
In: Computational Neuroanatomy: Principles and Methods (G. A. Ascoli, ed.),

Humana Press Inc., chapter 15, pp. 337-357, 2002

URL: http://cns.georgetown.edu/~miguel/papers/humana02.html

Development of columnar structures in visual cortex
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Abstract

Many features of visual scenes are represented in the visual cortex in the form of maps. The best studied
of these are the maps of features such as ocular dominance and orientation in primary visual cortex (V1). The
beautifully regular structure of these maps and their dependence on patterns of neural activity have inspired
several different computational models. In this chapter we focus on what can be explained by models based
on the idea of optimising a trade-off between coverage and continuity, in particular the elastic net.

1 Introduction

Visual cortical map development is a well-studied area of computational neuroanatomy, characterised by an
abundance of both experimental data and successful models. Starting with the classic experiments of Hubel
and Wiesel in the 1970s, the characterisation of both the adult structure of the primary visual cortex (V1) and
how that structure arises developmentally have become continuously more precise and detailed as experimental
techniques have improved. Current methodologies include single- and multielectrode physiology, 2-deoxyglucose
and cytochrome oxidase staining, optical imaging based on both intrinsic signals and voltage-sensitive dyes, and
anatomical tract tracing techniques. In parallel several different types of theoretical models have developed, some
of which are very well understood analytically. To comprehensively review the full range of both experimental data
and theoretical models relevant to map formation in visual cortex would require far more space than is available
in this chapter. We therefore restrict ourselves to only briefly reviewing recent experimental data regarding map
structure and map development, and then focussing on one particular class of low-dimensional models which
attempt to optimise a trade-off between coverage and continuity. We further restrict ourselves to issues regarding
maps overall, rather than details of the receptive fields of the individual neurons from which these maps are made.
Broader reviews of models can be found in Swindale [1, 2].

2 Structure of adult maps

Receptive fields of V1 neurons are highly selective along a number of feature dimensions of the stimulus. These
feature dimensions include position in the visual field, eye of origin (ocular dominance), orientation, direction of
movement, spatial frequency of a grating and disparity. Neurons lying along a line or column orthogonal to the
surface of V1 respond in approximately the same way to visual stimuli. However, responses vary in an organised
way in the tangential direction, parallel to the surface. As is common in this field we will therefore discuss only
the two-dimensional structure of the visual cortex. Such two-dimensional organisation of preferred responses to a
particular stimulus feature is termed a map (e.g. ocular dominance map, orientation map and so on), and several
such maps coexist on the same neural substrate. The map of preferred location in the visual field is topographic
on a large scale (i.e., moving systematically across the visual field roughly corresponds to moving systematically
across the cortex), though more convoluted on a fine scale [3]. The ocular dominance map consists of alternating
stripes or blobs with a regular periodicity, with neurons in each stripe/blob responding preferentially to stimuli
in one eye [4]. The orientation map is also striped with an overall periodicity [5], but is characterised by point
singularities or pinwheels, around which a circular path meets once all orientations from 0◦ to 180◦ [6]. The
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structure of the spatial frequency map is somewhat controversial [7], with competing claims for both a binary
[8, 9] and a more continuous representation [10].

Different maps are not independent from each other: the stripes of ocular dominance and orientation tend to
run locally orthogonal to each other and orientation singularities tend to lie in the centre of ocular dominance
stripes [11, 12, 9]. Besides this local structure some global structure is also apparent: in monkeys ocular dominance
columns tend to run parallel to the shorter axis of V1, orthogonal to V1 boundaries, and are more irregular in
the foveal region [13, 14]. Maps of two individual animals of the same species are qualitatively similar, but maps
of two individual animals of different species differ in the amount of columnar segregation and its type (stripes,
blobs), periodicity, pinwheel density and other structural characteristics. A problem which several theoretical
researchers have become engaged in is to find effective ways to quantitatively characterise map structure (e.g.
[15, 16, 17, 18]).

3 Map development: role of activity

The view of development of V1 (layer IV) that has been universally accepted until recently can be summarised
as follows (see e.g. [19, 20, 21]). (1) During early stages of circuit development, genetically specified molecular
signals guide axonal outgrowth and targetting. These early connections are typically diffuse and imprecise. (2)
These connections are then refined and some are eliminated in response to visual activity, giving rise to the adult
pattern of connectivity.

In particular, ocular dominance column formation requires a prolonged activity-dependent segregation process
(lasting several weeks in cats and ferrets). This starts from an initial state in which lateral geniculate nucleus
afferents representing both eyes overlap extensively and ends in a mature state where eye-specific afferents occupy
stripes. The hypothesis that column formation is activity-dependent is based on a large number of experiments
dating back to the 1960s. When TTX (tetrodotoxin) is injected into both eyes of the cat during the critical period
(the period when visual experience affects column formation), thus blocking all retinal activity, ocular dominance
columns are not seen either anatomically or physiologically [22]. When one eye is occluded or sewn shut during
the critical period, thus causing an imbalance in the amount of activity from the two eyes, it is found that (a)
a higher proportion of cortical cells than normal are completely monocular, (b) substantially more of the cells
in layer IV can be driven by the normal eye as compared to the deprived eye, and (c) ocular dominance stripes
are now of different thicknesses for the two eyes. The stripes receiving input from the normal eye expand at the
expense of the stripes from the deprived eye [19, 23, 24]. When an occluded eye competes with an eye injected
with TTX there is a shift towards the occluded eye [25]. The cortical imbalance in the representation of the two
eyes is greater when an occluded eye competes with a normal eye than when a TTX-injected eye competes with a
normal eye [26]. When strabismus is induced during the critical period, thus preventing image registration in the
two retinae and decreasing the strength of between-eye correlations, all cells become entirely monocular, and the
pattern of stripes becomes correspondingly sharper [27]. It was originally thought that overall column periodicity
was left unchanged; recent data has suggested otherwise in the cat [28] though this is controversial [29].

The data regarding the effect of activity on orientation map development is more complex and controversial;
see section 6 and Swindale [2] for review.

4 Theoretical models: coverage and continuity

The role of activity in shaping cortical maps has usually been modelled via Hebbian learning rules. Such rules can
often be interpreted as implementing gradient ascent/descent in some objective function, so that the effect of the
developmental process is to optimise (at least to some extent) that function. A particularly useful class of objective
functions implements a trade-off between two competing tendencies, coverage uniformity (or completeness)
and continuity (or similarity). However, even though several mathematical definitions of coverage uniformity
and continuity have been given, the principles of coverage uniformity and continuity remain conceptually vague.
For example, coverage uniformity and completeness are strictly different: the former means that each combination
of stimuli values (e.g. any orientation in any visual field location of either eye) has equal representation in the
cortex, while the latter means that any combination of stimuli values is represented somewhere in cortex. Thus,
coverage uniformity implies completeness (disregarding the trivial case of a cortex uniformly nonresponsive to
stimuli), but not vice versa, since it is possible to have over- and underrepresented stimuli values. Besides, it is
not possible to represent all values of a continuous, higher-dimensional stimulus space with a two-dimensional
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cortex1. A practically useful middle ground is to consider that the set of stimulus values represented by the cortex
be roughly uniformly scattered in stimulus space—whatever that set is. Continuity is even less well defined than
coverage uniformity. Loosely, we can say continuity means that neurons which are physically close in cortex tend
to have similar stimulus preferences, or (non-equivalently) that similar features are represented nearby in the
cortex. This can be motivated in terms of economy of cortical wiring [30].

The striped structure of several of the maps can be understood to represent a compromise between coverage
and continuity. An early idea based on these principles is the icecube model of Hubel and Wiesel [4], where
stripes of ocular dominance run orthogonally to stripes of orientation and all combinations of eye and orientation
preference are represented within a cortical region smaller than a cortical point image (the collection of neurons
whose receptive fields contain a given visual field location).

These general optimisation principles of coverage and continuity do not in themselves support any specific
development rule, since there may be different ways in which they can be optimised. However, heuristic rules that
obtain local optima are rather more plausible than a global search where the best of all possible configurations
is found. It is appealing from both biological and computational perspectives to consider that visual cortical
structure is the result of small developmental changes driven by neural activity. It is then plausible to think that
such principles—abstractions based on physical and biological constraints and on adaptation to the environment—
have a strong influence on the cortical structure, but with the following caveats: that they probably are not the
only principles at work; and that they are only partly optimised in real organisms.

Particularly successful examples of such heuristic rules are the elastic net (EN) [31, 30, 32] and self-organising
map (SOM) [33, 34]. In these models, the competition can be explained in a dimension reduction framework, where
a two-dimensional cortical sheet twists in a higher-dimensional stimulus space to cover it as uniformly as possible
while minimising some measure of discontinuity. These models differ in their explicit mathematical definitions,
but produce maps which are similar and display a quantitatively good match to the observed phenomenology
of cortical maps [35, 1]. This includes: (1) the striped structure of ocular dominance and orientation columns
with appropriately related periodicities and, for orientation, the existence of singularities (pinwheels); (2) the
interrelations between different maps, such as the tendency of orientation and ocular dominance stripes to be
locally orthogonal and of the pinwheels to lie on the centre of ocular dominance stripes; and (3) the effect on the
maps of various abnormal conditions during development, such as strabismus or monocular deprivation. Shortly
we discuss specific details of the elastic net and its application to cortical mapping problems. First however we
discuss coverage and continuity from a more general mathematical perspective, which helps to illustrate how the
elastic net fits into the broader picture.

4.1 Mathematical formulation of coverage uniformity and continuity

Given a representation M of a cortical map, a mathematically convenient way of writing the tradeoff between
the goals of attaining uniform coverage and respecting the constraints of cortical wiring is to assume that cortical
maps maximise an objective function

F (M)
def

= C (M) + λR(M) (1)

where C is a measure of the uniformity of coverage, R is a measure of the continuity and λ > 0 specifies the
relative weight of R with respect to C . This formulation is formally akin to regularisation theory [36]. We assume
that maximising either C or R separately does not lead to a maximum of F and therefore that maxima of F

imply compromise values of C and R. By quantitatively defining C and R in terms of the map representation
M it is in principle possible to perform a numerical optimisation of F to generate a map. We examine several
possibilities next.

4.1.1 Model-based formulation

For a model, the map representation M is the set of model parameters, such as synapse strengths, tuning widths,
mapping parameters, receptive field centres, etc. Such parameters uniquely determine the values of orientation,
etc. at any point in the model cortical sheet. For the elastic net (which is discussed in more detail in section 5),
the parameters are the locations in stimulus space of the reference vectors {yi}N

i=1 and the width k. From eq. (9)
we can define

C ({yi}N
i=1, k)

def

= k
∑

i

log
∑

j

Φ(‖xi − yj‖ , k) R({yi}N
i=1, k)

def

= −
∑

j

‖yj+1 − yj‖2
(2)

1We should say practically not possible, since from set theory we know that the cardinal of R
D is equal to the cardinal of R

∀D ≥ 1: there exists a continuous, one-to-one mapping from R
D to R.
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where {xi}N
i=1 is the sample of stimulus values, Φ is defined in eq. (8) and λ

def

= β
2α

. Note that the standard elastic
net algorithm minimises −αF instead of maximising F and also anneals k rather than optimising over it, but
the EM (expectation-maximisation) algorithm version does optimise over k and the reference vectors jointly. In
the probabilistic interpretation of the elastic net, the C function is simply the log-likelihood of the parameters
{yi}N

i=1 and k for the data sample {xi}N
i=1, i.e., the probability density that an elastic net density model with those

parameter values generated the sample. The R function is a negative “length” of the net (it would be exactly
the Euclidean length of the elastic net from y1 to yN if the terms were not squared). It attains its maximal value
at 0 for a point-like net where y1 = · · · = yN : the more stretched the net is, the less “continuous” it is. This has
been motivated in terms of economy of cortical wiring (the cost of setting up a given neural connectivity pattern;
[30]).

Unlike the elastic net, the self-organising map learning rule cannot be integrated to give an objective function
[37]. However, slight variations of its rule leading to basically the same behaviour can be integrated and give
an objective function very similar to that of the elastic net. For example, in the probabilistic variation of self-
organising maps of Utsugi [38]:

C ({yi}N
i=1, σ)

def

=
∑

i

log
∑

j

e
− 1

2

∥

∥

∥

xi−yj

σ

∥

∥

∥

2

R({yi}N
i=1, σ)

def

= −1

2

∑

j

‖(Dy)j‖2
F

def

= C + λR (3)

where D is a discretised differential operator, e.g. first order gives (Dy)j = yj+1−yj , second order yj+1−2yj+yj−1

and so on. Similarly generalised regularisation terms could also be used in the elastic net [39].

4.1.2 Model-free formulation

A model-free, resolution-dependent representation of a map can be defined as a two-dimensional array (not
necessarily rectangular) of vector values of the stimulus variables of interest. Each position (i, j) in the array
represents an ideal cortical cell. Let us call C the set of all such cortical positions (e.g. C = {1, . . . ,M}×{1, . . . , N}
represents an M×N rectangular array). There is a vector of stimulus values µij associated to each cortical position
(i, j). Stimulus variables of interest include the retinotopic position (or receptive field centre in the visual field)
(x, y) in degrees, the preferred orientation θ ∈ [0◦, 180◦), the ocular dominance n (−1: left eye, +1: right eye)

and the spatial frequency m ∈ {−1, 1}. Therefore µij

def

= (nij ,mij , θij , xij , yij) for (i, j) ∈ C can be considered
a generalised receptive field centre; a receptive field could then be defined by a function sitting on the receptive

field centre and monotonically decreasing away from it. The collection M
def

= {µij}(i,j)∈C of such receptive field
centres, together with the two-dimensional ordering of cortical positions in C, defines the cortical map. This
representation is applicable to maps measured empirically, for example with optical recording techniques.

Swindale [40] (see also [41]) introduced the following mathematical definition of coverage, which is applicable
to this representation independently of any model. Given an arbitrary stimulus v, the total amount of cortical
activity that it produces is defined as

A(v)
def

=
∑

(i,j)∈C

f(v − µij) (4)

where f is the (generalised) receptive field of cortical location (i, j), assumed translationally invariant (so it
depends only on the difference of stimulus and generalised receptive field centre values); f is taken as a product
of functions: Gaussian for orientation and retinotopic position (with widths derived from biological estimates of
tuning curves) and delta for ocular dominance and spatial frequency. A is calculated for a regular grid in stimulus
space, which is assumed to be a representative set of stimulus values. The measure of coverage uniformity is
finally obtained as

c′
def

=
stdev {A}
mean {A} (5)

that is, the magnitude of the (normalised) dispersion of the total activity A in the stimulus space. Intuitively, c′

will be large when A takes different values for different stimuli and zero if A has a positive value independent of

the stimulus. Thus, it is a measure of lack of coverage uniformity, and we could define C
def

= −c′.
Note that the function A can be seen as a kernel density estimate [42] for the sample {µij}(i,j)∈C with

smoothing parameter given by the width of the kernel function f . In fact, its spirit is the same as that of
the probabilistic interpretation of the elastic net and self-organising map. This is because the latter are vector
quantisation methods, where the dimension reduction mapping is implicitly defined by the reference vectors
in stimulus space. If the mapping was defined explicitly via parameters, as e.g. in the generative topographic
mapping (GTM) model [43], the resulting C and R functions would be quite different.
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More difficult is to define R because the cortical wiring constraints are largely unknown and possibly result
from the combined effect of several factors. At an abstract level, we can define R as a similarity measure where
the preferred stimuli of nearby cortical neurons are similar, as in the expression [44]:

∑

(i,j),(k,l)∈C

F ((i, j), (k, l))G(µij ,µkl).

In fact, many models of cortical development implicitly or explicitly implement such a definition of continuity for
specific choices of the similarity measures F and G, like the elastic net, often with a flavour of wire length or local
similarity of neural responses (e.g. [45]; see Goodhill [46] for discussion). However, this implies introducing model
assumptions. At present continuity is too vaguely defined to be quantitatively characterised for a model-free map
representation.

5 The elastic net algorithm

The elastic net algorithm [31] was originally developed as an approximate method for the Travelling Salesman
Problem (TSP), a well-known NP-complete combinatorial optimisation problem. Here the objective is to find the
shortest distance a salesman can travel to visit a set of N cities in a plane and return to where they started. The
key idea is that this problem is analogous to the problem of forming topographic maps in the nervous system,
where cities represent input or feature points and the tour represents the ordering of these points onto the target
structure—though generally in the nervous system there is no “return to where you started” constraint. The TSP
problem has been extensively discussed in the combinatorial optimisation literature, being both easy to state and

hard to solve. For N cities there are (N−1)!
2 possible routes: for large N it is impossible to search them all to

find the optimal tour. Therefore many heuristic algorithms have been investigated, which aim to provide good
solutions in reasonable time (for review see Lawler et al. [47]). The set of valid tours for a TSP of size N can
be represented as the vertices of an N -dimensional hypercube, and most techniques aim to provide good ways of
stepping from one vertex to another to gradually improve the quality of the solution. However, an alternative
method used by the elastic net is for the search to proceed through the continuous space inside the body of the
hypercube, only converging to a valid solution in the final state.

The dynamics of the elastic net algorithm are closely related to those of the Kohonen algorithm. Both algo-
rithms grew out of earlier models of retinotectal map formation (Kohonen: Willshaw and von der Malsburg [48];
elastic net: Willshaw and von der Malsburg [49]). The basic framework is an array of cortical cells which receive
weighted connections from points in an input space. In the so-called low-dimensional version of both algorithms,
input points represent features—such as a line segment of a particular orientation located at a particular point
in the image—rather than individual image pixels. Generally, each feature is represented by an orthogonal di-
mension: one for x position, one for y position, one for ocularity (degree of left or right eye dominance), one for
orientation, one for direction, and so on. The weight vectors of cortical cells can be represented as points in the
input space. The input space is densely populated with such points so that all appropriate feature combinations
are represented. In the Kohonen algorithm, inputs are presented in turn. The initial activity of each cortical cell
is the sum of pixel values times weights. This activation rule is equivalent to calculating the distance between the
input vector and each weight vector (see e.g. Kohonen [34] for mathematical details). In Willshaw and von der
Malsburg [48] there was an explicit pattern of lateral cortical connections, consisting of short range excitation and
longer range inhibition, and the activity of cortical cells was iterated until the cortical activity pattern stabilised.
The most strongly responding cortical cells then had their weights updated according to a Hebbian learning rule
(see Willshaw and von der Malsburg [48] for mathematical details). Kohonen’s insight was that the end result
of this process is usually (though not always) a blob of activity centred on the cortical cell that initially received
the largest input. He therefore proposed an algorithmic shortcut, whereby it is assumed from the outset that the
only cortical cells that should have their weights updated are those close to the unit that initially responded most
strongly, which is the unit whose weight vector was closest to the input vector. The elastic net works in a similar
way to this, with two important differences. Firstly, whereas Kohonen uses hard competition between cortical
units, the elastic net uses soft competition. This means that in the elastic net, all cortical units are updated in
proportion to how strongly they respond to each input pattern, rather than in the Kohonen algorithm where just
the most strongly responding are updated. Secondly, the elastic net algorithm operates in batch mode: all input
points are considered simultaneously for updating cortical cells, rather than presenting them one at a time as in
Kohonen’s algorithm. The biologically appealing interpretation that input points are being seen one at a time
and that the cortex is responding to each in turn is now lost; however this modification makes little difference
from a mathematical perspective, and allows a useful statistical interpretation as described below.
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Refer to the positions of points in the input (feature) space as xi, and the positions of the weight vectors of
cortical cells in the input space as yj . The change in the position ∆yj of each cortical unit at each time step is
given by

∆yj = α
∑

i

wij(xi − yj) + βk
∑

j′∈N (j)

(yj′ − yj). (6)

The first term is a matching term that represents the “pull” of feature points for cortical units, which is traded
off with ratio α/βk against a regularisation term representing a “tension” in the cortical sheet, i.e., a desire for
neighbouring cortical cells to represent neighbouring points in the feature space (short-range excitation between
cortical cells). The sum over all input points i indicates that the algorithm operates in batch mode. N (j) refers
to the set of cells in the cortical sheet that are neighbouring to j. The wij ’s (rather confusingly termed “weights”
by Durbin and Willshaw [31]) say how much cortical cell j is activated by input i as a function of the difference
between xi and yj :

wij =
Φ(‖xi − yj‖ , k)

∑

p Φ(‖xi − yp‖ , k)
(7)

where

Φ(‖xi − yj‖ , k) = exp

(

−‖xi − yj‖2

2k2

)

. (8)

The sum over all cortical cells in the denominator of equation 7 is a normalisation term that says that each input
produces the same overall amount of activity in the cortical sheet: the wij ’s give the distribution of that activity.
k is a scale parameter that determines the spread of this overall activity: if k is large then many cortical cells are
roughly equally activated by an input, whereas if k is small then only those cortical cells whose weight vectors
are closest to the input vector are significantly updated. Over the course of a simulation, the scale parameter
k is gradually reduced, so that the matching term comes to dominate the regularisation term. Equation (6)
implements Hebbian learning in the sense that the degree to which a cortical cell is updated by a particular input
depends on the degree of similarity between the input pattern and the weight vector of that cortical cell, i.e., the
extent to which the activity of a cortical cell is correlated with that pattern of input activity.

Equation (6) can be integrated to produce an energy function E which is such that ∆yj = −k ∂E
∂yj

:

E = −αk
∑

i

log
∑

j

Φ(‖xi − yj‖ , k) +
β

2

∑

j

‖yj+1 − yj‖2
. (9)

As explained in section 4.1.1, this function realises the competition between coverage uniformity and continuity.
The first term (coverage uniformity) simply tries to produce a one-to-one match between input features and
cortical cells. The second term (continuity) says that only the similarity between neighbouring cortical cells is
considered, and that dissimilarity in the input space is given by squared distance (the distances are squared for
computational convenience). Carefully chosen versions can be interpreted as corresponding to particular patterns
of lateral connections in the cortex [39]. This rather abstract version of Hebbian learning has the advantage of an
elegant statistical interpretation [50]. Consider each unit on the elastic sheet as a Gaussian generator of data in
the feature space. Each Gaussian has the same variance, determined by k. At each value of k, the optimisation
of the first term in the energy function corresponds to finding the positions of points on the sheet where they
are most likely to have generated the data: a maximum likelihood model. The second term acts as a prior
on the model that favours solutions with short distances between Gaussian centres: alternative forms for this
term therefore correspond to different priors. The algorithm implements a form of graduated non-convexity or
deterministic annealing [51]. At large values of k the energy function has a unique minimum. As k is reduced, the
energy function bifurcates to produce several local minima, and the algorithm tracks one of these. This process
continues as k is further reduced. In common with all heuristic optimisation methods, the algorithm is not
guaranteed to find the global minimum. Durbin et al. [50] analyzed the application of this algorithm to the TSP,
where cortical units form a one dimensional loop of points on the tour and feature points are cities in a plane. By
calculating the first and second derivatives of the energy function with respect to the positions of cortical points,
they showed that the centre of gravity of the feature points (i.e., the configuration where all cortical receptive
fields are coincident at this point) is always an extremum of the energy function. They calculated the value of k
for which the centre ceases to be a stable minimum, i.e., the energy function bifurcates, to be k ≈

√
λ, where λ

is the principal eigenvalue of the covariance matrix of the feature points. At this stage the cortical cells form a
line (or sheet) along the principal axis of the covariance matrix of the feature points. By varying the structure of
the covariance matrix of the feature points, it is therefore possible to vary the order in which different maps (e.g.
orientation, ocular dominance) develop. We return to this issue later.
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Figure 1: Stages of development of the elastic net for the one-dimensional ocular dominance problem [32]. Each
retina is represented by a row of points in a feature space where distances are taken to represent correlations. The
mapping to the cortex is represented by an elastic rope, where points on the rope represent cells in the cortex. The
position of each cortical cell in this abstract space is updated iteratively so as to simultaneously match cortical
cells to retinal locations and keep the distance between neighbouring cortical cells as small as possible (i.e.,
maximise the degree to which neighbouring cortical cells receive highly correlated inputs). A. Cortical cells are
initially positioned randomly in the feature space, except for a crude initial topographic bias. B. As development
proceeds, the cortical mapping assumes an ordered topography. Cortical cells lie roughly equidistant between
the two retinae, signifying a completely binocular mapping. C. Eventually cortical cells become committed to
particular retinal locations, and a periodic pattern emerges (at this stage cortical points lie on top of retinal
points: for clarity in the picture their positions have been slightly offset vertically). D. Moving the two rows of
retinal points further apart (increasing l in the terminology of the diagram) causes wider columns to be formed.
For a striped solution it is straightforward to calculate that the optimal width is n = 2l/d. For simplicity, the
same number of cortical cells as retinal points have been drawn.

Ocular dominance The behaviour of the elastic net for the ocular dominance column mapping in one dimension
is shown in figure 1 and equivalent results in two dimensions are illustrated in figure 2 [32, 52]. In both figures,
it can be seen that column periodicity depends on the degree of correlation between the eyes. This can be
understood theoretically as follows. The elastic net tries to find a mapping that maximises the degree to which
neighbouring cells in the cortex receive inputs that are highly correlated. In the abstract representation shown
in figure 1, this is equivalent to minimising the length of the path that joins all input points (in fact, for reasons
of computational efficiency, the elastic net minimises the sum of squares of distances). Refer to the distance (in
correlation space) between neighbouring points in the same eye as d, and the distance between corresponding
points in the two eyes as l (see figure 1d). It is easy to show that the optimal width n of a striped solution2

is n = 2l/d [32, 52]. As l increases the correlation between the two eyes decreases [54], and the stripe width
increases. An experimental prediction following from this result is that kittens raised with divergent strabismus
should have wider ocular dominance columns than normal kittens [52, 55]. Evidence in favour of this prediction
was found by Löwel [28] (for further discussion see Goodhill and Löwel [56]), though this is controversial [29].
The effect of reduced activity in one eye [23, 24] can be modelled with the elastic net by reducing the effective

2For l > d, the solution that traverses the complete length of the left eye followed by the complete length of the right eye is in
fact more optimal than any striped solution. In this case n = 2l/d is a local rather than a global minimum. However, in practice the
elastic net always finds a striped solution, since the dynamics of the algorithm always establish initial topography with the two ends
of the cortex at opposite ends of the two retinae for sufficiently large values of the annealing parameter. Biologically, a biased initial
topography is established by activity-independent molecular cues: see e.g. Goodhill and Richards [53].
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A B C D

Figure 2: Ocular dominance maps produced by the elastic net in two dimensions. Cortical points are coloured
white or black depending on the eye to which they are committed. The two retinal sheets were hexagonal grids
with a circular boundary, and the cortical sheet was a hexagonal grid with an elliptical boundary. A. Normal
development. B. Strabismic development (reduced correlation between the eyes). C, D. Effects of monocular
deprivation. C. Activity in the deprived eye reduced by 25%. D. Activity in the deprived eye reduced by 50%.
The same initial conditions were used in each case.

pull that points in one eye exert on cortical cells relative to points in the other eye [57]. This corresponds to
reducing the parameter α. Illustrative results are shown in figure 2c,d.

In the macaque, besides local structure ocular dominance stripes are also characterised by an overall orientation
that varies with position in V1: ocular dominance stripes are less parallel in the foveal region, tend to be orthogonal
to the borders of the neighbouring visual cortical area and decrease in width from the fovea to the periphery.
Goodhill et al. [58] attempted to model this global structure using the elastic net. They identified three factors with
an influence on the global structure of cortical maps and implemented them with the elastic net as summarised:

Factor Reason proposed Elastic net implementation Elastic net result

Spatially nonuniform cor-
relational structure of ac-
tivity in the retina

The increase in retinal gan-
glion cell density proceed-
ing from peripheral to central
retina

Foveal region of increased den-
sity of retinal points (smaller
spacing), representing stronger
correlations between neigh-
bouring retinal ganglion cells
in the fovea

Columns are wider
and more disordered
in the cortical repre-
sentation of the fovea

Spatially anisotropic corre-
lational structure of activ-
ity in the retina

The asymmetric way in which
the retina develops.

By squashing the two retinal
sheets (in the training set)
so that the spacing between
points is less in one direction
than the other

Columns tend to line
up orthogonal to the
direction of stronger
correlations

Elongated cortical shape Circular retina and elliptical
cortex

Columns line up par-
allel to the short axis
of the cortical sheet.

They thus concluded that (a) the widening of the columns in the foveal region results from stronger correlations
(decreased spacing of retinal points); and (b) the increased disorder in the foveal representation results from two
competing effects: an elliptical cortex that causes column alignment parallel to the short axis and anisotropic
input correlations that cause column alignment parallel to the long axis. This model predicts that in a strongly
anisotropic visual environment (e.g. kittens raised with cylindrical lenses), columns should tend to line up parallel
to the direction of the weaker correlations.
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Figure 3: One possible type of mapping between a cylindrical feature space representing orientation and one
spatial dimension, and a one-dimensional elastic net (solid circles: feature points; dashed line: elastic net; solid
lines to aid visualisation). Here the net forms isoorientation domains of smoothly varying orientation, each of
which traverses n units in the spatial dimension.

Orientation The elastic net was first applied to the formation of orientation maps by Durbin and Mitchison
[30]. A standard trick in these types of models to capture the intrinsic periodicity of the orientation dimension is
to wrap it around into a cylinder, so that orientation is now represented by a circular manifold in two dimensions
rather than as just a line in one dimension. An equivalent periodicity analysis to that described earlier for ocular
dominance can be performed, to yield an expected periodicity of orientation columns of 2πr/d (see figure 3)
which is in good agreement with simulation results [59]. A quantitative comparison of several different models of
column formation [35] found that the elastic net and Kohonen algorithms actually produced the best match to
real orientation and joint orientation/ocular dominance maps.

Two aspects of the elastic net applied to the joint formation of ocular dominance and orientation columns were
examined by Goodhill and Cimponeriu [59]: which model parameters control the order of development of the two
sets of columns, and how this ordering affects the final patterns of columns produced. Applying the bifurcation
analysis of Durbin et al. [50] discussed earlier, Goodhill and Cimponeriu [59] derived expressions for the critical
values of k for expansion along each of the visual space, orientation and ocular dominance dimensions in terms of
the parameters d, l and r of the feature space (see also [60, 61]). Combining these expressions with those quoted
earlier for the expected ocular dominance and orientation periodicities, it is possible to relate the ratio of critical
k values to the ratio of final periodicities without any reference to the parameters d, l and r. Approximately, if
the orientation wavelength is greater than the ocular dominance wavelength then orientation columns developed
first, otherwise ocular dominance columns developed first. The model then predicts that in normal macaque
monkeys ocular dominance develops first, in normal cats orientation develops first, but in strabismic cats ocular
dominance develops first. Whether this is true has not yet been experimentally determined.

An intriguing property of a particular version of the elastic net was discovered by Wolf and Geisel [62].
They carried out a symmetry-based theoretical analysis of the dynamics of pinwheels during visual development,
assuming only a very general class of activity-dependent learning rules. They showed that these symmetry
properties together with some general assumptions of Gaussian statistics and homogeneous correlations imply
that, if starting from a random unselective initial state, a minimal expected spatial density of pinwheels ρ emerges
when orientation selectivity is first established: ρ ≥ π

Λ2 , where Λ is the typical spacing of the orientation stripes.
Therefore, if pinwheels are found in adult animals at a density ρ < π

Λ2 , then there must have been motion
and annihilation of pinwheel pairs of opposite sign (as is also observed in the physics of defects). This result
is robust to variations in the particular details of the developmental rule employed, and depends only on its
intrinsic symmetries. The elastic net falls within this general class and displays this tendency for pinwheels to
move and annihilate during development, if it is run in the non-annealed regime. In this version, k is kept fixed
during a simulation at a value below all relevant critical values, so that expansion occurs along all dimensions
simultaneously. Pinwheel annihilation leads to growing regions of stripe-like isoorientation domains which locally
resemble a plane wave. Using different sets of stimuli tuned to attain a variable degree of ocular dominance,
the presence of ocular dominance columns slows down or even stops pinwheel annihilation, in proportion to the
degree of ocular dominance segregation; thus, pronounced ocular dominance is associated to high scaled density
of pinwheels. As yet no theoretical justification has been given for this. In the annealed version the orientation
map eventually stabilises; whether annihilation occurs to any significant extent depends on how slow the rate of
annealing is.
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6 Discussion

As we have seen above, the elastic net (and related models such as the self-organising map) can accurately re-
produce a large amount of the observed phenomenology of ocular dominance and orientation maps. In addition,
these models make several interesting and often surprising predictions about the outcomes of certain experi-
ments. These include predictions of an increase in overall ocular dominance column periodicity with strabismus,
a difference in the order of development between normal and strabismic cats, and pinwheel annihilation during
development. While these claims are experimentally somewhat controversial, the generation of such clear and
testable predictions has helped ferment an active and productive dialog between theoretical and experimental
researchers. However, it is also appropriate to focus on some issues raised by recent data that these models do
not account for.

6.1 Retinotopy distortions

The retinotopic map of V1, given by the receptive field centres in visual space of every cortical neuron, is roughly
uniform and has received far less attention than the ocular dominance and orientation maps. However, it contains
both local and global distortions. Global distortions result from the fact that the magnification factor and receptive
field size change monotonically from the fovea to the periphery. The retinotopic map has been approximately
described by a complex logarithm [63]. It is not hard to produce global distortions with the elastic net and
self-organising map, simply by systematically changing the density of feature points across the input space (e.g.
[64]). More troubling are the local distortions, different from the scatter3 of receptive fields, which result from
discontinuities of the retinotopic map and are matched with the discontinuities (or pinwheels) of the orientation
map [3]. That is, along a tangential penetration the receptive field centre varies relatively smoothly from neuron to
neuron and neighbouring receptive fields overlap considerably; but receptive fields of cells lying on opposite sides
of a pinwheel do not overlap. Das and Gilbert [3] also found that the rates of variation of receptive field centre
(normalised by receptive field size) and of orientation preference were positively correlated. These two findings
pose problems, so far unsolved, for cortical development models. On the one hand, some types of models, such as
correlational models [45], have relied so far on a perfect retinotopy and have not addressed topography distortions.
On the other hand, dimension reduction models, such as the elastic net and self-organising map, do not assume
a perfect retinotopy, but simulations result precisely in anticorrelations rather than positive correlations: when
one stimulus variable varies, the others tend to remain constant [30]. Why this is so is unknown: it is possible to
have a rich behaviour in the joint variation of stimulus variables (e.g. all variables varying at the same cortical
location) while still satisfying coverage and continuity. Thus, the likely reason must lie in the specific formulation
of the objective function or the training algorithm, that tends to single out solutions with anticorrelations. One
factor could be the discrete character of the elastic net and self-organising map, both being vector quantisation
methods, which limits the different gradient values that may arise in a local optimum.

The results obtained by Das and Gilbert [3] used a coarse sample, since neighbouring cells were recorded at
approximately intervals of 50 µm for tangential penetrations and of 400 µm for a two-dimensional grid. Ideally,
the correlations and discontinuities should be obtained from a two-dimensional sample on a wide area of the cortex
at a much finer cortical separation in order to obtain meaningful gradients as a function of the cortical location.
This would also show the distribution over cortex of the effects of discontinuity matching and positive correlation,
which may not be uniform in view of the global distortions mentioned above. Unfortunately such area-wide
measurements, that have advanced our knowledge of the orientation and ocular dominance maps considerably,
are not currently possible for the retinotopic map. Das and Gilbert [3] claim that their results are robust against
scatter because the latter is very small. However, the scatter could affect their results in a different way: while the
retinotopic map obtained from measurements of a collection of cells at roughly the same cortical depth is noisy
due to the inherent scatter of cell receptive fields, a more homogeneous map might be obtained as the aggregate
receptive field resulting from cells in the same column. However, our inability to make spatial and volumetric
measurements of this kind currently prevents experimental investigation of this issue.

6.2 Activity-independent mechanisms in column development

Earlier we briefly reviewed the large body of evidence for a role for neural activity (both visually evoked and
spontaneous) in visual cortical map formation and plasticity. However, in the past few years a number of pieces

3Quantitative estimates of this scatter vary, but recent results place its standard deviation between 0.1 and 0.5 times the receptive
field size (e.g. [3, 65]).
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of experimental data have appeared which challenge to varying extents the hypothesis that initial column devel-
opment is activity dependent. One reason for the rise of interest in activity-independent explanations for map
formation in the cortex is the dramatic increase in our understanding of activity-independent mechanisms of
axonal targetting. Since 1994 several large families of molecules, many previously unknown, have been identified
to play crucial roles in the development of neuronal connections. These include the netrins, semaphorins, slits and
ephrins (reviewed in [66, 67]). Molecules which may be particularly relevant to understanding map development
in visual cortex are the ephrins, signalling through receptors of the Eph family. Low anterior to high posterior
gradients of ephrins exist in the optic tectum and its mammalian homologue the superior colliculus, while low
nasal to high temporal gradients of Eph receptors exist in the retina ([68, 69]; reviewed in [53]). Extensive evi-
dence suggests that these gradients play a crucial role in guiding retinal ganglion cell axons to their targets (e.g.
[70, 71]; other data reviewed in [72]). However, although ephrins have also been found in the lateral geniculate
nucleus [73] and in somatosensory cortex [74], as yet there is no direct evidence that they play a role in guiding
axons to appropriate targets in primary visual cortex. In particular, in order to control column formation one
would expect to find ephrins in an initially patchy distribution in visual cortex, and this has not so far been
observed.

Ocular dominance maps To re-examine the issue of whether the retinae or retinal activity are required for
the establishment of ocular dominance columns, Crowley and Katz [75] enucleated ferrets4 very early in life
and let them develop. To visualise patterns of lateral geniculate nucleus (LGN) axons in maturity to determine
whether ocular dominance segregation occurs they used anterograde LGN injections (i.e., injection of a tracer into
eye-specific cells in the LGN) and retrograde cortical injections. They found that, with or without information
derived from the retina, geniculocortical axons organised into discrete ocular dominance stripes. Crowley and
Katz [76] further found that columns are not present at birth but appear as early as 16 days later (equivalent to a
week before birth in cats). Therefore, Crowley and Katz [75] removed the eyes before columns form. In addition,
when they removed just one eye at an age when LGN axons have innervated the cortex but before columns have
formed, normal-looking ocular dominance columns still resulted (with the same periodicity: neither shrunk nor
expanded). These results suggest that the establishment of ocular dominance columns and the plasticity of ocular
dominance columns are two temporally different phases of visual cortex development.

Orientation maps Using optical imaging of intrinsic signals and single-unit microelectrode penetrations in
both eyes at P15 (postnatal day 15) or younger, Crair et al. [77] found that the orientation map forms before
P14 in both normal and binocularly deprived (BD; by bilateral lid suture) cats. The similarity between the
orientation maps of each eye for normal and BD cats varied with age. From P0 to around P21: the similarity
increases monotonically in the same way for both normal and BD cats. From around P21: maps remain identical
for normal cats, but progressively dissimilar for BD cats. They thus concluded that patterned visual experience
is required for the maintenance of orientation selectivity rather than for the initial development of the orientation
map and the deterioration of maps coincides with the critical period. Orientation columns emerge independently
of patterned visual experience during the second postnatal week and patches of ipsilateral eye responses appear
early in the third week. Experience then makes responses to become stronger, more selective and nearly equal for
both eyes by the beginning of the fourth week; with continued BD, ipsilateral eye responses never become very
strong or selective.

In another experiment, Gödecke and Bonhoeffer [78] investigated the influence of activity on the fact that
orientation maps are precisely matched for both eyes (at least for binocularly-driven neurons)—which is essential
for disparity detection and so for stereoscopic vision. They raised kittens with reverse suturing, so that both eyes
were never able to see at the same time. They found that the orientation maps in area 18 for both eyes were
identical, as in normal kittens (except for minor differences such as a slight shift of some pinwheels that they
imputed to technical limitations). They argued that this effect cannot be due to spontaneous retinal activity,
since this would have to be synchronised between both eyes. They thus deduced that correlated visual input is
not required for the alignment of orientation maps.

However, Wolf et al. [79] showed that it is possible to replicate the results of Gödecke and Bonhoeffer [78] in
simulations with self-organising maps by using a cortex with a specific shape: a narrow, elongated cortex results
in matched orientation maps while a square cortex results in unmatched orientation maps. Wolf et al. [79] explain
this in terms of symmetry-breaking and pattern formation in physical systems, where the qualitative behaviour
depends generally on the ratio between system size and characteristic wavelength of the emerging structure.

4Ferrets are ideal for experiments for two reasons: they have robust ocular dominance columns and well-defined critical periods
(like cats); and their nervous systems at birth are not yet developed (e.g. 3 weeks less developed than those in cats, in which ocular
dominance columns form before birth). This allows the detection of earlier developmental events.
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In another experiment, Weliky and Katz [80] examined the effect of perturbed patterns of neural activity on
orientation maps in ferret V1. They implanted a stimulating cuff around the optic nerve from one eye (the other
eye was removed), and stimulated it for about 2 seconds every 20 seconds from around P16 to P42. While they
found effects on the receptive field structure of individual neurons, the overall structure of the orientation map
looked apparently normal. Although this could be interpreted as evidence that overall orientation map structure is
not activity dependent, it is important to note that the aberrant stimulation occurred for only a small proportion
of the total time (see Goodhill [81] for further discussion).

These studies and others suggest that the role of activity in columnar development is less determining than
originally thought. However, it is important to note that even though the eyes are deprived or removed, sponta-
neous activity is still likely to be present in both lateral geniculate nucleus and cortex. In the LGN spontaneous
activity emerges from multiple mechanisms, including endogenous network oscillations and feedback connections
[82]. Thus, the LGN does not simply relay patterns of retinal activity to the cortex, but rather this activity is
reshaped and transformed by corticothalamic interactions.

Models incorporating neuronal activity, molecular guidance cues and gene expression Models such
as the elastic net and the self-organising map have been very successful at accounting for much of the observed
phenomenology of visual cortical maps. Although they are conventionally thought of as implementing activity-
dependent learning rules, it is important to remember that the elastic net was originally derived from a mapping
model based entirely on activity-independent molecular mechanisms [49]. Nevertheless, it seems reasonable to
conclude that the early stages of cortical map formation are driven by a combination of molecular guidance
cues and gene expression in addition to neural activity, and that a different type of model explicitly including
all three factors may be necessary to account for map formation. One such kind of models are gene networks
[83]. A gene network is a cluster of genes in which (1) the expression of the genes in the cluster is affected
by specific stimuli, such as exposure to a hormone or neurotransmitter, and (2) the protein products of some
members of the cluster act as transcription factors that regulate, positively or negatively, the expression of other
members. The total array of genetic regulation in neurons and other cells is a gene network with a large number
(of the order of thousands) of interactions. Current models of gene networks describe the rates of change of the
concentrations of gene products (mRNAs and proteins) with ordinary differential equations, as a function of the
levels of transcription factors or other effector molecules and can incorporate stochastic fluctuations in molecule
numbers. Logical networks, where the expression of each gene in the network is assumed to be either ON or OFF,
also have been proposed. These models give rise to a rich variety of qualitative nonlinear behaviours, including
multistability and oscillations. However, gene network models present some difficulties. Modelling differential
equations requires short time steps and so a high computational cost, which may make them impractical for
large gene networks or lengthy processes such as development of tissues or organisms. Models of specific gene
networks need to be based, insofar as possible, on values of biochemical parameters measured in vivo, which is
difficult. Hence, new methods for gathering detailed data are necessary. Finally, so far they mostly do not take
into account the spatial organisation of gene expression, which is essential to explain biological pattern formation
and in particular cortical map formation. Models for the Drosophila segmentation problem such as those of Sharp
and Reinitz [84] and von Dassow et al. [85] are a promising step in this direction.
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