
The Complexity of Composition
New Approaches to Depth and Space

Ian Mertz

Final Oral Examination
University of Toronto

August 16, 2022

Composition

When can we save by doing two separate things together?

Non-computational example: running all your errands in one trip

Composition

When can we save by doing two separate things together?

Non-computational example: running all your errands in one trip

Composition

Composition theorem:

I functions f and g

I composition f ◦ g
I complexity measure s(·)

Central goal: determine whether

s(f ◦ g) ≈ s(f) + s(g)

or

s(f ◦ g)� s(f) + s(g)

Composition

Composition theorem:

I functions f and g

I composition f ◦ g
I complexity measure s(·)

Central goal: determine whether

s(f ◦ g) ≈ s(f) + s(g)

or

s(f ◦ g)� s(f) + s(g)

Composition

Composition theorem:

I functions f and g

I composition f ◦ g

I complexity measure s(·)

Central goal: determine whether

s(f ◦ g) ≈ s(f) + s(g)

or

s(f ◦ g)� s(f) + s(g)

Composition

Composition theorem:

I functions f and g

I composition f ◦ g
I complexity measure s(·)

Central goal: determine whether

s(f ◦ g) ≈ s(f) + s(g)

or

s(f ◦ g)� s(f) + s(g)

Composition

Composition theorem:

I functions f and g

I composition f ◦ g
I complexity measure s(·)

Central goal: determine whether

s(f ◦ g) ≈ s(f) + s(g)

or

s(f ◦ g)� s(f) + s(g)

Composition and lower bounds

What happens if s(f ◦ g) ≈ s(f) + s(g)?

General idea: going from easier functions f1 . . . fm to a harder
function F = f1 ◦ . . . ◦ fm

Composition and lower bounds

What happens if s(f ◦ g) ≈ s(f) + s(g)?

General idea: going from easier functions f1 . . . fm to a harder
function F = f1 ◦ . . . ◦ fm

Composition and lower bounds

Tree Evaluation Problem (TreeEval := TreeEvalk,d ,h)

fu

fv1 fv2
. . . fvd

. . .

fv : [k]d → [k]

. . .

5 k− 1
. . .

2

h

Composition and lower bounds

f

g
f g

“Two kinds of composition” at work:

I sequential composition: between layers

I parallel composition: within layers

Complexity measures

What does “save” mean? The measure matters!

Errands example: can save yourself the time it takes to go
downtown twice, but cannot save any money on the bills
themselves.

Complexity measures

What does “save” mean? The measure matters!

Errands example: can save yourself the time it takes to go
downtown twice, but cannot save any money on the bills
themselves.

Complexity measures

Model 1: formulas

∧

∨ ∨

. . .

x3 x9

. . .
x1

output

gate

input

depth

Complexity measures

Model 2: Turing Machines

0 1 1 . . . 0 1 . . .

work tape

x1 x2 . . . xn

input tape

f (x)

output

q2

q4

q1

. . .

finite state machine

space

Complexity measures

time efficient (P): Turing Machines with time nO(1)

depth efficient (NC1): formulas of depth O(log n)
space efficient (L): Turing Machines with space O(log n)

Known: NC1 ⊆ P and L ⊆ P

Central goal: show NC1 (P and L (P using composition

Complexity measures

time efficient (P): Turing Machines with time nO(1)

depth efficient (NC1): formulas of depth O(log n)

space efficient (L): Turing Machines with space O(log n)

Known: NC1 ⊆ P and L ⊆ P

Central goal: show NC1 (P and L (P using composition

Complexity measures

time efficient (P): Turing Machines with time nO(1)

depth efficient (NC1): formulas of depth O(log n)
space efficient (L): Turing Machines with space O(log n)

Known: NC1 ⊆ P and L ⊆ P

Central goal: show NC1 (P and L (P using composition

Complexity measures

time efficient (P): Turing Machines with time nO(1)

depth efficient (NC1): formulas of depth O(log n)
space efficient (L): Turing Machines with space O(log n)

Known: NC1 ⊆ P and L ⊆ P

Central goal: show NC1 (P and L (P using composition

Complexity measures

time efficient (P): Turing Machines with time nO(1)

depth efficient (NC1): formulas of depth O(log n)
space efficient (L): Turing Machines with space O(log n)

Known: NC1 ⊆ P and L ⊆ P

Central goal: show NC1 (P and L (P using composition

Composition and lower bounds

TreeEvalk,d ,h ∈ P: evaluating it bottom-up takes linear time

fu

fv1 fv2
. . . fvd

. . .

fv : [k]d → [k]

. . .

5 k− 1
. . .

2

h

Composition and lower bounds

Conjecture 1 [KRW’95]: TreeEval /∈ NC1

Conjecture 2 [CMWBS’12]: TreeEval /∈ L

Composition and depth lower bounds

KRW conjecture [KRW’95]: depth(f ◦ g) ≈ depth(f) + depth(g)

f

f1 f2 . . . fΩ(log n)

. . .

depth Ω(log n) →

depth Ω(log n) →

. . .

ω(1)

Depth ω(1) · Ω(log n) → TreeEval2,d ,h /∈ NC1

Composition and depth lower bounds

KRW conjecture [KRW’95]: depth(f ◦ g) ≈ depth(f) + depth(g)

f

f1 f2 . . . fΩ(log n)

. . .

depth Ω(log n) →

depth Ω(log n) →

. . .

ω(1)

Depth ω(1) · Ω(log n)

→ TreeEval2,d ,h /∈ NC1

Composition and depth lower bounds

KRW conjecture [KRW’95]: depth(f ◦ g) ≈ depth(f) + depth(g)

f

f1 f2 . . . fΩ(log n)

. . .

depth Ω(log n) →

depth Ω(log n) →

. . .

ω(1)

Depth ω(1) · Ω(log n) → TreeEval2,d ,h /∈ NC1

Composition and space lower bounds

z-f conjecture [CMWBS’12]: computing f while remembering
output of g requires space to compute f plus space to remember
output of g

fh

17 fh−1

n − 5
...

Ω(log n) bits →

Ω(log n) bits →
ω(1)

Space ω(1) · Ω(log n) → TreeEvalk,2,h /∈ L

Composition and space lower bounds

z-f conjecture [CMWBS’12]: computing f while remembering
output of g requires space to compute f plus space to remember
output of g

fh

17 fh−1

n − 5
...

Ω(log n) bits →

Ω(log n) bits →
ω(1)

Space ω(1) · Ω(log n)

→ TreeEvalk,2,h /∈ L

Composition and space lower bounds

z-f conjecture [CMWBS’12]: computing f while remembering
output of g requires space to compute f plus space to remember
output of g

fh

17 fh−1

n − 5
...

Ω(log n) bits →

Ω(log n) bits →
ω(1)

Space ω(1) · Ω(log n) → TreeEvalk,2,h /∈ L

This thesis

Progress on both questions

...but in opposite directions!

Part I: getting closer to showing KRW conjecture is true

Part II: unconditionally showing z-f conjecture is false

This thesis

Progress on both questions...but in opposite directions!

Part I: getting closer to showing KRW conjecture is true

Part II: unconditionally showing z-f conjecture is false

This thesis

Progress on both questions...but in opposite directions!

Part I: getting closer to showing KRW conjecture is true

Part II: unconditionally showing z-f conjecture is false

This thesis

Progress on both questions...but in opposite directions!

Part I: getting closer to showing KRW conjecture is true

Part II: unconditionally showing z-f conjecture is false

Part II

Space

Reusing space

Conjecture [CMWBS’12]: TreeEvalk,2,h requires space Ω(h log k)

Some interesting internal functions known to not be hard enough!

[BoC’92] (rephrased): if every node of the TreeEvalk,2,h instance
computes either + or ×, then we can solve this instance with
space 2h + 3 log k = O(h + log k) = O(log n).

Proof explicitly refutes z-f conjecture for f ∈ {+,×}:

space(z , f) = |z | � |z |+ space(f)

Reusing space

Conjecture [CMWBS’12]: TreeEvalk,2,h requires space Ω(h log k)

Some interesting internal functions known to not be hard enough!

[BoC’92] (rephrased): if every node of the TreeEvalk,2,h instance
computes either + or ×, then we can solve this instance with
space 2h + 3 log k = O(h + log k) = O(log n).

Proof explicitly refutes z-f conjecture for f ∈ {+,×}:

space(z , f) = |z | � |z |+ space(f)

Reusing space

Conjecture [CMWBS’12]: TreeEvalk,2,h requires space Ω(h log k)

Some interesting internal functions known to not be hard enough!

[BoC’92] (rephrased): if every node of the TreeEvalk,2,h instance
computes either + or ×, then we can solve this instance with
space 2h + 3 log k = O(h + log k) = O(log n).

Proof explicitly refutes z-f conjecture for f ∈ {+,×}:

space(z , f) = |z | � |z |+ space(f)

Reusing space

Conjecture [CMWBS’12]: TreeEvalk,2,h requires space Ω(h log k)

Some interesting internal functions known to not be hard enough!

[BoC’92] (rephrased): if every node of the TreeEvalk,2,h instance
computes either + or ×, then we can solve this instance with
space 2h + 3 log k = O(h + log k) = O(log n).

Proof explicitly refutes z-f conjecture for f ∈ {+,×}:

space(z , f) = |z | � |z |+ space(f)

Main contribution: upper bounds on TreeEval

[CM’20,21]: for any k , h, TreeEvalk,2,h can be solved in space
O(h log k/ log h) = o(h log k)

Tools: generalized [BoC’92] subroutine for arbitrary polynomials
(instead of just + or ×); complexity based on degree

+

recasting each internal TreeEval node as a polynomial

+

time-space tradeoff to reduce the degree of these polynomials

Main contribution: upper bounds on TreeEval

[CM’20,21]: for any k , h, TreeEvalk,2,h can be solved in space
O(h log k/ log h) = o(h log k)

Tools: generalized [BoC’92] subroutine for arbitrary polynomials
(instead of just + or ×); complexity based on degree

+

recasting each internal TreeEval node as a polynomial

+

time-space tradeoff to reduce the degree of these polynomials

Main contribution: upper bounds on TreeEval

[CM’20,21]: for any k , h, TreeEvalk,2,h can be solved in space
O(h log k/ log h) = o(h log k)

Tools: generalized [BoC’92] subroutine for arbitrary polynomials
(instead of just + or ×); complexity based on degree

+

recasting each internal TreeEval node as a polynomial

+

time-space tradeoff to reduce the degree of these polynomials

Main contribution: upper bounds on TreeEval

[CM’20,21]: for any k , h, TreeEvalk,2,h can be solved in space
O(h log k/ log h) = o(h log k)

Tools: generalized [BoC’92] subroutine for arbitrary polynomials
(instead of just + or ×); complexity based on degree

+

recasting each internal TreeEval node as a polynomial

+

time-space tradeoff to reduce the degree of these polynomials

Application: upper bounds on amortized non-uniform space

[P’17] (informally): every function f can be solved in time O(n)
and amortized non-uniform space O(1), as long as we have 22n−1

copies.

[CM’22]: for any constant ε > 0, every function f can be
solved in time O(n) and amortized non-uniform space O(1),
as long as we have 22εn copies.

Tools: key polynomial subroutine we developed for [CM’20,21] as a
one-shot algorithm applied to f

+

different sort of space-time tradeoff to reduce degree

Application: upper bounds on amortized non-uniform space

[P’17] (informally): every function f can be solved in time O(n)
and amortized non-uniform space O(1), as long as we have 22n−1

copies.

[CM’22]: for any constant ε > 0, every function f can be
solved in time O(n) and amortized non-uniform space O(1),
as long as we have 22εn copies.

Tools: key polynomial subroutine we developed for [CM’20,21] as a
one-shot algorithm applied to f

+

different sort of space-time tradeoff to reduce degree

Application: upper bounds on amortized non-uniform space

[P’17] (informally): every function f can be solved in time O(n)
and amortized non-uniform space O(1), as long as we have 22n−1

copies.

[CM’22]: for any constant ε > 0, every function f can be
solved in time O(n) and amortized non-uniform space O(1),
as long as we have 22εn copies.

Tools: key polynomial subroutine we developed for [CM’20,21] as a
one-shot algorithm applied to f

+

different sort of space-time tradeoff to reduce degree

Application: upper bounds on amortized non-uniform space

[P’17] (informally): every function f can be solved in time O(n)
and amortized non-uniform space O(1), as long as we have 22n−1

copies.

[CM’22]: for any constant ε > 0, every function f can be
solved in time O(n) and amortized non-uniform space O(1),
as long as we have 22εn copies.

Tools: key polynomial subroutine we developed for [CM’20,21] as a
one-shot algorithm applied to f

+

different sort of space-time tradeoff to reduce degree

Part I

Depth

Communication complexity

Another model of computation: communication complexity

I Alice receives x ∈ X , Bob receives y ∈ Y
I goal is to compute F (x , y) together

I allowed to do any amount of computation on their own,
charged for every bit exchanged

[KW’90]: depth(f) = cc(Sf) for some related problem Sf .

We do have composition-style results for communication!

Communication complexity

Another model of computation: communication complexity

I Alice receives x ∈ X , Bob receives y ∈ Y
I goal is to compute F (x , y) together

I allowed to do any amount of computation on their own,
charged for every bit exchanged

[KW’90]: depth(f) = cc(Sf) for some related problem Sf .

We do have composition-style results for communication!

Communication complexity

Another model of computation: communication complexity

I Alice receives x ∈ X , Bob receives y ∈ Y
I goal is to compute F (x , y) together

I allowed to do any amount of computation on their own,
charged for every bit exchanged

[KW’90]: depth(f) = cc(Sf) for some related problem Sf .

We do have composition-style results for communication!

Query-to-Communication Lifting

[RM’99,GPW’15]: for any F and for g = INDm (m suff. large),
cc(F ◦ g) ≈ dt(F) · logm

Issues for KRW conjecture:
I when moving to formula depth, only gives composition results

for monotone formulas
I strong monotone lower bounds for sufficiently broad class of

problems would also give general lower bounds

I only works for g = INDm, where m is a large polynomial

Main goal: more general g , starting with smaller m

Query-to-Communication Lifting

[RM’99,GPW’15]: for any F and for g = INDm (m suff. large),
cc(F ◦ g) ≈ dt(F) · logm

Issues for KRW conjecture:

I when moving to formula depth, only gives composition results
for monotone formulas
I strong monotone lower bounds for sufficiently broad class of

problems would also give general lower bounds

I only works for g = INDm, where m is a large polynomial

Main goal: more general g , starting with smaller m

Query-to-Communication Lifting

[RM’99,GPW’15]: for any F and for g = INDm (m suff. large),
cc(F ◦ g) ≈ dt(F) · logm

Issues for KRW conjecture:
I when moving to formula depth, only gives composition results

for monotone formulas

I strong monotone lower bounds for sufficiently broad class of
problems would also give general lower bounds

I only works for g = INDm, where m is a large polynomial

Main goal: more general g , starting with smaller m

Query-to-Communication Lifting

[RM’99,GPW’15]: for any F and for g = INDm (m suff. large),
cc(F ◦ g) ≈ dt(F) · logm

Issues for KRW conjecture:
I when moving to formula depth, only gives composition results

for monotone formulas
I strong monotone lower bounds for sufficiently broad class of

problems would also give general lower bounds

I only works for g = INDm, where m is a large polynomial

Main goal: more general g , starting with smaller m

Query-to-Communication Lifting

[RM’99,GPW’15]: for any F and for g = INDm (m suff. large),
cc(F ◦ g) ≈ dt(F) · logm

Issues for KRW conjecture:
I when moving to formula depth, only gives composition results

for monotone formulas
I strong monotone lower bounds for sufficiently broad class of

problems would also give general lower bounds

I only works for g = INDm, where m is a large polynomial

Main goal: more general g , starting with smaller m

Query-to-Communication Lifting

[RM’99,GPW’15]: for any F and for g = INDm (m suff. large),
cc(F ◦ g) ≈ dt(F) · logm

Issues for KRW conjecture:
I when moving to formula depth, only gives composition results

for monotone formulas
I strong monotone lower bounds for sufficiently broad class of

problems would also give general lower bounds

I only works for g = INDm, where m is a large polynomial

Main goal: more general g , starting with smaller m

Main contribution: better lifting

[LMMPZ’22] for any F and for g = INDm (m ≥ n1+ε),
cc(F ◦ g) ≈ dt(F) · logm

Tools: “structure vs randomness” framework (earlier proofs)

+

“structure vs randomness” combinatorics to directly handle the
random case (the bottleneck for previous proofs)

Main contribution: better lifting

[LMMPZ’22] for any F and for g = INDm (m ≥ n1+ε),
cc(F ◦ g) ≈ dt(F) · logm

Tools: “structure vs randomness” framework (earlier proofs)

+

“structure vs randomness” combinatorics to directly handle the
random case (the bottleneck for previous proofs)

Main contribution: better lifting

[LMMPZ’22] for any F and for g = INDm (m ≥ n1+ε),
cc(F ◦ g) ≈ dt(F) · logm

Tools: “structure vs randomness” framework (earlier proofs)

+

“structure vs randomness” combinatorics to directly handle the
random case (the bottleneck for previous proofs)

Application: proof complexity

[AM’20]: given τ ∈ UNSAT , it is NP-hard to approximate the size
of the best Resolution or tree-like Resolution refutation of τ .

[GKMP’20]: given τ ∈ UNSAT , it is NP-hard to approximate
the size of the best Cutting Planes or tree-like Cutting
Planes refutation of τ .

Tools: non-approximability for Resolution or tree-like Resolution

+

block-width and graduated lifting theorems using [LMMPZ’22]

Application: proof complexity

[AM’20]: given τ ∈ UNSAT , it is NP-hard to approximate the size
of the best Resolution or tree-like Resolution refutation of τ .

[GKMP’20]: given τ ∈ UNSAT , it is NP-hard to approximate
the size of the best Cutting Planes or tree-like Cutting
Planes refutation of τ .

Tools: non-approximability for Resolution or tree-like Resolution

+

block-width and graduated lifting theorems using [LMMPZ’22]

Application: proof complexity

[AM’20]: given τ ∈ UNSAT , it is NP-hard to approximate the size
of the best Resolution or tree-like Resolution refutation of τ .

[GKMP’20]: given τ ∈ UNSAT , it is NP-hard to approximate
the size of the best Cutting Planes or tree-like Cutting
Planes refutation of τ .

Tools: non-approximability for Resolution or tree-like Resolution

+

block-width and graduated lifting theorems using [LMMPZ’22]

Application: proof complexity

[AM’20]: given τ ∈ UNSAT , it is NP-hard to approximate the size
of the best Resolution or tree-like Resolution refutation of τ .

[GKMP’20]: given τ ∈ UNSAT , it is NP-hard to approximate
the size of the best Cutting Planes or tree-like Cutting
Planes refutation of τ .

Tools: non-approximability for Resolution or tree-like Resolution

+

block-width and graduated lifting theorems using [LMMPZ’22]

Conclusions

Open problems

1. Directly improving our results (better lifting parameters,
better TreeEval algorithms)

2. Broadening and applying our results (from lifting to KRW,
better catalytic computing results)

3. Structure of our results (lifting and combinatorics, which
classes catalytic techniques inherently lie in)

Open problems

1. Directly improving our results (better lifting parameters,
better TreeEval algorithms)

2. Broadening and applying our results (from lifting to KRW,
better catalytic computing results)

3. Structure of our results (lifting and combinatorics, which
classes catalytic techniques inherently lie in)

Open problems

1. Directly improving our results (better lifting parameters,
better TreeEval algorithms)

2. Broadening and applying our results (from lifting to KRW,
better catalytic computing results)

3. Structure of our results (lifting and combinatorics, which
classes catalytic techniques inherently lie in)

Open problems

1. Directly improving our results (better lifting parameters,
better TreeEval algorithms)

2. Broadening and applying our results (from lifting to KRW,
better catalytic computing results)

3. Structure of our results (lifting and combinatorics, which
classes catalytic techniques inherently lie in)

Works used

1. Shachar Lovett, Raghu Meka, Ian Mertz, Toniann Pitassi, Jiapeng Zhang.
Lifting with Sunflowers. ITCS 2022.

2. Mika Göös, Sajin Koroth, Ian Mertz, Toniann Pitassi. Automating
Cutting Planes is NP-Hard. STOC 2020.

3. Ian Mertz, Toniann Pitassi, Yuanhao Wei. Short Proofs Are Hard to Find.
ICALP 2019.

4. James Cook, Ian Mertz. Catalytic Approaches to the Tree Evaluation
Problem. STOC 2020.

5. James Cook, Ian Mertz. Encodings and the Tree Evaluation Problem.
Technical note, 2021.

6. James Cook, Ian Mertz. Trading Time and Space in Catalytic Branching
Programs. CCC 2022.

Thanks!

