The Complexity of Composition New Approaches to Depth and Space

lan Mertz

Final Oral Examination University of Toronto

August 16, 2022

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

When can we save by doing two separate things together?

When can we save by doing two separate things together?

Non-computational example: running all your errands in one trip

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Composition theorem:

Composition theorem:

▶ functions *f* and *g*

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Composition theorem:

- functions f and g
- composition $f \circ g$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Composition theorem:

- functions f and g
- composition $f \circ g$
- ► complexity measure s(·)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Composition theorem:

- functions f and g
- composition $f \circ g$
- ► complexity measure s(·)

Central goal: determine whether

$$s(f \circ g) \approx s(f) + s(g)$$

or

$$s(f \circ g) \ll s(f) + s(g)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

What happens if $s(f \circ g) \approx s(f) + s(g)$?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

What happens if $s(f \circ g) \approx s(f) + s(g)$?

General idea: going from easier functions $f_1 \dots f_m$ to a harder function $F = f_1 \circ \dots \circ f_m$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Tree Evaluation Problem (TreeEval := $TreeEval_{k,d,h}$)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

"Two kinds of composition" at work:

- sequential composition: between layers
- parallel composition: within layers

What does "save" mean? The measure matters!

What does "save" mean? The measure matters!

Errands example: can save yourself the *time* it takes to go downtown twice, but cannot save any *money* on the bills themselves.

Model 1: formulas

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Model 2: Turing Machines

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

space

time efficient (P): Turing Machines with time $n^{O(1)}$

(ロ)、(型)、(E)、(E)、 E) のQ(()

time efficient (P): Turing Machines with time $n^{O(1)}$ depth efficient (NC¹): formulas of depth $O(\log n)$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

time efficient (P): Turing Machines with time $n^{O(1)}$

depth efficient (NC¹): formulas of depth $O(\log n)$ space efficient (L): Turing Machines with space $O(\log n)$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

time efficient (P): Turing Machines with time $n^{O(1)}$

depth efficient (NC¹): formulas of depth $O(\log n)$ space efficient (L): Turing Machines with space $O(\log n)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

```
Known: \mathsf{NC}^1 \subseteq \mathsf{P} and \mathsf{L} \subseteq \mathsf{P}
```

time efficient (P): Turing Machines with time $n^{O(1)}$

depth efficient (NC¹): formulas of depth $O(\log n)$ space efficient (L): Turing Machines with space $O(\log n)$

Known: $NC^1 \subseteq P$ and $L \subseteq P$

Central goal: show NC¹ \subseteq P and L \subseteq P using composition

TreeEval_{k,d,h} \in P: evaluating it bottom-up takes linear time

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Conjecture 1 [KRW'95]: TreeEval \notin NC¹

Conjecture 2 [CMWBS'12]: TreeEval ∉ L

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

KRW conjecture [KRW'95]: $depth(f \circ g) \approx depth(f) + depth(g)$

KRW conjecture [KRW'95]: $depth(f \circ g) \approx depth(f) + depth(g)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Depth $\omega(1) \cdot \Omega(\log n)$

KRW conjecture [KRW'95]: $depth(f \circ g) \approx depth(f) + depth(g)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Depth $\omega(1) \cdot \Omega(\log n) \rightarrow \text{TreeEval}_{2,d,h} \notin \mathsf{NC}^1$

z-f conjecture [CMWBS'12]: computing f while remembering output of g requires space to compute f plus space to remember output of g

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

z-f conjecture [CMWBS'12]: computing f while remembering output of g requires space to compute f plus space to remember output of g

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

Space $\omega(1) \cdot \Omega(\log n)$

z-f conjecture [CMWBS'12]: computing f while remembering output of g requires space to compute f plus space to remember output of g

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

Space $\omega(1) \cdot \Omega(\log n) \rightarrow \text{TreeEval}_{k,2,h} \notin L$

This thesis

Progress on both questions

This thesis

Progress on both questions...but in opposite directions!

Progress on both questions...but in opposite directions!

Part I: getting closer to showing KRW conjecture is true

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Progress on both questions...but in opposite directions!

Part I: getting closer to showing KRW conjecture is true

Part II: unconditionally showing z-f conjecture is false

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Part II

Space

Conjecture [CMWBS'12]: TreeEval_{k,2,h} requires space $\Omega(h \log k)$

Conjecture [CMWBS'12]: TreeEval_{k,2,h} requires space $\Omega(h \log k)$

Some interesting internal functions known to not be hard enough!

Conjecture [CMWBS'12]: TreeEval_{k,2,h} requires space $\Omega(h \log k)$

Some interesting internal functions known to not be hard enough!

[BoC'92] (rephrased): if every node of the TreeEval_{k,2,h} instance computes either + or ×, then we can solve this instance with space $2h + 3\log k = O(h + \log k) = O(\log n)$.

Conjecture [CMWBS'12]: TreeEval_{k,2,h} requires space $\Omega(h \log k)$

Some interesting internal functions known to not be hard enough!

[BoC'92] (rephrased): if every node of the TreeEval_{k,2,h} instance computes either + or ×, then we can solve this instance with space $2h + 3\log k = O(h + \log k) = O(\log n)$.

Proof explicitly refutes z-f conjecture for $f \in \{+, \times\}$:

$$space(z, f) = |z| \ll |z| + space(f)$$

- ロ ト - 4 回 ト - 4 □ - 4

[CM'20,21]: for any k, h, TreeEval_{k,2,h} can be solved in space $O(h \log k / \log h) = o(h \log k)$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

[CM'20,21]: for any k, h, TreeEval_{k,2,h} can be solved in space $O(h \log k / \log h) = o(h \log k)$

Tools: generalized [BoC'92] subroutine for arbitrary polynomials (instead of just + or \times); complexity based on *degree*

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

[CM'20,21]: for any k, h, TreeEval_{k,2,h} can be solved in space $O(h \log k / \log h) = o(h \log k)$

Tools: generalized [BoC'92] subroutine for arbitrary polynomials (instead of just + or \times); complexity based on *degree*

+

recasting each internal TreeEval node as a polynomial

[CM'20,21]: for any k, h, TreeEval_{k,2,h} can be solved in space $O(h \log k / \log h) = o(h \log k)$

Tools: generalized [BoC'92] subroutine for arbitrary polynomials (instead of just + or \times); complexity based on *degree*

recasting each internal TreeEval node as a polynomial

+

+

time-space tradeoff to reduce the degree of these polynomials

[P'17] (informally): every function f can be solved in time O(n) and amortized non-uniform space O(1), as long as we have 2^{2^n-1} copies.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

[P'17] (informally): every function f can be solved in time O(n) and amortized non-uniform space O(1), as long as we have 2^{2^n-1} copies.

[CM'22]: for any constant $\epsilon > 0$, every function f can be solved in time O(n) and amortized non-uniform space O(1), as long as we have $2^{2^{\epsilon n}}$ copies.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

[P'17] (informally): every function f can be solved in time O(n) and amortized non-uniform space O(1), as long as we have 2^{2^n-1} copies.

[CM'22]: for any constant $\epsilon > 0$, every function f can be solved in time O(n) and amortized non-uniform space O(1), as long as we have $2^{2^{\epsilon n}}$ copies.

Tools: key polynomial subroutine we developed for [CM'20,21] as a one-shot algorithm applied to f

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

[P'17] (informally): every function f can be solved in time O(n) and amortized non-uniform space O(1), as long as we have 2^{2^n-1} copies.

[CM'22]: for any constant $\epsilon > 0$, every function f can be solved in time O(n) and amortized non-uniform space O(1), as long as we have $2^{2^{\epsilon n}}$ copies.

Tools: key polynomial subroutine we developed for [CM'20,21] as a one-shot algorithm applied to f

+

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

different sort of space-time tradeoff to reduce degree

Part I

Depth

Communication complexity

Another model of computation: communication complexity

- Alice receives $x \in \mathcal{X}$, Bob receives $y \in \mathcal{Y}$
- goal is to compute F(x, y) together
- allowed to do any amount of computation on their own, charged for every bit exchanged

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Communication complexity

Another model of computation: communication complexity

- Alice receives $x \in \mathcal{X}$, Bob receives $y \in \mathcal{Y}$
- goal is to compute F(x, y) together
- allowed to do any amount of computation on their own, charged for every bit exchanged

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

[KW'90]: depth(f) = $cc(S_f)$ for some related problem S_f .

Communication complexity

Another model of computation: communication complexity

- Alice receives $x \in \mathcal{X}$, Bob receives $y \in \mathcal{Y}$
- goal is to compute F(x, y) together
- allowed to do any amount of computation on their own, charged for every bit exchanged

[KW'90]: depth(f) = $cc(S_f)$ for some related problem S_f .

We do have composition-style results for communication!

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

[RM'99,GPW'15]: for any F and for $g = IND_m$ (m suff. large), $cc(F \circ g) \approx dt(F) \cdot \log m$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

[RM'99,GPW'15]: for any F and for $g = IND_m$ (m suff. large), $cc(F \circ g) \approx dt(F) \cdot \log m$

Issues for KRW conjecture:

[RM'99,GPW'15]: for any F and for $g = IND_m$ (m suff. large), $cc(F \circ g) \approx dt(F) \cdot \log m$

Issues for KRW conjecture:

when moving to formula depth, only gives composition results for *monotone* formulas

[RM'99,GPW'15]: for any F and for $g = IND_m$ (m suff. large), $cc(F \circ g) \approx dt(F) \cdot \log m$

Issues for KRW conjecture:

- when moving to formula depth, only gives composition results for *monotone* formulas
 - strong monotone lower bounds for sufficiently broad class of problems would also give general lower bounds

A D N A 目 N A E N A E N A B N A C N

[RM'99,GPW'15]: for any F and for $g = IND_m$ (m suff. large), $cc(F \circ g) \approx dt(F) \cdot \log m$

Issues for KRW conjecture:

- when moving to formula depth, only gives composition results for *monotone* formulas
 - strong monotone lower bounds for sufficiently broad class of problems would also give general lower bounds

A D N A 目 N A E N A E N A B N A C N

• only works for $g = IND_m$, where *m* is a large polynomial

[RM'99,GPW'15]: for any F and for $g = IND_m$ (m suff. large), $cc(F \circ g) \approx dt(F) \cdot \log m$

Issues for KRW conjecture:

- when moving to formula depth, only gives composition results for *monotone* formulas
 - strong monotone lower bounds for sufficiently broad class of problems would also give general lower bounds

• only works for $g = IND_m$, where *m* is a large polynomial

Main goal: more general g, starting with smaller m

Main contribution: better lifting

[LMMPZ'22] for any F and for $g = IND_m$ ($m \ge n^{1+\epsilon}$), $cc(F \circ g) \approx dt(F) \cdot \log m$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Main contribution: better lifting

[LMMPZ'22] for any F and for $g = IND_m$ ($m \ge n^{1+\epsilon}$), $cc(F \circ g) \approx dt(F) \cdot \log m$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Tools: "structure vs randomness" framework (earlier proofs)

Main contribution: better lifting

[LMMPZ'22] for any F and for $g = IND_m$ ($m \ge n^{1+\epsilon}$), $cc(F \circ g) \approx dt(F) \cdot \log m$

Tools: "structure vs randomness" framework (earlier proofs)

+

"structure vs randomness" combinatorics to directly handle the random case (the bottleneck for previous proofs)

[AM'20]: given $\tau \in UNSAT$, it is NP-hard to approximate the size of the best Resolution or tree-like Resolution refutation of τ .

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

[AM'20]: given $\tau \in UNSAT$, it is NP-hard to approximate the size of the best Resolution or tree-like Resolution refutation of τ .

[GKMP'20]: given $\tau \in UNSAT$, it is NP-hard to approximate the size of the best Cutting Planes or tree-like Cutting Planes refutation of τ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

[AM'20]: given $\tau \in UNSAT$, it is NP-hard to approximate the size of the best Resolution or tree-like Resolution refutation of τ .

[GKMP'20]: given $\tau \in UNSAT$, it is NP-hard to approximate the size of the best Cutting Planes or tree-like Cutting Planes refutation of τ .

Tools: non-approximability for Resolution or tree-like Resolution

[AM'20]: given $\tau \in UNSAT$, it is NP-hard to approximate the size of the best Resolution or tree-like Resolution refutation of τ .

[GKMP'20]: given $\tau \in UNSAT$, it is NP-hard to approximate the size of the best Cutting Planes or tree-like Cutting Planes refutation of τ .

Tools: non-approximability for Resolution or tree-like Resolution

+

block-width and graduated lifting theorems using [LMMPZ'22]

Conclusions

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - - のへで

1. *Directly improving our results* (better lifting parameters, better TreeEval algorithms)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- 1. *Directly improving our results* (better lifting parameters, better TreeEval algorithms)
- 2. *Broadening and applying our results* (from lifting to KRW, better catalytic computing results)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- 1. *Directly improving our results* (better lifting parameters, better TreeEval algorithms)
- 2. *Broadening and applying our results* (from lifting to KRW, better catalytic computing results)
- 3. *Structure of our results* (lifting and combinatorics, which classes catalytic techniques inherently lie in)

Works used

- 1. Shachar Lovett, Raghu Meka, Ian Mertz, Toniann Pitassi, Jiapeng Zhang. *Lifting with Sunflowers.* ITCS 2022.
- 2. Mika Göös, Sajin Koroth, lan Mertz, Toniann Pitassi. Automating Cutting Planes is NP-Hard. STOC 2020.
- 3. Ian Mertz, Toniann Pitassi, Yuanhao Wei. *Short Proofs Are Hard to Find*. ICALP 2019.
- 4. James Cook, lan Mertz. Catalytic Approaches to the Tree Evaluation Problem. STOC 2020.
- 5. James Cook, lan Mertz. *Encodings and the Tree Evaluation Problem*. Technical note, 2021.
- 6. James Cook, lan Mertz. Trading Time and Space in Catalytic Branching Programs. CCC 2022.

Thanks!