Trading Time and Space in Catalytic Branching Programs

Ian Mertz

University of Toronto
July 23, 2022

Joint work with James Cook

Space-bounded computation

$B P(w, \ell)$: layered branching programs of width w and length ℓ

Space-bounded computation

$B P(w, \ell)$ looks like SPACETIME $(\log w, \ell)$

Space-bounded computation

$B P(w, \ell)$ looks like SPACETIME $(\log w, \ell)$ (idea: for a fixed timestamp, w nodes in a layer $\leftrightarrow \log w$ bits in memory)

Space-bounded computation

$B P(w, \ell)$ looks like SPACETIME $(\log w, \ell)$ (idea: for a fixed timestamp, w nodes in a layer $\leftrightarrow \log w$ bits in memory), but...

SPACETIME is uniform: machine is "easy to describe" for every n

Space-bounded computation

$B P(w, \ell)$ looks like SPACETIME $(\log w, \ell)$ (idea: for a fixed timestamp, w nodes in a layer $\leftrightarrow \log w$ bits in memory), but...

SPACETIME is uniform: machine is "easy to describe" for every n
$B P$ is non-uniform: no restrictions on the description

Space-bounded computation

Every f can be computed by $B P\left(2^{n-1}, n\right)$

Space-bounded computation

Every f can be computed by $B P\left(2^{n-1}, n\right)$

Amortized space-bounded computation

Amortized space-bounded computation

Amortized space-bounded computation

$m C B P(w, \ell, m): m$ different branching programs (one source \rightarrow two sinks) which can share states

Amortized space-bounded computation

$m C B P(w, \ell, m): m$ different branching programs (one input node, two output nodes) which can share states

		$(1,0)$
1		$(1,1)$
2		$(2,0)$
i	$f(x)=0$	$(i, 0)$
	$f(x)=1$	$(i, 1)$
m		

Amortized space-bounded computation

$m C B P(w, \ell, m): m$ different branching programs (one source \rightarrow two sinks) which can share states

Catalytic computation

$\operatorname{CSPACETIME}(s, t, c)$: space-bounded Turing Machines with an extra worktape (c bits) of full memory

work tape

catalytic tape

0	1	1	\cdots	0	1

Catalytic computation

$\operatorname{CSPACETIME}(s, t, c)$: space-bounded Turing Machines with an extra worktape (c bits) of full memory

work tape

1	1	0	\cdots	1

catalytic tape

1	0	1	\cdots	0	0

Catalytic computation

$\operatorname{CSPACETIME}(s, t, c)$: space-bounded Turing Machines with an extra worktape (c bits) of full memory

work tape

catalytic tape

0	1	1	\cdots	0	1

Catalytic computation

Again $m C B P(w, \ell, m)$ looks like non-uniform
CSPACETIME $(\log w, \ell, \log m)$

Catalytic computation

Again $m C B P(w, \ell, m)$ looks like non-uniform
CSPACETIME $(\log w, \ell, \log m)$

- $m \cdot w$ nodes in a layer $\leftrightarrow \log m+\log w$ bits in memory

Catalytic computation

Again $m C B P(w, \ell, m)$ looks like non-uniform
CSPACETIME $(\log w, \ell, \log m)$

- $m \cdot w$ nodes in a layer $\leftrightarrow \log m+\log w$ bits in memory
- m sources plus source-sink pairing requirement \leftrightarrow resetting $\log m$ catalytic memory)

Catalytic computation

Two interpretations of reducing w and m (non-uniform):

Catalytic computation

Two interpretations of reducing w and m (non-uniform):

1) amortized space: reducing the amortized space ($w=(w \cdot m) / m$) needed to compute f, or the number of copies (m) needed for amortization to help

Catalytic computation

Two interpretations of reducing w and m (non-uniform):

1) amortized space: reducing the amortized space ($w=(w \cdot m) / m$) needed to compute f, or the number of copies (m) needed for amortization to help
2) catalytic space: reducing the amount of space ($\log w$) and catalytic space $(\log m)$ needed to compute f

Known results

[Potechin'17]: every function f can be computed by an m-catalytic branching program of width $4 m$ and length $4 n$.

Known results

[Potechin'17]: every function f can be computed by an m-catalytic branching program of width $4 m$ and length $4 n$.

Counting argument: almost every function f requires branching programs to have either non-amortized width or length $2^{\Omega(n)}$.

Known results

[Potechin'17]: every function f can be computed by an m-catalytic branching program of width $4 m$ and length $4 n$.

Counting argument: almost every function f requires branching programs to have either non-amortized width or length $2^{\Omega(n)}$.

In contrast, [Potechin'17] gives (asymptotically) optimal amortized width $w=O(1)$ and length $\ell=O(n)$ simultaneously

Known results

[Potechin'17]: every function f can be computed by an m-catalytic branching program of width $4 m$ and length $4 n$.

Counting argument: almost every function f requires branching programs to have either non-amortized width or length $2^{\Omega(n)}$.

In contrast, [Potechin'17] gives (asymptotically) optimal amortized width $w=O(1)$ and length $\ell=O(n)$ simultaneously
...but we need $\mathbf{m}=\mathbf{2}^{\mathbf{2}^{\mathbf{n}}-\mathbf{1}}$ to get it!

Our results

[Potechin'17]: every function f can be computed by an m-catalytic branching program of width $4 m$ and length $4 n$, where $m=2^{2^{n}-1}$.

Our results

[Potechin'17]: every function f can be computed by an m-catalytic branching program of width $4 m$ and length $4 n$, where $m=2^{2^{n}-1}$.

Main result 1: for any $\epsilon>0$, every function f can be computed by an m-catalytic branching program of width $2 m$ and length $O_{\epsilon}(n)$, where $m=2^{2^{\epsilon n}}$.

Our results (permutation branching programs)

[Potechin'17]': every function f can be computed by a read-4 permutation branching program of width $2^{2^{n}+1}$.

Main result 1': for any $\epsilon>0$, every function f can be computed by a read $-O_{\epsilon}(1)$ permutation branching program of width $2^{2^{\epsilon n}}$.

[Potechin'17] in one slide

[Potechin'17]: every function f can be computed by an m-catalytic branching program of width $4 m$ and length $4 n$, where $m=2^{2^{n}-1}$.

[Potechin'17] in one slide

[Potechin'17]: every function f can be computed by an m-catalytic branching program of width $4 m$ and length $4 n$, where $m=2^{2^{n}-1}$.

Setup: catalytic space $\log m=2^{n}-1$ in some initial state $\tau_{1} \ldots \tau_{2^{n}-1}$, plus $\log 4=2$ bits of free work space

$(11 \ldots 1) \bigcirc$
$\bigcirc((11 \ldots 1), 1)$
[Potechin'17] in two slides
0) First free bit: $\overrightarrow{0}$ entry of g

[Potechin'17] in two slides

1) $g\left(\alpha_{1} \ldots \alpha_{i} \ldots \alpha_{n}\right) \rightarrow g\left(\alpha_{1} \ldots \alpha_{i}^{x_{i}} \ldots \alpha_{n}\right)$

[Potechin'17] in two slides

2) $g(y) \rightarrow g(y)+f(y)$

[Potechin'17] in two slides

3) $g\left(\alpha_{1} \ldots \alpha_{i}^{x_{i}} \ldots \alpha_{n}\right) \rightarrow g\left(\alpha_{1} \ldots \alpha_{i} \ldots \alpha_{n}\right)$

[Potechin'17] in two slides

4) Second free bit (output): copy the answer from first free bit

[Potechin'17] in two slides

5) Undo steps 1-3 (do steps 3-1)

Trading time and space

Truth table representation [Potechin'17]:

$$
f(x)=\sum_{\alpha \in\{0,1\}^{n}} f(\alpha) \cdot[x=\alpha]
$$

Trading time and space

Truth table representation [Potechin'17]:

$$
f(x)=\sum_{\alpha \in\{0,1\}^{n}} f(\alpha) \cdot[x=\alpha]
$$

Monomial representation [Cook-Mertz'20,21]:

$$
f(x)=\sum_{S \subseteq[n]} f_{\operatorname{mon}}(S) \cdot \prod_{i \in S} x_{i} \bmod 2
$$

Trading time and space

Truth table representation [Potechin'17]:

$$
f(x)=\sum_{\alpha \in\{0,1\}^{n}} f(\alpha) \cdot[x=\alpha]
$$

Monomial representation [Cook-Mertz'20,21]:

$$
f(x)=\sum_{S \subseteq[n]} f_{\operatorname{mon}}(S) \cdot \prod_{i \in S} x_{i} \quad \bmod 2
$$

Catalytic algorithms give us a way to compute f over the monomial basis only using catalytic memory.

Trading time and space

Monomial representation [Cook-Mertz'20,21]:

$$
f(x)=\sum_{S \subseteq[n]} f_{\operatorname{mon}}(S) \cdot \prod_{i \in S} x_{i} \bmod 2
$$

Two algorithms for monomial rep., different types of efficiency:

Trading time and space

Monomial representation [Cook-Mertz'20,21]:

$$
f(x)=\sum_{S \subseteq[n]} f_{\operatorname{mon}}(S) \cdot \prod_{i \in S} x_{i} \quad \bmod 2
$$

Two algorithms for monomial rep., different types of efficiency:

1) Potechin algorithm (monomial basis edition)

- compute each monomial into separate memory in parallel
- linear time, exponential space

Trading time and space

Monomial representation [Cook-Mertz'20,21]:

$$
f(x)=\sum_{S \subseteq[n]} f_{\operatorname{mon}}(S) \cdot \prod_{i \in S} x_{i} \quad \bmod 2
$$

Two algorithms for monomial rep., different types of efficiency:

1) Potechin algorithm (monomial basis edition)

- compute each monomial into separate memory in parallel
- linear time, exponential space

2) Cook-Mertz algorithm (branching program edition)

- compute each monomial directly into the output register in series
- exponential time, linear space

Trading time and space

Main result 1: for any $\epsilon>2 / n$, every function f can be computed by an m-catalytic branching program of width $2 m$ and length $2^{1 / \epsilon} \cdot 2 \epsilon n$, where $m=2^{n+\frac{1}{\epsilon} \cdot 2^{\epsilon n}}$.

Trading time and space

Main result 1: for any $\epsilon>2 / n$, every function f can be computed by an m-catalytic branching program of width $2 m$ and length $2^{1 / \epsilon} \cdot 2 \epsilon n$, where $m=2^{n+\frac{1}{\epsilon} \cdot 2^{\epsilon n}}$.

Proof idea: use time-efficient algorithm to compute monomials only up to degree ϵn, then use space-efficient algorithm to combine them to get the higher degree monomials.

Trading time and space

Main result 1: for any $\epsilon>2 / n$, every function f can be computed by an m-catalytic branching program of width $2 m$ and length $2^{1 / \epsilon} \cdot 2 \epsilon n$, where $m=2^{n+\frac{1}{\epsilon} \cdot 2^{\epsilon n}}$.

Proof idea: use time-efficient algorithm to compute monomials only up to degree ϵn, then use space-efficient algorithm to combine them to get the higher degree monomials.

- Small monomials: $\binom{n}{\leq \epsilon n}$ monomials \rightarrow space $n^{\epsilon n}$

Trading time and space

Main result 1: for any $\epsilon>2 / n$, every function f can be computed by an m-catalytic branching program of width $2 m$ and length $2^{1 / \epsilon} \cdot 2 \epsilon n$, where $m=2^{n+\frac{1}{\epsilon} \cdot 2^{\epsilon n}}$.

Proof idea: use time-efficient algorithm to compute monomials only up to degree ϵn, then use space-efficient algorithm to combine them to get the higher degree monomials.

- Small monomials: $\binom{n}{\leq \epsilon n}$ monomials \rightarrow space $n^{\epsilon n}$
- better: split variables into $\frac{1}{\epsilon}$ groups \rightarrow space $\frac{1}{\epsilon} \cdot 2^{\epsilon n}(+n)$

Trading time and space

Main result 1: for any $\epsilon>2 / n$, every function f can be computed by an m-catalytic branching program of width $2 m$ and length $2^{1 / \epsilon} \cdot 2 \epsilon n$, where $m=2^{n+\frac{1}{\epsilon} \cdot 2^{\epsilon n}}$.

Proof idea: use time-efficient algorithm to compute monomials only up to degree ϵn, then use space-efficient algorithm to combine them to get the higher degree monomials.

- Small monomials: $\binom{n}{\leq \epsilon n}$ monomials \rightarrow space $n^{\epsilon n}$
- better: split variables into $\frac{1}{\epsilon}$ groups \rightarrow space $\frac{1}{\epsilon} \cdot 2^{\epsilon n}(+n)$
- Large monomials: degree $1 / \epsilon \rightarrow$ time $2^{1 / \epsilon}(\cdot 2 \epsilon n)$

Trading time and space

Main result 1: for any $\epsilon>2 / n$, every function f can be computed by an m-catalytic branching program of width $2 m$ and length $2^{1 / \epsilon} \cdot 2 \epsilon n$, where $m=2^{n+\frac{1}{\epsilon} \cdot 2^{\epsilon n}}$.

Proof idea: use time-efficient algorithm to compute monomials only up to degree ϵn, then use space-efficient algorithm to combine them to get the higher degree monomials.

- Small monomials: $\binom{n}{\leq \epsilon n}$ monomials \rightarrow space $n^{\epsilon n}$
- better: split variables into $\frac{1}{\epsilon}$ groups \rightarrow space $\frac{1}{\epsilon} \cdot 2^{\epsilon n}(+n)$
- Large monomials: degree $1 / \epsilon \rightarrow$ time $2^{1 / \epsilon}(\cdot 2 \epsilon n)$

Extending to easier functions

[Potechin'17]: every function f can be computed by an m-catalytic branching program of width $4 m$ and length $4 n$, where $m=2^{2^{n}-1}$.

Extending to easier functions

[Potechin'17]: every function f can be computed by an m-catalytic branching program of width $4 m$ and length $4 n$, where $m=2^{2^{n}-1}$.
[Robere-Zuiddam'22]: if f is a degree d polynomial over \mathbb{F}_{2}, then f can be computed by an m-catalytic branching program of width $4 m$ and length $4 n$, where $m=2\binom{n}{\leq d}-1$.

Extending to easier functions

[Robere-Zuiddam'22]: if f is a degree d polynomial over \mathbb{F}_{2}, then f can be computed by an m-catalytic branching program of width $4 m$ and length $4 n$, where $m=2\binom{n}{\leq d}-1$.

Proof idea (original): for low degree f, the Potechin algorithm has many isomorphic disjoint components based on the symmetries of the polynomial associated with f.

Extending to easier functions

[Robere-Zuiddam'22]: if f is a degree d polynomial over \mathbb{F}_{2}, then f can be computed by an m-catalytic branching program of width $4 m$ and length $4 n$, where $m=2\binom{n}{\leq d}-1$.

Proof idea (original): for low degree f, the Potechin algorithm has many isomorphic disjoint components based on the symmetries of the polynomial associated with f.

Proof idea (new): monomial version of Potechin algorithm again, but now only compute monomials which actually appear in $f\left(\binom{n}{\leq d}\right.$ by assumption).

Extending to easier functions

[Robere-Zuiddam'22]: if f is a degree d polynomial over \mathbb{F}_{2}, then f can be computed by an m-catalytic branching program of width $4 m$ and length $4 n$, where $m=2\binom{n}{\leq d}-1$.

Extending to easier functions

[Robere-Zuiddam'22]: if f is a degree d polynomial over \mathbb{F}_{2}, then f can be computed by an m-catalytic branching program of width $4 m$ and length $4 n$, where $m=2\binom{n}{\leq d}-1$.

Main result 2: for any $\epsilon>2 / d$, if f is a degree d polynomial over \mathbb{F}_{2}, then f can be computed by an m-catalytic branching program of of width $2 m$ and length $2^{1 / \epsilon} \cdot 2 n$, where $m=2^{n+\frac{1}{\epsilon} \cdot\left({ }_{\leq \epsilon d}^{n}\right)}$.

Extending to easier functions

[Robere-Zuiddam'22]: if f is a degree d polynomial over \mathbb{F}_{2}, then f can be computed by an m-catalytic branching program of width $4 m$ and length $4 n$, where $m=2\binom{n}{\leq d}-1$.

Main result 2: for any $\epsilon>2 / d$, if f is a degree d polynomial over \mathbb{F}_{2}, then f can be computed by an m-catalytic branching program of of width $2 m$ and length $2^{1 / \epsilon} \cdot 2 n$, where $m=2^{n+\frac{1}{\epsilon} \cdot\left({ }_{\leq \epsilon d}^{n}\right)}$.

Proof idea: same* time-space tradeoff as before, now with ϵd instead of ϵn.

Saving time

All results are linear time, which is optimal up to a constant factor. But how small can we get the constant?

Saving time

All results are linear time, which is optimal up to a constant factor. But how small can we get the constant?

Main result 3: every f can be computed by an m-catalytic (or even permutation) branching program of length $4 n-4$ and width $4 m$, where $m=2^{2^{n}-1}$.

Saving time

All results are linear time, which is optimal up to a constant factor. But how small can we get the constant?

Main result 3: every f can be computed by an m-catalytic (or even permutation) branching program of length $4 n-4$ and width $4 m$, where $m=2^{2^{n}-1}$.

Main result 4: any permutation* branching program calculating the AND function which reads any variable less than three times requires length at least $4 n-4$.

Open problems

Save on either time or space (while keeping other optimal)

- would give better tradeoff algorithm

Open problems

Save on either time or space (while keeping other optimal)

- would give better tradeoff algorithm

Show that for some f, m must be at least 2^{n} to get linear amortized size

- counting only gives $m \geq 2^{n} / O(n)$

Open problems

Save on either time or space (while keeping other optimal)

- would give better tradeoff algorithm

Show that for some f, m must be at least 2^{n} to get linear amortized size

- counting only gives $m \geq 2^{n} / O(n)$

Optimal permutation branching program length for any function

- somewhere between $3 n^{*}$ and $4 n-4$
- can get a read-3 program for $\operatorname{AND}\left(x_{1}, x_{2}, x_{3}\right)$

