Trading Time and Space in Catalytic Branching Programs

lan Mertz

University of Toronto

July 23, 2022

Joint work with James Cook

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 $BP(w, \ell)$: layered branching programs of width w and length ℓ

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

(日)

э

 $BP(w, \ell)$ looks like $SPACETIME(\log w, \ell)$

 $BP(w, \ell)$ looks like $SPACETIME(\log w, \ell)$ (idea: for a fixed timestamp, w nodes in a layer $\leftrightarrow \log w$ bits in memory)

(日)

э

 $BP(w, \ell)$ looks like SPACETIME(log w, ℓ) (idea: for a fixed timestamp, w nodes in a layer $\leftrightarrow \log w$ bits in memory), but...

SPACETIME is uniform: machine is "easy to describe" for every n

・ロト ・ 同ト ・ ヨト ・ ヨト

 $BP(w, \ell)$ looks like SPACETIME(log w, ℓ) (idea: for a fixed timestamp, w nodes in a layer $\leftrightarrow \log w$ bits in memory), but...

SPACETIME is uniform: machine is "easy to describe" for every n

ヘロト 人間 ト 人 ヨト 人 ヨト

BP is non-uniform: no restrictions on the description

Every f can be computed by $BP(2^{n-1}, n)$

Every f can be computed by $BP(2^{n-1}, n)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

 $mCBP(w, \ell, m)$: *m* different branching programs (one source \rightarrow two sinks) which can share states

SAC

э

 $mCBP(w, \ell, m)$: *m* different branching programs (one input node, two output nodes) which can share states

 $mCBP(w, \ell, m)$: *m* different branching programs (one source \rightarrow two sinks) which can share states

900

э

CSPACETIME(s, t, c): space-bounded Turing Machines with an extra worktape (c bits) of full memory

input tape

output

catalytic tape

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

CSPACETIME(s, t, c): space-bounded Turing Machines with an extra worktape (c bits) of full memory

input tape

output

catalytic tape

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

CSPACETIME(s, t, c): space-bounded Turing Machines with an extra worktape (c bits) of full memory


```
output
```

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

catalytic tape

(日)

ж

Again $mCBP(w, \ell, m)$ looks like non-uniform $CSPACETIME(\log w, \ell, \log m)$

Again $mCBP(w, \ell, m)$ looks like non-uniform $CSPACETIME(\log w, \ell, \log m)$

• $m \cdot w$ nodes in a layer $\leftrightarrow \log m + \log w$ bits in memory

イロト 不得 トイヨト イヨト

э

Again $mCBP(w, \ell, m)$ looks like non-uniform $CSPACETIME(\log w, \ell, \log m)$

- $m \cdot w$ nodes in a layer $\leftrightarrow \log m + \log w$ bits in memory
- ► m sources plus source-sink pairing requirement ↔ resetting log m catalytic memory)

Two interpretations of reducing w and m (non-uniform):

(ロ)、(型)、(E)、(E)、 E) の(()

Two interpretations of reducing w and m (non-uniform):

1) amortized space: reducing the amortized space $(w = (w \cdot m)/m)$ needed to compute f, or the number of copies (m) needed for amortization to help

Two interpretations of reducing w and m (non-uniform):

1) amortized space: reducing the amortized space $(w = (w \cdot m)/m)$ needed to compute f, or the number of copies (m) needed for amortization to help

2) catalytic space: reducing the amount of space $(\log w)$ and catalytic space $(\log m)$ needed to compute f

- ロ ト - 4 回 ト - 4 □

[Potechin'17]: every function f can be computed by an m-catalytic branching program of width 4m and length 4n.

(ロ)、(型)、(E)、(E)、 E) の(()

[Potechin'17]: every function f can be computed by an m-catalytic branching program of width 4m and length 4n.

Counting argument: almost every function f requires branching programs to have either non-amortized width or length $2^{\Omega(n)}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

[Potechin'17]: every function f can be computed by an m-catalytic branching program of width 4m and length 4n.

Counting argument: almost every function f requires branching programs to have either non-amortized width or length $2^{\Omega(n)}$.

In contrast, [Potechin'17] gives (asymptotically) optimal amortized width w = O(1) and length $\ell = O(n)$ simultaneously

[Potechin'17]: every function f can be computed by an m-catalytic branching program of width 4m and length 4n.

Counting argument: almost every function f requires branching programs to have either non-amortized width or length $2^{\Omega(n)}$.

In contrast, [Potechin'17] gives (asymptotically) optimal amortized width w = O(1) and length $\ell = O(n)$ simultaneously

...but we need $m=2^{2^n-1}$ to get it!

Our results

[Potechin'17]: every function f can be computed by an m-catalytic branching program of width 4m and length 4n, where $m = 2^{2^n-1}$.

Our results

[Potechin'17]: every function f can be computed by an m-catalytic branching program of width 4m and length 4n, where $m = 2^{2^n-1}$.

Main result 1: for any $\epsilon > 0$, every function f can be computed by an *m*-catalytic branching program of width 2mand length $O_{\epsilon}(n)$, where $m = 2^{2^{\epsilon n}}$.

Our results (permutation branching programs)

[Potechin'17]': every function f can be computed by a read-4 permutation branching program of width 2^{2^n+1} .

Main result 1': for any $\epsilon > 0$, every function f can be computed by a read- $O_{\epsilon}(1)$ permutation branching program of width $2^{2^{\epsilon n}}$.

[Potechin'17]: every function f can be computed by an m-catalytic branching program of width 4m and length 4n, where $m = 2^{2^n-1}$.

[Potechin'17]: every function f can be computed by an *m*-catalytic branching program of width 4*m* and length 4*n*, where $m = 2^{2^n - 1}$.

Setup: catalytic space log $m = 2^n - 1$ in some initial state $\tau_1 \ldots \tau_{2^n-1}$, plus log 4 = 2 bits of free work space

0) First free bit: $\vec{0}$ entry of g

1) $g(\alpha_1 \ldots \alpha_i \ldots \alpha_n) \rightarrow g(\alpha_1 \ldots \alpha_i^{x_i} \ldots \alpha_n)$

[Potechin'17] in two slides 2) $g(y) \rightarrow g(y) + f(y)$ $(g^{\oplus x} + f)(x) = f(x)$ () \bigcirc \bigcirc (no reads) ▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

3) $g(\alpha_1 \ldots \alpha_i^{x_i} \ldots \alpha_n) \rightarrow g(\alpha_1 \ldots \alpha_i \ldots \alpha_n)$

Sac

4) Second free bit (output): copy the answer from first free bit

SQR

5) Undo steps 1-3 (do steps 3-1)

Truth table representation [Potechin'17]:

$$f(x) = \sum_{\alpha \in \{0,1\}^n} f(\alpha) \cdot [x = \alpha]$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Truth table representation [Potechin'17]:

$$f(x) = \sum_{\alpha \in \{0,1\}^n} f(\alpha) \cdot [x = \alpha]$$

Monomial representation [Cook-Mertz'20,21]:

$$f(x) = \sum_{S \subseteq [n]} f_{mon}(S) \cdot \prod_{i \in S} x_i \mod 2$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Truth table representation [Potechin'17]:

$$f(x) = \sum_{\alpha \in \{0,1\}^n} f(\alpha) \cdot [x = \alpha]$$

Monomial representation [Cook-Mertz'20,21]:

$$f(x) = \sum_{S \subseteq [n]} f_{mon}(S) \cdot \prod_{i \in S} x_i \mod 2$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Catalytic algorithms give us a way to compute f over the monomial basis only using catalytic memory.

Monomial representation [Cook-Mertz'20,21]:

$$f(x) = \sum_{S \subseteq [n]} f_{mon}(S) \cdot \prod_{i \in S} x_i \mod 2$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Two algorithms for monomial rep., different types of efficiency:

Monomial representation [Cook-Mertz'20,21]:

$$f(x) = \sum_{S \subseteq [n]} f_{mon}(S) \cdot \prod_{i \in S} x_i \mod 2$$

Two algorithms for monomial rep., different types of efficiency:

- 1) Potechin algorithm (monomial basis edition)
 - compute each monomial into separate memory in parallel

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

linear time, exponential space

Monomial representation [Cook-Mertz'20,21]:

$$f(x) = \sum_{S \subseteq [n]} f_{mon}(S) \cdot \prod_{i \in S} x_i \mod 2$$

Two algorithms for monomial rep., different types of efficiency:

- 1) Potechin algorithm (monomial basis edition)
 - compute each monomial into separate memory in parallel
 - linear time, exponential space
- 2) Cook-Mertz algorithm (branching program edition)
 - compute each monomial directly into the output register in series

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

exponential time, linear space

Main result 1: for any $\epsilon > 2/n$, every function f can be computed by an *m*-catalytic branching program of width 2mand length $2^{1/\epsilon} \cdot 2\epsilon n$, where $m = 2^{n + \frac{1}{\epsilon} \cdot 2^{\epsilon n}}$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Main result 1: for any $\epsilon > 2/n$, every function f can be computed by an *m*-catalytic branching program of width 2m and length $2^{1/\epsilon} \cdot 2\epsilon n$, where $m = 2^{n + \frac{1}{\epsilon} \cdot 2^{\epsilon n}}$.

Proof idea: use time-efficient algorithm to compute monomials only up to degree ϵn , then use space-efficient algorithm to combine them to get the higher degree monomials.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Main result 1: for any $\epsilon > 2/n$, every function f can be computed by an *m*-catalytic branching program of width 2mand length $2^{1/\epsilon} \cdot 2\epsilon n$, where $m = 2^{n + \frac{1}{\epsilon} \cdot 2^{\epsilon n}}$.

Proof idea: use time-efficient algorithm to compute monomials only up to degree ϵn , then use space-efficient algorithm to combine them to get the higher degree monomials.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

▶ Small monomials: $\binom{n}{<\epsilon n}$ monomials → space $n^{\epsilon n}$

Main result 1: for any $\epsilon > 2/n$, every function f can be computed by an *m*-catalytic branching program of width 2mand length $2^{1/\epsilon} \cdot 2\epsilon n$, where $m = 2^{n+\frac{1}{\epsilon} \cdot 2^{\epsilon n}}$.

Proof idea: use time-efficient algorithm to compute monomials only up to degree ϵn , then use space-efficient algorithm to combine them to get the higher degree monomials.

Small monomials: ⁿ_{≤∈n}) monomials → space n^{∈n}
better: split variables into ¹/_ε groups → space ¹/_ε · 2^{∈n} (+n)

Main result 1: for any $\epsilon > 2/n$, every function f can be computed by an *m*-catalytic branching program of width 2mand length $2^{1/\epsilon} \cdot 2\epsilon n$, where $m = 2^{n+\frac{1}{\epsilon} \cdot 2^{\epsilon n}}$.

Proof idea: use time-efficient algorithm to compute monomials only up to degree ϵn , then use space-efficient algorithm to combine them to get the higher degree monomials.

Small monomials: ⁿ_{≤∈n}) monomials → space n^{∈n}
better: split variables into ¹/_ϵ groups → space ¹/_ϵ · 2^{ϵn} (+n)
Large monomials: degree 1/ϵ → time 2^{1/ϵ} (·2ϵn)

(日)((1))

Main result 1: for any $\epsilon > 2/n$, every function f can be computed by an *m*-catalytic branching program of width 2mand length $2^{1/\epsilon} \cdot 2\epsilon n$, where $m = 2^{n+\frac{1}{\epsilon} \cdot 2^{\epsilon n}}$.

Proof idea: use time-efficient algorithm to compute monomials only up to degree ϵn , then use space-efficient algorithm to combine them to get the higher degree monomials.

Small monomials: ⁿ_{≤εn}) monomials → space n^{εn}
better: split variables into ¹/_ε groups → space ¹/_ε · 2^{εn} (+n)
Large monomials: degree 1/ε → time 2^{1/ε} (·2εn)

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

[Potechin'17]: every function f can be computed by an m-catalytic branching program of width 4m and length 4n, where $m = 2^{2^n-1}$.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

[Potechin'17]: every function f can be computed by an m-catalytic branching program of width 4m and length 4n, where $m = 2^{2^n-1}$.

[Robere-Zuiddam'22]: if f is a degree d polynomial over \mathbb{F}_2 , then f can be computed by an m-catalytic branching program of width 4m and length 4n, where $m = 2^{\binom{n}{\leq d} - 1}$.

[Robere-Zuiddam'22]: if f is a degree d polynomial over \mathbb{F}_2 , then f can be computed by an m-catalytic branching program of width 4m and length 4n, where $m = 2^{\binom{n}{\leq d} - 1}$.

Proof idea (original): for low degree f, the Potechin algorithm has many isomorphic disjoint components based on the symmetries of the polynomial associated with f.

[Robere-Zuiddam'22]: if f is a degree d polynomial over \mathbb{F}_2 , then f can be computed by an m-catalytic branching program of width 4m and length 4n, where $m = 2^{\binom{n}{\leq d} - 1}$.

Proof idea (original): for low degree f, the Potechin algorithm has many isomorphic disjoint components based on the symmetries of the polynomial associated with f.

Proof idea (new): monomial version of Potechin algorithm again, but now only compute monomials which actually appear in $f\left(\binom{n}{\leq d}\right)$ by assumption).

(日)((1))

[Robere-Zuiddam'22]: if f is a degree d polynomial over \mathbb{F}_2 , then f can be computed by an m-catalytic branching program of width 4m and length 4n, where $m = 2^{\binom{n}{\leq d}-1}$.

[Robere-Zuiddam'22]: if f is a degree d polynomial over \mathbb{F}_2 , then f can be computed by an m-catalytic branching program of width 4m and length 4n, where $m = 2^{\binom{n}{\leq d} - 1}$.

Main result 2: for any $\epsilon > 2/d$, if f is a degree d polynomial over \mathbb{F}_2 , then f can be computed by an m-catalytic branching program of of width 2m and length $2^{1/\epsilon} \cdot 2n$, where $m = 2^{n + \frac{1}{\epsilon} \cdot \binom{n}{\leq \epsilon d}}$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

[Robere-Zuiddam'22]: if f is a degree d polynomial over \mathbb{F}_2 , then f can be computed by an m-catalytic branching program of width 4m and length 4n, where $m = 2^{\binom{n}{\leq d}-1}$.

Main result 2: for any $\epsilon > 2/d$, if f is a degree d polynomial over \mathbb{F}_2 , then f can be computed by an m-catalytic branching program of of width 2m and length $2^{1/\epsilon} \cdot 2n$, where $m = 2^{n + \frac{1}{\epsilon} \cdot \binom{n}{\leq \epsilon d}}$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Proof idea: same* time-space tradeoff as before, now with ϵd instead of ϵn .

Saving time

All results are linear time, which is optimal up to a constant factor. But how small can we get the constant?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Saving time

All results are linear time, which is optimal up to a constant factor. But how small can we get the constant?

Main result 3: every f can be computed by an m-catalytic (or even permutation) branching program of length 4n - 4 and width 4m, where $m = 2^{2^n-1}$.

Saving time

All results are linear time, which is optimal up to a constant factor. But how small can we get the constant?

Main result 3: every f can be computed by an m-catalytic (or even permutation) branching program of length 4n - 4 and width 4m, where $m = 2^{2^n-1}$.

Main result 4: any permutation* branching program calculating the AND function which reads any variable less than three times requires length at least 4n - 4.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Open problems

Save on *either* time or space (while keeping other optimal)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

would give better tradeoff algorithm

Open problems

Save on either time or space (while keeping other optimal)

would give better tradeoff algorithm

Show that for some f, m must be at least 2^n to get linear amortized size

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• counting only gives $m \ge 2^n / O(n)$

Open problems

Save on *either* time or space (while keeping other optimal)

would give better tradeoff algorithm

Show that for some f, m must be at least 2^n to get linear amortized size

• counting only gives $m \ge 2^n / O(n)$

Optimal permutation branching program length for any function

- ▶ somewhere between $3n^*$ and 4n 4
- can get a read-3 program for $AND(x_1, x_2, x_3)$