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Conditional copulas are flexible statistical tools that couple joint conditional and marginal conditional distributions.
In a linear regression setting with more than one covariate and two dependent outcomes, we consider additive
models for studying the dependence between covariates and the copula parameter. We examine the computation
and model selection tools needed for Bayesian inference. The method is illustrated using simulations and a real
example. Copyright © 2014 John Wiley & Sons, Ltd.
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1 Introduction
Starting with the seminal paper of Sklar (1959), copulas have developed into an important tool used for qualitative
and quantitative evaluations of dependence in statistical models. If Y1, Y2, : : : , Yk are continuous random variables with
joint distribution function H and marginal distributions F1, F2, : : : , Fk, the unique copula C :[ 0, 1]k![ 0, 1] “couples”
the joint and the marginal distributions via H.y1, : : : , yk/ D C¹F1.y1/, : : : Fk.yk/º, for all .y1, : : : , yk/ 2 Rk. Therefore, in
order to define H, we need to know the marginals Fi and the copula C. This can be convenient in situations in which
one has a good grasp on the marginal distributions.

As a natural extension, conditional copulas couple joint conditional and marginal conditional distributions (Lambert &
Vandenhende, 2002; Patton, 2006). Specifically, if X 2 Rp is a covariate vector, then

HX. y1, : : : , yk j X/ D C¹F1jX. y1 j X/, : : : , FkjX. yk j X/ j Xº, for all . y1, : : : , yk/ 2 Rk. (1)

Conditional copulas models play an essential part in modelling high-dimensional data. For instance, consider a random
vector Y D . Y1, : : : , Y4/ 2 R4. Using the decomposition used by Acar et al. (2012, equation (3), p. 75), we can show
that its four-dimensional continuous density f. y/ :D f. y1, y2, y3, y4/ can be decomposed as

f. y1, y2, y3, y4/ D f1. y1/f2. y2/f3. y3/f4. y4/

�c12¹F1. y1/, F2. y2/ºc23¹F2. y2/, F3. y3/ºc14¹F1. y1/, F4. y4/º

�c13j2¹F1j2. y1jy2/, F3j2. y3jy2/ºc24j1¹F2j1. y2jy1/, F4j1. y4jy1/º

�c43j12¹F4j12. y4 j y1, y2/, F3j12. y3 j y1, y2/º,

(2)

where, if A,B � ¹1, 2, 3, 4º are a set of indices, then we have used the following notations: fA and FA are, respectively,
the joint density and distribution functions of ¹Yj : j 2 Aº; fAjB and FAjB are the conditional density and distribution
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functions of ¹Yj : j 2 Aº given ¹Yh : h 2 Bº; cA and cAjB denote, respectively, the copula density for ¹Yj : j 2 Aº and
the conditional copula density of ¹Yj : j 2 Aº given ¹Yh : h 2 Bº. Not surprisingly, increasing the dimension of Y will
result in a decomposition like (2) where copula densities are conditioned on more than two random variables. Acar et
al. (2012) have shown that when replacing the conditional copulas with unconditional ones in (2), we are likely to
incur inferential losses in terms of both bias and efficiency.

The conditional copula can also be a useful modelling tool in regression settings in which we observe outcomes
Y1, : : : , Yk along with covariate vector X 2 Rp, and of interest is not only the effect of the covariate on each response
but also the effect of X on the dependence structure between the responses. Throughout the paper, we consider
parametric copula families in which the function C assumes a parametric form indexed by a copula parameter � . In
many applications one can reasonably assume that � will vary with X. However, it is generally difficult to guess the
functional relationship between � and the covariate vector X, so its estimation requires flexible models that can capture
a wide variety of patterns. This naturally leads to the use of semiparametric (Acar et al., 2011; Craiu & Sabeti, 2012)
and non-parametric inferential tools (Omelka et al., 2009; Veraverbeke et al., 2011; Abegaz et al., 2012). However,
as the dimension p of the covariate vector X increases, the volume of data required to keep the error within reasonable
bounds increases very quickly (Abegaz et al., 2012). The generic motivational examples discussed earlier prompt
our search for practical inferential procedures for conditional copula models when p > 1. The paper is developed for
situations in which the parameter � is a scalar and there are two (i.e. k D 2) continuous outcomes of interest, Y1 and
Y2, that are marginally linked to the vector of covariates via linear regression models.

We propose here the use of additive models for studying the functional dependence between the covariate vector and
the copula parameter. In this paper, we will improve on the statistical ingredients developed by Craiu & Sabeti (2012)
in two directions. Most importantly, we will examine the performance of their Bayesian cubic spline estimator within
an additive model framework. Secondly, we investigate the performance of the cross-validated marginal likelihood
(CVML) criterion that adapts the seminal concept of cross-validation for marginal likelihood considered by Geisser &
Eddy (1979) to the conditional copula setting.

In the next section, we introduce the statistical model and describe the computational algorithms needed for inference
and the calculation of the CVML criterion. We will also introduce the additive model and the CVML criterion. Simula-
tions and a real data analysis are discussed in Sections 3 and 4, respectively. The paper closes with a discussion of
future research directions.

2 The model
In a regression setting, we consider the continuous bivariate outcome Y1 and Y2 along with covariate X 2 Rp.
Marginally, each response Yi, i D 1, 2, is modelled using a normal regression model. For a sample of size n,
¹.Y1j, Y2j, Xj/ : 1 � j � nº, where Xj D .Xj1, : : : , Xjp/

T, we denote ˇi D .ˇi1, : : : ,ˇip/
T and assume that marginally

Yij � N.XT
j ˇi, �2i /, 81 � i � 2, 1 � j � n, (3)

leading to the conditional density of .Y1j, Y2j/ given Xj

f.Y1j, Y2j j Xj/ D

2Y
iD1

1

�i
�

 
Yij � XT

j ˇi

�i

!
� (4)

� c.1,1/

´
ˆ

 
Y1j � XT

j ˇ1

�1

!
,ˆ

 
Y2j � XT

j ˇ2

�2

! ˇ̌̌
ˇ �.Xj/

μ
, 81 � j � n, (5)
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where c.a,b/.u, v j �/ D @aCbC.u, v j �/=@ua@vb, for all 0 � a, b � 1.

An important part of the model is the specification of �.X/. Many copula families have their parameter � restricted to a
subset of R. We consider here a user-specified link function g that maps the support of the copula parameter onto the
real line and set g.�/ D �.X/, where � : Rp ! R is the unknown calibration function we want to estimate. Given the
one-to-one correspondence between the copula parameter �.X/ and the conditional Kendall’s tau �.X/ D 4E¹H.Y1, Y2 j
X/ j Xº � 1, one can choose to parametrize the model on the � or � scale. In this paper, inference is performed directly
on the copula parameter calibration function for computational convenience. However, when goodness-of-fit measures
are reported across different copula families, one must use the � scale, which is parametrization invariant (see also
discussion in Acar et al., 2011).

We adopt an additive model (Hastie & Tibshirani, 1990) for �.X/

�.X/ D ˛0 C
pX

hD1

�h.Xh/, (6)

where each �h : R! R is specified using the flexible cubic spline model suggested by Smith & Kohn (1996) in which

�h.Xh/ D

3X
jD1

˛
.h/
j Xj

h C

K.h/X
kD1

 
.h/
k .Xh � �

.h/
k /3C (7)

and aC D max.0, a/. It is well known that the performance of spline-based estimators is influenced by the location of
the knots � .h/k . In our model, this choice is automatic and data-driven.

A general remark is that in our implementations, we assume the covariates are independent. In order to test this
assumption when applying the method to real data, we have used tests based on the empirical copula process (Genest
& Remillard, 2004; Kojadinovic & Holmes, 2009) and based on correlation of distances (Székely et al., 2007).

The priors assigned to the parameters involved in the marginal models are as follows:

ˇi � N.0, �2i Ip/, 8i D 1, 2,
�2i � InvGam.0.1, 0.1/, 8i D 1, 2.

For the parameters involved in the cubic spline , we follow the prior specifications used by Craiu & Sabeti (2012). For
each covariate Xh, we select a fixed value for the maximum number of knots, K.h/max. The range spanned by the observed

values of covariate Xh is divided into K.h/max intervals of equal length, I.h/1 , : : : , I.h/
K.h/max

, and we assume that each interval

I.h/k contains at most one knot. In order to complete the model specification, we introduce additional parameters
¹�
.h/
k : 1 � k � K.h/maxº, where for all k 2 ¹1, : : : , K.h/maxº

�
.h/
k D

´
1 if there is a knot � .h/k 2 I.h/k ,
0 otherwise.

The model (7) becomes then

Copyright © 2014 John Wiley & Sons, Ltd 302 Stat 2014; 3: 300–312
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Figure 1. Five hundred realizations of �h.z/ drawn from the prior distribution. The simulation set-up is inspired by the real
data example from Section 5: in the left panel, Z is uniform on (28, 42), and in the right panel, Z has been standardized
using the transformation h.Z/ D .Z � 35/=7.

�h.Xh/ D

3X
jD1

˛
.h/
j Xj

h C

K.h/maxX
kD1

�
.h/
k  

.h/
k .Xh � �

.h/
k /3C, (8)

and one can see that the number of non-zero terms in the sum depends on the values of �.h/1 , : : : , �.h/
K.h/max

. For each �h,

we construct a hierarchical prior for ¹�.h/1 , : : : , �K.h/max
º. Specifically, if we let j�.h/j D

PK.h/max
kD1 �

.h/
k be the number of knots

that are used in the model for �i, then

p.j�.h/j j 	.h// /
	.h/
j�.h/j

j�.h/j!
1
¹j�.h/j�K.h/maxº

, (9)

that is, j�.h/j follows the right truncated Poisson distribution with parameter 	.h/ and maximum value K.h/max. In addition,

p.�.h/
ˇ̌
j�.h/j/ D

 
K.h/max

j�.h/j

!�1
,

p.�.h/j	.h// D p.�.h/
ˇ̌
j�.h/j/p.j�.h/j

ˇ̌
	.h//.

The form of p.�.h/ j j�.h/j/ implies that, given a number of knots for the model, all configurations of intervals containing
a knot are equally likely. The priors for all the parameters involved in the spline model for �h are chosen regardless of
the type of outcome as

	.h/ � Bin.K.h/max, p D 0.5/,

˛0 � N .0, 10/,
˛
.h/
j � N .0, 10/, 81 � j � 3,

(10)
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.h/
k � N .0, 10/, 81 � k � K.h/max,

�
.h/
k � Unif[ I.h/k ] , 81 � k � K.h/max.

(11)

Without additional information on the shape of �h, we would like to be as vague as possible a priori. Note that the prior
distributions given in equations (9) and (11) induce a prior distribution on the set of all possible maps �h : R ! R.
This prior is too complex to characterize analytically, but easy to sample from. Specifically, given a response index h,
each sample of spline parameters ¹�.h/k , � .h/k , .h/k : 1 � k � K.h/maxº, ¹˛

.h/
j : 1 � j � 3º and ˛0 from (9) and (11) will

produce, when plugged into equation (8), a curve �h. If the priors used are indeed not too informative about the shape
of �h, then we do not expect to see emerging any particular patterns. Our simulations show that the prior is not too
sensitive to changes in the values used in (9) and (11) but is sensitive to the covariate’s range. In Figure 1, we show
500 maps �h.z/ on Kendall’s tau scale where it is easier to see emerging patterns because the range is bounded. The
left panel illustrates the case where the covariate is uniform on the interval .28, 42/ (the range was chosen to match
the data example in Section 4), and the curves in the right panel are obtained after standardizing the covariate so
that the values are in the interval .�1, 1/. One can see that when the covariate has a wider range, we tend to favour
heavily, a priori, extreme dependence patterns with Kendall’s tau close to 1 or �1. Such trends are undesirable as
they can potentially bias the inference. However, after standardizing the covariate, the prior bias seems to vanish. For
this reason, we recommend standardizing all covariates used in the conditional copula model.

2.1. The computational algorithm
If ! is the vector of all the parameters involved in the model and D denotes all the observed data, the posterior
distribution, 
.! j D/, cannot be studied analytically because of its complicated form. Instead, we construct a Markov
chain Monte Carlo (MCMC) algorithm to sample from 
.!jD/. The form of the sampling algorithm follows the generic
design of the Gibbs sampler (Gelfand, 2000) in which every component !j is updated by sampling from its conditional
distribution 
.!j j !n!j,D/. Some of the components of the chain cannot be sampled directly from the conditional
distribution, so a Metropolis–Hastings update is needed (for details on using Metropolis–Hastings updates within the
Gibbs sampler, see, for instance, Craiu & Rosenthal, 2014). The strategies used to update each parameter at step
tC 1 (the values at step t are marked using supra index .t/) are described in the following.

ˇ’s: Let X 2 Rn�p be the matrix whose rows are XT
j , 1� j�n, and Y1, Y2 the vector of responses, YiD¹Yij : 1� j� nº.

If we had not considered the dependence between the outcomes, then the posterior conditional distribution of
ˇ1,ˇ2 would have been

Q
i

�
ˇijD, � .t/i

�
D Q


�
ˇijX, Yi, �

.t/
i

�
D n.ˇi;�i,˙i/, i D 1, 2, (12)

where n.x; a, b/ is the density of a normal with mean vector a and variance matrix b, and

�i D
�
IC XTX

��1
XTYi,

˙i D
�
�
.t/
i

�2 �
IC XTXi

��1
, i D 1, 2.

(13)

The update of each ˇi involves a mixture of transition kernels. With probability 	 D 0.8, we update using an indepen-
dent Metropolis (IM) transition kernel in which the proposal distribution is Q
i.ˇi j D, � .t/i /, and with probability 1�	 D
0.2, we update using a random-walk Metropolis (RWM) with a Gaussian proposal with mean at the current value of ˇi

and variance chosen so that the acceptance rate is between 20% and 30%.
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� ’s: Once again, without the copula component of the likelihood, the posterior conditional distribution of �i given
the data and ˇ1,ˇ2 available in closed form is

Q

�
�ijD,ˇ.tC1/i

�
D Q


�
� jX, Yi,ˇ

.tC1/
i

�
D

D IG

 
0.1C pCn

2
, 0.1C

�
ˇ
.tC1/
i

�T
ˇ
.tC1/
i C

�
Yi�Xˇ .tC1/i

�T�
Yi�Xˇ .tC1/i

�
2

!
, i D 1, 2.

(14)

The updates are made according to an IM kernel in which the proposal density is Q
.� j X, Yi,ˇ
.tC1/
i / for each

i D 1, 2. The updating steps for ˇ and � lead to faster mixing compared with the sampling algorithm defined in
Craiu & Sabeti (2012) where only RWM updates were used, because the IM transition kernel has a good
acceptance rate (�30%) and allows the chain to jump around the target space, which leads to a decrease in
the autocorrelation.
In the absence of additional information regarding which covariates are more likely to induce changes in �, we
use the same Kmax D K.h/max value for each h D 1, 2, : : : , p.

˛’s: Because there is no range restriction for each ˛.h/k and no direct sampling strategy is possible, we use the RWM
within Gibbs with proposal variance tuned so that the acceptance rates are between 20% and 50%.

�’s: The updates are performed using the Metropolis-within-Gibbs strategy for the entire latent variable vector
E�.h/ D .�

.h/
1 , : : : , �.h/Kmax

/. For updating E�.h/, we use two type of moves: we either add/delete a component (i.e.
transforming a zero component into a one or vice versa) or swap two components. In our applications, we choose
with probability half to add/delete a component chosen at random and otherwise to permute two components of
E� that are selected at random. Each proposed move is accepted or rejected based on a Metropolis–Hastings rule.

 ’s: If �.h/k D 1, we use the RWM-within-Gibbs strategy to update  .h/k using proposals tuned so that the acceptance
rates are between 20% and 50%. If �.h/k D 0,  

.h/
k is updated using a random draw from its prior distribution

that is automatically accepted.

� ’s: If �.h/k D 1, we use an IM update for � .h/k using as proposal the prior distribution of � .h/k . If �.h/k D 0, then the
next state � .h/k is sampled from its prior and automatically accepted.

	: For 	, we use an IM update with proposal distribution equal to the prior, that is, Bin.0.5, Kmax/.

2.2. Pseudo-marginal likelihood model selection
The cross-validated pseudo-marginal likelihood (CVML) criterion of Geisser & Eddy (1979) is used to compare the
predictive power of various models considered. Denote by M such a generic model, characterized by regression
parameters ¹ˇi, �i : i D 1, 2º corresponding to a subset of covariates, X, and all the spline parameters involved
in modelling the calibration function �.X/. Denote the parameters in the model as !, the data are D, and for each
1 � j � n, D�j denotes the remaining data after we have removed the covariates and responses pertaining to the jth
item, .Y1j, Y2j, Xj/. A selection criterion based on the CVML will choose the model M that maximizes the sum

CVML.M/ D

nX
jD1

log p.Y1j, Y2jjD�j,M/. (15)
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One can see from (15) that the CVML criterion favours models that exhibit the best average predictive power. The
average is taken with respect to the parameters in the model, so (15) is a function of the model and the observed
data only. From a Bayesian standpoint, the computation of the criterion would be impractical if we were to proceed by
performing separately n data analyses, one for each sample of size n�1. However, the following derivation can be used
to compute CVML.M/ from a single Bayesian analysis of the whole data (see also Hanson et al., 2011). We have

E[ p.Y1j, Y2jj!/
�1] D 1

p.DjM/

R p.Dj!,M/p.!jM/
p.Y1j,Y2jj!,M/

d! D 1
p.DjM/

R
p.D�jj!,M/p.!jM/ d!

D
p.D�jjM/

p.DjM/
D 1

p.Y1j,Y2jjD�j,M/
,

(16)

where the first expectation is taken with respect to the posterior distribution of all parameters in the model, 
.! j

D,M/ D p.Dj!,M/=p.D jM/. Based on (16), we deduce that a Monte Carlo estimator of (15) is

1CVML.M/ D

nX
jD1

� log

"
1

M

MX
mD1

p.Y1j, Y2jj!
.m/,M/�1

#
, (17)

where !.1/,!.2/, : : : ,!.M/ are draws from the posterior distribution 
.! j D,M/ obtained via the MCMC algorithm

described in the previous section.

3 Simulations
The simulation study provides information about the average errors incurred when implementing the proposed esti-
mation approach and illustrates the performance of the CVML criterion when it is used to select the copula family and
the influential covariates in model (6).

3.1. Simulation details
We have generated data using the Clayton copula using either a univariate or bivariate calibration function. Marginally,
the outcomes follow the distributions defined by the linear models specified in (3). All covariate values are indepen-
dently sampled from the Uniform[ 0, 1] distribution. For the dependence structure, we have considered two non-linear
calibration functions �S1 and �S2 defined as

�S1.x/ D log[ 4.5 � 1.5 sin.
x/]

and

�S2.x1, x2/ D log[ 4.5 � sin.x1/ � sin.x2/] .

Under scenario S1, we simulate data using only one covariate so the true calibration function is �S1, and under
scenario S2, we generate data using the calibration �S2. Marginally, under S1 and S2, each response variable is linked
to, respectively, one or two covariates via a linear model with Gaussian errors, as specified in (3).

Each analysis has been replicated 50 times for samples of size n D 450. We kept Kmax D 4 fixed throughout the
simulation study. The MCMC sampler was run for 10,000 iterations, and the first 3,000 samples were discarded as
burn-in. The simulation parameters used in the MCMC samplers were selected to produce acceptance probabilities in

Copyright © 2014 John Wiley & Sons, Ltd 306 Stat 2014; 3: 300–312
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the range 20–40%. The copula model data were generated using the copula library within R. The main steps of the
MCMC sampler were implemented in C++ with the results processed in R.

3.2. Estimation of the calibration function
In this section, we present plots and measures of the goodness of fit for the proposed estimating procedure. We focus
on scenario S2, which is more challenging to fit

To provide a graphical illustration of the fit, in Table I, we show one-dimensional slices in the true surface (black line),
the estimated surface (red line) and the two surfaces delimitating the 95% credible region (green lines). The slices are
obtained when one of the two covariates is fixed at values in the set ¹�0.75,�0.25, 0.25, 0.75º. We observe that the
credible bands grow wider near the boundaries of the covariate range and the bias gets also bigger when the covariate
is closer to 1 or �1.

Table II contains the trace plots, the autocorrelation plots (up to lag 200) and the histograms of the posterior samples
for �.�0.25, 0.75/, �.0.75,�0.25/ and �.0.75, 0.75/. In general, the autocorrelation function plots and the trace plots
look similar across different parameter values. In the histograms, the red line shows the true value of the calibration
function. We observe that the samples for �.0.75, 0.75/ are further from the true value when compared with the
samples for �.0.75,�0.25/. This is consistent with our previous observation concerning the fit when covariate values
are close to the boundary.

We also look at the model estimates for the normal regression parameters. Table III shows the trace plots, the
autocorrelation plots and the histograms obtained from posterior samples corresponding to the linear regression model
for the first outcomes ˇ11 and ˇ12, and the residual standard deviation �1. The parameters used in the second
regression model yield similar plots.

The red line in the histograms represents the true value of the parameter. Although the autocorrelation function seems
to be high for these estimates, the histograms suggest that the samples provide good estimates of the marginal model
parameters.

Table I. One-dimensional projections of the true calibration surface (black), the estimated surface (red) and
credible bands (green) produced under scenario S2.
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Table II. Trace (top row), autocorrelation function (middle row) and histogram (bottom row) plots for the calibration
parameters �.�0.25, 0.75/, �.0.75,�0.25/ and �.0.75, 0.75/.

For a more global summary, we approximate numerically the integrated variance, squared bias and mean squared
error using a grid of 400 equidistant points in the covariate space. The values reported in Table IV are computed
when the copula family used is the true one. When comparing these measures across the two simulation scenarios,
we notice an increase in bias when the number of covariates is increased. This is not surprising because we fit a
significantly more complex model under scenario S2 than under S1, but the sample size is the same.

3.3. Copula selection
The performance of the CVML criterion for choosing the correct copula family is illustrated in Table V. Specifically,
we fit the generated data using Clayton, Frank and Gumbel copula families. In Table V, we report the percentage
of correct decisions computed from 50 independent replicates. It can be noticed that there is a small decrease in
accuracy for scenario S2 compared with S1, which is not surprising given that the former model is more complex than
the latter.
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Table III. Trace (top row), autocorrelation function (middle row) and histogram (bottom row) plots for the regression
coefficients, ˇ11 and ˇ12, of the first outcome, Y1, and the corresponding residual standard deviation, �1.

Table IV. Performance of the estimation procedure under scenarios S1 and S2.

Scenario Integrated squared bias Integrated variance Integrated mean squared error

S1 0.061 0.433 0.494
S2 0.132 0.515 0.647

3.4. Variable selection
We have also examined the performance of CVML in selecting the covariates to be included in the model. We focused
on data generated under scenario S2, and we fitted them using models with one, two or three covariates. All results
reported in this section are obtained under the correct Clayton copula family.
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Table V. Performance of cross-validated
marginal likelihood in selecting the correct
Clayton family over Frank or Gumbel family
under scenarios S1 and S2. The numbers in
the table represent the percentage of correct
decisions.

Scenario/Copula Frank (%) Gumbel (%)

S1 100 98
S2 96 94

Table VI. Comparison of the cross-validated marginal likelihood
(CVML) criterion values for models with one, two or three covari-
ates. Left panel: box plot of 50 independently replicated values of
the difference CVML.M2/ � CVML.M1/. Right panel: box plot of
50 independently replicated values of the difference CVML.M2/ �

CVML.M3/.

If we denote by Mi the model with the first i covariates included, then we see from the box plots shown in Table VI
that CVML always selects M2 over M1 or M3.The difference in CVML values is larger between M2 and M1 than
between M2 and M3, which is natural given the criterion’s connection to the model’s predictive power.

4 Application to the twin birth data
The additive model approach is applied to a subset of the matched multiple birth data set. The data containing all
twin births in the USA from 1995 to 2000 enable detailed investigation of twin gestations. We consider the twin live
births in which both babies survived their first year of life with mothers aged between 18 and 40 years. Of interest
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Table VII. Twin birth data: cross-validated marginal
likelihood (CVML) values for three copula families
under model M1 (bottom row) and M2 (top row).
The criterion suggests that the model M1 with the
Frank copula is most suitable for fitting the data.

Criterion Clayton Frank Gumbel

CVML.M2/ �10,213.4 �7683.7 �54,763.2
CVML.M1/ �7405.3 �5569.4 �49,947.9

is the dependence between the birth weights of twins (in grammes), denoted by BW1 and BW2, respectively. We
consider a random sample of 450 twin live births and investigate the effect of two covariates, gestational age (GA)
and maternal age (MA), on the dependence between BW1 and BW2.

We compare the model M1 in which the GA is the only covariate considered and model M2 in which GA and MA are
the included covariates. We also compare three analyses based on three parametric copula families: Clayton, Frank
and Gumbel. For each copula family, we compute the CVML criterion for the models with both covariates (GA and MA)
included. The results shown in the first row of Table VII suggest that the Frank copula is more suitable for analysing
the data.

Under the Frank copula, model M1 is preferred with a CVML value of �5569.4 compared with �7683.7 obtained
for M2. After deciding that M1 is preferred, we compare again the fit for M1 under each of the three copulas, and the
results are shown on the second row of Table VII. This finding is concordant with the single covariate analysis of Acar
et al. (2011).

5 Conclusions and future work
We propose Bayesian inference for the conditional copula model in a regression context with multiple covariates. We
implement spline approximation within the additive model framework and propose a model selection criterion that
selects the model with the best predictive power. The simulations show that the efficiency of the method decreases
as the dimension of the covariate vector increases, and we would like to explore theoretically the rate of the decay.
It is conceivable that when the number of covariates grows large, the approach proposed here may become too
computationally expensive, and simpler formulations of the calibration function and improvements of the MCMC
algorithm needed to sample the posterior distribution are worth investigating.
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