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Composition and lower bounds

Tree Evaluation Problem (TreeEval := TreeEvalk,d ,h)
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Composition and lower bounds

f

g
f g

“Two kinds of composition” at work:

I sequential composition: between layers

I parallel composition: within layers
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Errands example: can save yourself the time it takes to go
downtown twice, but cannot save any money on the bills
themselves.
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Complexity measures

Model 1: formulas
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Complexity measures

Model 2: Turing Machines
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Central goal: show NC1 ( P and L ( P using composition



Complexity measures

time efficient (P): Turing Machines with time nO(1)

depth efficient (NC1): formulas of depth O(log n)

space efficient (L): Turing Machines with space O(log n)

Known: NC1 ⊆ P and L ⊆ P

Central goal: show NC1 ( P and L ( P using composition



Complexity measures

time efficient (P): Turing Machines with time nO(1)

depth efficient (NC1): formulas of depth O(log n)
space efficient (L): Turing Machines with space O(log n)

Known: NC1 ⊆ P and L ⊆ P

Central goal: show NC1 ( P and L ( P using composition



Complexity measures

time efficient (P): Turing Machines with time nO(1)

depth efficient (NC1): formulas of depth O(log n)
space efficient (L): Turing Machines with space O(log n)

Known: NC1 ⊆ P and L ⊆ P

Central goal: show NC1 ( P and L ( P using composition



Complexity measures

time efficient (P): Turing Machines with time nO(1)

depth efficient (NC1): formulas of depth O(log n)
space efficient (L): Turing Machines with space O(log n)

Known: NC1 ⊆ P and L ⊆ P

Central goal: show NC1 ( P and L ( P using composition



Composition and lower bounds

TreeEvalk,d ,h ∈ P: evaluating it bottom-up takes linear time
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Composition and lower bounds

Conjecture 1 [KRW’95]: TreeEval /∈ NC1

Conjecture 2 [CMWBS’12]: TreeEval /∈ L



Composition and depth lower bounds

KRW conjecture [KRW’95]: depth(f ◦ g) ≈ depth(f ) + depth(g)
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Composition and space lower bounds

z-f conjecture [CMWBS’12]: computing f while remembering
output of g requires space to compute f plus space to remember
output of g
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Reusing space

Conjecture [CMWBS’12]: TreeEvalk,2,h requires space Ω(h log k)

Some interesting internal functions known to not be hard enough!

[BoC’92] (rephrased): if every node of the TreeEvalk,2,h instance
computes either + or ×, then we can solve this instance with
space 2h + 3 log k = O(h + log k) = O(log n).

Proof explicitly refutes z-f conjecture for f ∈ {+,×}:

space(z , f ) = |z | � |z |+ space(f )
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Main contribution: upper bounds on TreeEval

[CM’20,21]: for any k , h, TreeEvalk,2,h can be solved in space
O(h log k/ log h) = o(h log k)

Tools: generalized [BoC’92] subroutine for arbitrary polynomials
(instead of just + or ×); complexity based on degree

+

recasting each internal TreeEval node as a polynomial

+

time-space tradeoff to reduce the degree of these polynomials
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Application: upper bounds on amortized non-uniform space

[P’17] (informally): every function f can be solved in time O(n)
and amortized non-uniform space O(1), as long as we have 22n−1

copies.

[CM’22]: for any constant ε > 0, every function f can be
solved in time O(n) and amortized non-uniform space O(1),
as long as we have 22εn copies.

Tools: key polynomial subroutine we developed for [CM’20,21] as a
one-shot algorithm applied to f

+

different sort of space-time tradeoff to reduce degree
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Another model of computation: communication complexity

I Alice receives x ∈ X , Bob receives y ∈ Y
I goal is to compute F (x , y) together

I allowed to do any amount of computation on their own,
charged for every bit exchanged

[KW’90]: depth(f ) = cc(Sf ) for some related problem Sf .
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Query-to-Communication Lifting

[RM’99,GPW’15]: for any F and for g = INDm (m suff. large),
cc(F ◦ g) ≈ dt(F ) · logm

Issues for KRW conjecture:
I when moving to formula depth, only gives composition results

for monotone formulas
I strong monotone lower bounds for sufficiently broad class of

problems would also give general lower bounds

I only works for g = INDm, where m is a large polynomial

Main goal: more general g , starting with smaller m
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[AM’20]: given τ ∈ UNSAT , it is NP-hard to approximate the size
of the best Resolution or tree-like Resolution refutation of τ .
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2. Mika Göös, Sajin Koroth, Ian Mertz, Toniann Pitassi. Automating
Cutting Planes is NP-Hard. STOC 2020.

3. Ian Mertz, Toniann Pitassi, Yuanhao Wei. Short Proofs Are Hard to Find.
ICALP 2019.

4. James Cook, Ian Mertz. Catalytic Approaches to the Tree Evaluation
Problem. STOC 2020.

5. James Cook, Ian Mertz. Encodings and the Tree Evaluation Problem.
Technical note, 2021.

6. James Cook, Ian Mertz. Trading Time and Space in Catalytic Branching
Programs. CCC 2022.

Thanks!


