Trading Time and Space in Catalytic Branching Programs

Ian Mertz

University of Toronto

July 23, 2022

Joint work with James Cook
Space-bounded computation

$BP(w, \ell)$: layered branching programs of width w and length ℓ
Space-bounded computation

\[\text{BP}(w, \ell) \text{ looks like } \text{SPACETIME}(\log w, \ell) \]
Space-bounded computation

$BP(w, \ell)$ looks like $SPACETIME(\log w, \ell)$ (idea: for a fixed timestamp, w nodes in a layer \leftrightarrow log w bits in memory)
Space-bounded computation

$BP(w, \ell)$ looks like $SPACETIME(\log w, \ell)$ (idea: for a fixed timestamp, w nodes in a layer \leftrightarrow log w bits in memory), but...

$SPACETIME$ is uniform: machine is “easy to describe” for every n
Space-bounded computation

$BP(w, \ell)$ looks like $SPACETIME(\log w, \ell)$ (idea: for a fixed timestamp, w nodes in a layer $\leftrightarrow \log w$ bits in memory), but...

$SPACETIME$ is *uniform*: machine is “easy to describe” for every n

BP is *non-uniform*: no restrictions on the description
Space-bounded computation

Every f can be computed by $BP(2^{n-1}, n)$
Every f can be computed by $BP(2^{n-1}, n)$
Amortized space-bounded computation
Amortized space-bounded computation
Amortized space-bounded computation

\(mCBP(w, \ell, m) \): \(m \) different branching programs (one source \(\rightarrow \) two sinks) which can share states
Amortized space-bounded computation

$mCBP(w, \ell, m)$: m different branching programs (one input node, two output nodes) which can share states

\[
\begin{align*}
1 & \quad \cdots \quad (1,0) \\
2 & \quad \cdots \quad (1,1) \\
\vdots & \quad \cdots \\
i & \quad f(x) = 0 \quad (i,0) \\
\vdots & \quad f(x) = 1 \quad (i,1) \\
m & \quad \cdots \quad (m,1)
\end{align*}
\]
Amortized space-bounded computation

\(mCBP(w, \ell, m) \): \(m \) different branching programs (one source → two sinks) which can share states
Catalytic computation

\(CSPACETIME(s, t, c) \): space-bounded Turing Machines with an extra worktape (\(c \) bits) of full memory

\[
\begin{array}{cccccc}
\chi_1 & \chi_2 & \cdots & \chi_n & \\hline \\
\text{input tape} & \text{output}
\end{array}
\]

\[
\begin{array}{ccc}
\hline \\
\text{work tape} & \cdots & \\
\hline
\end{array}
\]

catalytic tape

\[
\begin{array}{cccccc}
0 & 1 & 1 & \cdots & 0 & 1
\end{array}
\]
Catalytic computation

\textbf{CSPACETIME}(s, t, c): space-bounded Turing Machines with an extra worktape (c bits) of full memory
Catalytic computation

$CSPACETIME(s, t, c)$: space-bounded Turing Machines with an extra worktape (c bits) of full memory

\[
\begin{array}{cccc}
\chi_1 & x_2 & \cdots & x_n \\
\text{input tape} & & & \\
\hline
\text{work tape} & & & \\
0 & 1 & 1 & \cdots & 0 & 1 \\
\text{catalytic tape} & & & \\
\end{array}
\]

\[f \]

output
Catalytic computation

Again $m \text{CBP}(w, \ell, m)$ looks like non-uniform $\text{CSPACETIME}(\log w, \ell, \log m)$
Catalytic computation

Again $m \text{CBP}(w, \ell, m)$ looks like non-uniform $\text{CSPACETIME}(\log w, \ell, \log m)$

$m \cdot w$ nodes in a layer $\leftrightarrow \log m + \log w$ bits in memory
Catalytic computation

Again $m\text{CBP}(w, \ell, m)$ looks like non-uniform $\text{CSPACETIME}(\log w, \ell, \log m)$

- $m \cdot w$ nodes in a layer $\leftrightarrow \log m + \log w$ bits in memory
- m sources plus source-sink pairing requirement \leftrightarrow resetting $\log m$ catalytic memory)
Catalytic computation

Two interpretations of reducing w and m (non-uniform):

1) amortized space: reducing the amortized space ($w = (w \cdot m) / m$) needed to compute f, or the number of copies (m) needed for amortization to help

2) catalytic space: reducing the amount of space ($\log w$) and catalytic space ($\log m$) needed to compute f
Catalytic computation

Two interpretations of reducing w and m (non-uniform):

1) *amortized space*: reducing the amortized space
\[(w = (w \cdot m)/m)\] needed to compute f, or the number of copies
(m) needed for amortization to help
Catalytic computation

Two interpretations of reducing w and m (non-uniform):

1) *amortized space*: reducing the amortized space $(w = (w \cdot m)/m)$ needed to compute f, or the number of copies (m) needed for amortization to help

2) *catalytic space*: reducing the amount of space ($\log w$) and catalytic space ($\log m$) needed to compute f
Known results

[Potchin’17]: every function f can be computed by an m-catalytic branching program of width $4m$ and length $4n$.

Counting argument: almost every function f requires branching programs to have either non-amortized width or length $2\Omega(n)$. In contrast, [Potchin’17] gives (asymptotically) optimal amortized width $w = O(1)$ and length $\ell = O(n)$ simultaneously...but we need $m = 2^{2n-1}$ to get it!
[Potechin’17]: every function f can be computed by an m-catalytic branching program of width $4m$ and length $4n$.

Counting argument: almost every function f requires branching programs to have either non-amortized width or length $2^{\Omega(n)}$.
Known results

[Potechin’17]: every function f can be computed by an m-catalytic branching program of width $4m$ and length $4n$.

Counting argument: almost every function f requires branching programs to have either non-amortized width or length $2^\Omega(n)$.

In contrast, [Potechin’17] gives (asymptotically) optimal amortized width $w = O(1)$ and length $\ell = O(n)$ simultaneously.
[Potechin’17]: every function f can be computed by an m-catalytic branching program of width $4m$ and length $4n$.

Counting argument: almost every function f requires branching programs to have either non-amortized width or length $2^{\Omega(n)}$.

In contrast, [Potechin’17] gives (asymptotically) optimal amortized width $w = O(1)$ and length $\ell = O(n)$ simultaneously.

...but we need $m = 2^{2^n-1}$ to get it!
Our results

[Potechin’17]: every function f can be computed by an m-catalytic branching program of width $4m$ and length $4n$, where $m = 2^{2^m-1}$.
Our results

[Potechin’17]: every function f can be computed by an m-catalytic branching program of width $4m$ and length $4n$, where $m = 2^{2^n-1}$.

Main result 1: for any $\epsilon > 0$, every function f can be computed by an m-catalytic branching program of width $2m$ and length $O_\epsilon(n)$, where $m = 2^{2^\epsilon n}$.

[Potechin’17]’: every function \(f \) can be computed by a read-4 permutation branching program of width \(2^{2n+1} \).

Main result 1’: for any \(\epsilon > 0 \), every function \(f \) can be computed by a read-\(O_\epsilon(1) \) permutation branching program of width \(2^{2\epsilon n} \).
[Potechin’17]: every function f can be computed by an m-catalytic branching program of width $4m$ and length $4n$, where $m = 2^{2^n-1}$.

Setup: catalytic space $\log m = 2^{2^n-1}$ in some initial state $\tau_1 \ldots \tau_{2^n-1}$, plus $\log 4 = 2$ bits of free work space $(00 \ldots 0)$, $(00 \ldots 1)$, \ldots, $((\tau_1 \tau_2 \ldots \tau_{2^n-1}), 0)$, $((\tau_1 \tau_2 \ldots \tau_{2^n-1}), 1)$, \ldots, $((11 \ldots 1), 1)$.
[Potechin’17]: every function f can be computed by an m-catalytic branching program of width $4m$ and length $4n$, where $m = 2^{2^n-1}$.

Setup: catalytic space $\log m = 2^n - 1$ in some initial state $\tau_1 \ldots \tau_{2^n-1}$, plus $\log 4 = 2$ bits of free work space

\[
\begin{align*}
(00 \ldots 0) & \quad (00 \ldots 0), 0 \\
(00 \ldots 1) & \quad (00 \ldots 1), 0 \\
\vdots & \quad \vdots \\
(\tau_1 \tau_2 \ldots \tau_{2^n-1}) & \quad f(x) = 0 \\
\vdots & \quad \vdots \\
(11 \ldots 1) & \quad (11 \ldots 1), 1
\end{align*}
\]
0) First free bit: $\vec{0}$ entry of g

$g(0) = 0$
1) \(g(\alpha_1 \ldots \alpha_i \ldots \alpha_n) \rightarrow g(\alpha_1 \ldots \alpha_i^{x_i} \ldots \alpha_n) \)

\[g^{\oplus x}(x) = 0 \]

\(x_1 \ldots x_n \)
Potechin'17 in two slides

2) \(g(y) \rightarrow g(y) + f(y) \)

\[
(g^{\oplus x} + f)(x) = f(x)
\]

(no reads)
3) $g(\alpha_1 \ldots \alpha_i^x \ldots \alpha_n) \rightarrow g(\alpha_1 \ldots \alpha_i \ldots \alpha_n)$

$$(g \oplus_t + f) \oplus_t (0) = f(x)$$
4) Second free bit (output): copy the answer from first free bit

\[(g \oplus x + f) \oplus x(0) = f(x)\]
5) Undo steps 1-3 (do steps 3-1)

\[f(x) = 1 \quad f(x) = 0 \]

\[g(0) = 0 \]
Trading time and space

Truth table representation [Potechin’17]:

\[
f(x) = \sum_{\alpha \in \{0,1\}^n} f(\alpha) \cdot [x = \alpha]
\]
Trading time and space

Truth table representation [Potechin’17]:

\[f(x) = \sum_{\alpha \in \{0,1\}^n} f(\alpha) \cdot [x = \alpha] \]

Monomial representation [Cook-Mertz’20,21]:

\[f(x) = \sum_{S \subseteq [n]} f_{\text{mon}}(S) \cdot \prod_{i \in S} x_i \mod 2 \]
Trading time and space

Truth table representation [Potechin’17]:

\[f(x) = \sum_{\alpha \in \{0,1\}^n} f(\alpha) \cdot [x = \alpha] \]

Monomial representation [Cook-Mertz’20,21]:

\[f(x) = \sum_{S \subseteq [n]} f_{mon}(S) \cdot \prod_{i \in S} x_i \mod 2 \]

Catalytic algorithms give us a way to compute \(f \) over the monomial basis only using catalytic memory.
Trading time and space

Monomial representation [Cook-Mertz’20,21]:

\[f(x) = \sum_{S \subseteq [n]} f_{mon}(S) \cdot \prod_{i \in S} x_i \mod 2 \]

Two algorithms for monomial rep., different types of efficiency:
Trading time and space

Monomial representation [Cook-Mertz’20,21]:

\[
 f(x) = \sum_{S \subseteq [n]} f_{\text{mon}}(S) \cdot \prod_{i \in S} x_i \quad \text{mod 2}
\]

Two algorithms for monomial rep., different types of efficiency:

1) *Potechin algorithm (monomial basis edition)*

 - compute each monomial into separate memory in parallel
 - linear time, exponential space
Trading time and space

Monomial representation [Cook-Mertz’20,21]:

\[f(x) = \sum_{S \subseteq [n]} f_{\text{mon}}(S) \cdot \prod_{i \in S} x_i \mod 2 \]

Two algorithms for monomial rep., different types of efficiency:

1) *Potechin algorithm (monomial basis edition)*
 - compute each monomial into separate memory in parallel
 - linear time, exponential space

2) *Cook-Mertz algorithm (branching program edition)*
 - compute each monomial directly into the output register in series
 - exponential time, linear space
Trading time and space

Main result 1: for any $\epsilon > 2/n$, every function f can be computed by an m-catalytic branching program of width $2m$ and length $2^{1/\epsilon} \cdot 2\epsilon n$, where $m = 2^{n + \frac{1}{\epsilon} \cdot 2^{\epsilon n}}$.

Proof idea: use time-efficient algorithm to compute monomials only up to degree ϵn, then use space-efficient algorithm to combine them to get the higher degree monomials.

Small monomials: $(n \leq \epsilon n)$ monomials \rightarrow space $n \epsilon n$ better: split variables into $1/\epsilon$ groups \rightarrow space $1/\epsilon \cdot 2^{\epsilon n}$ ($+ n$)

Large monomials: degree $1/\epsilon$ \rightarrow time $2^{1/\epsilon} \cdot 2^{\epsilon n}$.
Main result 1: for any $\epsilon > 2/n$, every function f can be computed by an m-catalytic branching program of width $2m$ and length $2^{1/\epsilon} \cdot 2\epsilon n$, where $m = 2^{n + 1/\epsilon \cdot 2\epsilon n}$.

Proof idea: use time-efficient algorithm to compute monomials only up to degree ϵn, then use space-efficient algorithm to combine them to get the higher degree monomials.
Trading time and space

Main result 1: for any $\epsilon > 2/n$, every function f can be computed by an m-catalytic branching program of width $2m$ and length $2^{1/\epsilon} \cdot 2\epsilon n$, where $m = 2^{n + \frac{1}{\epsilon} \cdot 2\epsilon n}$.

Proof idea: use time-efficient algorithm to compute monomials only up to degree ϵn, then use space-efficient algorithm to combine them to get the higher degree monomials.

- Small monomials: $\left(\sum_{\leq \epsilon n} \right)$ monomials \rightarrow space $n^{\epsilon n}$
Main result 1: for any $\epsilon > 2/n$, every function f can be computed by an m-catalytic branching program of width $2m$ and length $2^{1/\epsilon} \cdot 2\epsilon n$, where $m = 2^{n+\frac{1}{\epsilon} \cdot 2\epsilon n}$.

Proof idea: use time-efficient algorithm to compute monomials only up to degree ϵn, then use space-efficient algorithm to combine them to get the higher degree monomials.

- Small monomials: $\binom{n}{\leq \epsilon n}$ monomials \rightarrow space $n^{\epsilon n}$
 - better: split variables into $\frac{1}{\epsilon}$ groups \rightarrow space $\frac{1}{\epsilon} \cdot 2^{\epsilon n} (\pm n)$
Main result 1: for any $\epsilon > 2/n$, every function f can be computed by an m-catalytic branching program of width $2m$ and length $2^{1/\epsilon} \cdot 2\epsilon n$, where $m = 2^{n+\frac{1}{\epsilon} \cdot 2\epsilon n}$.

Proof idea: use time-efficient algorithm to compute monomials only up to degree ϵn, then use space-efficient algorithm to combine them to get the higher degree monomials.

- Small monomials: $\binom{n}{\leq \epsilon n}$ monomials \rightarrow space $n^\epsilon n$
 - better: split variables into $\frac{1}{\epsilon}$ groups \rightarrow space $\frac{1}{\epsilon} \cdot 2^{\epsilon n} (+n)$
- Large monomials: degree $1/\epsilon \rightarrow$ time $2^{1/\epsilon} \cdot 2\epsilon n$
Trading time and space

Main result 1: for any $\epsilon > 2/n$, every function f can be computed by an m-catalytic branching program of width $2m$ and length $2^{1/\epsilon} \cdot 2\epsilon n$, where $m = 2^{n+\frac{1}{\epsilon} \cdot 2\epsilon n}$.

Proof idea: use time-efficient algorithm to compute monomials only up to degree ϵn, then use space-efficient algorithm to combine them to get the higher degree monomials.

- Small monomials: $\left(\binom{n}{\leq \epsilon n}\right)$ monomials \rightarrow space $n^{\epsilon n}$
 - better: split variables into $\frac{1}{\epsilon}$ groups \rightarrow space $\frac{1}{\epsilon} \cdot 2^{\epsilon n} (+n)$
- Large monomials: degree $1/\epsilon$ \rightarrow time $2^{1/\epsilon} \cdot (2\epsilon n)$
Extending to easier functions

[Potechin’17]: every function \(f \) can be computed by an \(m \)-catalytic branching program of width \(4m \) and length \(4n \), where \(m = 2^{2^n - 1} \).
Extending to easier functions

[Potechin’17]: every function f can be computed by an m-catalytic branching program of width $4m$ and length $4n$, where $m = 2^{2n-1}$.

[Robere-Zuiddam’22]: if f is a degree d polynomial over \mathbb{F}_2, then f can be computed by an m-catalytic branching program of width $4m$ and length $4n$, where $m = 2^{(\leq d)-1}$.
[Robere-Zuiddam’22]: if f is a degree d polynomial over \mathbb{F}_2, then f can be computed by an m-catalytic branching program of width $4m$ and length $4n$, where $m = 2^{(\leq d)-1}$.

Proof idea (original): for low degree f, the Potechin algorithm has many isomorphic disjoint components based on the symmetries of the polynomial associated with f.
Extending to easier functions

[Robere-Zuiddam’22]: if f is a degree d polynomial over \mathbb{F}_2, then f can be computed by an m-catalytic branching program of width $4m$ and length $4n$, where $m = 2^{(\leq d)} - 1$.

Proof idea (original): for low degree f, the Potechin algorithm has many isomorphic disjoint components based on the symmetries of the polynomial associated with f.

Proof idea (new): monomial version of Potechin algorithm again, but now only compute monomials which actually appear in f $\left(\binom{n}{\leq d}\right)$ by assumption.
Extending to easier functions

[Robere-Zuiddam’22]: if f is a degree d polynomial over \mathbb{F}_2, then f can be computed by an m-catalytic branching program of width $4m$ and length $4n$, where $m = 2^{\left(\frac{n}{d}\right)-1}$.

Main result 2: for any $\epsilon > \frac{2}{d}$, if f is a degree d polynomial over \mathbb{F}_2, then f can be computed by an m-catalytic branching program of width 2^m and length $2^{\frac{1}{\epsilon} \cdot 2n}$, where $m = 2^{n+1} \cdot \epsilon \cdot \left(\frac{n}{\epsilon d}\right)$.

Proof idea: same time-space tradeoff as before, now with ϵ instead of ϵn.
Extending to easier functions

[Robere-Zuiddam’22]: if \(f \) is a degree \(d \) polynomial over \(\mathbb{F}_2 \), then \(f \) can be computed by an \(m \)-catalytic branching program of width \(4m \) and length \(4n \), where \(m = 2^{<d}-1 \).

Main result 2: for any \(\epsilon > 2/d \), if \(f \) is a degree \(d \) polynomial over \(\mathbb{F}_2 \), then \(f \) can be computed by an \(m \)-catalytic branching program of width \(2m \) and length \(2^{1/\epsilon} \cdot 2n \), where \(m = 2^{n+1/\epsilon} \cdot (n^{<d}) \).
Extending to easier functions

[Robere-Zuiddam’22]: if f is a degree d polynomial over \mathbb{F}_2, then f can be computed by an m-catalytic branching program of width $4m$ and length $4n$, where $m = 2^{\left\lfloor \frac{n}{d} \right\rfloor - 1}$.

Main result 2: for any $\epsilon > 2/d$, if f is a degree d polynomial over \mathbb{F}_2, then f can be computed by an m-catalytic branching program of width $2m$ and length $2^{\frac{1}{\epsilon}} \cdot 2n$, where $m = 2^{n + \frac{1}{\epsilon} \cdot \left\lfloor \frac{n}{\epsilon d} \right\rfloor}$.

Proof idea: same* time-space tradeoff as before, now with ϵd instead of ϵn.

*
Saving time

All results are linear time, which is optimal up to a constant factor. But how small can we get the constant?
All results are linear time, which is optimal up to a constant factor. But how small can we get the constant?

Main result 3: every f can be computed by an m-catalytic (or even permutation) branching program of length $4n - 4$ and width $4m$, where $m = 2^{2^n-1}$.
All results are linear time, which is optimal up to a constant factor. But how small can we get the constant?

Main result 3: every f can be computed by an m-catalytic (or even permutation) branching program of length $4n - 4$ and width $4m$, where $m = 2^{2^n - 1}$.

Main result 4: any permutation* branching program calculating the AND function which reads any variable less than three times requires length at least $4n - 4$.

Open problems

Save on *either* time or space (while keeping other optimal)
▶ would give better tradeoff algorithm
Open problems

Save on either time or space (while keeping other optimal)
 ▶ would give better tradeoff algorithm

Show that for some f, m must be at least 2^n to get linear amortized size
 ▶ counting only gives $m \geq 2^n/O(n)$
Open problems

Save on *either* time or space (while keeping other optimal)
 ▶ would give better tradeoff algorithm

Show that for some f, m must be at least 2^n to get linear amortized size
 ▶ counting only gives $m \geq 2^n/O(n)$

Optimal permutation branching program length for any function
 ▶ somewhere between $3n^*$ and $4n - 4$
 ▶ can get a read-3 program for $AND(x_1, x_2, x_3)$