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Space-bounded computation

BP(w , `): layered branching programs of width w and length `
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BP(w , `) looks like SPACETIME (logw , `)

(idea: for a fixed
timestamp, w nodes in a layer ↔ logw bits in memory), but...

SPACETIME is uniform: machine is “easy to describe” for every n

BP is non-uniform: no restrictions on the description
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Space-bounded computation

Every f can be computed by BP(2n−1, n)
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Amortized space-bounded computation
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Amortized space-bounded computation
mCBP(w , `,m): m different branching programs (one source →
two sinks) which can share states
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Amortized space-bounded computation

mCBP(w , `,m): m different branching programs (one input node,
two output nodes) which can share states
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Catalytic computation

CSPACETIME (s, t, c): space-bounded Turing Machines with an
extra worktape (c bits) of full memory
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I m sources plus source-sink pairing requirement ↔ resetting
logm catalytic memory)
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Catalytic computation

Two interpretations of reducing w and m (non-uniform):

1) amortized space: reducing the amortized space
(w = (w ·m)/m) needed to compute f , or the number of copies
(m) needed for amortization to help

2) catalytic space: reducing the amount of space (logw) and
catalytic space (logm) needed to compute f
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Known results

[Potechin’17]: every function f can be computed by an
m-catalytic branching program of width 4m and length 4n.

Counting argument: almost every function f requires branching
programs to have either non-amortized width or length 2Ω(n).

In contrast, [Potechin’17] gives (asymptotically) optimal amortized
width w = O(1) and length ` = O(n) simultaneously

...but we need m = 22
n−1 to get it!
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Our results

[Potechin’17]: every function f can be computed by an
m-catalytic branching program of width 4m and length 4n,
where m = 22n−1.

Main result 1: for any ε > 0, every function f can be
computed by an m-catalytic branching program of width 2m
and length Oε(n), where m = 22εn .
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Our results (permutation branching programs)

[Potechin’17]’: every function f can be computed by a
read-4 permutation branching program of width 22n+1.

Main result 1’: for any ε > 0, every function f can be
computed by a read-Oε(1) permutation branching program of
width 22εn .



[Potechin’17] in one slide

[Potechin’17]: every function f can be computed by an
m-catalytic branching program of width 4m and length 4n,
where m = 22n−1.

Setup: catalytic space logm = 2n − 1 in some initial state
τ1 . . . τ2n−1, plus log 4 = 2 bits of free work space
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f (x) = 0

f (x) = 1
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[Potechin’17] in two slides

0) First free bit: ~0 entry of g
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[Potechin’17] in two slides
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[Potechin’17] in two slides
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[Potechin’17] in two slides
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[Potechin’17] in two slides

4) Second free bit (output): copy the answer from first free bit
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[Potechin’17] in two slides

5) Undo steps 1-3 (do steps 3-1)
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Trading time and space

Truth table representation [Potechin’17]:

f (x) =
∑

α∈{0,1}n
f (α) · [x = α]

Monomial representation [Cook-Mertz’20,21]:

f (x) =
∑
S⊆[n]

fmon(S) ·
∏
i∈S

xi mod 2

Catalytic algorithms give us a way to compute f over the
monomial basis only using catalytic memory.
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Trading time and space

Monomial representation [Cook-Mertz’20,21]:

f (x) =
∑
S⊆[n]

fmon(S) ·
∏
i∈S

xi mod 2

Two algorithms for monomial rep., different types of efficiency:

1) Potechin algorithm (monomial basis edition)

I compute each monomial into separate memory in parallel

I linear time, exponential space

2) Cook-Mertz algorithm (branching program edition)

I compute each monomial directly into the output register in
series

I exponential time, linear space
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Trading time and space

Main result 1: for any ε > 2/n, every function f can be
computed by an m-catalytic branching program of width 2m

and length 21/ε · 2εn, where m = 2n+ 1
ε
·2εn .

Proof idea: use time-efficient algorithm to compute monomials
only up to degree εn, then use space-efficient algorithm to combine
them to get the higher degree monomials.

I Small monomials:
( n
≤εn
)

monomials → space nεn

I better: split variables into 1
ε groups → space 1

ε · 2
εn (+n)

I Large monomials: degree 1/ε → time 21/ε (·2εn)
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Extending to easier functions

[Potechin’17]: every function f can be computed by an
m-catalytic branching program of width 4m and length 4n,
where m = 22n−1.

[Robere-Zuiddam’22]: if f is a degree d polynomial over F2,
then f can be computed by an m-catalytic branching

program of width 4m and length 4n, where m = 2( n
≤d)−1.
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program of width 4m and length 4n, where m = 2( n
≤d)−1.

Proof idea (original): for low degree f , the Potechin algorithm has
many isomorphic disjoint components based on the symmetries of
the polynomial associated with f .

Proof idea (new): monomial version of Potechin algorithm again,
but now only compute monomials which actually appear in f (

( n
≤d
)

by assumption).
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Proof idea: same* time-space tradeoff as before, now with εd
instead of εn.
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Saving time

All results are linear time, which is optimal up to a constant factor.
But how small can we get the constant?

Main result 3: every f can be computed by an m-catalytic
(or even permutation) branching program of length 4n − 4
and width 4m, where m = 22n−1.

Main result 4: any permutation* branching program
calculating the AND function which reads any variable less
than three times requires length at least 4n − 4.
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and width 4m, where m = 22n−1.

Main result 4: any permutation* branching program
calculating the AND function which reads any variable less
than three times requires length at least 4n − 4.



Open problems

Save on either time or space (while keeping other optimal)

I would give better tradeoff algorithm

Show that for some f , m must be at least 2n to get linear
amortized size

I counting only gives m ≥ 2n/O(n)

Optimal permutation branching program length for any function

I somewhere between 3n* and 4n − 4

I can get a read-3 program for AND(x1, x2, x3)
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