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Abstract

The elegant regularity of maps of variables such as ocular dominance, orientation and spatial frequency
in primary visual cortex have prompted many people to suggest their structure could be explained by an
optimisation principle. Up to now, the standard way to test this hypothesis has been to generate artificial
maps by optimising an hypothesised objective function, and then to compare these artificial maps with real
maps using a variety of quantitative criteria. If the artificial maps are similar to the real maps, this provides
some evidence that the real cortex may be optimising a similar function to the one hypothesised. However,
recently a more direct method has been proposed for testing whether real maps represent local optima of an
objective function (Swindale et al., 2000). In this approach, the value of the hypothesised function is calculated
for a real map, and then the real map is perturbed in certain ways and the function recalculated. If each of
these perturbations leads to a worsening of the function, it is tempting to conclude that the real map is quite
likely to represent a local optimum of that function. In the current paper we argue that such perturbation
results provide only weak evidence in favour of the optimisation hypothesis.

1 Introduction

Neurons in visual cortex respond to several kinds of visual stimuli, the best studied of which include position in
visual field, eye of origin, and orientation, direction and spatial frequency of a grating. The pattern of preferred
stimulus values over the whole visual cortex for each kind of stimulus is called a (visual) cortical map. Thus,
maps of visual field position, ocular dominance, orientation, etc. coexist on the same neural substrate. Given that
these maps show a highly organised spatial structure, the question arises of what underlying principles explain
these maps. Two such principles are coverage uniformity, or completeness, and continuity, or similarity (Hubel
and Wiesel, 1977). Coverage uniformity means that each combination of stimuli values (e.g. any orientation
in any visual field location of either eye) has equal representation in the cortex; completeness means that any
combination of stimuli values is represented somewhere in cortex. Thus, coverage uniformity implies completeness
(disregarding the trivial case of a cortex uniformly nonresponsive to stimuli), but not vice versa, since it is possible
to have over- and underrepresented stimuli values (in addition, it is not practically possible to represent all values
of a continuous, higher-dimensional stimulus space with a continuous 2D cortex). A useful middle ground is to
consider that the set of stimulus values represented by the cortex be roughly uniformly scattered in stimulus
space. A common qualitative definition of continuity is that neurons which are physically close in cortex tend
to have similar stimulus preferences; this can be motivated in terms of economy of cortical wiring (Durbin and
Mitchison, 1990).

Coverage and continuity compete with each other. If, say, retinotopy and preferred orientation vary slowly
from neuron to neuron, sizable visual field regions will lack some orientations. If neurons’ preferred stimuli values
are scattered like a salt and pepper mixture, continuity is lost. The striped structure of several of the maps can
be seen as a compromise between these two extremes. An early model based on these principles is the icecube
model of Hubel and Wiesel (1977), where stripes of ocular dominance run orthogonally to stripes of orientation
and all combinations of eye and orientation preference are represented within a cortical region smaller than a
cortical point image (the collection of neurons whose receptive fields contain a given visual field location). The
competition can be explained in a dimension reduction framework, where a two-dimensional cortical sheet twists
in a higher-dimensional stimulus space to cover it as uniformly as possible while minimising some measure of



continuity. Optimisation models based on such principles produce maps with a quantitatively good match to the
observed phenomenology of cortical maps, including the striped structure of ocular dominance and orientation
columns with appropriate periodicity and interrelations (Erwin et al., 1995; Swindale, 1996).

However, a more direct approach to test the validity of such optimisation models would be to calculate the
value of the objective function for a real cortical map and then determine by perturbation whether this represents
a local optimum. Such an approach has recently been proposed by Swindale et al. (2000). Although the results
presented by Swindale et al. (2000) are consistent with the hypothesis that real maps are optimised for a particular
function measuring coverage, here we argue that these results offer only weak evidence in favour of the hypothesis.

2 The coverage measure

Consider a resolution-dependent representation of a cortical map defined as a two-dimensional array of vector
values of the stimulus variables of interest. Each position (4, j) in the array represents an ideal cortical cell; call C
the set of all such cortical positions. There is a vector of stimulus values p,;; associated to each cortical position
(4, 4); stimulus variables considered by Swindale et al. (2000) are the retinotopic position (or receptive field centre

in the visual field) (z,y) in degrees, the preferred orientation 6 € [0°,180°), the ocular dominance n (—1: left eye,
def

+1: right eye) and the spatial frequency m € {—1,1}. Therefore p,; = (nij, mij, 0ij, vij, yi;) for (i,5) € C can be
considered a generalised receptive field centre; a receptive field would then be defined by a function sitting on the
receptive field centre and monotonically decreasing away from it (see below). The collection M S {Nij}(i,j)ec of
such receptive field centres, together with the 2D ordering of cortical positions in C, defines the cortical map.

A mathematically convenient way of representing the tradeoff between the goals of attaining uniform coverage
and respecting the constraints of cortical wiring is to assume that cortical maps maximise a function

F(M) = (M) + \Z(M) (1)

where % is a measure of the uniformity of coverage, #Z is a measure of the continuity and A > 0 specifies the
relative weight of # with respect to . We assume that maximising either € or # separately does not lead to a
maximum of % and therefore that maxima of .% imply compromise values of ¥ and #Z. The exact form of the
combination of € and Z of eq. (1) (a weighted sum) need not be biologically correct, but for the purposes of
embodying the competition between € and & it is sufficient.

Swindale (1991) introduced the following mathematical definition of coverage. Given an arbitrary stimulus v,
the total amount of cortical activity that it produces is defined as

A(v) = Z flv— “’ij) (2)

(i,5)€C

where f is the (generalised) receptive field of cortical location (i,j), assumed translationally invariant (so it
depends only on the difference of stimulus v and generalised receptive field centre uij); f is taken as a product
of functions: Gaussian for orientation and retinotopic position (with widths derived from biological estimates
of tuning curves!) and delta for ocular dominance and spatial frequency. A is calculated for a regular grid in
stimulus space, which is assumed to be a representative set of stimulus values. The measure of coverage uniformity
is finally obtained as

o et stdev {A} 3)

mean {A}

that is, the magnitude of the normalised dispersion of the total activity A in the stimulus space. Intuitively, ¢’
will be large when A takes different values for different stimuli and zero if A has the same value independently
of the stimulus. Thus, it is a measure of lack of coverage uniformity, and we could define ¥ = —¢’. Eq. (2) can
be seen as a generalisation of the fitness term of the elastic net objective function (Durbin et al., 1989). Z is the
combined effect of several factors, none of which is fully understood, and so it is hard to confidently write down

a functional form for it.

1Strictly, the receptive field size depends on the location of the stimulus in the visual field and adapts to the surround (e.g. with
contrast). However, extending the coverage definition to account for this is difficult. Therefore, in common with Swindale et al.
(2000), we will consider fixed receptive field sizes.



3 Determining map optimality via perturbations

If suitable functions ¥ and £ are defined, the mathematical procedure to determine whether a given map
M = {p;;}i.j)ec is a (local) maximum of .# is to check that the gradient of .# at M is zero and the Hessian of
Z at M is negative definite (or negative semidefinite). However, there are two problems with this. First, € is
obtained in an approximate way? using a sample of the stimulus distribution and so the numerical accuracy of the
gradient and Hessian will be affected by a discretisation error, particularly if the sample is coarse and symmetric.
But second and crucially, even if we commit ourselves to a given (approximated) mathematical definition of €
such as —¢’, we still do not have a suitable definition of %.

Given the difficulties in the definition of £ and in the mathematical treatment of ¢, the goal of Swindale
et al. (2000) was less ambitious: to check whether the maps are at local optima of ¢ by examining the effect on €
of a fairly small set of perturbations of the maps that hopefully would not affect %, however the latter is defined.
That is, Swindale et al. argued that even though we do not know what Z is exactly, we may be able to determine
what perturbations of a map should leave % unaffected. Specifically, they suggested rigid motion perturbations
(horizontal translations, 180° rotations and horizontal and vertical flips) applied separately to each individual
map (discussed further in second 3.3). If such perturbations unambiguously worsened coverage uniformity for
biologically observed maps of developed animals, it would be tempting to conclude that such maps are local
maxima of both ¥ and .%. To test this idea, Swindale et al. used empirical maps of ocular dominance, orientation
and spatial frequency obtained simultaneously in area 17 of the cat using standard optical imaging methods for
young animals. After some preprocessing (including smoothing, necessary to remove noise), rectangular regions
of about 5 x 2.5 mm (approximately 140 x 70 pixels) were obtained in which each pixel has associated values
of ocular dominance in {—1,1}, orientation in degrees in [0, 180) and spatial frequency in {—1,1}. Since optical
imaging provides no information about topography, Swindale et al. chose to make the retinotopic map linear, i.e.,
perfectly topographic?, which makes coverage uniform by definition along the retinotopic variables x, y. Swindale
et al. then computed the variation of ¢’ for a range of rigid-motion perturbations and found that coverage became
less uniform for most of the perturbations described, often as an increasing function of the size of the perturbation
(notably for horizontal shifts).

The lack of negative results in the perturbation simulations lead Swindale et al. (2000) to argue that such
maps are local maxima of both ¥ and .#. Or, as Das (2000) put it in an associated paper, “real experimentally
obtained maps from V1 are indeed optimally arranged with respect to each other such that any departure from
the real maps worsens the coverage.” However, there are several reasons to question whether this really follows
from the results presented by Swindale et al..

3.1 Incompleteness of the perturbation set

The set of perturbations used by Swindale et al. (2000) does not include all possible perturbations that would
leave a certain continuity function &% unchanged. Assume that all stimulus variables are continuous and call D
the number of (independent) such variables, i.e., the number of scalar variables in M = {p,;} (i j)ec. This is a
large number: for a rectangular map of 140 x 70 with 5 stimulus variables D is 49000, and it could even be
infinite if one considers a nonparametric representation of the map (in which case we would have a variational
problem). Then, an elementary perturbation of a map M that does not alter Z will result in a perturbed map
lying at an e-distance from M on the manifold R(M) = {N : Z(N) = Z(M)} (see fig. 1). Such a manifold will
have dimension D — 1 (or less, if some variables are dependent). Therefore, if D > 2 the number of different
directions in which to perturb the map is infinite. In other words, proving that M is a maximum of € for fixed
Z requires proving that every perturbed map in an elementary neighbourhood of M contained in the mentioned
manifold has a lower value of . Such a neighbourhood can be specifically defined as the intersection of a ball
B.(M) of small radius € > 0 and the manifold R(M), as shown in fig. 1, and contains an infinite number of maps.
Therefore, a procedure based on trying a finite number of different perturbations can never prove the statement,

2Even though we have a mathematical definition of ¥ = —¢’ in terms of M (via the intermediate definition of A(v;M)), it is not
possible to obtain ¢ as an explicit function of M for a given distribution of the stimulus v (e.g. uniform) since one cannot analytically
determine the distribution of A. Thus, ¥ (M) must be approximated with a sample of the stimulus distribution. Swindale et al.
(2000) computed the total cortical activity A for all combinations of n € {—1,1}, m € {—1,1}, 6 € {0°,30°,60°,90°,120°,150°},
z € {1,5,9,...,imax} and y € {1,5,9,..., jmax}, where imax and jmax are the size in pixels of the rectangular map, amounting
to about 14000 stimuli. This is a coarse and symmetric sample of 6, z and y. Drawing a finer, random sample from a uniform
distribution in stimulus space could avoid potential artifactual estimates and could also be used to control whether different samples
lead to essentially the same value of A.

3The effect on the coverage estimates of assuming that the retinotopic map is strictly topographic is likely to be considerable.
Besides, this assumption may not be true in reality (e.g. see Das and Gilbert, 1997).
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Figure 1: Illustration of an elementary neighbourhood of M contained in the manifold R(M) =
{N: Z(N)=2%(M)}. In this example, the map space is 3D and the manifold is 2D. The thick lines indi-
cate manifolds along which some specific classes of perturbations leave &% constant. These are just a subset of all
perturbations that leave Z constant (the dark-shaded neighbourhood). B.(M) is a ball of radius € centred at M.

although it can disprove it by finding one such perturbation that increases € (assuming it is possible to implement
numerically an elementary perturbation). No matter how many perturbations we try that decrease €, we can
never be sure that the rest of them will as well. Even if a candidate map passes a seemingly convincingly large
number of perturbations, there are still many more perturbations to test, and there are many other candidates
that would pass those perturbations too. Therefore, a “mathematically complete exploration of a full range of
distortions” (Das, 2000) is an unattainable goal.

The elementary perturbations we have mentioned include not just (vanishingly small) rigid motions in all
possible directions, but also different classes of perturbations, such as “rubber-sheet” distortions of the map.
Both Swindale et al. (2000) and Das (2000) admit the possibility that rubber-sheet distortions exist that improve
coverage uniformity while leaving % unchanged. However, Swindale et al. argue that, since Z is not properly
defined, a given distortion that leaves unchanged a function #; defined in some way would likely change a function
P> defined in a different way. Besides the fact that the same argument could be equally applied to the definition
of coverage uniformity (a distortion decreasing coverage uniformity & la ¢’ might increase coverage uniformity
under a different definition), our argument remains since for any given definition of % there potentially exist
distortions that could increase ¥, i.e., the neighbourhood defined earlier depends on the chosen definition of %
but it always exists. These issues are illustrated more concretely in figure 2. This presents an example of a
very simplified version of the mapping problem investigated by Swindale et al., akin to a one dimensional ocular
dominance problem (Goodhill and Willshaw, 1990). A particular map is hypothesised to be optimal, and is then
perturbed. We show that rigid shifts of this map decrease ¥ = —c’, as a monotonically decreasing function of the
size of the shift. However, we also show that rubber-sheet perturbations of this map which leave # unchanged
can increase 6 .

3.1.1 Checking for stationary points

Could one at least determine whether the maps are at a stationary point of & for fixed Z, i.e., whether the
gradient of € at the map M is zero in the direction tangent to the manifold R(M)? A numerical approximation
to the gradient of a function f of D variables can be computed by finite differences by using small perturbations

along D linearly independent directions*. For example, along the coordinate axes (with unit vectors ey, ...,ep),
by computing

Of _ f(x+eeq) — f(x)

Bxd - € '

4For this and other statements in this section, see a text on optimisation, e.g. Nocedal and Wright (1999).



This would require f to be computed at x + eey4 for d = 1,..., D, that is, D componentwise small perturbations
(for comparison, the shifts of Swindale et al. (2000) would amount to only 6 perturbation dimensions in a space
of D =49000). Whether V f(x) = 0 could then be determined, at least up to some numerical threshold (which
may not be a straightforward matter), and thus whether x is a stationary point of f. However, Vf(x) = 0 is
true for saddle points as well as optima, and high-dimensional multivariate functions that have many optima®
typically have far more saddle points (see appendix A). Fig. 3 shows an example of a function of two variables
with a stationary point at the origin that is neither a maximum nor a minimum, but perturbing a point at the
origin along many directions will result in a lower value of the function. Thus knowing that the gradient is zero
and finding that the high-dimensional function decreases along a few directions in no way guarantees that it is at
a maximum.

To determine whether the stationary point is a maximum (say), one would need to compute a numerical
approximation of the Hessian (the matrix of second-order derivatives) and check that it is negative definite
(or positive definite, for a minimum), i.e., that all its eigenvalues are strictly negative. This is now a much
harder numerical problem than determining whether Vf(x) = 0: (1) estimating the Hessian requires O(D?)
perturbations, rather than O(D) as for the gradient; (2) even if it could be estimated, the real problem is then
determining whether its eigenvalues are negative (computationally an O(D?) problem). This is very difficult,
because it is well known that the Hessian of a function of many variables is very likely to be ill-conditioned:
the ratio of the smallest to largest eigenvalue (in absolute value) is often very close to 0 and geometrically
corresponds to a direction along which f is nearly flat. This is a perennial problem in multivariate optimisation
(e.g. backpropagation training of a multilayer perceptron), where it can be difficult to tell whether the optimisation
algorithm converged to a optimum or got stuck in a saddle point or even in a non-stationary point. Bentler and
Tanaka (1983) report a remarkable example from the factor analysis literature (in a space of merely 36 dimensions).

But the problem we really have is even harder, because we want to see whether a function 4 has an optimum
along the manifold R(M), not along the whole space. This means that we cannot even obtain D — 1 linearly
independent directions along which to perturb® the map (D — 1 being the dimension of R(M)), as shown in
section 3.2, and therefore we cannot even compute the gradient tangential to R(M). Consequently, we are not
merely unable to determine whether the map is a maximum inside R(M); we cannot even determine whether the
map is at a stationary point inside R(M).

5That the coverage and continuity functions must have many local optima follows from symmetry considerations and from the
fact that, assuming the maps are indeed optimal, while the maps of any two normal animals (of the same species) are qualitatively
similar to each other, no two animals have the same map.

6 Assuming true small perturbations, not the ones that Swindale et al. (2000) used, as discussed in section 3.3.

Figure 2 (following page): A nonoptimal map that shows a systematic worsening of coverage uniformity upon
shifts but a systematic improvement upon rubber-sheet perturbations. In this thought experiment, reminiscent
of an elastic net (Durbin and Willshaw, 1987), the array of empty circles represents a uniform sample in a 2D
stimulus space (e.g. the horizontal axis could be a retinotopic variable and the vertical axis the ocular dominance
as in Goodhill and Willshaw, 1990). The string of filled circles (receptive field centres) represents a 1D map that

tries to cover the stimuli as much and as uniformly as possible (measured by 4 = —¢ as in section 2) while
respecting the map continuity as much as possible (here defined as the sum % of the lengths of the individual
segments). To compute ¢/, in eq. (2) a Gaussian kernel f with a standard deviation equal to twice the radius
of the shaded disks was used. Map (B) is the result of rigidly shifting map (A) to the right: it has the same
length % as map (A) but a lower value of . In general, rigidly shifting map (A) horizontally systematically
decreases € and results in an inverted-U curve for €, wrongly suggesting that map (A) is an optimum. The same
happens for vertical shifts, as in (C) (although, for this particular example, map (A) is slightly off the maximum
of ¥). However, map (A) can be stretched and compressed symmetrically (a rubber-sheet transformation) to
reach map (D) keeping its length % constant. Thus, map (A) is not optimal and there is a continuous path inside
the manifold of constant # that monotonically increases € till map (D) is reached, as shown in (D). Whether
map (A) is a saddle point of # (M) = ¢ (M) + AZ(M) or lies on an inclined ridge depends on the actual values
of A and on the parameters of ¥ and #. In all graphs in the right column: the vertical scale is the same; the
steepness of the curves may be increased or decreased by changing the Gaussian kernel width; and the curves were
computed with a Matlab program from the actual data and definitions of ¥ and #. Note that if one considers
periodic boundary conditions in the horizontal axis, by symmetry ¢’ becomes exactly 0 for both maps (A) and
(D), even though intuitively (D) is better than (A). This is a shortcoming of the definition of ¢’; the fitness term
of for instance the elastic net objective function does differentiate between both maps (A) and (D).
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Figure 3: A function with a stationary point at the origin (M = 0) that is a saddle point: left graph, surface plot;
right graph, contour plot. The equation of the function in polar coordinates is f(r,6) = r2(sin®™ (N0 — a) — %)
with m = 10, N = 3 and a = 7. In the contour plot, the shaded areas correspond to f > 0 and the white areas
to f < 0. Any straight line in the (r,0) plane that passes through the origin is associated to either a U curve,
along which the function increases away from the origin (if inside the shaded areas); an inverted-U curve, along
which the function decreases away from the origin (if inside the white areas); or a horizontal line, along which the
function is constant (if on the boundary). For the particular function shown, inverted-U curves are much more
abundant than U curves, and so perturbations of the point M = 0 inside a small ball B.(M) typically result in a

lower value of f.

3.2 Such perturbations may indeed alter &#

Swindale et al. (2000) argue that the perturbations they tried should not affect the continuity measure, however
this may actually be defined. The justification for this is that presumably such a measure would depend on
the Euclidean distances between stimulus values and these distances are preserved by the class of rigid motions.
However, Swindale et al. applied rigid motions to the individual maps separately” and this does alter the
geometric relationships between the individual maps which are observed in biological maps. For example, the
stripes of ocular dominance and orientation maps are known to intersect at approximately right angles and the
singularities of the orientation map are known to generally lie at the centres of the ocular dominance stripes
(Bartfeld and Grinvald, 1992; Obermayer and Blasdel, 1993; Hiibener et al., 1997); and (although still awaiting
experimental replication) the orientation discontinuities seem to be matched with retinotopic discontinuities (Das
and Gilbert, 1997). If the individual maps are independently rotated or translated, these relationships are altered
(or completely broken, if the perturbations are large). Such alterations of the individual map interrelations are
likely to have an effect on the cortical wiring constraints and therefore on the value of Z. Consequently, the
fact that coverage uniformity generally decreased becomes hard to interpret, since it could be accompanied by an
increase or a decrease in Z.

3.3 Such perturbations are not local

So far we have used the term perturbation in its usual sense of small or elementary perturbation, whose amount is
vanishingly small. For example, a small translation of the map M in the direction of a vector N could be defined
as M’ = M + €N, or pj; = p,; + evij V(i, j) € C, where ¢ > 0 is very small; likewise, if every u,; is perturbed by
a different, small amount then we would have a rubber-sheet perturbation.

However, the perturbations used by Swindale et al. (2000) are not small perturbations. To see this, note
that their perturbations are actually permutations. Consider, for example, perturbing the orientation map while

“If the individual maps were transformed jointly by a rigid motion we would gain no information (assuming that the cortex is
homogeneous and isotropic).



keeping the other maps fixed and assume for notational convenience that the cortex origin is at the centre of the
rectangular region examined by Swindale et al.:

e Horizontal shift of k pixels: 6;; takes the value of 8;4y ;.
e Horizontal flip: 6;; is swapped with 6_; ;.

e 180° rotation: ¢;; is swapped with 6_; _;.

Thus, the new value for 6;; will often be very different from the original one. It could be argued that, for shifts
of small amount (e.g. k& = 1 pixel or less), the value of 6,1 ; will be very similar to that of 6;;; but this rests
on an assumption of continuity of orientation that does not hold generally (e.g. at singularities or fractures),
and the same would happen with other maps. This argument holds no matter how finely one discretises the
cortex, since the discontinuities do not go away as the pixel size goes to zero. The argument would also apply
to small-angle individual map rotations, though Swindale et al. only considered 180° rotations. The following
schematic illustrates the idea. It shows a one-dimensional bitmapped cortex Mg where each pixel ¢ contains an
orientation value 6; that varies continuously except at a single point; it then shows maps M1, My, etc. shifted by
increasing amounts of 1, 2, etc. pixels and the respective perturbations My — My, My — M, etc. of the original
map. It can be seen that (1) the effect of both the continuous region and the discontinuity is accumulative with
the shift size, consistent with the U-curves reported by Swindale et al.; and (2) if the pixel size is very small, the
“1” values in My — M; will be very small but the “—7” will remain, and similarly for other shifts, so that the
perturbation remains large.

Mo [l sl s s [* 5] ]
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In summary, the “perturbations” of Swindale et al. (2000) are not small perturbations, but permutations
which often result in very large perturbations, therefore being non-local. That is, the perturbed map is not in
the immediate vicinity of the original one but in a faraway region of map space, and therefore comparison of the
coverage values of both maps is hard to interpret. Put another way, it makes sense to add 1° to a given 6;; and
see how that affects €, but not to add unknown, potentially arbitrarily large amounts to all ;;’s. Besides, if the
original (observed) map was indeed at a local optimum of €, given the multiplicity of local optima in map space
mentioned earlier, it is to be expected that the perturbed map would then be near a completely different local
optimum.

4 Conclusion

The general principle that cortical maps are wired in a way that achieves uniform coverage while also minimising
cortical wiring is important for understanding cortical map structure. The abstract implementation of such a
principle in cortical map models based on dimensionality reduction replicates most of the characteristics of such
maps. The evidence presented by Swindale et al. (2000) is certainly consistent with the optimisation hypothesis,
but it does not add significant support for it. Being based on trial and error of a subset of possible perturbations,
it might disprove the hypothesis that empirical maps maximise (a certain measure of) coverage uniformity, but
it cannot prove it. The lack of an appropriate definition of economy of cortical wiring prevents us from finding
perturbations that leave it unchanged, and ultimately prevents a quantitative assessment of the general principle
stated above. What could be more easily tested is whether empirical maps are stationary points of the coverage
uniformity by itself (irrespective of any connectivity constraint), but it would be surprising if this was so.

Since most of the perturbations tried by Swindale et al. worsened coverage uniformity (the more so the larger
the perturbation, for the horizontal shifts), it may be argued that this cannot be due to chance. In section 3
we have shown (1) that in high dimensions this intuition about chance is misleading and (2) that continuity
is also being altered by those manipulations. In addition, the example shown in fig. 2 demonstrates that it is
also possible to observe a systematic decrease in coverage uniformity for shifts when the map is not optimal.
Visual cortex has an orderly columnar structure. That perturbations such as shifts should disturb that structure,
and probably worsen coverage uniformity, should not come as a surprise. That any perturbation should worsen
coverage uniformity is a far stronger statement that would be very difficult to confirm empirically. The work of



Swindale et al. provides useful evidence that coverage is fairly uniform across visual cortex, but does not prove
that it is as uniform as possible.

Optimality is a very important principle in biology, and there are many examples where biological systems
have been proven to achieve the best performance possible given the relevant physical constraints (e.g. Bialek,
1987). The approach in such cases is generally to calculate from first principles what optimal performance would
be, and then show that biology achieves this performance. This is analogous to the standard methodology in the
visual cortical map field of hypothesising an objective function (though on rather less certain grounds that direct
physical constraints), calculating the maps that follow from this function, and comparing them with real maps.
An alternative method, practical when the problem is discrete and the number of possible states is relatively
small, is to calculate the value of an objective function for all states and show that the biological state represents
the optimum of this function (e.g. Cherniak, 1995). However, in the case discussed by Swindale et al. the number
of states is infinite, and we argue that a numerical perturbation approach cannot yield significant insight into
optimality.
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A Abundance of saddle points and optima in high dimensions

Consider a linear superposition of localised spherical functions (each function falls away quickly, e.g. at a distance
1

3) each centred at the knots of a D-dimensional cubic array. That is, we place one such function at every position
(z1,22,...,2p) where each x4 is integer, for d = 1,..., D. Call whole-knot every such position. By symmetry
we will have a maximum at every whole-knot and, over a large region, the same number of minima. In the
midpoint of the segment joining any two maxima (minima) there must be either a saddle point or a minimum
(maximum). These midpoints are located at positions (21, Z2,...,zp) where at least one x4 is an integer plus %
and correspond to the midpoint of diagonals of lengths v/2,v/3,...,v/D that link a maximum with its respective
nearest neighbouring maxima (see fig. 4(left)). Call such midpoints half-knots. Over a hypercubic region of side
N in each axis we have (2N)? half-knots and whole-knots (saddle points, minima and maxima) and N whole-
knots (maxima). Thus, it contains N” maxima, N” minima and (2N)? — 2NP saddles. Therefore, the ratio
maxima : minima : saddles is 1 : 1 : 2P — 2 and there are O(2%) saddle points per maximum or minimum. The
expression is also valid for D = 1 (where there exist no saddle points). Figure 4(left) shows the proof setup for
D = 3. The groups of nearest neighbouring maxima of a maximum knot are at distances 1 (o), v/2 (0J) and /3
(A) and correspond to the 6 faces, 12 edges and 8 vertices, respectively, of a cube of side 2 centred on the knot.
At the midpoint of every such diagonal there is either a saddle point or a minimum.

In less crystalline arrangements, some maxima, minima and saddle points will coalesce, but if the function
under consideration has many maxima uniformly scattered over its domain we would expect the ratio to remain
approximately correct. Figure 4(right) shows the landscape of a bivariate function with many maxima.

Hence, saddle points are typically much more numerous than mazima and minima in high dimensions.
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