥
∥

2
}

= 1, i.e., a parametrisation of average

unit squared speed. This constraint results in a modified M step of the EM algorithm for GTM, eq. (2.45a).

The results can be evaluated by checking that the magnification factor M(x;W)
def
=
∥
∥KTWTWK− I

∥
∥

2
(a

zero value of which corresponds to no distortion) is small in all points of the latent space.

2.9 Mapping from data onto latent space

2.9.1 Dimensionality reduction and vector reconstruction

In dimensionality reduction (reviewed in chapter 4) we want, given a data point t, to obtain a representative
of it in latent space, x∗ = F(t), for a certain mapping F : T −→ X . The latent variable modelling framework
allows the definition of a natural dimensionality reduction mapping. Once the parameters36 Θ are fixed,
Bayes’ theorem gives the posterior distribution in latent space given a data vector t, i.e., the distribution of
the probability that a point x in latent space was responsible for generating t:

p(x|t) =
p(t|x)p(x)

p(t)
=

p(t|x)p(x)
∫

X p(t|x)p(x) dx
. (2.49)

The latent variable model gives us all this information about x for fixed t. Summarising this distribution
x|t in a single latent space point x∗ results in a reduced-dimension representative37 of t. This defines
a corresponding mapping F from data space onto latent space, so that every data point t is assigned a
representative in latent space, x∗ = F(t). Thus, it can be considered as an inverse mapping of f .

35For a curve f : x ∈ R → RD, a unit-speed parametrisation verifies
∥
∥
∥

df
dx

∥
∥
∥

2
=
∑D

d=1

(
dfd
dx

)2
= 1. Equivalently, the arc length

between two points f(x1) and f(x2) on the curve is
∣
∣
∣
∣
∣

∫ x2

x1

√
∑D

d=1

(
dfd
dx

)2
dx

∣
∣
∣
∣
∣
= |x2 − x1|

so that this parametrisation is also called arc-length parametrisation. It means that a unit step in latent space produces a unit
step along the curve in data space.

36In what follows, we omit the parameters from the formulae for clarity, i.e., p(x|t) really means p(x|t,Θ), and so on.
37Admittedly, reduced-dimension representative of an observed point t is a pedantic denomination, but it points to the two

things we are interested in: that it (1) represents the observed point (2) in latent space. Latent space representative is also
acceptable, although less general. Other, more compact terms have been proposed but we find them unsatisfactory. For example,
cause of an observed point t may attribute to the reduced-dimension representative more than it really is worth (and ring unwanted
bells concerning its interpretation). And the term scores, very popular in statistics, sounds too vague.
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When the posterior distribution p(x|t) is unimodal, defining F as the posterior mean:

F(t)
def
= E {x|t} = Ep(x|t) {x}

is the obvious choice since it is optimal in the least-squares sense (see section 7.3.3). But if p(x|t) may be
multimodal for some points t (as happens with IFA and GTM), then the posterior mean (while still being
the least-squares optimum and defining a continuous mapping) may be inappropriate, since the mean of a
multimodal distribution can be a low-probability point. Defining F as one of the posterior modes (perhaps
the global one):

F(t)
def
= arg max

x∈X
p(x|t)

ensures that the reduced-dimension representative F(t) is a high-probability point, but then which mode
to choose is a problem, and besides F may become discontinuous. These issues are discussed at length in
sections 2.9.2 and 7.3.

If f is injective (the manifold M = f(X ) does not self-intersect) then f is invertible38 on M; i.e., there
exists a function f−1 : M → X such that f−1(t) = x if t = f(x) ∈ M for x ∈ X . But we are interested in
defining a dimensionality reduction mapping F not only for data points inM, but in the whole data space T ,
which we can attain thanks to the noise model, that assigns nonzero probability to a neighbourhood of every
point inM (remarkably, this very essence of the probabilistic modelling implies that in general F◦f 6= identity,
as discussed below). Since dimM < dim T (for dimensionality reduction to make sense) this will mean that
a whole manifold of dimension dim T − dimX = D − L will be mapped onto the same latent space point x:

F−1(x)
def
= {t ∈ T : F(t) = x}. For example, if F is linear with matrix A (assumed full-rank), F(t) = A(t−µ),

then F−1(x) = {t ∈ T : F(t) = A(t − µ) = x} = {µ + Bx} + kerA where B is any matrix that satisfies
BA = I (such as the pseudoinverse of A, A+ = AT (AAT )−1, but there may be others, as section 2.9.1.1

discusses) and kerA
def
= {t ∈ T : At = 0} is the kernel or null-space of the matrix A. F−1(x) has dimension

D − L since dim kerF + dim imF = dim T and dim imF = dimX .
Applying the mapping f to the reduced-dimension representative x = F(t) we obtain the reconstructed

data vector t∗ = f(x∗). Then, the reconstruction error for that point t is defined as d(t, t∗) (or a function of
it) for some suitable distance d in data space and the average reconstruction error for the sample is defined as

Ed = 1
N

∑N
n=1 d(tn, t

∗
n). For example, taking the square of the Euclidean distance, d(t, t∗) = ‖t− t∗‖22, results

in the usual mean squared error criterion E2 = 1
N

∑N
n=1 ‖tn − t∗n‖22. It is unknown what the relationship

between the maximum likelihood criterion and a distance criterion is. While in general they are different,
leading to different estimates of the parameters, in practice maximum likelihood estimation often produces
very good estimates in terms of reconstruction error.

A desirable feature of the dimension reduction mapping F would be to satisfy that F ◦ f be the identity, so
that F(f(x)) = x for any latent space point. That is, that F be the inverse of f in the manifoldM = f(X ) = im f
(the image, or range, space of f). This implies perfect reconstruction of data points inM, since if t = f(x) ∈M,
then the reconstructed point of t is t∗ = f(F(t)) = f(F(f(x))) = f(x) = t. In general, this condition is not
satisfied (as sections 2.9.1.1–2.9.1.3 show) except in the zero-noise limit. In the latter case, the data space
points in T \ f(X ) are unreachable under the model (in the sense that p(t) = 0 for such points) and the
mapping f : X →M is invertible on the image space of X by F (assuming that f is injective, i.e., M = f(X )
does not self-intersect).

The following sections analyse the dimensionality reduction mappings of each specific latent variable model.

2.9.1.1 Linear-normal models (factor analysis and PCA): scores matrix

Consider a general linear-normal model as in the statement of theorem 2.12.1, i.e., x
def∼ NL(µX ,ΣX) in RL,

f(x)
def
= Λx+µT and t|x def∼ ND(f(x),ΣT ) in RD (remember that for factor analysis µX = 0, ΣX = I and ΣT =

Ψ is diagonal and for PCA µX = 0, ΣX = I and ΣT = σ2I is isotropic). Consider the dimensionality reduction

mapping defined by the posterior mean (identical to the posterior mode), F(t)
def
= E {x|t} = A(t− µ) + µX .

The matrix A of eq. (2.58) is called the Thomson scores in the factor analysis literature (eq. (2.18)).
Theorem 2.12.3 shows that the posterior distribution is always narrower than the prior distribution, the
narrower the smaller the noise is.

From eq. (2.57), the condition F ◦ f ≡ identity is equivalent to:

F(f(x)) = A(f(x)− µT ) + Σ̂−1
X Σ−1

X µX = AΛx + Σ̂−1
X Σ−1

X µX = x ∀x ∈ RL

38And even if f is not injective, local invertibility is assured by the inverse function theorem A.6.1, since f is smooth.
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Figure 2.11: Offset of the reduced-dimension representative when using the posterior mean. This example
demonstrates how mapping a latent space point onto data space and back using the posterior mean leads to
a reduced-dimension representative which is different from the original latent space point. The latent variable
model is a factor analysis with one-dimensional latent space and two-dimensional observed space. The latent
space shows its prior distribution p(x) (solid line) centred symmetrically around its mean. A point x0 is
mapped onto data space point t0 = f(x0). Given the noise model p(t|x) ∼ N (f(x),Ψ) alone, other nearby
latent points x−1, x1, etc. could also have generated t0, but less likely than x0 (and symmetrically so as we
move away from t0, as marked, because of the symmetry of p(t0|x)). Each shaded ellipse represents p(t0|xi)
for i ∈ {−2, . . . , 2}. But given the prior distribution in latent space, latent points to the nearby right side of
x0 are more likely a priori than latent points to the left: p(x−2) < p(x−1) < p(x0) < p(x1) < p(x2). Therefore,
the posterior distribution in latent space p(x|t0) ∝ p(t0|x)p(x) (dotted line) is offset towards latent points
which are more likely a priori (towards the prior mean in this example) and thus its centre does not match
the original latent point x0. This offset is inherent to the choice of prior distribution in latent space and noise
model and is therefore unavoidable.
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which implies two conditions:

µX = 0 (2.50a)

AΛ = I. (2.50b)

Condition (2.50a) is readily satisfied by both factor analysis and PCA, and we assume it holds from now on.
As for condition (2.50b), using eqs. (2.58) and (2.59) it becomes:

I = AΛ
(2.58)
= Σ̂−1

X ΛTΣ−1
T Λ

(2.59)
= (Σ−1

X + ΛTΣ−1
T Λ)−1ΛTΣ−1

T Λ⇔ Σ−1
X + ΛTΣ−1

T Λ = ΛTΣ−1
T Λ (2.51)

which is impossible. Therefore no linear-normal latent variable model exists that satisfies E {x|f(x0)} = x0,
in particular factor analysis and PCA. Figure 2.11 explains intuitively this.

Let us analyse when condition (2.50b) holds approximately. This will happen when ΛTΣ−1
T Λ � Σ−1

X or

equivalently when MTΣ−1
T M� I with M

def
= ΛΣ

1/2
X . Since MMT = Σ−ΣT is the covariance associated with

the latent variables and ΣT the covariance associated to the noise, then F◦f ≡ identity will hold approximately
when the covariance of the noise is much smaller than the covariance due to the latent variables. We consider
two limit cases:

• The low noise limit, where

A = Σ̂−1
X ΛTΣ−1

T = (Σ−1
X + ΛTΣ−1

T Λ)−1ΛTΣ−1
T ≈ Â

def
= (ΛTΣ−1

T Λ)−1ΛTΣ−1
T .

The matrix Â is called the Bartlett scores in the factor analysis literature. It can also be derived
from a distribution-free argument as follows: if the mapping from latent to data space is represented as

t = Λx+µT +e where e
def∼ N (0,ΣT ) and the mapping from latent to data space as x∗ = B(t−µ)

(2.55)
=

BΛ(x− µX) + Be, then it can be proven (Bartholomew, 1987, pp. 66–69) that:

Â = arg min
BΛ=I

BΣTBT .

That is, Â is the matrix B satisfying BΛ = I that minimises the residual variance of the reduced-
dimension representative, var {e} = BΣTBT .

In practice there tends to be little difference between Thomson and Bartlett scores, since ΛTΨ−1Λ is
often approximately diagonal and the difference is just a rescaling of the x variables.

• The isotropic zero noise limit, where from corollary 2.12.2 and assuming Λ full-rank:

ΣT = kI and k → 0+ ⇒
{

A→ Λ+ = (ΛTΛ)−1ΛT

x|t→ δ(Λ+(t− µT )).

The matrix Λ+ is the pseudoinverse of Λ. The pseudoinverse is the matrix Λ∗ that minimises
‖I−Λ∗Λ‖22 (Boullion and Odell, 1971); thus, it is the matrix that achieves the least squares recon-
struction error. The Thomson scores are also optimal in the least squares sense, being the mean of the
posterior distribution in latent space. The difference is that the pseudoinverse gives equal importance to
each point x in the latent space, while the Thomson scores weight each value x according to the normal
distribution E {x|t}. Thus, it “pulls” points towards the mean, since p(x|t), being normal, decreases
when going away from its mean. The disagreement of both scores is then due to the Thomson scores
using a joint probability model for x and t and the pseudoinverse using no model.

If the noise tends to zero but not isotropically, then A 9 Λ+ necessarily; e.g. in fig. 2.12 if ΣT =

k
(
S1 0
0 S2

)
with S1 6= S2 and k → 0+ then A, Â → A0

def
= 1

S2λ2
1+S1λ2

2
(S2λ1 S1λ2) which is different from

Λ+ = 1
λ2

1+λ
2
2
(λ1 λ2). However, A0 and Λ+ only differ in how they map points t /∈M because for t ∈M

they are equivalent (since ÂΛ = Λ+Λ = I). Since the points t /∈ M are unreachable in the zero-limit
noise, the difference is irrelevant.

A (Thomson scores) never coincides with Λ+ (pseudoinverse) since it does not satisfy any of the Penrose

conditions (A.1). Â (Bartlett scores) satisfies all of the Penrose conditions except (A.1a) because ΛÂ is
not symmetric in general and so it does not coincide with the pseudoinverse either (although it is a left

weak generalised inverse of Λ; Boullion and Odell, 1971); but Â does coincide with the pseudoinverse in
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Figure 2.12: Different dimensionality reduction mappings for linear-normal models. Using the symbols of

theorem 2.12.1, the numerical values are: µX = 0, ΣX = I, Λ = ( 2
1 ), µT = 0, ΣT =

(
1 0
0 1

4

)

. Therefore µ = 0,

Σ =
(

5 2
2 5

4

)

, A = 1
9 (2 4), Â = 1

8 (2 4) and Λ+ = 1
5 (2 1). The graph shows schematically how the latent space

X = R, with a normal prior distribution x ∼ N (µX ,ΣX) is mapped onto M, inducing a normal distribution
t ∼ N (µ,Σ) (indicated by its unit Mahalanobis ellipse) in T = R2. tTn , tBn and tPn represent the reconstructed

points using A (Thomson scores), Â (Bartlett scores) and Λ+ (pseudoinverse), respectively, for data point tn
(where n = 1, 2, 3). The dimension-reduced representatives are marked on the latent space by the corner of the
solid lines; the dashed lines join the original and reconstructed points. The dashed lines for the pseudoinverse
are parallel with respect to each other and orthogonal to M: ΛΛ+ is an orthogonal projection. The dashed
lines for the Bartlett scores are parallel with respect to each other but not orthogonal toM: ΛÂ is an oblique
projection. The dashed lines for the Thomson scores are not parallel with respect to each other: ΛA is not a
projection.

the particular case where ΣT is isotropic (precisely the case of PCA). As mentioned before, in the isotropic
zero-noise limit all three scores coincide.

Observe that f ◦ F maps an arbitrary point in data space onto the manifold M. However, of A, Â and
Λ+ only Â and Λ+ give rise to projection matrices: oblique ΛÂ and orthogonal ΛΛ+, respectively39.

Table 2.4 summarises the three types of scores and figure 2.12 illustrates the typical situation when all of
them differ.

2.9.1.2 Independent component analysis

Given the discussion of section 2.9.1.1, since in the standard ICA model there is no noise and Λ is full rank, the

dimensionality reduction mapping to use is F(t)
def
= Λ+t = (ΛTΛ)−1ΛT t (i.e., the unmixing matrix A = Λ+

of section 2.6.3), which satisfies F ◦ f ≡ identity.
The goal of ICA is not really dimensionality reduction but separation of linearly mixed sources, which is

attained by the unmixing matrix. Besides, the literature of ICA has mostly been concerned with the case
where the number of sensors is equal to the number of sources, although research of more general situations

39A matrix P which verifies symmetry (P = PT ) and idempotence (P2 = P) is an orthogonal projection matrix. If it only
verifies idempotence but not symmetry then it is an oblique projection matrix.
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Scores name Matrix expression Justification

Thomson A
def
= (Σ−1

X + ΛTΣ−1
T Λ)−1ΛTΣ−1

T Least-squares for linear normal model

Bartlett Â
def
= (ΛTΣ−1

T Λ)−1ΛTΣ−1
T Low-noise limit of A; also distribution-free

Pseudoinverse Λ+ = (ΛTΛ)−1ΛT Isotropic zero-noise limit of A; also model-free
least-squares

Table 2.4: Dimensionality reduction matrices for linear-normal models with the posterior mean.

is progressing. ICA has been successfully applied to a number of blind separation problems, including elimi-
nation of artifacts from electroencephalographic (EEG) data, separation of speech sources (the cocktail party
problem), processing of arrays of radar and sonar signals and restoration of images (see references in Hyvärinen
and Oja, 2000; Hyvärinen et al., 2001).

2.9.1.3 Independent factor analysis

The posterior distribution in latent space for IFA (2.38) is a convex combination of factor analysis-like posterior
probabilities (2.54), so we expect F ◦ f 6= identity except in the zero-noise limit.

2.9.1.4 GTM

We consider two cases for the definition of F:

• Posterior mean, F(t) = E {x|t}. Then:

F(t) = E {x|t} =
K∑

k=1

xkp(xk|t) =
K∑

k=1

xkρk(t)

where

ρk(t) = p(xk|t) =
p(t|xk)p(xk)

p(t)
=

p(t|xk)
∑K
k=1 p(t|xk)

=
e−

1
2σ2 ‖t−f(xk)‖2

∑K
k=1 e

− 1
2σ2 ‖t−f(xk)‖2 ∈ (0, 1).

Thus, F(t) is a point in the convex hull of {xk}Kk=1. Observe that for any k′ ∈ {1, . . . ,K}, ρk(f(xk′)) > 0
for all k = 1, . . . ,K. So F(f(xk′)) 6= xk′ . However, F(f(xk′)) will be very close to xk′ when the Gaussian
components in data space, centred at {f(xk)}Kk=1, are widely separated with respect to the noise standard
deviation σ, since the tails of the Gaussian fall rapidly and then ρk(f(xk′)) ≈ δk′k (again the zero-noise
limit).

• Posterior mode, F(t) = arg maxx∈X p(x|t): it clearly satisfies F(f(x)) = x for {xk}Kk=1 but not for any
other x ∈ RL \ {xk}Kk=1 (which get mapped onto some xk).

Also, since p(t) is independent of x and p(xk) = 1
K , then arg maxx∈X p(x|t) = arg maxk=1,...,K p(t|xk) =

arg mink=1,...,K ‖t− f(xk)‖, i.e., the latent grid point whose image is closest to t. Thus, the dimension-
ality reduction mapping behaves like vector quantisation in the observed space based on the Euclidean
distance using {f(xk)}Kk=1 as codebook.

2.9.2 Continuity of the dimensionality reduction mapping and regularisation

If the latent variable model has captured the structure of the data appropriately, one would not expect a
multimodal distribution p(x|t), except perhaps if the data manifold is so twisted that it intersects itself or
nearly so. Unfortunately, in practice the manifold M induced in data space can be badly twisted even when
the data manifold is relatively smooth, as fig. 2.13 shows, due to a suboptimal local maximum of the log-
likelihood. In this case, the induced manifold M can retrace itself and give rise to multimodal posterior
distributions in latent space, since the same area of the data manifold is covered by different areas of the
latent space. Regularising the mapping f (from latent to data space) so that highly twisted mappings are
penalised is a possible solution. From a Bayesian point of view this requires introducing a prior distribution on
the mapping parameters controlled by a hyperparameter (as in GTM), but determining good hyperparameter
values is a hard problem (MacKay, 1999).
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The continuity of the dimensionality reduction mapping x = F(t) depends on several factors. If we define F
as the mean of the posterior distribution p(x|t) of eq. (2.49) then F will be continuous by the first fundamental
theorem of calculus (Spivak, 1967, p. 240, Th. 1 and also p. 230, Th. 8), because the mean is defined as an
integral; further, F will be differentiable at every point where p(x|t) is continuous itself (as a function of t).
For example, the dimensionality reduction mappings for factor analysis and PCA are continuous, as is obvious
from the linearity of the function (2.19). But if we define F as the (global) mode of p(x|t), then it may not be
continuous if F can be multimodal, as fig. 2.14 shows. Section 9.2 shows more examples of the discontinuity
of the arg max(·) function.

For GTM, F(t) defined as the posterior mode can be discontinuous, as would happen in the case of
figure 2.13 (right). However, its continuity is likely in practical situations where the posterior distribution is
unimodal and sharply peaked for the majority of the training set data points.

For latent variable models (like GTM) that sample the latent space, the concept of continuity in the latent
space—which is now discretised— becomes blurred if the posterior mode is used (the posterior mean remains
continuous, although it will produce points not in the latent space grid). In this case, discontinuities of the
dimensionality reduction mapping F will manifest themselves as abrupt jumps in the grid (larger than the
distance between two neighbouring latent grid points) when the point in data space changes slightly.

Finally, let us consider the case of a dimensionality reduction mapping defined as the point in the manifold
M which is closest to the data point t; that is, orthogonal projection ot t onto M. This is the approach
followed by the principal curves method. As mentioned in section 4.8, this definition leads to a discontinuous
dimensionality reduction mapping if the manifoldM is nonlinear. But, as discussed earlier, the presence of a
noise model and a prior distribution in latent space preclude the use of an orthogonal projection.

2.9.3 Finite mixtures of latent variable models

We turn now to the subject of dimensionality reduction in finite mixtures of latent variable models. If the di-
mension of all the latent spaces was the same, one could think of using E {x|t} as the latent space representative
of data point t:

p(x|t) =

M∑

m=1

p(x,m|t) =

M∑

m=1

p(m|t)p(x|m, t) =⇒

E {x|t} =

∫

xp(x|t) dx =

∫

x

(
M∑

m=1

p(m|t)p(x|m, t)
)

dx =

M∑

m=1

p(m|t) E {x|m, t}

Figure 2.13 (following page): Twisted manifolds and continuity of the dimensionality reduction mapping. Each
of the plots A to D shows an estimate for a training set of N = 1000 points (t1, t2) generated (with additive
normal noise of variance 0.01) from the Keplerian movement distribution of fig. 2.5 (first row), discussed in
section 2.2.3: a one-dimensional manifold embedded in the plane. In each plot, an unregularised GTM model
was fitted that used K = 21 latent grid points and F = 5 radial basis functions with a standard deviation
s = 1 times their separation. Two different training sets were used, one for plots A, B and another one for
plots C, D. The EM starting point was random for plots A, C and the line of the first principal component for
plots B, D. For each plot, the upper graph shows: the GTM manifold (thick dashed line), the true, elliptical
data manifold (small circles, whose density mimicks the distribution along the data manifold), the K Gaussian
components associated to the latent grid points (eqs. (2.42) and (2.43), with a radius σ; the big, grey circles),
the first principal component of the training set (solid straight line, almost coinciding with the t2 = 0 axis), a
contour plot of the GTM data space distribution pd(t) and the training set (scattered dots). The lower graph
shows explicitly the way the one-dimensional latent space is twisted in two dimensions: the latent space grid is
the horizontal top line, which is mapped onto the GTM data space manifoldM = f(X ) (thick solid line), to be
compared with the true data manifold (thin ellipse). All models have approximately the same log-likelihood L
(except D, which is much worse), but the way the GTM manifold twists itself in data space affects differently
the continuity of the dimensionality reduction mapping F when the posterior mode is used. Model B has
discontinuities in the area marked by the dashed circle in the lower graph due to the latent grid points x20–x21

retracing over x16–x19. Retracing is worse in model C (points x20–x21 retracing over x15–x19 and points x1–x2

over x3–x12) and much worse in model D (with multiple branch-switching). A further discontinuity appears
in all four models (marked by the dashed circle in the lower graph of plot A) due to the mismatch between
the latent space topology (open curve) and the data manifold topology (closed curve).
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Figure 2.14: Discontinuity of the arg max(·) or mode function. The figure shows plots of the function F (t) =

arg maxx h(x, t) where h(x, t)
def
= (1− t)N (x;µ1, σ

2)+ tN (x;µ2, σ
2) for t ∈ [0, 1] and x ∈ (−∞,∞), with µ1 = 0

and µ2 = 1. The left column corresponds to σ = 0.8, so that the two normal functions overlap heavily and
h(x; t) is unimodal for any given t ∈ [0, 1]: F (t) is continuous. The right column corresponds to σ = 0.25, so
that the two normal functions are widely separated and h(x; t) is bimodal for (almost) any given t ∈ [0, 1]:
F (t) is discontinuous. Rows (I)–(V) show, for several values of t, the function h(x; t) and the location of F (t).
Row (VI) shows F (t). Row (VII) shows a 3D view of h(x, t) and, superimposed as a thick line, F (t).
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where E {x|m, t} is the representative in mth latent space proposed by component m, with responsibility
Rm = p(m|t) for having generated t.

However, even if all the latent spaces had the same dimension, they will not necessarily correspond to the
same coordinate systems (e.g. consider the effect of rotating differently several factor spaces of dimension L).
Therefore, when dealing with mixtures of latent variable models, it makes no sense to talk about a single
representative, but about M of them, one for each of the M latent spaces, and averaging these representatives
is meaningless. Alternatively, a reduced-dimension representative can be obtained as the reduced-dimension
representative of the mixture component with the highest responsibility: x∗ = F(t) = x∗

m∗ such that m∗ =
arg maxm p(m|t).

2.9.3.1 Reconstruction

While averaging the reduced-dimension representatives is not possible, it intuitively makes sense to average
the reconstructed vectors (with respect to the responsibilities), because the data space coordinates are the
same for any component:

t∗ =
M∑

m=1

p(m|t)fm(Fm(t)) =
M∑

m=1

p(m|t)t∗m (2.52)

where t∗m = fm(Fm(t)) is the reconstructed vector by the latent variable model of component m. This can be
seen as a nonlinear projection of the original vector t onto the convex hull of {t∗m}Mm=1, which is a subset of
the linear subspace spanned by {t∗m}Mm=1. The projection is nonlinear because even if fm ◦Fm is linear for all
m, the p(m|t) are not. The vectors {t∗m}Mm=1 are not fixed, but depend on the particular input vector t.

2.9.3.2 Classification

For classification purposes, one could assign the data vector t to the most responsible component m∗ =
arg maxm p(m|t) and reconstruct the vector according to that component alone (cf. eq. (2.52)):

t∗ = t∗m∗ . (2.53)

As with latent variable models, the representatives could be computed as some suitable summary value of the
posterior distribution p(x|m∗, t), e.g. the mean, E {x|m∗, t}, or the mode, arg maxm p(x|m∗, t).

As with general mixture models, if for a given data vector no posterior probability is big enough, no
component of the mixture will explain it properly. This may be due to the mixture model being insufficient,
to the data vector lying on the boundary of two (or more) components, or to the data vector itself being an
outlier (or a novel point). In the latter case the point could be rejected if p(t) < θ for a suitable threshold
θ > 0 (which needs to be determined heuristically).

2.9.3.3 Reconstruction in general finite mixtures

We consider again equation (2.47), but where now the components p(t|m) are not latent variable models but
certain arbitrary densities or probability mass functions. For the purposes of reconstruction, each component
must provide with a reconstructed vector as a function of the original data vector t. For a general probability
distribution (without an underlying latent variable model) the best we can do is to choose a value that
summarises the distribution, such as the mean, median or mode. We will call this the prototype of the
distribution, t∗m. Then, the vector reconstructed by the finite mixture distribution will be t∗ =

∑M
m=1 πmt∗m,

as in the finite mixture of latent variable models. Since the {t∗m}Mm=1 are fixed (unlike in reconstruction in
mixtures of latent variable models), this amounts to a sort of weighted vector quantisation using the {t∗m}Mm=1

as codebook vectors (although M will usually be small), which gives poor results. Effectively, this means that
the finite mixture is performing cluster analysis rather than reconstruction or dimensionality reduction.

For example, for a normal distribution N (µ,Σ), the prototype is the parameter µ, which is the mean,

median and mode. For a multivariate Bernoulli distribution B(p), with p(t) =
∏D
d=1 p

td
d (1− pd)1−td , the

prototype can be given by the mean p (which will not be a binary vector in general) or the mode bp + 1
21c

(which is binary). For binary data, a finite mixture of multivariate Bernoulli distributions (withM components)
is called latent class analysis (with M classes), as mentioned in section 2.1.

For fixed {t∗m}Mm=1, the set

{
M∑

m=1

πmt∗m :

M∑

m=1

πm = 1, 0 ≤ πm ≤ 1, m = 1, . . . ,M

}
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is the convex hull of {t∗m}Mm=1, which is a subset of the linear subspace spanned by {t∗m}Mm=1. Hence, this
method of reconstruction is more limited than unrestricted linear reconstruction—and therefore more restricted
than PCA using M components, whatever the individual component distributions are. But even if the original
data vector t lies in the convex hull of {t∗m}Mm=1, the reconstructed vector t∗ will not necessarily be equal to t.

In a responsibility plot, the responsibility vector R(t) = (p(1|t), . . . , p(M |t))T is plotted in the [0, 1]M

hypercube, with each axis corresponding to one component. For the mixture to model the data well, the
points should accumulate near the axes, indicating that for each point, there is always one component clearly
responsible for having generated it. In other words, the distribution p(m|t) should be almost degenerate,

concentrating most of the mass in one value of m. Because
∑M
m=1 p(m|t) = 1 is the equation of a hyperplane

in RM , we can plot the points in the intersection between the hypercube [0, 1]M and that hyperplane, which
meets the coordinate axes at distance +1 from the origin. This region is a line for M = 2 and an equilateral
triangle for M = 3. The mixture will perform well if the projected points fall near the vertices of that region.

2.10 Applications for dimensionality reduction

The traditional types of continuous latent variable models (factor analysis and PCA) have been extensively
used for dimensionality reduction and related problems such as feature extraction or covariance structure
analysis. Examples of such applications can be found in textbooks, e.g. Bartholomew (1987) or Everitt (1984)
for factor analysis and Jolliffe (1986) or Diamantaras and Kung (1996) for PCA. Application of other types of
continuous latent variable models has only started recently. ICA has been widely applied to signal separation
problems, but in general not with the goal of dimensionality reduction, as noted in section 2.9.1.2. A handful
of applications of GTM exist, often as a replacement of a Kohonen self-organising map; we study in detail our
own application of GTM to a dimensionality reduction problem of speech in chapter 5. Also, we are currently
working on the application of continuous latent variable models to a computational neuroscience problem,
cortical map modelling (Swindale, 1996), from the point of view of dimensionality reduction. No applications
of independent factor analysis exist yet.

2.11 A worked example

To concrete some of the abstract concepts discussed in this chapter, we conclude with a textbook-style example.
The example also demonstrates several facts about latent variable models:

• That the marginalisation of the joint probability distribution p(t,x) can be analytically very difficult.

• The effect of varying noise levels in the induced probability distribution in data space p(t), which is
always between two limits:

– No noise: p(t|x)→ δ(f(x))⇒ p(t) =
∫

X p(t|x)p(x) dx→
{

0 t /∈M = f(X )

p(x) t ∈M = f(X ), t = f(x)
.

– Large noise: p(t|x) ≈ constant ∀x⇒ p(t) ≈ p(t|x).

In both limits the utility of the latent space is lost.

We consider a latent variable model with the following characteristics40:

• Latent space of dimension L = 1 and piecewise linear prior distribution pl(x) = 2
a2+b2 |x| on the interval

[−a, b] for a, b ≥ 0.

• Linear mapping from latent onto data space f(x) = ux+ v.

• D-dimensional data space with Gaussian noise model pn(t|x) = N (f(x),Σ).

Thus, the induced distribution in data space pd(t) can be obtained as follows:

pd(t) =

∫ b

−a
pn(t|x)pl(x) dx =

∫ b

−a

1
√

|2πΣ|
e−

1
2 (t−(ux+v))T Σ−1(t−(ux+v)) 2

a2 + b2
|x| dx.

40We notate the prior, noise and data density functions as pl, pn and pd, respectively.
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Figure 2.15: Distributions for the example of section 2.11 and effect of varying noise. The top row shows
the prior pl(x) in latent space (left), a sample of 1000 points and a contour plot of the induced distribution
pd(t) in data space (centre) and a surface plot of pd(t) (right). The manifoldM = f([−a, b]) is linear because
the mapping f is linear, and is represented by the thick solid segment in the centre graphs. Observe how the
maxima of the induced density are close, but do not coincide, with the ends of the segment (represented by
the circular points), due to the noise added. For this example, the actual parameters had the values: a = 1

3 ,
b = 2

3 , u = (−1, 2)T , v = (0, 0)T and Σ = 1
20 I (where I is the identity matrix). The second and third rows

show the effect of very low noise (Σ = 1
2000 I) and very high noise (Σ = 5

4 I), respectively. The “pyramids” in
the second row are visual artifacts produced by the mesh being too coarse.
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Figure 2.16: Models for the example of section 2.11 (from left to right): factor analysis (L = 1 factor),
principal component analysis (L = 1 principal component) and GTM (K = 11 latent grid points, F = 5 radial
basis functions with a standard deviation s = 1 times their separation, EM starting point: the line of the
first principal component). For each model, the thick dashed line corresponds to the manifoldM = f([−a, b])
(which in GTM’s case overlaps the true one, represented by the thick solid segment). The grey circles in GTM’s
graph represent the K Gaussian components associated to the latent grid points (eqs. (2.42) and (2.43), with
a radius σ). The training set contained N = 10 000 points.

Changing variables to A = uTΣ−1u, B = −2(t−v)TΣ−1u, C = (t−v)TΣ−1(t−v), m = −B
2A and σ = A−1/2

we obtain:

pd(t) =
2

a2 + b2
1

√

|2πΣ|

∫ b

−a
|x| e− 1

2 (Ax2+Bx+C) dx =
2

a2 + b2
1

√

|2πΣ|

∫ b

−a
|x| e−

1
2

[

( x−m
σ )

2
+(m

σ )
2−C

]

dx

and, changing again to α = a+m
σ
√

2
, β = b−m

σ
√

2
and γ = m

σ
√

2
, we finally obtain:

pd(t) =
2

a2 + b2
σ2

√

|2πΣ|
eγ

2−C
2

{

−e−α2 − e−β2

+ 2e−γ
2

+ γ
√
π (erf(β)− erf(α) + 2 erf(γ))

}

,

where erf(x) = 2√
π

∫ x

0
e−t

2

dt is the error function, which does not have a closed-form expression. α, β and γ

are functions of t and σ depends on the noise and mapping but not on t.
Figure 2.15 shows the prior in latent space pl(x) and the induced distribution in data space pd(t) for the

true distribution, as well as the effects of low and high noise. Figure 2.16 shows the data space distribution
for factor analysis, principal component analysis and GTM. Figure 2.17 comparatively shows the distribution
in data space along the manifold segment.

Even though for this problem the true manifold in data space is linear, the distribution pd(t) in data
space is not normal because the prior distribution pl(x) in latent space is not normal. Thus, the linear-normal
models (factor analysis and principal component analysis) produce a bad model while GTM models the true
distribution very well. It is interesting to observe that both factor analysis and PCA produce exactly the same
normal distribution pd(t), but while the PCA manifold MPCA is aligned with the Gaussian’s principal axis,
the factor analysis manifold MFA is not. The reasons are:

• In this example, whereD = 2 and L = 1, the number of free parameters for factor analysis is D(L+1) = 4
and for principal component analysis DL+1 = 3. Since the covariance matrix of a bidimensional normal

distribution is determined by only D(D+1)
2 = 3 parameters, both models will account exactly for (and

coincide with) the sample covariance matrix—which is the best they can do. Furthermore, since the
factor analysis model has more parameters than needed—rotation constraints are not possible because
the latent space is one-dimensional—it is undertermined (i.e., non-identifiable): there is an infinite
number of equivalent combinations for the values of Λ and Ψ (one of them being the PCA solution).

• For factor analysis, the uniqueness matrix Ψ is not isotropic in general (except when it coincides with the
PCA solution), as happens for the maximum likelihood estimate found in fig. 2.16, where ψ1 < ψ2. Thus
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Figure 2.17: Distribution in data space along the manifold segment for the true distribution (thick, solid line)
and for each model: factor analysis (dashed line), principal component analysis (dotted line, overlapping with
the factor analysis one) and GTM (solid line, almost overlapping with the true one). The circles correspond
to the location of the segment ends.

the principal axis of the Gaussian is not parallel to the Λ vector of eq. (2.14). For principal component
analysis, the uniqueness matrix σ2I is isotropic and therefore the principal axis of the Gaussian and the
UL vector of section 2.6.2 are parallel.

In high-dimensional situations, where factor analysis is identifiable (up to orthogonal rotations), factor analysis
will be a better model than PCA, as has been discussed by various researchers (e.g. Hinton et al. 1997; Neal and
Dayan 1997). Factor analysis attempts to model the underlying mapping and separately for each variable the
noise, while PCA forces the mapping to be aligned with the sample covariance—but the principal component
is not directed along the mapping if the noise level is high in another direction.

2.12 Mathematical appendix

2.12.1 Linear-normal models

Theorem 2.12.1. Consider random variables x
def∼ NL(µX ,ΣX) in RL and t|x def∼ ND(Λx + µT ,ΣT ) in RD,

for symmetric positive definite matrices ΣX , ΣT , a D × L matrix Λ and vectors µX ∈ RL, µT ∈ RD. Then:

(
t
x

)

∼ ND+L

((
µ

µX

)

,

(
Σ ΛΣX

ΣXΛT ΣX

))

t ∼ ND(µ,Σ) x|t ∼ NL(µ̂X , Σ̂
−1
X ) (2.54)

where

µ = ΛµX + µT (2.55)

Σ = ΣT + ΛΣXΛT = ΣT (ΣT −ΛΣ̂−1
X ΛT )−1ΣT (2.56)

µ̂X = A(t− µ) + µX = A(t− µT ) + Σ̂−1
X Σ−1

X µX (2.57)

A = ΣXΛTΣ−1 = Σ̂−1
X ΛTΣ−1

T (2.58)

Σ̂X = Σ−1
X + ΛTΣ−1

T Λ = Σ−1
X (IL −ΣXΛTΣ−1Λ)−1. (2.59)

Proof. From p(t,x) = p(t|x)p(x) and

p(t|x) = |2πΣT |−1/2
e−

1
2 (t−Λx−µT )T Σ

−1
T (t−Λx−µT )

p(x) = |2πΣX |−1/2
e−

1
2 (x−µX)T Σ

−1
X (x−µX)
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algebraic manipulation gives:

(t−Λx− µT )TΣ−1
T (t−Λx− µT ) + (x− µX)TΣ−1

X (x− µX) =
(
t− µ

µX

)T (
Σ−1
T −Σ−1

T Λ

−ΛTΣ−1
T Σ−1

X + ΛTΣ−1
T Λ

)(
t− µ

µX

)

with µ = ΛµX + µT . Theorem A.1.1(ii) proves

(
Σ−1
T −Σ−1

T Λ

−ΛTΣ−1
T Σ−1

X + ΛTΣ−1
T Λ

)−1

=

(
Σ ΛΣX

ΣXΛT ΣX

)

with Σ = ΣT (ΣT −ΛΣ̂−1
X ΛT )−1ΣT , Σ̂X = Σ−1

X + ΛTΣ−1
T Λ and ΣXΛTΣ−1 = Σ̂−1

X ΛTΣ−1
T . The Sherman-

Morrison-Woodbury formula (A.2) proves first that Σ = ΣT + ΛΣXΛT and then that Σ̂X = Σ−1
X (IL −

ΣXΛTΣ−1Λ)−1. Theorem A.1.1(i) proves that

∣
∣
∣
∣

Σ−1
T −Σ−1

T Λ

−ΛTΣ−1
T Σ−1

X + ΛTΣ−1
T Λ

∣
∣
∣
∣
= |ΣX |−1 |ΣT |−1

and

∣
∣
∣
∣

Σ ΛΣX

ΣXΛT ΣX

∣
∣
∣
∣
= |Σ| |Σ̂X |−1

= |ΣX | |ΣT | .

Finally, theorem A.3.1(iv) and the previous results prove that x|t ∼ N (µ̂X , Σ̂
−1
X ) with µ̂X as defined above.

Corollary 2.12.2 (Isotropic zero-noise limit of theorem 2.12.1). In the same conditions of theo-
rem 2.12.1, when ΣT = kI and k → 0+ then:

(
t
x

)

→ ND+L

((
µ

µX

)

,

(
Σ ΛΣX

ΣXΛT ΣX

))

t→ ND(µ,Σ) x|t→ δL(µ̂X)

where

µ = ΛµX + µT (2.60)

Σ = ΛΣXΛT (2.61)

µ̂X = A(t− µT ) (2.62)

A = A+ = (ΛTΛ)−1Λ (2.63)

Σ̂X →∞. (2.64)

The normal distributions above are degenerate in the space of t: only those data points t ∈ span {Λ} = im f
have nonzero density.

The following theorem proves that, for linear-normal models, the posterior distribution in latent space
x|t ∼ NL(µ̂X , Σ̂

−1
X ) is always narrower than the prior distribution x ∼ NL(µX ,ΣX), the narrower the smaller

the noise is: ΣT → 0⇒ Σ̂−1
X → 0.

Theorem 2.12.3. In the same conditions of theorem 2.12.1,
∣
∣Σ̂−1

X

∣
∣ < |ΣX |.

Proof. We have that:

• ΛTΣ−1
T Λ is positive definite because, for any x 6= 0, xTΛTΣ−1

T Λx = yTΣ−1
T y > 0, since ΣT is positive

definite and y
def
= Λx 6= 0 (since Λ is full-rank).

• ΛTΣ−1
T ΛΣX is positive definite because the product of positive definite matrices is positive definite.

• If B is positive definite then |I + B| > 1, since decomposing spectrally B = UVUT with V > 0 diagonal

and U orthogonal: |I + B| =
∣
∣UUT + UVUT

∣
∣ = |U| |I + V|

∣
∣UT

∣
∣ = |I + V| = ∏L

l=1 (1 + vl) > 1.

Hence |Σ̂X | |ΣX | = |Σ̂XΣX | =
∣
∣
∣I + ΛTΣ−1

T ΛΣX

∣
∣
∣ > 1⇒

∣
∣Σ̂−1

X

∣
∣ < |ΣX |.
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2.12.2 Independence relations

Theorem 2.12.4 (Pairwise local independence). p(titj |x) = p(ti|x)p(tj |x) ∀i, j ∈ {1, . . . , D}.

Proof. Call I = {1, . . . , D} \ {i, j}. Then:

p(titj |x) =

∫

p(t|x) dtI =

∫
∏

d∈{1,...,D}
p(td|x) dtI = p(ti|x)p(tj |x)

∫

p(tI |x) dtI = p(ti|x)p(tj |x)

where we have used the axiom of local independence (2.4).

Definition 2.12.1 and theorems 2.12.5 and 2.12.6 are from Cover and Thomas (1991).

Definition 2.12.1. The random variables X, Y and Z form a Markov chain X → Y → Z in that order if
the conditional distribution of Z depends only on Y and is conditionally independent of X, i.e., p(x, y, z) =
p(x)p(y|x)p(z|y) = p(x, y)p(z|y).

Theorem 2.12.5. X → Y → Z if and only if X and Z are conditionally independent given Y .

Proof. p(x, z|y) = p(x,y,z)
p(y) = p(x,y)p(z|y)

p(y) = p(x|y)p(z|y).

Theorem 2.12.6. If X → Y → Z then:

(i) X → Y → Z ⇒ Z → Y → X.

(ii) I(X;Z) ≤ I(X;Y ): no clever manipulation of the data Y (deterministic or random) can improve the
inferences that can be made from the data, i.e., the information that Y contains about X (data processing
inequality).

(iii) I(X;Y |Z) ≤ I(X;Y ): the dependency of X and Y is decreased, or remains unchanged, by observation
of a downstream random variable Z. Note, though, that I(X;Y |Z) > I(X;Y ) may happen if X, Y and
Z do not form a Markov chain.

Theorem 2.12.7 (Pairwise Markov chains). ti → x→ tj ∀i, j ∈ {1, . . . , D}, i.e., there is a Markov chain
between any two observed variables via the latent ones.

Proof. From theorems 2.12.4 and 2.12.5.

2.12.3 Latent variable models and entropy

The following results are easily proven using theorem 2.12.4 and the information theory results from section A.4.

Theorem 2.12.8.

• I(ti; tj |x) = 0.

• h(ti|tj ,x) = h(ti|x) ∀i, j ∈ {1, . . . , D}.

• h(ti|x) + h(tj |x) = h(ti, tj |x) ∀i, j ∈ {1, . . . , D}.

• h(t|x) =
∑D
d=1 h(td|x).

• h(t,x) = h(t) + h(x|t) = h(x) + h(t|x) = h(x) +
∑D
d=1 h(td|x). If the latent variables are mutually

independent, h(t,x) =
∑L
l=1 h(xl) +

∑D
d=1 h(td|x).

• 0 ≤ I(ti;x|tj) ≤ I(ti; tj) ≤ min (I(ti;x), I(tj ;x)) ≤ min (h(x), h(ti), h(tj)) ∀i, j ∈ {1, . . . , D}.

For models where the prior distribution in latent space has been sampled, p(x) =
∑K
k=1 p(xk)δ(x− xk),

the distributions p(t), p(x|t) and p(tI |tJ ) are finite mixtures, whose entropy cannot be computed analytically.
However, we can give bounds for it.

Theorem 2.12.9. Whether the prior distribution in latent space is continuous or has been sampled, if Ψ is
independent of x and t|x ∼ N (f(x),Ψ), then h(t|x) = 1

2 ln |2πeΨ|.

Proof.
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• Continuous p(x): h(t|x)
def
= −

∫

RL p(x)
∫

RD p(t|x) ln p(t|x) dt dx =
∫

RL p(x) 1
2 ln |2πeΨ| dx = 1

2 ln |2πeΨ|.

• Sampled p(x): h(t|x)
def
= −∑K

k=1 p(xk)
∫

RD p(t|x) ln p(t|x) dt =
∑K
k=1 p(xk)

1
2 ln |2πeΨ| = 1

2 ln |2πeΨ|.

Remark. Although the axiom of local independence prescribes factorised noise models, theorem 2.12.9 holds
even if Ψ is not diagonal.

Theorem 2.12.10 (Entropy for linear-normal models). Consider random variables x ∼ NL(µX ,ΣX)
in RL and t|x ∼ ND(Λx + µT ,ΣT ) in RD, for positive definite matrices ΣX , ΣT , a D × L matrix Λ and
vectors µX ∈ RL, µT ∈ RD. Then, with Σ and Σ̂X given as in theorem 2.12.1:

• h(x) = 1
2 ln |2πeΣX |

• h(t|x) = 1
2 ln |2πeΣT |

• h(t,x) = 1
2 ln (|2πeΣX | |2πeΣT |)

• h(t) = 1
2 ln |2πeΣ| = 1

2 ln
∣
∣
∣2πe(ΣT + ΛΣXΛT )

∣
∣
∣

• h(x|t) = 1
2 ln

∣
∣2πeΣ̂−1

X

∣
∣ = 1

2 ln
(

|2πeΣX | |2πeΣT | |2πeΣ|−1
)

.

Theorem 2.12.11 (Entropy for factor analysis). If x ∼ N (0, IL) and t|x ∼ N (Λx + µ,Ψ) with Ψ
diagonal and independent of x, then:

• h(x) = L
2 ln (2πe)

• h(t|x) = 1
2 ln |2πeΨ|

• h(t,x) = 1
2 ln

(
(2πe)D+L |Ψ|

)

• h(t) = 1
2 ln

(

(2πe)D
∣
∣
∣ΛΛT + Ψ

∣
∣
∣

)

• h(x|t) = 1
2 ln

(

(2πe)L
∣
∣
∣ΛTΨ−1Λ + IL

∣
∣
∣

−1
)

.

Theorem 2.12.12 (Entropy for principal component analysis). If x ∼ N (0, IL) and t|x ∼ N (Λx +
µ, σ2ID) with σ independent of x, then:

• h(x) = L
2 ln (2πe)

• h(t|x) = D
2 ln (2πeσ2)

• h(t,x) = 1
2 ln

(
(2πe)D+Lσ2D

)

• h(t) = 1
2 ln

(

(2πe)D
∣
∣
∣ΛΛT + σ2ID

∣
∣
∣

)

• h(x|t) = 1
2 ln

(

(2πeσ2)L
∣
∣
∣ΛTΛ + σ2IL

∣
∣
∣

−1
)

.

Theorem 2.12.13 (Entropy for GTM). If p(x) = 1
K

∑K
k=1 δ(x− xk) and t|x ∼ N (f(x), σ2ID) with σ

independent of x and f a generalised linear model, then:

• h(x) = lnK

• h(t|x) = D
2 ln (2πeσ2)

• h(t,x) = 1
2 ln

(
K2(2πeσ2)D

)
.

Theorems 2.12.9–2.12.13 show that, for normal noise models with fixed covariance Ψ, the entropy of the
observed variables, h(t), is bounded below by the entropy of the normal distribution of covariance Ψ. This
means that we cannot have a distribution p(t) in observed space which is, loosely speaking, more peaked than
a N (·,Ψ). Since it is to be expected that real distributions will have variable “peakiness” depending on the
region considered, the optimal Ψ will be a compromise between the covariance in areas of large noise and in
areas of small noise. In GTM this could be overcome by having many points in latent space (high K) and a
small covariance Ψ = σ2ID. However, allowing the covariance Ψ to depend on x (like the mean of the noise
model does, f(x)) would be the obvious workaround.

55



2.12.4 Diagonal GTM (dGTM)

We give here the details for dGTM, the diagonal noise model for GTM that we proposed in section 2.6.5.1.
First let us fully generalise GTM so that it has diagonal noise dependent on each latent grid point and both
the values of the noise covariance matrix and the values of the prior distribution in latent space are trainable.
Thus

t|x def∼ N (f(x),Ψ(x)) (2.42’)

with Ψ : X → (R+)D and

p(t) =
K∑

k=1

πkp(t|xk)

with πk
def
= p(xk) and Ψk

def
= Ψ(xk) = diag (ψk1, . . . , ψkD). The dependence of p(t|xk) on all the relevant

parameters is not explicitly written for clarity of notation. The EM equations are derived by minimising

N∑

n=1

ln p(tn)− λ
(

K∑

k=1

πk − 1

)

where λ is a Lagrange multiplier that ensures that the values of the prior distribution in latent space add to
one. This gives

π
(τ+1)
k =

1

N

N∑

n=1

p(xk|tn) =
1

N

N∑

n=1

R
(τ)
nk

for the prior distribution in latent space, using the responsibilities Rnk = p(xk|tn), and for the rest of the
parameters we obtain

N∑

n=1

K∑

k=1

Rnk
∂

∂θ
ln p(tn|xk) = 0 (2.65)

where θ represents a parameter wdf or ψkd. Recalling that fd(xk) =
∑F
f=1 wdfφkf where φkf = φf (xk) and

plugging

∂

∂wdf
ln p(tn|xk) =

φkf
ψkd



tnd −
F∑

f ′=1

wdf ′φkf ′



 d = 1, . . . , D f = 1, . . . , F

∂

∂ψkd
ln p(tn|xk) = −1

2

(
1

ψkd
− (tnd − fd(xk))2

ψ2
kd

)

k = 1, . . . ,K d = 1, . . . , D

∂

∂ψkd
ln p(tn|xk′) = 0 if k 6= k′

into (2.65), we obtain a system of D(F +K) equations that, together with the equations for {πk}Kk=1, define
the M step:

K∑

k=1

φkf
ψkd

gkk

F∑

f ′=1

φkf ′wdf ′ =
N∑

n=1

K∑

k=1

φkf
ψkd

Rnktnd d = 1, . . . , D f = 1, . . . , F

ψkd =
1

gkk

N∑

n=1

Rnk(tnd − fd(xk))2 k = 1, . . . ,K d = 1, . . . , D

where gkk
def
=
∑N
n=1Rnk as in section 2.6.5. Solving for {wdf}D,Fd,f=1 is cumbersome, since the first group of

equations cannot be put into a nice matrix equation form. The second group of equations shows that Ψk is a
weighted average of the squared componentwise deviations of the data points from the “reference point” f(xk),
where the weights are given by the responsibilities (normalised over all reference points).

Compared to the standard GTM model, this extended version has K(D+1)−2 more parameters: {πk}K−1
k=1

and {Ψk}Kk=1. Thus, we lose the attractive property that using a large number of latent pointsK (exponentially
dependent on the latent space dimension L) does not increase the number of parameters. Even if the EM
algorithm was straightforward, such a model would require a large training set for stable statistical estimation41

41Note, however, that the standard GTM model does depend on F , the number of radial basis functions needed for the mapping
f , which also depends exponentially on L (but can be kept quite smaller than K without losing approximation power).
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and would be prone to singularity problems (Ψk → 0 for some k), as mentioned in section 2.5.2, among other
places. Defining Ψ(x) as a generalised linear model (as f is, eq. (2.41), and reusing the φ function) eliminates
the direct dependence on K and ensures a smooth variability of the noise variance over the data manifold, but
the resulting M step is unsolvable, as can be readily checked. Also, since f is a universal approximator, it is
not really necessary to make the prior distribution in latent space trainable as well.

Taking into account these considerations, for all k = 1, . . . ,K we keep p(xk) = 1
K constant as in the

standard GTM model and the noise model covariance matrix Ψk = Ψ diagonal constant too. As can easily be
seen by recalculating ∂

∂ψd
ln p(tn|xk), the M step becomes exactly solvable and leads to the following update

equations for the parameters W and Ψ, respectively:

ΦTG(τ)Φ(W(τ+1))T = ΦT (R(τ))TT (2.45a)

ψ
(τ+1)
d =

1

N

K∑

k=1

N∑

n=1

R
(τ)
nk (tnd − fd(xk))2 d = 1, . . . , D (2.45b’)

the first of which is the same one as for the standard GTM model and the second of which has the same
interpretation as before as weighted average of the squared componentwise deviations of the data points from
f(xk). Further modifications can still be done, such as a Gaussian regularisation term on W, eq. (2.46), or a
unit-speed constraint on f , section 2.8.3.

❦
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In G. Bailly and C. Benôıt, editors, Talking Machines: Theories, Models and Designs, pages 485–504. North
Holland-Elsevier Science Publishers, Amsterdam, New York, Oxford, 1992.

P. M. Bentler and J. S. Tanaka. Problems with EM algorithms for ML factor analysis. Psychometrika, 48(2):
247–251, June 1983.

J. O. Berger. Statistical Decision Theory and Bayesian Analysis. Springer Series in Statistics. Springer-Verlag,
Berlin, second edition, 1985.

M. Berkane, editor. Latent Variable Modeling and Applications to Causality. Number 120 in Springer Series
in Statistics. Springer-Verlag, Berlin, 1997.

J. M. Bernardo and A. F. M. Smith. Bayesian Theory. Wiley Series in Probability and Mathematical Statistics.
John Wiley & Sons, Chichester, 1994.

N. Bernstein. The Coordination and Regulation of Movements. Pergamon, Oxford, 1967.

D. P. Bertsekas. Dynamic Programming. Deterministic and Stochastic Models. Prentice-Hall, Englewood Cliffs,
N.J., 1987.

J. Besag and P. J. Green. Spatial statistics and Bayesian computation. Journal of the Royal Statistical Society,
B, 55(1):25–37, 1993.

295



J. C. Bezdek and N. R. Pal. An index of topological preservation for feature extraction. Pattern Recognition,
28(3):381–391, Mar. 1995.

E. L. Bienenstock, L. N. Cooper, and P. W. Munro. Theory for the development of neuron selectivity:
Orientation specificity and binocular interaction in visual cortex. J. Neurosci., 2(1):32–48, Jan. 1982.

C. M. Bishop. Mixture density networks. Technical Report NCRG/94/004, Neural Computing Research Group,
Aston University, Feb. 1994. Available online at http://www.ncrg.aston.ac.uk/Papers/postscript/

NCRG_94_004.ps.Z.

C. M. Bishop. Neural Networks for Pattern Recognition. Oxford University Press, New York, Oxford, 1995.

C. M. Bishop. Bayesian PCA. In Kearns et al. (1999), pages 382–388.

C. M. Bishop, G. E. Hinton, and I. G. D. Strachan. GTM through time. In IEE Fifth International Conference
on Artificial Neural Networks, pages 111–116, 1997a.

C. M. Bishop and I. T. Nabney. Modeling conditional probability distributions for periodic variables. Neural
Computation, 8(5):1123–1133, July 1996.

C. M. Bishop, M. Svensén, and C. K. I. Williams. Magnification factors for the SOM and GTM algorithms. In
WSOM’97: Workshop on Self-Organizing Maps, pages 333–338, Finland, June 4–6 1997b. Helsinki University
of Technology.

C. M. Bishop, M. Svensén, and C. K. I. Williams. Developments of the generative topographic mapping.
Neurocomputing, 21(1–3):203–224, Nov. 1998a.

C. M. Bishop, M. Svensén, and C. K. I. Williams. GTM: The generative topographic mapping. Neural
Computation, 10(1):215–234, Jan. 1998b.

C. M. Bishop and M. E. Tipping. A hierarchical latent variable model for data visualization. IEEE Trans. on
Pattern Anal. and Machine Intel., 20(3):281–293, Mar. 1998.

A. Bjerhammar. Theory of Errors and Generalized Matrix Inverses. North Holland-Elsevier Science Publishers,
Amsterdam, New York, Oxford, 1973.

C. S. Blackburn and S. Young. A self-learning predictive model of articulator movements during speech
production. J. Acoustic Soc. Amer., 107(3):1659–1670, Mar. 2000.

T. L. Boullion and P. L. Odell. Generalized Inverse Matrices. John Wiley & Sons, New York, London, Sydney,
1971.

H. Bourlard and Y. Kamp. Autoassociation by the multilayer perceptrons and singular value decomposition.
Biol. Cybern., 59(4–5):291–294, 1988.

H. Bourlard and N. Morgan. Connectionist Speech Recognition. A Hybrid Approach. Kluwer Academic Pub-
lishers Group, Dordrecht, The Netherlands, 1994.

M. Brand. Structure learning in conditional probability models via an entropic prior and parameter extinction.
Neural Computation, 11(5):1155–1182, July 1999.

C. Bregler and S. M. Omohundro. Surface learning with applications to lip-reading. In Cowan et al. (1994),
pages 43–50.

C. Bregler and S. M. Omohundro. Nonlinear image interpolation using manifold learning. In Tesauro et al.
(1995), pages 973–980.

L. J. Breiman. Bagging predictors. Machine Learning, 24(2):123–140, Aug. 1996.

S. P. Brooks. Markov chain Monte Carlo method and its application. The Statistician, 47(1):69–100, 1998.

C. P. Browman and L. M. Goldstein. Articulatory phonology: An overview. Phonetica, 49(3–4):155–180, 1992.

E. N. Brown, L. M. Frank, D. Tang, M. C. Quirk, and M. A. Wilson. A statistical paradigm for neural spike
train decoding applied to position prediction from ensemble firing patterns of rat hippocampal place cells.
J. Neurosci., 18(18):7411–7425, Sept. 1998.

296



G. J. Brown and M. Cooke. Computational auditory scene analysis. Computer Speech and Language, 8(4):
297–336, Oct. 1994.

D. Byrd, E. Flemming, C. A. Mueller, and C. C. Tan. Using regions and indices in EPG data reduction.
Journal of Speech and Hearing Research, 38(4):821–827, Aug. 1995.

J.-F. Cardoso. Infomax and maximum likelihood for blind source separation. IEEE Letters on Signal Process-
ing, 4(4):112–114, Apr. 1997.

J.-F. Cardoso. Blind signal separation: Statistical principles. Proc. IEEE, 86(10):2009–2025, Oct. 1998.
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M. Á. Carreira-Perpiñán and S. Renals. Experimental evaluation of latent variable models for dimensionality
reduction. In Niranjan (1998), pages 165–173.
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É. Moulines, J.-F. Cardoso, and E. Gassiat. Maximum likelihood for blind separation and deconvolution of
noisy signals using mixture models. In Proc. of the IEEE Int. Conf. on Acoustics, Speech and Sig. Proc.
(ICASSP’97), volume 5, pages 3617–3620, Munich, Germany, Apr. 21–24 1997.

306



J. R. Movellan, P. Mineiro, and R. J. Williams. Modeling path distributions using partially observable diffusion
networks: A Monte-Carlo approach. Technical Report 99.01, Department of Cognitive Science, University
of California, San Diego, June 1999. Available online at http://hci.ucsd.edu/cogsci/tech_reports/

faculty_pubs/99_01.ps.

F. Mulier and V. Cherkassky. Self-organization as an iterative kernel smoothing process. Neural Computation,
7(6):1165–1177, Nov. 1995.

I. T. Nabney, D. Cornford, and C. K. I. Williams. Bayesian inference for wind field retrieval. Neurocomputing,
30(1–4):3–11, Jan. 2000.

J.-P. Nadal and N. Parga. Non-linear neurons in the low-noise limit: A factorial code maximizes information
transfer. Network: Computation in Neural Systems, 5(4):565–581, Nov. 1994.

R. M. Neal. Probabilistic inference using Markov chain Monte Carlo methods. Technical Report
CRG–TR–93–1, Dept. of Computer Science, University of Toronto, Sept. 1993. Available online at
ftp://ftp.cs.toronto.edu/pub/radford/review.ps.Z.

R. M. Neal. Bayesian Learning for Neural Networks. Springer Series in Statistics. Springer-Verlag, Berlin,
1996.

R. M. Neal and P. Dayan. Factor analysis using delta-rule wake-sleep learning. Neural Computation, 9(8):
1781–1803, Nov. 1997.

R. M. Neal and G. E. Hinton. A view of the EM algorithm that justifies incremental, sparse, and other
variants. In Jordan (1998), pages 355–368. Proceedings of the NATO Advanced Study Institute on Learning
in Graphical Models, held in Erice, Italy, September 27 – October 7, 1996.

W. L. Nelson. Physical principles for economies of skilled movements. Biol. Cybern., 46(2):135–147, 1983.

N. Nguyen. EPG bidimensional data reduction. European Journal of Disorders of Communication, 30:175–182,
1995.

N. Nguyen, P. Hoole, and A. Marchal. Regenerating the spectral shape of � ��� and � ��� from a limited set of
articulatory parameters. J. Acoustic Soc. Amer., 96(1):33–39, July 1994.

N. Nguyen, A. Marchal, and A. Content. Modeling tongue-palate contact patterns in the production of speech.
J. of Phonetics, 24(1):77–97, Jan. 1996.

K. Nicolaidis and W. J. Hardcastle. Articulatory-acoustic analysis of selected English sentences from the
EUR-ACCOR corpus. Technical report, SPHERE (Human capital and mobility program), 1994.

K. Nicolaidis, W. J. Hardcastle, A. Marchal, and N. Nguyen-Trong. Comparing phonetic, articulatory, acoustic
and aerodynamic signal representations. In M. Cooke, S. Beet, and M. Crawford, editors, Visual Represen-
tations of Speech Signals, pages 55–82. John Wiley & Sons, 1993.

M. A. L. Nicolelis. Actions from thoughts. Nature, 409(6818):403–407, Jan. 18 2001.

M. Niranjan, editor. Proc. of the 1998 IEEE Signal Processing Society Workshop on Neural Networks for
Signal Processing (NNSP98), Cambridge, UK, Aug. 31 – Sept. 2 1998.

D. A. Nix and J. E. Hogden. Maximum-likelihood continuity mapping (MALCOM): An alternative to HMMs.
In Kearns et al. (1999), pages 744–750.

J. Nocedal and S. J. Wright. Numerical Optimization. Springer Series in Operations Research. Springer-Verlag,
1999.

J. J. Ohala, Y. Hasegawa, M. Ohala, D. Granville, and A. C. Bailey, editors. Proc. of the 14th International
Congress of Phonetic Sciences (ICPhS’99), San Francisco, USA, Aug. 1–7 1999.

E. Oja. Principal components, minor components, and linear neural networks. Neural Networks, 5(6):927–935,
Nov.–Dec. 1992.

B. A. Olshausen and D. J. Field. Emergence of simple-cell receptive field properties by learning a sparse code
for natural images. Nature, 381(6583):607–609, June 13 1996.

307



B. A. Olshausen and D. J. Field. Sparse coding with an overcomplete basis set: A strategy employed by V1?
Vision Res., 37(23):3311–3325, Dec. 1997.
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