Short Proofs are Hard to Find

Ian Mertz

University of Toronto

Joint work w/ Toniann Pitassi, Hao Wei

ICALP, July 10, 2019
Proof propositional complexity

Proof propositional complexity

How long is the shortest P-proof of τ?
Proof propositional complexity

How long is the shortest P-proof of τ?

Can we find short P-proofs of τ?

Resolution

One of the simplest and most important proof systems
Resolution

One of the simplest and most important proof systems

- SAT solvers ([Davis-Putnam-Logemann-Loveland], [Pipatsrisawat-Darwiche])
- automated theorem proving
- model checking
- planning/inference
Resolution

Axioms:

\[\overline{a} \lor d \\
\overline{b} \\
a \lor b \lor c \\
a \lor \overline{c} \]

\[\phi = a \]

\[\overline{a} \]

\[b \]

\[\overline{b} \]

\[\overline{a} \lor b \]

\[b \lor \overline{d} \]

\[a \lor b \lor c \]

\[a \lor \overline{c} \]

size = 11

width = 3
Automatizability [Bonet-Pitassi-Raz]

A proof system \(\mathcal{P} \) is \(f \)-automatizable if there exists an algorithm \(A : \text{UNSAT} \rightarrow \mathcal{P} \) that takes as input \(\tau \) and returns a \(\mathcal{P} \)-refutation of \(\tau \) in time \(f(n, S_\mathcal{P}(\tau)) \), where \(S_\mathcal{P}(\tau) \) is the size of the shortest \(\mathcal{P} \)-refutation of \(\tau \).
Automatizability [Bonet-Pitassi-Raz]

A proof system \mathcal{P} is f-automatizable if there exists an algorithm $A : \text{UNSAT} \rightarrow \mathcal{P}$ that takes as input τ and returns a \mathcal{P}-refutation of τ in time $f(n, S_\mathcal{P}(\tau))$, where $S_\mathcal{P}(\tau)$ is the size of the shortest \mathcal{P}-refutation of τ.

Automatizability is connected to many problems in computer science...

- theorem proving and SAT solvers
- algorithms for PAC learning ([Kothari-Livni], [Alekhnovich-Braverman-Feldman-Klivans-Pitassi])
- algorithms for unsupervised learning ([Bhattiprolu-Guruswami-Lee])
- approximation algorithms (many works...
Known automatizability lower bounds

General results and results for strong systems

- approximating $S_{\mathcal{P}}(\tau)$ to within $2^{\log^{1-o(1)} n}$ is NP-hard for all "reasonable" \mathcal{P} ([Alekhnovich-Buss-Moran-Pitassi])
Known automatizability lower bounds

General results and results for strong systems

- approximating $S_P(\tau)$ to within $2^{\log^{1-o(1)} n}$ is NP-hard for all “reasonable” P ([Alekhnovich-Buss-Moran-Pitassi])
- lower bounds against different Frege systems under cryptographic assumptions
 ([Bonet-Domingo-Gavalda-Maciel-Pitassi],[BPR],[Krajíček-Pudlák])
Known automatizability lower bounds

Results for weak systems

- first lower bounds against automatizability for Res, TreeRes by [Alekhnovich-Razborov]
Known automatizability lower bounds

Results for weak systems

- first lower bounds against automatizability for Res, TreeRes by [Alekhnovich-Razborov]
- extended to Nullsatz, PC by [Galesi-Lauria]
Known automatizability lower bounds

Results for weak systems

- first lower bounds against automatizability for Res, TreeRes by [Alekhnovich-Razborov]
- extended to Nullsatz, PC by [Galesi-Lauria]

Rest of this talk: a new version of [AR] + [GL]

- simplified construction and proofs
- stronger lower bounds via ETH assumption
- results also hold for Res(r)
Our results

Theorem (Main Theorem)

Assuming ETH, \(\mathcal{P} \) is not \(n^{\tilde{o}(\log \log S_{\mathcal{P}}(\tau))} \)-automatizable for \(\mathcal{P} = \text{Res}, \text{TreeRes}, \text{Nullsatz}, \text{PC} \).
Our results

Theorem (Main Theorem)

Assuming ETH, \mathcal{P} is not $n^{\tilde{o}(\log \log S_{\mathcal{P}}(\tau))}$-automatizable for $\mathcal{P} = \text{Res}, \text{TreeRes}, \text{Nullsatz}, \text{PC}$.

Theorem (Main Theorem for Res(r))

Assuming ETH, Res(r) is not $n^{\tilde{o}(\log \log S_{\mathcal{P}}(\tau)/\exp(r^2))}$-automatizable for $r \leq \tilde{O}(\log \log \log n)$.
Our results

Theorem (Main Theorem)

Assuming ETH, \(\mathcal{P} \) is not \(n^{\tilde{\omega}(\log \log S_\mathcal{P}(\tau))} \)-automatizable for \(\mathcal{P} = \text{Res, TreeRes, Nullsatz, PC} \).

Theorem (Atserias-Muller’19)

Assuming \(\mathcal{P} \neq \text{NP} \), Res is not automatizable.
Assuming ETH, Res is not automatizable in subexponential time.
Our results

Theorem (Main Theorem)
Assuming ETH, \(\mathcal{P} \) is not \(n^{o(\log \log S_{\mathcal{P}}(\tau))} \)-automatizable for \(\mathcal{P} = \text{Res}, \text{TreeRes}, \text{Nullsatz}, \text{PC} \).

Theorem (Atserias-Muller’19)
Assuming \(P \neq \text{NP} \), \(\text{Res} \) is not automatizable.
Assuming ETH, \(\text{Res} \) is not automatizable in subexponential time.

Theorem (Bonet-Pitassi; Ben-Sasson-Wigderson)
TreeRes is \(n^{O(\log S_{\mathcal{P}}(\tau))} \)-automatizable.
Res is \(n^{O(\sqrt{n \log S_{\mathcal{P}}(\tau)})} \)-automatizable.
Getting an automatizability lower bound

Recipe:

1. Hard gap problem G
2. Turn an instance of G into a tautology τ such that
 - “yes” instances have small proofs
 - “no” instances have no small proofs
3. Run automatizing algorithm Aut on τ and see how long the output is
Gap hitting set

$S = \{S_1 \ldots S_n\}$ over $[n]$
Our results

Overview

Gap hitting set

- \(S = \{S_1 \ldots S_n\} \) over \([n]\)
- **hitting set**: \(H \subseteq [n] \) s.t. \(H \cap S_i \neq \emptyset \) for all \(i \in [n] \)

\(\gamma(S) \) is the size of the smallest gap hitting set: given \(S \),

distinguish whether \(\gamma(S) \leq k \) or \(\gamma(S) > k \)

Theorem (Chen-Lin)

Assuming ETH the gap hitting set problem cannot be solved in time \(n^{o(k)} \) for \(k = \tilde{O}(\log \log n) \)

Ian Mertz (U. of Toronto)

Short Proofs are Hard to Find

ICALP, July 10, 2019

Gap hitting set

- $S = \{S_1 \ldots S_n\}$ over $[n]$
- **hitting set:** $H \subseteq [n]$ s.t. $H \cap S_i \neq \emptyset$ for all $i \in [n]$
- $\gamma(S)$ is the size of the smallest H
- **Gap hitting set:** given S, distinguish whether $\gamma(S) \leq k$ or $\gamma(S) > k^2$

Theorem (Chen-Lin)

Assuming ETH the gap hitting set problem cannot be solved in time $n^{o(k)}$ for $k = \tilde{O}(\log \log n)$.
Our results

Overview

Gap hitting set

- \(S = \{S_1 \ldots S_n\} \) over \([n]\)
- **hitting set**: \(H \subseteq [n] \) s.t. \(H \cap S_i \neq \emptyset \) for all \(i \in [n] \)
- \(\gamma(S) \) is the size of the smallest \(H \)
- **Gap hitting set**: given \(S \), distinguish whether \(\gamma(S) \leq k \) or \(\gamma(S) > k^2 \)

Theorem (Chen-Lin)

Assuming ETH the gap hitting set problem cannot be solved in time \(n^{\omega(k)} \) for \(k = \tilde{O}(\log \log n) \)
From gap hitting set to automatizability

Theorem (Main Technical Lemma)

For $k = \tilde{O}(\log \log n)$, there exists a polytime algorithm mapping S to τ_S s.t.

- if $\gamma(S) \leq k$ then $S_{\mathcal{P}}(\tau_S) \leq n^{O(1)}$
- if $\gamma(S) > k^2$ then $S_{\mathcal{P}}(\tau_S) \geq n^{\Omega(k)}$

where $\mathcal{P} \in \{\text{TreeRes}, \text{Res}, \text{Nullsatz}, \text{PC}\}$.
Proof sketch of main theorem

Theorem (Main Theorem)

Assuming ETH, \mathcal{P} is not $n^{\tilde{O}(\log \log \mathcal{S}_\mathcal{P}(\tau))}$-automatizable.

Proof: Let Aut be the automatizing algorithm for \mathcal{P} running in time $f(n, S) = n^{\tilde{O}(\log \log S)}$, and let $k = \tilde{O}(\log \log n)$.
Proof sketch of main theorem

Theorem (Main Theorem)

Assuming ETH, \mathcal{P} is not $n^{\tilde{O}(\log \log S_{\mathcal{P}}(\tau))}$-automatizable.

Proof: Let Aut be the automatizing algorithm for \mathcal{P} running in time $f(n, S) = n^{\tilde{O}(\log \log S)}$, and let $k = \tilde{\Theta}(\log \log n)$.

\[S \xrightarrow{\text{Main Technical Lemma}} T \xrightarrow{\text{run Aut for } n^{\tilde{O}(k)} \text{ steps}} \text{check if Aut outputs a valid } P\text{-ref of } T \]
Proof sketch of main theorem

Theorem (Main Theorem)
Assuming ETH, \(P \) is not \(n^{\tilde{o}(\log \log S_{P}(\tau))} \)-automatizable.

Proof: Let \(Aut \) be the automatizing algorithm for \(P \) running in time
\[f(n, S) = n^{\tilde{o}(\log \log S)} \]
and let \(k = \tilde{\Theta}(\log \log n) \).

Theorem (Main Technical Lemma)
- If \(\gamma(S) \leq k \) then \(S_{P}(\tau) \leq n^{O(1)} \)
- If \(\gamma(S) > k^2 \) then \(S_{P}(\tau) \geq n^{\Omega(k)} \)
Proof sketch of main theorem

Theorem (Main Theorem)

Assuming ETH, \mathcal{P} is not $n^{\tilde{o}(\log \log S_{\mathcal{P}}(\tau))}$-automatizable.

Proof: Let Aut be the automatizing algorithm for \mathcal{P} running in time $f(n, S) = n^{\tilde{o}(\log \log n)} = n^{o(k)}$, and let $k = \tilde{\Theta}(\log \log n)$.

Theorem (Main Technical Lemma)

- if $\gamma(S) \leq k$ then $S_{\mathcal{P}}(\tau) \leq n^{O(1)}$
- if $\gamma(S) > k^2$ then $S_{\mathcal{P}}(\tau) \geq n^{\Omega(k)}$
Proof sketch of main theorem

Theorem (Main Theorem)

Assuming ETH, \mathcal{P} is not $n^{\tilde{o}(\log \log S_{\mathcal{P}}(\tau))}$-automatizable.

Proof: Let Aut be the automatizing algorithm for \mathcal{P} running in time $f(n, S) = n^{\tilde{o}(\log \log S)}$, and let $k = \tilde{\Theta}(\log \log n)$.

Theorem (Main Technical Lemma)

1. If $\gamma(S) \leq k$ then $S_{\mathcal{P}}(\tau) \leq n^{O(1)}$
2. If $\gamma(S) > k^2$ then $S_{\mathcal{P}}(\tau) \geq n^{\Omega(k)}$
Detour: universal sets

- $A_{m \times m}$ is (m, q)-universal if for all $I \subseteq [m]$, $|I| \leq q$, all $2^{|I|}$ possible column vectors appear in A restricted to the rows I.

![Diagram of a universal set matrix]
Detour: universal sets

- $A_{m \times m}$ is (m, q)-universal if for all $I \subseteq [m]$, $|I| \leq q$, all $2^{|I|}$ possible column vectors appear in A restricted to the rows I

- $A_{m \times m}$ is (m, q)-dual universal if for all $J \subseteq [m]$, $|J| \leq q$, all $2^{|J|}$ possible row vectors appear in A restricted to the columns J
Detour: universal sets

- $A_{m \times m}$ is (m, q)-universal if for all $I \subseteq [m], |I| \leq q$, all $2^{|I|}$ possible column vectors appear in A restricted to the rows I.
- $A_{m \times m}$ is (m, q)-dual universal if for all $J \subseteq [m], |J| \leq q$, all $2^{|J|}$ possible row vectors appear in A restricted to the columns J.
- constructions like the Paley graph work for $q = \frac{\log m}{4}$.
Defining τ_S

Variables of τ_S will implicitly define two matrices using A and S.
Defining τ_S

Variables of τ_S will implicitly define two matrices using A and S.
Defining τ_S

Variables of τ_S will implicitly define two matrices using A and S
Defining τ_S

τ_S will state that there exist $\vec{\alpha}, \vec{\beta}$ such that there is no i, j where $Q[i, j] = R[i, j] = 1$
Defining τ_S

τ_S will state that there exist $\vec{\alpha}, \vec{\beta}$ such that there is no i, j where $Q[i,j] = R[i,j] = 1$
Upper bound on $S_P(\tau_S)$

Lemma (Upper bound on $S_P(\tau_S)$)

If $\gamma(S) \leq k \leq \frac{\log m}{4}$, then τ_S is unsatisfiable and $S(\tau_S) \leq m^k n$ for TreeRes.

High-level idea: the universal property of A guarantees some column of Q will be a hitting set.
Upper bound on $S_P(\tau_S)$

Lemma (Upper bound on $S_P(\tau_S)$)

If $\gamma(S) \leq k \leq \log m$, then τ_S is unsatisfiable and $S(\tau_S) \leq m^k n$ for TreeRes.

High-level idea: the universal property of A guarantees some column of Q will be a hitting set.
Upper bound on $S_P(\tau_S)$

Lemma (Upper bound on $S_P(\tau_S)$)

If $\gamma(S) \leq k \leq \frac{\log m}{4}$, then τ_S is unsatisfiable and $S(\tau_S) \leq m^k n$ for TreeRes.

High-level idea: the universal property of A guarantees some column of Q will be a hitting set.
Upper bound on $S_P(\tau_S)$

Lemma (Upper bound on $S_P(\tau_S)$)

If $\gamma(S) \leq k \leq \frac{\log m}{4}$, then τ_S is unsatisfiable and $S(\tau_S) \leq m^k n$ for TreeRes.

High-level idea: the universal property of A guarantees some column of Q will be a hitting set.
Upper bound on $S_P(\tau_S)$

Lemma (Upper bound on $S_P(\tau_S)$)

If $\gamma(S) \leq k \leq \frac{\log m}{4}$, then τ_S is unsatisfiable and $S(\tau_S) \leq m^k n$ for TreeRes.

High-level idea: the universal property of A guarantees some column of Q will be a hitting set.

Size of the proof: $m^k n$
Upper bound on $S_P(\tau_S)$

Lemma (Upper bound on $S_P(\tau_S)$)

If $\gamma(S) \leq k \leq \frac{\log m}{4}$, then τ_S is unsatisfiable and $S(\tau_S) \leq n^2$ for TreeRes.

High-level idea: the universal property of A guarantees some column of Q will be a hitting set.

Size of the proof: $m^k n = n^2$ for $m = n^{1/k}$
Lower bound on $S_P(\tau_S)$

High-level idea 1: any proof π must query all rows in some hitting set
Lower bound on $S_P(\tau_S)$

High-level idea 1: any proof π must query all rows in some hitting set

- $\text{Res}/\text{TreeRes}$ - prover-delayer game [Pudlák, Atserias-Lauria-Nordström]
Lower bound on $S_P(\tau_S)$

High-level idea 1: any proof π must query all rows in some hitting set

- Res/TreeRes - prover-delayer game [Pudlák, Atserias-Lauria-Nordström]
- Nullsatz/PC - linear operator [Galesi-Lauria]
Lower bound on $S_P(\tau_S)$

High-level idea 1: any proof π must query all rows in some hitting set

- Res/TreeRes - prover-delayer game [Pudlák, Atserias-Lauria-Nordström]
- Nullsatz/PC - linear operator [Galesi-Lauria]
- Res(k) - switching lemma [Buss-Impagliazzo-Segerlend]
Lower bound on $S_P(\tau_S)$

High-level idea 1: any proof π must query all rows in some hitting set

- Res/TreeRes - prover-delayer game [Pudlák, Atserias-Lauria-Nordström]
- Nullsatz/PC - linear operator [Galesi-Lauria]
- Res(k) - switching lemma [Buss-Impagliazzo-Segerlend]
- TreeCP - lifting [upcoming work]
Lower bound on $S_P(\tau_S)$

High-level idea 2: π knows nothing about a row or column without setting lots of variables
Lower bound on $S_P(\tau_S)$

High-level idea 2: π knows nothing about a row or column without setting lots of variables

Error-correcting codes

- $x_i \in \{0, 1\}^{6 \log m}$,
 $y_j \in \{0, 1\}^{6 \log n}$
- $f_x : \{0, 1\}^{6 \log m} \rightarrow [m]$
- $f_y : \{0, 1\}^{6 \log n} \rightarrow [n]$
Open problems

Better hard k in gap hitting set \rightarrow better non-automatizability result
Open problems

Better hard k in gap hitting set \rightarrow better non-automatizability result

Theorem (Chen-Lin)

Assuming ETH the gap hitting set problem cannot be solved in time $n^{o(k)}$ for $k = O(\log^{1/7-o(1)} \log n)$

Theorem (Main Technical Lemma)

For $k = O(\sqrt{\log n})$, there exists a polytime algorithm mapping S to τ_S . . .
Thank you!