
The Complexity of Composition: New Approaches to Depth and Space

by

Ian Mertz

A thesis submitted in conformity with the requirements
for the degree of Doctor of Philosophy

Graduate Department of Computer Science
University of Toronto

© Copyright 2022 by Ian Mertz



Abstract

The Complexity of Composition: New Approaches to Depth and Space

Ian Mertz

Doctor of Philosophy

Graduate Department of Computer Science

University of Toronto

2022

The composition of two given functions f and g is a fixed way of combining them into a single new

function f ◦ g. A composition theorem for a complexity measure s(·) states that s(f ◦ g) ≈ s(f) + s(g); in

other words, computing the combined function f ◦ g is no easier (with respect to s) than computing f

and g individually. If true, then we would gain a natural approach towards proving lower bounds on s(F )

for an explicit F by repeatedly composing smaller hard functions in such a way that their complexities

are additive by the composition theorem. We study the composition problem for two measures: formula

depth and space complexity.

The KRW conjecture [KRW95] states that the formula depth required to compute f ◦g is approximately

depth(f)+depth(g), where f ◦g is the function given by replacing every input variable of f with a disjoint

copy of g. This conjecture is known to imply NC1 ( P. We work towards proving this conjecture by way

of proving new lifting theorems from query complexity to communication complexity. Our new proof of

the classic result of Raz and McKenzie [RM99] allows us to intimately connect lifting to combinatorics,

and in doing so we provide a novel improvement to a key parameter called the gadget size. This result

also allows us to prove conditional hardness for automating the Cutting Planes proof system.

Cook et al. [CMW+12] introduced the tree evaluation problem as a way of showing L ( P; their

central conjecture partially relies on showing that the space to compute a function f while remembering

the output of another function g is approximately the space to compute f plus the size of g’s output. This

conjecture, which we call the z-f conjecture, was challenged by Buhrman et al. [BCK+14], who defined a

new type of space computation called catalytic computing and used it to show that composition does

not hold for space-bounded computation in some settings. We give further evidence against composition

by using the catalytic computing framework to give the first upper bounds on tree evaluation since the

problem’s definition in [CMW+12], refuting their central conjecture. Using these techniques we also

prove new results on amortized computation by improving constructions for catalytic branching programs.
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Chapter 1

Introduction

How much harder are two tasks than one? The answer, inevitably, is that they are either twice as hard,

no harder, or somewhere in between. Another way to ask the same question is the following: when is

it more efficient to do two tasks together than it is to do them separately? In this thesis we study the

phenomenon of composition, in which we are first clarifying, then instantiating, and finally answering

exactly this question.

1.1 Composition

1.1.1 Computation: a compositional view

Computation, in all its myriad forms, is a method of combining simple atomic steps to efficiently solve

a larger problem. To ask a computational question, we must specify three things. First, what is the

problem we are looking to solve? Second, what atomic steps are we allowed? And third, what is the

resource, utilized by the steps of our procedure, with respect to which we are seeking to solve our problem

efficiently?

With respect to the first question, let f be a mapping from the set of n bit strings to m bit strings;

our problem will be to compute f on a given input α ∈ {0, 1}n, meaning to find the string β ∈ {0, 1}m

such that f(α) = β, i.e. f maps α to β. For the second question, let C be a set of computational devices

of interest, which will typically be the infinite family of computers which can be built from a chosen

finite set of atomic rules. Finally, let s be a function assigning each device in C to a number, with the

understanding that s(C) is quantitatively conveying how much of some resource the device C is using;

our goal then will be to minimize s(C) over all C in C which successfully compute f , which we henceforth

refer to as s(f).

These three elements—functions (f), computation models (C), and complexity measures (s)—are

the defining features of theoretical computer science. The field of algorithms seeks to show, for a fixed

function f , decreasing values of s(f) by way of exhibiting newer and more innovative C computing f ,

for an arbitrary, or possibly fixed, model C and measure s. The field of complexity theory works against

this by showing, for a fixed model C and measure s, larger and larger values which s(f) must provably

exceed, for an arbitrary, or possibly fixed, function f .

To understand these twin pillars of the field, let us return to our initial definition: computation lies in

composing atomic steps. Imagine each basic operation as being a small vector in space, and by extension

1



Chapter 1. Introduction 2

an algorithm as being a combination of these vectors, through various joining operations, which allows us

to navigate the larger space in which they lie. The art and beauty intrinsic in studying computation is

in seeking out new and clever ways to combine and reorient the elements of this parsimonious basis to

explore the furthest reaches of the space, and to bring more and more faraway points, by which I mean

increasingly difficult functions, into the fold of computability.

By extension, when faced with the arduous task of proving complexity lower bounds, we are inevitably

building a function that requires many atomic steps to be composed together in order to be computed.

It requires us to assert that there exists some quantity, reflected in s, which inherently limits our basic

steps, and that when we have exhausted all possibilities of combining them together to push this quantity

higher and higher, we may come back with a function just one step out of reach. In so doing, we are

finding the outer limit t of our algorithms, and with it we can define a hard function to be one composed

out of t+ 1 (or 2t, t2, 2t, . . .) such steps.

By framing computation in this way it may seem that our task has become trivial: all we need to

do is understand the number of atomic tasks that compose the function f . However, things are not so

simple; just because we have laid out two separate tasks does not mean they take twice as long as one.

To reiterate, the beauty of algorithms is in finding new and creative ways to not only combine our basic

instructions but also to find new ways of orienting ourselves to the problem at hand, finding strategies

where many tasks suddenly become fewer.

Thus we return to our starting question: for a given s, when is the composition of two tasks, say two

functions f and g, whose composition we denote by f ◦ g, more efficiently computable with respect to s

than computing both f and g individually? Or to put it more succinctly:

Our central question: Is s(f ◦ g) ≈ s(f) + s(g)?

1.1.2 The question of complexity measures

The main variable in our central question is our choice of s. While our discussion of computation as

composition aims to be as general as possible, from the perspective of actually proving lower bounds,

some complexity measures may be less amenable to our task of proving results via composition. In fact

our choice of s will often dictate our entire approach to proving composition lower bounds, as even the

same way of composing functions f and g may work differently for different s.

To take a non-computational example, let us imagine running a set of errands. As the plural form

implies, we often run errands at the same time, because a major part of each individual errand is the

drive to and from downtown and so there are clear-cut advantages to using the outing to get more than

one chore done at a time. Thus we can achieve an obvious gain in time, assuming our stops are not

exactly in opposite directions. But how about money? Putting aside the negligible costs of riding the

bus, filling up on gas, etc., making two stops in one outing rarely changes the final bill. There may be

some exceptions—buy two, get one free—but as a general phenomenon we can say that money scales

more or less directly with the number of errands in a way that time does not.

1.1.3 A cautionary tale: parallel repetition

To see how composition both works intuitively and fails mathematically, we will take a classic and early

example: computational games. Consider a game where a group of participants are pitted against a lone
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host, who will pose them each individual and secret questions which require them to coordinate without

communicating. While the host knows everything that the participants may be planning, and thus can

easily thwart their strategy, the game will have an element of fairness: while the type of questions will be

fixed in advance, and in particular known to the players before the specific questions come, those specific

questions themselves will be randomly chosen from the list of all questions available.

Here is a simple example. Two contestants Alice and Bob will each receive a single bit, independently

chosen at random, and they will both output a statement of the form “Alice received a 1” or “Bob

received a 0” or such. They win if they both submit the same, correct statement. It should be clear that

this task is impossible to get right all the time, and in fact even with their received bits being chosen

randomly they cannot do better than winning 50% of the time; no matter how complex their strategy,

they are better off by simply both choosing the phrase “Alice received a 0”.

A 50-50 shot may not be much, but as the host doling out the prizes we want to crush their hopes

much more thoroughly. A classic strategy from the study of randomized algorithms is to just repeat

this over and over again, and fail them if they ever make a mistake. If they should happen to get lucky

and pass the first round, a coin flip at best, then the next round will give them another chance to fail,

and from there another, and another. If we proceed in this way, a simple mathematical argument shows

that their odds of winning decay exponentially, from a 1 in 2 chance in one round to a 1 in 2n chance

in n. In other words, the probability of failure—or if we adhere to the letter of our central question,

s(f) = − log(maxstr Pra,b(f(a, b; str(a, b)) = 1), where f is our game, str is all strategies Alice and Bob

can use, and a and b are their respective inputs—obeys composition: s(f ◦ g) = s(f) + s(g) when f ◦ g is

the game of playing f and then g in succession.

This, however, takes a long while; the time allocated to commercials creeps up every year, and all

we can guarantee is one round. Naturally, our clever host figures on just giving all the bits up front,

and asking for all the statements in one round. With no dependence between the games and total

silence between Alice and Bob, surely makes no difference? Alas, even with just two games this fails

catastrophically. Alice takes her bit from the first round and dutifully reports that she received it the

first round, but oddly reports that Bob received the same bit in the second round! Similarly Bob takes

his bit from the second round and dutifully reports that he received it in the second round, but also

reports that Alice received that same bit in the first round. The error is clear: these answers will line up

with the truth exactly when Alice’s first bit and Bob’s second bit match, bringing us back to a 50-50 shot

just at the original game had. This error on the part of the host is quite shocking, and consequently quite

understandable; in fact the same error appeared in early published work on the topic of games [FRS88].

Thereafter, the study of the parallel repetition value of games has remained active field of research.

Raz [Raz95a] showed that the value of games with two participants does indeed decay exponentially,

although not as good as the exponential of our original separate rounds version. For more participants

their chances of winning is known to go to zero, but the speed of this convergence is still open; at current

the record is roughly the inverse Ackermann function [Ver96], and results are scarcely better even for

reasonably simple cases.1

1See e.g. [GHM+22] for discussion of known results.
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Figure 1.1: Two models of computation and complexity

1.2 Computation models and complexity measures

We now fill in the blanks by defining the C and s appearing in this work. Two of the earliest and

most fundamental models in computer science are logic circuits and Turing machines. The complexity

measures we study in this thesis will be rooted in these two models.

1.2.1 Circuits and formulas

Consider the case of Boolean functions f , which is the case where f outputs a single bit. A Boolean

circuit C is a directed acyclic graph (DAG) with a single sink, where each source node (input gate or

leaf ) is labeled with an input variable xi or a negated input variable xi, and where each non-source node

(gate) is labeled with either the logical AND (∧) or logical OR (∨) function. The children of any node v

are the nodes u such that (u, v) is a directed edge in C; we also refer to these as the inputs of v, and

for simplicity assume that every non-leaf node has exactly two inputs. Now, on input α ∈ {0, 1}n, we

can compute the value of any node v ∈ C, denoted val(v), as follows: 1) if v is an input node labeled xi

(xi), then val(v) = αi (αi, respectively); 2) if v is a gate labeled ∧ (∨) with input gates g1 and g2, then

val(v) = val(g1) ∧ val(g2) (val(g1) ∨ val(g2), respectively). The value of C is the value of the sole sink

node, also called the output gate or root of C, and C computes f iff C(α) = F (α) for all α ∈ {0, 1}n.

In this thesis we focus on the special case when C is a tree, which we refer to as a Boolean formula.

The definition gives us a natural way to view formulas as being split into layers, where layer 1 consists of

just the output gate, layer 2 consists of the inputs to the output gate, layer 3 consists of all inputs to

the gates in layer 2, and so on. The depth of C will be the number of layers in C minus one, which is

equivalent to the maximum length of any path starting at the root and ending at a leaf. Note that there

are many other notions of complexity we could have chosen—for example, the circuit size, defined as

either the number of nodes or the number of edges, is central to the study of circuits and formulas—but

in this thesis we will focus on depth.

1.2.2 Turing Machine time and space

A Turing Machine is perhaps the defining computation model for all of theoretical computer science. We

consider a machine M which has a read-only input tape where the input assignment α is written down,

a write-only output tape where the machine will write down the final answer, and finally a read-write
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work tape where it can do all its intermediate calculations; the machine itself will be a small finite state

machine, which simply reads a bit of the input alongside the work tape and using only that information

decides how to transition to a new configuration of the machine. This classical definition of Alan Turing is

wonderfully general, abstractly capturing the type of reasoning that all “natural” computers are capable

of.

There will be two complexity measures we take note of for Turing Machines. First, and most well-

known, the time of M is defined as the number of intermediate calculations M performs. Second, and

more central to this thesis, be the space of M is defined as the maximum number of entries on the work

tape that are in use at any step in the execution of M .

1.2.3 Uniformity

In discussing syntactic models such as formulas, the question of uniformity arises. In short, a uniform

object C is one which can be succinctly described, say by a Turing Machine which takes as input the

description length |C|. Issues of uniformity are largely irrelevant for our discussion, so the less technical

(or simply less interested) reader is free to skip this small subsection, as we will be jumping the gun

on most of our later discussion. Technical readers who are already familiar with these models and

the complexity classes involved may be confused by switching back and forth between uniform and

non-uniform models, and so are free to use this discussion as a reference for the rest of the chapter.

When we discuss formulas in the context of separating NC1 from P (see Question 1 below), we are

necessarily considering the uniform version of NC1, because this is the only case where separating NC1 from

P seems feasible. In particular, NC1 ⊆ L (again see Theorem 2 below) implies we need something more

restrictive than logspace-uniformity; DLOGTIME-uniformity is certainly sufficient for our purposes.

However, our intuition will come from non-uniform NC1, and our discussion of depth lower bounds in

the body of the thesis will be against non-uniform models, albeit a slightly different one than formulas.

What I mean by intuition is that we will be assuming we can find maximally hard functions, i.e. ones

that take linear depth, but which are still in exponential time; not only is this all but impossible, but

even finding any function requiring linear depth is precisely the question we are trying to solve in the first

place! The answer is that we will be composing functions on a logarithmic number of inputs, meaning

that the entire truth table can be written as part of the input. Thus not only is our question no longer

trivial, but also we can discuss uniform NC1 even as we focus on proving lower bounds on non-uniform

NC1, because the formula has access to the entire truth table as part of the input.

While Turing Machines are inherently uniform objects, uniformity concerns will also immediately arise

for L, as we will be working with the syntactic definition of space, i.e. branching programs. In Chapter 4

we focus on uniform branching programs, while in Chapter 5 we focus on non-uniform branching programs;

the latter will be the one time in the thesis where the distinction between the two is truly important, and

so we defer further discussion to there. For uniform programs, once again our exact notion of uniformity

will be unimportant.

1.3 Hardness through composition

Before studying whether or not depth and space are amenable to composition, let us see if we can make

our earlier connection between composition and complexity more concrete. We begin by setting ourselves

concrete, albeit extremely challenging, goals to study.
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1.3.1 Complexity separations

First, let us establish our benchmarks for efficiency when it comes to depth, space, and time.

Definition 1. NC1 is the class of all problems computable by formulas of depth O(log n). L is the class

of all problems computable by Turing machines which use space O(log n). P is the class of all problems

computable by Turing machines which take time poly(n).

These classes are three of the earliest and most fundamental complexity classes in our field, dating

back decades. Known for almost equally long is the following relationship between them.

Theorem 1. NC1 and L are both contained in P.

The above theorem should not be interpreted as saying that time is a more powerful resource than

depth or space; Turing Machines in P are allowed time polynomial in n, while formulas in NC1 and

Turing Machines in L are only allowed depth or space (respectively) logarithmic in n, numerically an

exponentially stronger limitation. In fact, our inability to resolve the question of whether or not this

exponential increase is necessary has plagued theoretical computer science for decades, and poses a

fundamental question:

Open Problem 1. Does NC1 equal P? Does L equal P?

It is widely believed, although perhaps somewhat dogmatically at times, that the answer to both of

these questions is no. To that end, composition is one of the most, if not the most, well-studied method

for attempting to prove these two separations in particular. Interestingly, this use of composition on

both fronts seems to draw an equivalence between the weaknesses we conjecture to be inherent in both

NC1 and L, even though we have known for a long time that space is at least as powerful as depth:

Theorem 2. NC1 is contained in L.

and as with P it is believed that this containment cannot be made into an equivalence:

Open Problem 2. Does NC1 equal L?

We come back to Question 2 later, and for now consider how one can use composition as a method of

attacking Question 1.

Let us pretend we do in fact have a function f which is hard—in fact, we will think of f as being

very hard, requiring at least formulas with linear depth or Turing Machines with linear space to solve.

Such a function f certainly exists—in fact, by a counting argument, one of the most fundamental proof

techniques in computer science, almost every function is at least this hard—but of course we cannot

guarantee that f can be solved in polynomial time, and the entire point of what we want to prove is to

find an f that is not just outside of NC1 or L, but also inside of P. The only thing we can guarantee

without issue is that there exists such an f which can be solved in exponential time.

Now since we are looking for superlogarithmic depth and space lower bounds and polynomial time

upper bounds, let us scale f down so it only takes O(log n) inputs. By construction, this new f will

require Ω(log n) depth and space while being solvable in poly(n) time. This takes care of our upper

bound, but still puts us in the realm of NC1 and L. One instinct would be to strengthen our assumptions

on f in the previous paragraph, maybe assuming that f requires superpolynomial depth or space to

compute, which would scale down to superlogarithmic depth or space and complete our task. Alas,
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Figure 1.2: f ◦ g: three methods of composing

assuming such additional hardness of f is a dead end; every function can be computed with formulas

of linear depth, and, for reasons that will later become apparent, if we resort to this style of argument

where we rely on some non-explicit hard function f , a similar statement holds for space as well.

Finally the utility of composition becomes clear: we will compose f with itself, forming a new larger

function f ◦ f . Our puzzle of whether composition leads to algorithms or complexity results becomes

clear. If we can prove that s(f ◦ g) ≈ s(f) + s(g) for all f and g, where s is either depth or space,

this composition of f with itself gives us a function with twice the s-complexity as it had before. And

there is no reason to stop here: performing this composition ω(1) times allows us to add more and more

complexity until it finally crosses the superlogarithmic threshold.2

1.3.2 Intuition: composing in sequence and in parallel

Now we can return to the actual question: how do formula depth and Turing Machine space act with

respect to composition? To frame this discussion, we will informally define two natural ways of composing

f and g. These will not be formal definitions, and will only give a sense of how we arrive at our formal

composition definition, presented in the next subsection

To compose f and g in sequence, we will have the inputs to f come directly from the outputs of g;

think of any step-by-step process such as baking a cake, where whatever batter we prepare in one step will

be further processed in the next. Is it enough to compose many copies of f in this way? Unfortunately it

will not. While it is not obvious, a long skinny formula can be balanced to have depth logarithmic in its

size, the latter quantity only scaling linearly with the amount of composition we do. For space our total

usage will be the space complexity of solving one copy of f plus the space required to store the output of

one copy of f , because at every stage in the composition we can throw out all the memory that is not

relevant to this particular copy.

By contrast, to compose f and g in parallel, we will let f and g be independent of one another but

require that we receive the output of both tasks at the end; this is more akin to our errands example,

where we are free to order our stops as we choose but need to come home with all our purchases at the

end. Alas, this version is even less useful for lower bounds. Formulas are inherently parallel objects, and

so composing more functions in parallel adds nothing to the depth. Meanwhile for space we can again

solve the functions one at a time, this time not even needing to remember any previous outputs as we

can write them down on the output tape and then reset our memory before moving on.

However, when we put these two types of composition together, these obstructions seem to go away.

2In all of this our time complexity is no issue; to our point about P having exponentially more resources than NC1 or L,
iterating a polynomial time procedure a slightly superconstant number of times still gives us a polynomial runtime.
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Let us compose three functions together, f with two separate copies of g, by composing the gs in parallel

and composing this pair of functions with f in sequence. For formula depth, we have now created a

situation where the function is already balanced, and of course f cannot appear in parallel with either g

as it requires them to be computed beforehand. For space, the program can no longer add the output of

either g to the output tape before moving on to the other g, as it will require both on the worktape to

solve f ; even though it can erase the actual work it needed to solve a function once it is done, it is the

requirement to hold on to the outputs themselves that we will exploit.

For many other reasons, this form of composition is the one that has exclusively been studied in the

past; neither parallel nor sequential composition has been of much interest. Why do I bother introducing

them here? The reason is that while the actual composed function has always been this mixed form, the

composition theorem which makes this function hard has implicitly focused on either sequential or parallel

hardness. Looking at the discussion in the previous paragraph should make this clear; in both cases

there is a predominant hard form of composition that we can only avoid on a technicality, a technicality

that the other form of composition, however easy on its own, removes. For formulas we add parallel

composition in order to make sequential composition nontrivial, whereas for space we add sequential

composition in order to make parallel composition nontrivial.3

1.3.3 Hard composition problem: Tree Evaluation

We put all our discussion from this section together to propose a concrete approach to Question 1. Let

k, d, h ∈ N. Our problem is known by multiple names, as it appears in many different lower bound

contexts; we will follow [CMW+12] and refer to it as the tree evaluation problem, denoted TreeEval in

general and TreeEvalk,d,h when refering to a specific instance parameterized by k, d, and h. Our input

will be a rooted tree where 1) the height of the tree, defined again as the number of edges traveled in

the longest root-to-leaf path, is h; 2) every internal node has exactly d children; 3) each leaf v will be

labeled with an element xv ∈ [k] and each internal node v will be labeled with a function fv : [k]d → [k].

In the same way as our formula model, we inductively define the value of a node v, denoted val(v) to be

the label xv if v is a leaf and fv(val(v1) . . . val(vd)) if v is an internal node with children v1 . . . vd. The

output of TreeEvalk,d,h will be the value of the root node. Note that our input has size

n := dh · k + (

h−1∑
i=0

di) · kd log k = 2O(h log d+d log k)

For both NC1 and L we focus on the quantity O(log n) = O(h log d+ d log k).

To start, let us see the most natural algorithm for TreeEval, which will also show that TreeEvalk,d,h ∈ P

for all k, d, and h. Simply put, we will act in accordance with the inductive definition: starting from

the leaves, we compute the value of each node in the tree in a bottom-up fashion until we reach the

root. Since computing a leaf only requires reading its label and computing an internal node only requires

reading the the appropriate entry in its function table, the runtime is roughly dh · poly k = O(n).4

TreeEval has appeared in the context of proving hardness in many different literatures under many

different names, and particularly for many different settings of k, d, and h; we summarize a few such

3This is by no means a formal statement, but in our proofs it will be clear that we implicitly focus on these two different
aspects of composition in our two cases.

4In fact this is asymptotically smaller than n for large d and k, reflected in the fact that in each function table only one
of the kd entries is relevant to the output of the function.



Chapter 1. Introduction 9

fu

fv1
fv2

. . . fvd

. . .

fv : [k]d → [k]

ci ∈ [k]

. . .

c1 c2

. . .
cdh

h

v1

1 2
2 1

v2

2 1
2 2

v4

2

v5

1

v3

2 1
1 1

v6

1

v7

1

Figure 1.3: a) A general view of TreeEvalk,d,h; b) An instance of TreeEval2,2,2 with output 1

settings in Table 1.1. In this thesis we will focus on two natural regimes of TreeEval parameters, one for

each of our computation models.

In the realm of formulas, it was conjectured by Karchmer, Raz, and Wigderson [KRW95] that

TreeEval2,d,h requires formulas of depth Ω(dh) = ω(h log d+ d log 2), which would imply that TreeEval /∈
NC1.5 Their focus, called the KRW conjecture, is to show that for any functions f, g and f ◦ g defined

as f(g(x1,1 . . . x1,m) . . . g(xn,1 . . . xn,m)), it holds that depth(f ◦ g) ≥ depth(f) + depth(g)−O(1). If this

holds, then we can define a set of functions f1 . . . fh : {0, 1}d → {0, 1}, each of which requires depth Ω(d)

to compute, and then for i = 1 . . . h− 1 we apply our composition lower bound where f = f1 ◦ . . . ◦ fi
and g = fi+1 to obtain our depth lower bound of h · Ω(d) = Ω(dh). The intuition is that of sequential

composition: for the formula to utilize any information about some input to f , it must first compute the

appropriate copy of g.

For space, Cook et al. [CMW+12] coined the term tree evaluation to refer to TreeEvalk,2,h and

conjectured that it requires space Ω(h log k) = ω(h log d+ 2 log k), which would imply that TreeEval /∈ L.6

To see this intuitively, let us consider an algorithm known as the pebbling algorithm, which will achieve

non-trivial upper bounds but also strongly hint at matching lower bounds. Simply put, one can achieve

savings over the trivial algorithm by forgetting any node values that are no longer relevant to computing

higher nodes in the tree. A quick back-of-the-napkin argument shows that one can solve TreeEval by

store at most one value per layer of the tree: starting at the node, we recursively remember the left child

while computing the right. This gives us (h− 1) · log k bits to remember, and this basic can take us no

further. Thus Cook et al. conjectured that this pebbling algorithm is indeed optimal, with the intuition

that storing roughly h values is a bottleneck even if we change our approach.

With the involvement of h, it seems like there is an implicit compositional argument going on here,

but it still remains to be spelled out. The hitch is that even if the pebbling strategy is optimal, an

algorithm could still potentially save space if it was not the case that these bits all had to be remembered

in separate memory blocks; if for any function f one could compute f while remembering j log k bits—the

5Shifting from [2] to {0, 1}, the focus on k = 2 is natural since formulas are generally only defined over {0, 1}. Any
instance of larger k would be evaluated by log k formulas, which together output the binary description of the output. Since
these formulas would all be in parallel, we gain nothing in either the upper or lower bound on formula depth.

6The focus on d = 2 here is less straightforward than the k = 2 focus for formulas. We include a general discussion of
this choice in Section 4.3, along with a generalization of our results which renders the choice of d fairly moot.
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k d h Importance

1 any any (trivial)
any any 1 (trivial)
≥ 2 1 3 sequential composition
≥ 2 ≥ 2 3 combined composition

canonical form of f ◦ g
2 2 log n formula evaluation problem

canonical NC1-complete problem
2 log n 2 multiplexor gate
2 ≥ 2 3 KRW conjecture: depth = d+ d

2 log n logn
log logn iterated multiplexor

KRW → IM /∈ NC1

≥ 2 2 3 z-f conjecture: space = log k + log k
poly n 2 log n tree evaluation problem (original usage)

z-f → strong evidence that TEP /∈ L

Table 1.1: Some important parameterizations of TreeEvalk,d,h

outputs of j � h other functions in the tree—in space substantially less than space(f) + j log k, then this

would allow us to go below space O(h log k). This question boils down to one of parallel composition, as

we want to show that solving parallel copies of g requires us to save one answer while computing the

other, and so a composition theorem for space complexity would remove a major obstacle to separating L

from P. In absence of another name, we will term the composition conjecture for space—that is, that the

space to compute f while remembering a string z is space(f) + |z|—as the z-f conjecture.

Our stated aim of complexity theory is to show separations between classes such as NC1 or L from

others such as P, and the goal we have set for ourselves of proving composition theorems is an assertion

that of all the functions in P, the one that we will have the easiest time proving separation results with is

TreeEval. What about the algorithms side? Clearly an efficient formula or space-bounded Turing Machine

solving TreeEval exactly meets our stated aim, that of finding more and more models which can solve

the problem in question. But while algorithms for TreeEval would not (as far as we know) imply any

complexity class equivalencies, they would seem to necessitate novel techniques which could revitalize the

study of computation models long considered both weak and well-tread. In particular, because algorithms

for TreeEval will have to strongly and explicitly solve general composed functions with ease, it would give

us a new framework for even more surprising algorithms, namely by casting stronger models, such as the

NC hierarchy, or harder problems—perhaps the ultimate goal being the Circuit Evaluation Problem, the

quintessential P-complete problem—in a framework of composition, and then using our newfound tools

to capture them in much lower classes.

1.4 Our results

When studying these two models, of formula depth and Turing Machine space, we push the boundaries

on what is known with respect to the composition question and provide guideposts towards future work

on Question 1. Perhaps surprisingly, these results go in opposite directions; we will add to nearly two

decades of support for a composition lower bound for formulas, but we will also give a space-efficient

algorithm which flies in the face of both the composition framework at large and a decade’s worth of



Chapter 1. Introduction 11

partial results supporting it. If these two statements could indeed be carried out to their limits, it would

not only resolve Question 1—unexpectedly with different answers to the two questions—but also Question

2, which, while the result would be as expected, would be one of the most significant complexity results

in decades.

We close our introduction by giving an overview of these results as well as laying out our roadmap

for the rest of the thesis. The thesis will be split into two parts. Each part will itself be split in two:

in the first chapter we lead off with our central contribution to the study of composition, while in the

second chapter we show how these composition results ripple outwards from our central question and

touch other areas in computer science. Our contributions appear in bold, while the central concepts to

be explored in the body of the text will be italicized.

Part I Depth: Communication lower bounds for composed functions

Chapter 2 Query-to-Communication Lifting Theorems

While composition lower bounds for formulas have stubbornly eluded us, one of the strongest motivations

for believing that they will one day be possible is the recurring appearance of lower bounds for composed

functions in an intimately connected model: communication complexity, which measures the amount of

information that needs to be exchanged between two players who each hold a piece of the partitioned

input to f . In fact, “intimately related” is perhaps an understatement; Karchmer and Wigderson [KW90]

showed an exact equivalence between formulas computing f and communication protocols computing a

related function Sf . Thus, proving composition lower bounds for these related functions would completely

resolve the KRW Conjecture.

There are a number of different composition-based lines of work in the context of communication

complexity; our focus will be on a very general technique known as lifting theorems. These theorems,

also widely seen in many other areas, blossomed following a seminal proof of Raz and McKenzie [RM99],

which saw new life after being interpreted as a general technique by Göös, Pitassi, and Watson [GPW18].

Together they showed that we can prove strong lower bounds —in fact, quantitatively stronger than our

general composition goal in multiple ways—for any f composed with a carefully chosen g.

Query-to-Communication Lifting Theorem. Let f be a search problem over {0, 1}n, and let m =

n1+ε for any ε > 0. Then for g = Indm,

cc-tree-depth(f ◦ g) = dec-tree-depth(f) ·Θ(logm)

These results are too specialized to prove formula lower bounds through the connection of [KW90],

but they do carry through for a weaker model called monotone formulas, giving essentially optimal

lower bounds. Generalizing such results to carry through for broader classes of monotone functions

would be enough to get the unrestricted formula depth lower bounds we desire, but more generally the

techniques involved in proving composition lower bounds for communication protocols appear to be the

right flavor for proving such lower bounds directly, and thus improving the parameters, breadth, and

proof structure of query-to-communication lifting theorems is at the forefront of our attempts to settle

the KRW Conjecture.

The proof of Query-to-Communication Lifting Theorem has evolved over the past two decades

[RM99, GPW18, GPW20, GGKS20, LMM+22]. We can see this most clearly in its most modern
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incarnation, which is our central result in this chapter. Our contributions are threefold. In terms of

simplicity, a central piece of the proof, and the bottleneck of all previous proofs, immediately follows

from a combinatorial lemma connected to the famous sunflower conjecture. In terms of generality,

our proof unites the central challenge of many important lifting theorems beyond Query-to-

Communication Lifting Theorem. In terms of quantitative strength, we obtain quasilinear-sized

gadgets for every type of lifting we study, and furthermore any improvements on the state

of the art for the combinatorial lemma involved immediately implies lifting with smaller

gadgets.

We will prove Query-to-Communication Lifting Theorem in detail, making extensive reference to how

the proof has evolved to the current state. We also provide sketches of other lifting theorems which follow

from our new proof, namely dag-like and graduated lifting.

Chapter 3 Application: Cutting Planes Proofs are Hard to Find

Understanding formula depth is only one of the many ways in which we use communication complexity,

possibly one of the most well-connected subfields in complexity theory. As a result, lifting theorems,

which are among the strongest and most versatile techniques for proving lower bounds in communication,

can also yield important results in other subfields.

One application of query-to-communication lifting is in proof complexity, where query complexity

and communication complexity are respectively tied to reasoning in the Resolution and Cutting Planes

systems. These systems are well-studied and foundational in proof complexity, but are also highly

practical in that their proofs capture the most widely used methods of solving SAT instances and integer

programs. Thus efficiently finding small proofs in these systems is of great importance. However, a

recent breakthrough result of Atserias and Müller [AM20] strongly rules this out for Resolution, showing

that finding short Resolution proofs in polynomial (subexponential) time is hard assuming P 6= NP

(the exponential time hypothesis (ETH), respectively). A version of this result was extended to tree-like

Resolution by de Rezende [dR21] using a similar proof.

Using query-to-communication lifting, we extend these results to Cutting Planes, thus

ruling out worst-case efficiency for the two most widely used automated prover systems.

Cutting Planes Non-Automatability Theorem. Let A be an algorithm which, on input τ which is

a unsatisfiable set of m linear equations over n variables which has a Cutting Planes refutation of size

s, outputs a Cutting Planes refutation of A. Then assuming P 6= NP (assuming the Exponential Time

Hypothesis), A requires time Nω(1) (2Ω(N), respectively), where N = max(n,m, s).

Let A be an algorithm which, on input τ which is a unsatisfiable set of m linear equations over n

variables which has a tree-like Cutting Planes refutation of size s, outputs a tree-like Cutting Planes

refutation of A. Then assuming the Exponential Time Hypothesis, A requires time NΩ(logN/ log2 logN),

where N = max(n,m, s).

We use two novel lifting theorems for these respective tasks. The first is the graduated lifting theorem

proven in the previous chapter, adapted to the real communication setting; this was in fact the original

context in which graduated lifting was proven. The second allows us to lift based on the block-width of

decision-dags, rather than the classic notion of width.
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Part II Space: Algorithms for reusing memory

Chapter 4 Upper Bounds for the Tree Evaluation Problem

After introducing TreeEval and conjecturing that the pebbling algorithm is optimal, a number of works

have shown that this conjecture indeed holds for various restricted models of space-bounded computation.

For nearly as long, however, there has been a counter-current seeking to show that, should composition

theorems fail, there may be ways of solving TreeEval that surpass pebbling. This work, based on classical

results on reusing space, was codified by an elegant work of Buhrman et al. [BCK+14], where they

defined an alternate notion of space-bounded Turing Machines which they dubbed catalytic computing.

Putting aside its interest as a model in its own right, their results directly challenged the idea that

used memory cannot be repurposed in place of using free space; simply put, catalytic computing is the

study of where the z-f conjecture fails. While this was inspired by the potential obstruction to TreeEval

lower bounds, however, it did not immediately lead to any new algorithms which quantitatively surpass

pebbling, and the algorithms it defined avoided some but not all of the restrictions for which we have

already proven TreeEval lower bounds matching pebbling.

Our work finally achieves an algorithm that beats pebbling unconditionally, using catalytic computing

to refute the z-f conjecture, or in other words, to refute composition for space-bounded computation, and

using that refutation we achieve the first new upper bounds for TreeEval since the problem’s inception.

Tree Evaluation Algorithm. For any k and h, TreeEvalk,2,h can be solved in space O(h log k/ log h) =

o(h log k).

Our first challenge was to use the tools of [BCK+14], which were specialized for doing arithmetic

operations in low space, for the arbitrary input functions of TreeEval. This goes by a basic arithmetization

step, i.e. interpolation, which incidentally allows us to avoid a restriction which would immediately imply

strong lower bounds against our algorithm. This also has implications for the use of catalytic

tools on more general functions.

The second challenge is handling the high degree polynomials coming out of our arithmetization using

arithmetic tools built for functions with low-degree and nice structure. This requires us to build new

tools for the catalytic program, namely catalytic product lemmas built both to handle individual large

products and to do many such products in parallel. Our lemmas can be optimized for space or

for time, both of which exactly match the pebbling algorithm, but by balancing them out we get

an algorithm for TreeEval surpassing both.

Chapter 5 Application: Catalytic/Amortized Algorithms for Every Function

In meeting our first challenge for TreeEval, we built a framework for obtaining space upper bounds

against arbitrary functions. We can use this insight to directly consider the catalytic space complexity of

arbitrary functions, and in particular we can consider the non-uniform variant whereby every function,

even uncomputable ones, have well-understood upper bounds. Non-uniform space complexity corresponds

to the classic syntactic model of branching programs, and a natural catalytic variant was introduced by

Girard, Koucky, and McKenzie as m-catalytic branching programs.

Potechin [Pot17] observed that the definition of m-catalytic branching programs coincides with a

natural definition of amortized space complexity, again in the non-uniform setting. After drawing this

connection, [Pot17] proves an astonishing result: for m sufficiently large, there exist m-catalytic branching
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programs of size O(mn) for every function! This translates to two facts: 1) every function has a linear

time non-uniform algorithm using logm catalytic bits and no non-catalytic work space, aside from keeping

track of the current step; 2) every function can be computed with linear amortized space.

The only catch in the result of [Pot17] is that the value of m is enormous: m = 22n−1. Reducing m

while maintaining O(mn) size would improve on both interpretations, showing that less catalytic space

and amortized copies are necessary. Taking up this challenge, Robere and Zuiddam [RZ21] show that m

can be reduced if the function in question has small degree when arithmetized over F2. Unfortunately

this result fails to improve the state of affairs for most functions.

Our TreeEval techniques allow us to reduce this value significantly while maintaining the minimal

amortized/catalytic space complexity.

General Catalytic/Amortized Algorithm. For any ε ≥ 2/n and any function f : {0, 1}n → {0, 1}
there is an m-catalytic branching program with length 21/ε · 2εn and width 2m that computes f , where

m = 2n+ε−1·2εn .

Furthermore, if f is an F2 polynomial of degree at most d and ε ≥ 2/d, there is an m-catalytic

branching program with length 21/ε · 2n and width 2m that computes f , where m = 2n+ε−1( n
≤εd).

In particular, for ε = Θ(1), General Catalytic/Amortized Algorithm gives us an m-catalytic branching

program of length O(n) where m ≤ 22δn (≤ 2( n
≤δd)) for as small a constant δ as we choose. We also

note that for ε = Θ(1) · log−1 n this gives us an m-catalytic branching program of length poly(n) where

m = 22n/K logn)

(≤ 2( n
≤d/K logn)), respectively) for as large a constant K as we choose.

Using [RZ21] as a starting point, we return to [Pot17] with the view of F2 polynomials in mind, and

recreate their result using catalytic product lemmas of the same form as our previous results. Then,

using the same time-space tradeoff as before, we can reduce the exponent of logm—i.e. the

double exponent of m—while only paying in the constant in front of the runtime. Returning

to [RZ21], we obtain the exact same improvement to their smoothed result with very little

change to our algorithm.

We conclude the thesis in Chapter 6: Conclusion by discussing the next steps for understand-

ing composition and its applications. We touch on all the ways that these results and any future progress

are connected to open problems all around theoretical computer science.
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Chapter 2

Query-to-Communication Lifting

Theorems

In the first technical part of the thesis, we will make progress towards showing depth(f ◦ g) ≈ depth(f) +

depth(g), where f ◦ g = f(g1 . . . gn).

As discussed in Chapter 1, our intuition as to the power of composition theorems for formula depth

comes from an important connection to another model called communication complexity [Yao79]. In this

model, all functions F have their inputs split between computationally unbounded players Alice and

Bob, and the communication complexity of F is the number of bits they need to communicate to one

another about their respective inputs to solve the function. A beautiful connection by Karchmer and

Wigderson [KW90] (see Definition 3 and Theorem 3 below) shows that the formula depth of any function

f is precisely characterized by the communication complexity of a related two-party relation Sf , where

Alice and Bob are respectively given a 0 and 1 input to f and are tasked with finding a bit where their

inputs differ.

While we do not have a composition theorem for Sf◦g—this would imply the KRW conjecture

and thus resolve TreeEval /∈ NC1—other forms of composition results have a long and storied history

in communication complexity. For example, for a given function f : {0, 1}n → {0, 1}, instead of

composing with another function g : {0, 1}m → {0, 1} and considering Sf◦g, we can consider a two-party

function g : X × Y → {0, 1}, and thus f ◦ g immediately constitutes a communication problem in the

natural way. A lifting theorem gives us a composition theorem in this setting, but with two small

differences: first, rather than focusing on the case of arbitrary inner two-party functions g, lifting

theorems focus on a carefully chosen hard function, often called the gadget; and second, we will not show

cc-tree-depth(f ◦ g) ≈ cc-tree-depth(f) + cc-tree-depth(g)—in fact cc-tree-depth(f) is not well-defined in

this context—but rather than cc-tree-depth(f ◦ g) ≈ t(f) · cc-tree-depth(g), where t(·) is an appropriate

complexity model for the one-party function f .

Before moving into discussing lifting, we address the connection between this and the KRW conjecture.

In many ways the multiplicative form given above seems too good to hope for for KRW; even beyond the

issue of focusing on a specific gadget rather than general g, it would go against the subaddititivity of

cc-tree-depth to hope for a multiplicative composition theorem for Sf◦g. In fact, the nature of Sf in the

Karchmer-Wigderson connection means that lifting can only ever give us monotone formula lower bounds.

Thus, lifting should be viewed more as a prolific line of work which informs our attempts to resolve the

17
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KRW conjecture; in this capacity it is useful for two reasons. First, strong lower bounds for a sufficiently

broad class of monotone functions, i.e. slice functions, would be enough to prove lower bounds in the

non-monotone case as well. And second, most modern work on KRW uses arguments derived from lifting,

as these proofs have been very successful at showing compositional lower bounds.

Thus we now turn to see what lifting results are known and what they can accomplish on their

own terms. The first result was the query-to-communication lifting theorem of Raz and McKenzie

[RM99, GPW18], which states that that for any function f : {0, 1}n → {0, 1} (or more generally any

search problem) and a gadget function called the index gadget INDm : [m] × {0, 1}m → {0, 1}, the

communication complexity of the composed function f ◦ INDm is roughly the decision tree complexity of

f times the decision tree complexity of INDm, where decision trees are a very weak model of computation

which can only query variables one at a time.

The multiplicative lower bound on cc-tree-depth(f ◦ g), plus the fact that t is a much weaker model

of complexity than cc-tree-depth, allows us to prove very strong lower bounds even for relatively simple

functions f . These lifting theorems have yielded many fantastic results; in particular, since lifting gives

us optimal communication lower bounds, using Karchmer-Wigderson they also give us the strongest

known monotone formula lower bounds. Beyond formula lower bounds, there is a substantial body

of work proving lifting theorems for a variety of flavors of query-to-communication, including but not

limited to: deterministic [RM99, GPW18, dRNV16, WYY17, CKLM19, CFK+21], nondeterministic

[GLM+16, Göö15], randomized [GPW20, CFK+21], degree-to-rank [She11, PR17, PR18, RPRC16], and

non-negative degree to nonnegative rank [CLRS16, KMR17]. In these papers and others, lifting theorems

have been applied to simplify and resolve longstanding open problems, including new separations in (again

including but not limited to): communication complexity [GP18, GPW18, GPW20, CKLM19, CFK+21],

proof complexity [GLM+16, HN12, GP18, dRNV16, dRGN+21] monotone circuit complexity [GGKS20],

monotone span programs and linear secret sharing schemes [RPRC16, PR17, PR18], and lower bounds on

the extension complexity of linear and semi-definite programs [CLRS16, KMR17, LRS15]. Furthermore

within communication complexity many natural functions of interest—e.g. equality, set disjointness,

inner product, gap-hamming (c.f. [Kus97, Juk12])—are also lifted functions themselves.

In this first part of the thesis, we will study lifting theorems, and seek to push this enormous body of

work further, both in progressing towards an optimal lifting theorem in hopes that such a proof could one

day help us reach our true goal of resolving KRW, as well as proving quantitatively similar lifting theorems

for more models with useful applications. Our main focus will be to prove Query-to-Communication

Lifting Theorem, itself a strengthening of the results of [RM99, GPW18], which builds off the existing

proofs which have developed over the past two decades plus a novel connection between lifting to

combinatorics.

In particular, we use a key lemma developed by Alweiss et al. [ALWZ20] in the process of improving

the state of the art of the famous sunflower lemma. We emphasize here, however, that earlier iterations

of the same lemma also work and give similar, albeit weaker, improvements; this technique is novel to

our work, but the pieces have been around for at least a decade. In fact, connecting lifting to sunflowers

has much deeper implications than just the possibility of future progress, a point we discuss at the end of

the chapter.

In terms of concrete benefits to our work, as discussed in the intro this proof has three major

advantages:
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Simplicity. To simulate a communication protocol by a decision tree, we use a basic round-by-round

simulation while using the deficiency of min-entropy as our potential function. This simulation has two

basic invariants connecting the current state of the protocol to the variables of our decision tree: 1)

the protocol is consistent with the values of all variables queried thus far; and 2) the protocol has very

high entropy on all variables not queried thus far. Maintaining this invariant goes by a density-restoring

partition argument, while the central lemma, stating that a good partition can be found, will follow

directly from the aforementioned combinatorial lemma.

Generality. Our new proof of the central lemma actually proves a much stronger lemma, which becomes

necessary for stronger lifting theorems such as the dag-like version [GGKS20]. It also changes the reliance

on the gadget size in such a way that graduated lifting [GKMP20], i.e. lifting whose gadget size scales

with the strength of the lower bound, follows with no changes in the proof.

Quantitative strength. A central goal of modern lifting is to improve on the gadget size of the

argument, as this parameter immediately impacts, and indeed is the bottleneck to, most applications

of lifting to other fields. Our contribution with respect to the gadget size is twofold. First, we improve

on the previous upper bound, which was quadratic for basic lifting and an enormous polynomial for

most other types. We obtain quasilinear-sized gadgets for every type of lifting we study; furthermore the

size can be further improved if one is willing to sacrifice in the upper bound, up to n log n. Second, we

consolidate all reliance on the gadget size into our application of the combinatorial lemma, meaning that

any improvements on the state of the art for sunflowers immediately implies lifting with smaller gadgets.

2.1 Preliminaries

2.1.1 Communication complexity

We begin by formally introducing communication complexity, and draw a connection between communi-

cation and formulas. A search problem is a relation f ⊆ Z ×O, and we let denote f(z) denote the set

of all o ∈ O such that (z, o) ∈ f . Likewise a bipartite search problem is a relation F ⊆ X × Y ×O and

F (x, y) is defined analogously.

Definition 2 (Communication). Consider a bipartite search problem F . A communication protocol Π is

a binary tree where now each non-leaf node v is labeled with a binary function gv which takes its input

either from X or Y . This is informally viewed as two players Alice and Bob jointly computing a function,

where Alice receives x ∈ X and Bob receives y ∈ Y, and where at each node in the protocol, depending

on whose turn it is, either Alice computes gv(x) or Bob computes gv(y), and whoever does “speaks” as

to which child to go to. The protocol Π solves F if, for any input (x, y) ∈ X × Y , the unique root-to-leaf

path, generated by walking left at node v if gv(x, y) = 0 (and right otherwise), terminates at a leaf u

with ou ∈ F (x, y). We define

cc-tree-depth(F ) := least depth of a communication protocol solving F .

An alternative characterization of communication protocols, which will be useful for proving our

main theorem, is as follows. Each non-leaf node v is labeled with a combinatorial rectangle (henceforth

rectangle) Rv = Xv × Yv ⊆ X ×Y , such that if v` and vr are the children of v, Rv` and Rvr partition Rv.
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Furthermore this partition is either of the form Xv`×YvtXvr×Yv (if Alice speaks) or Xv×Yv` tXv×Yvr
(if Bob speaks). The unique root-to-leaf path on input (x, y) is generated by walking to whichever child v

of the current node satisfies (x, y) ∈ Rv.
In order to connect (one-party) formulas to (two-party) communication, we need a connection between

functions and bipartite search problems.

Definition 3 (Canonical search problem). Let f ⊆ {0, 1}n → {0, 1} be Boolean function. The canonical

search problem associated with f , denoted Sf ⊆ {0, 1}n × {0, 1}n × [n], is the set of all pairs (x, y, i) such

that 1) x ∈ f−1(1); 2) y ∈ f−1(0); and 3) xi 6= yi.

Thus a communication protocol for Sf can be described as Alice receiving a 1-input to f , Bob receiving

a 0-input to f , and their goal is to find a spot where their respective inputs differ. It turns out that such

protocols are completely isomorphic to formulas solving f itself; by extension their complexities match.

Theorem 3 (Main theorem, [KW90]). cc-tree-depth(Sf ) = depth(f)

We note that as mentioned in Chapter 1, formulas can be balanced to have depth at most logarithmic

in the optimal size; Theorem 3 implies the same for communication complexity.

2.1.2 Lifting

In this work we focus on a different way of connecting search problems to bipartite search problems,

namely by composition. As stated in the introduction, we will not consider the composition of general f

and g, but rather the composition of general f with a specialized gadget function g.

Definition 4. Let m ∈ N. The index gadget, denoted Indm, is a Boolean function which takes two

inputs x ∈ [m] and y ∈ {0, 1}m, and outputs y[x]. For a search problem f : {0, 1}n → O, the lifted

search problem f ◦ Indnm is a bipartite search problem defined by X := [m]n, Y := ({0, 1}m)n, and

f ◦ Indnm(x, y) = {o ∈ O : o ∈ f(Indnm(x, y))}, where Indnm refers to n separate instances of Indm.

Our goal in lifting will be to turn lower bounds for the original search problem f into communication

lower bounds for the lifted search problem f ◦ Indnm. The lower bounds for f will be for a model of

computation called query complexity.

Definition 5. Consider a search problem f ⊆ {0, 1}n ×O. A decision tree T is a binary tree such that

each non-leaf node v is labeled with an input variable zi, and each leaf v is labeled with a solution ov ∈ O.

The tree T solves f if, for any input z ∈ {0, 1}n, the unique root-to-leaf path, generated by walking left

at node v if the variable zi that v is labeled with is 0 (and right otherwise), terminates at a leaf u with

ou ∈ f(z). We define

dec-tree-depth(f) := least depth of a decision tree solving f .

As far as complexity measures go, the parameter dec-tree-depth is typically the one that we care about,

and certainly for lifting our goal will be to connect dec-tree-depth to cc-tree-depth, but in Chapter 3 we

will also draw attention to dec-tree in the context of proof complexity. One important point here is

that unlike communication protocols, decision trees can not be balanced,1 which means that in lifting

1A trivial example of this is the OR function with n inputs, which can be computed by decision trees of size n but also
requires depth n.
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the depth of decision trees to communication, we may gain exponentially in the lower bound on their

respective sizes as well.

However, while lifting allows us to obtain strong communication lower bounds against lifted search

problems, we are not guaranteed that f ◦ Indnm = Sf ′ for some function f ′, which is why these lower

bounds do not automatically give us results for formulas. However, it turns out that there is a generic

transformation that can turn any bipartite search problem F into a new problem F ′ which is indeed a

monotone canonical search problem for some function f ′, and composing with a monotone analogue of

Theorem 3 [KW90]—we get the following2:

Theorem 4 (Lifted functions to monotone formulas). Let f : {0, 1}n → {0, 1} be a function and

g : X × Y → {0, 1} be a bipartite function. Then there exists a function f ′ : {0, 1}n′ → {0, 1} such that

cc-tree-depth(f ◦ g) = cc-tree-depth+(Sf ′) = depth+(f ′)

where the + subscript indicates monotonicity.

The KRW conjecture, and by extension NC1 6= P, would follow from two improvements: 1) generalizing

our lifting results to work for any g instead of just Indm; and 2) removing the monotonicity in Theorem 4.

2.1.3 Abstract and dag-like query/communication models

The above definitions are the most recognizable form of query and communication models respectively,

but we can consider these models in a more general form as well. We consider a search problem f ⊆ Z×O,

and let Q be a family of subsets of Zn. A Q-tree T for f is a tree where each internal vertex v of T is

labeled with a function qv ∈ Q, each leaf vertex of T is labelled with some o ∈ O, and all labels satisfy

the following properties:

� qv = Zn when v is the root of T

� qv ⊆ qu ∪ qw for any node v with children u and w

� qv ⊆ f−1(o) for any leaf node v labeled with o ∈ O

We can see that for Z = {0, 1}n, ordinary decision trees are Q-trees where Q is the set of strings accepted

by juntas (i.e. conjunctions of literals).

We can also use Q-trees to generalize communication complexity search problems F ⊆ X × Y ×O,

where now Q is the family of functions from X × Y to {0, 1} corresponding to combinatorial rectangles

X × Y ⊆ X × Y; more specifically qX×Y (x, y) = 1 iff (x, y) ∈ X × Y .

Our abstract models will have the added benefit of allowing us to properly define a dag-like model

for both query and communication [Raz95b, Pud10, Sok17]. For a search problem f ⊆ Z × O and a

family of functions Q from Z to {0, 1}, a Q-dag is a directed acyclic graph D where each internal vertex

v of the dag is labeled with a function qv(z) ∈ Q and each leaf vertex is labeled with some o ∈ O and

satisfying the following properties:

� q−1
v (1) = Z when v is the root of D

� q−1
v (1) ⊆ q−1

u (1) ∪ q−1
w (1) for any node v with children u and w

2We could not find the first reference to the connection between lifted problems and monotone canonical search problems,
and so we assume Theorem 4 is essentially folklore given the monotone results of [KW90].



Chapter 2. Query-to-Communication Lifting Theorems 22

� q−1
v (1) ⊆ f−1(o) for any leaf node v labeled with o ∈ O

For Z = {0, 1}n a conjunction dag D solving f is a Q-dag where Q is the set of all juntas over Z. 3 For

conjunction dags our measure of complexity will be a bit different than depth. The width of Π is the

maximum number of variables occurring in any junta v(z). We define

dec-dag(S) := least size of a decision-dag solving S,

dec-dag-width(S) := least width of a decision-dag solving S.

For a bipartite search problem F ⊆ X × Y ×O and a family of functions Q from X × Y to {0, 1}, we

define a Q-dag solving F analogously. A rectangle dag Π solving F is a Q-dag where Q is the set of all

indicator vectors of rectangles X × Y ⊆ X × Y. We define

rect-dag(F ) := least size of a rectangle dag solving F .

2.2 Main proof: tree-like lifting via sunflowers

Our main goal will be to give a novel proof of the deterministic query-to-communication lifting theorem

of [RM99, GPW18]:

Query-to-Communication Lifting Theorem. Let f be a search problem over {0, 1}n, and let m =

n1+ε for any ε > 0. Then for g = Indm,

cc-tree-depth(f ◦ g) = dec-tree-depth(f) ·Θ(logm)

To prove Query-to-Communication Lifting Theorem, we prove that a) a decision tree of depth d for f

can be simulated by a communication protocol of depth O(d logm) for the composed problem f ◦ Indnm,

and b) a communication protocol of depth d logm for the composed problem f ◦ Indnm can be simulated

by a decision-tree of depth O(d) for f . Let {zi}i be the variables of f and let {xi}i, {yi}i be the variables

of f ◦ Indnm; recall that each zi takes values in {0, 1}, xi takes values in [m], and yi takes values in {0, 1}m.

The forward direction of the theorem is obvious: given a decision tree T for f , Alice and Bob can simply

trace down T and compute the appropriate variable zi at each node v ∈ T visited, spending logm bits to

compute Indm(xi, yi) to do so.

Thus our goal is to prove that if there exists a communication protocol Π of depth d logm for the

composed problem f ◦ Indnm, then there exists a decision tree of depth O(d) for f . Our proof will follow

the basic structure of previous works [GPW20, GGKS20]. At the heart of lifting proofs is a simulation

theorem,4 which shows that for large enough m = nO(1) the simulation goes the other way as well: we

can build a decision tree for f by mimicking a communication protocol for f ◦ Indnm while only querying

an O(1/ logm) fraction of the original variables.

The proof of this simulation theorem has evolved considerably since [RM99], applying to a wider range

of gadgets [WYY17, CKLM19, CFK+21], and with more sharpened results giving somewhat improved

3As noted above the terms “conjunction” and “junta” are closely related, but conjunctions are usually thought of as
syntactic objects while juntas are functions. We keep the term conjunction dag from [GGKS20] for consistency even though
we switch to using junta for the functions in Q.

4Here we restrict ourselves to lifting theorems in the setting of Boolean models of query complexity (e.g., decision
trees, randomized decision trees). Interestingly algebraic lifting theorems which lift polynomial degree to an associated
communication measure, exploit duality in order to give nonconstructive proofs of lifting (see e.g. [She11, PR18, Rob18])
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parameters and simulation theorems for the more difficult settings of randomized and dag-like lifting.

The original proof of [RM99] used the notion of min-degree for the central invariant used to prove the

simulation theorem; later [GLM+16] introduced the notion of blockwise min-entropy, which has since been

used for a variety of lifting theorems, including randomized [GPW20] and dag-like [GGKS20]. Nearly all

of these proofs used either intricate combinatorial arguments or tools from Fourier analysis.

After proving Query-to-Communication Lifting Theorem we will move on to other lifting theorems

which follow by similar proofs. In particular we prove a lifting theorem for dag-like protocols as well as

a graduated lifting theorem whose gadget size scales with dec-tree-depth(f). Almost all our proofs will

generalize to the real communication setting, which will be the focus of Chapter 3.

2.2.1 High level idea: Tracing the “important” coordinates.

What does it mean to “simulate” a communication protocol for f ◦ Indnm by a decision tree for f? When

we look at the communication matrix for f ◦ Indnm, we label the (x, y) entry with the solutions o ∈ O
satisfying (x, y) ∈ (f ◦ Indnm)−1(o). However we have no control over f , and so in some sense what we

really care about is the z variables. So instead we will think of the (x, y) entry as storing z = Indnm(x, y),

and then instead of having to reason about f we can ask “what does the set of z values that make it to

any given leaf of Π look like?”

For each leaf we want to split the coordinates into two categories: the “important” coordinates where

the z values are (jointly) nearly fixed, and the rest where every possibility is still open. Hopefully this

means that knowing the important coordinates is enough to declare the answer. Applying the same logic

to the internal nodes we can query variables as they cross the threshold from unfixed to important, which

leads us down to the leaves in a natural way. To do this efficiently, we have to define “importance” in a

way that satisfies all these conditions while also ensuring that no leaf contains more than O(d) important

variables.

In order to prove this formally, we will trace down the communication protocol node by node, at each

step looking for the z variables that are fairly “well determined” by the current rectangle. We focus

exclusively on the X side of the current rectangle, since Y is so large that it would take more than d logm

rounds just to fix a single yi. Our measure of coordinate i being well-determined will be the min-entropy

of the uniform distribution on X marginalized to the coordinate i.

Definition 6. Let S be a set. For a random variable s ∈ S we define its min-entropy by H∞(s) :=

mins log(1/Pr[ s = s ]). We also define the deficiency of s by D∞(s) := log |S| −H∞(s) ≥ 0.

In this paper we will use the convention that bolding the name of a set means the random variable

which is uniform over the set. Thus our focus will be on H∞(Xi).

Let Xv be the X set associated with node v in the communication protocol. By definition of a

communication protocol, if v has children u and w, then Xv ⊆ Xu ∪Xw, and so by averaging one of the

two children—let us say u without loss of generality—obeys |Xu| ≥ |Xv|/2. An obvious but crucial fact

about min-entropy is that the min-entropy of every coordinate in Xu at least its entropy in Xv minus 1.

Thus, at the start of the protocol every coordinate will have min-entropy exactly logm, while moving to

the child with the larger Xu set guarantees that in each round the min-entropy of every coordinate drops

by at most 1.

This immediately leads us to a suitable definition of a coordinate being important: once a coordinate i

falls below a certain min-entropy threshold, say (1− δ) logm for a very small constant δ, we can consider
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Figure 2.1: Rectangle Partition procedure (figure from [GPW20]).

the coordinate important enough to query in the decision tree. We can think of Π as having “paid” for

the coordinate i; since min-entropy can only drop by 1 each round, it took δ logm rounds to reduce

the entropy of Xi to below the threshold. Since we ultimately want to shave an Ω(logm) factor off the

height of the communication protocol in our decision tree, once Π has spent Ω(logm) steps transmitting

information about coordinate i we can feel satisfied giving up the rest of the information about Xi and

Yi for free.

In fact we will use a generalization of min-entropy so that instead of tracking individual coordinates

we stop whenever a set of coordinates I has a joint assignment x[I] = α which violates (1 − δ) logm

blockwise min-entropy. For the rest of the proof δ will be some small constant whose value will be fixed

later; the reader is free to think of it as 1/100 for clarity if they are so inclined.

Definition 7. Let S be a set. For a random variable s ∈ SN , we define its blockwise min-entropy by

H�
∞(s) := min∅6=I⊆[N ]

1
|I|H∞(sI), or in other words the least (normalized) marginal min-entropy over all

subsets I of the coordinates [N ].

Let us use blockwise min-entropy to define our main invariant; as stated, we want to show that the

important coordinates, i.e. the ones we have already queried in T , are fixed with the right assignment,

while the unimportant coordinates, i.e. the ones we have not already queried in T , are “very unfixed”.

We denote by free(ρ) ⊆ [n] the variables assigned a star, and define fix(ρ) := [n] r free(ρ).

Definition 8. Let ρ ∈ {0, 1, ∗}n be a partial assignment with J := fix(ρ) ⊆ [n]. A rectangle R =

X × Y ⊆ [m]n × ({0, 1}m)n is ρ-structured if the following conditions hold:

� the gadget is fixed according to ρ: IndJm(XJ , YJ) = {ρ[J ]}

� X is fixed on fixed blocks and is free on free blocks: XJ is fixed to a single value α, and H�
∞(XJ̄ ) ≥

(1− δ) logm

� Y is large: |Y | ≥ 2mn−d logm−|J| logm

If the second condition only holds for (1− δ) logm−O(1), we say R is ρ-almost structured.

2.2.2 Density-restoring partition procedure

In the procedure described above, our goal is to maintain a ρ-structured rectangle R, where ρ is the

restriction fixed by our path in the decision tree. In each step our blockwise min-entropy drops by 1,

and so at some step we will no longer be ρ-structured, but rather ρ-almost structured. Thus a key piece

of our algorithm will be to use an entropy-restoring procedure called the rectangle partition, which will

break our ρ-almost-structured rectangle R into a group of smaller rectangles, from among which we can

find a ρ′-structured rectangle R′ for some ρ′ extending ρ.



Chapter 2. Query-to-Communication Lifting Theorems 25

X1

X2

X3

...

x[I1] = α1

x[I2] = α2 x[I1] 6= α1

x[I3] = α3

x[I1] 6= α1

x[I2] 6= α2

X1

X2

X3

Y 1,00 Y 1,01 Y 1,10 Y 1,11

Y 2,000Y 2,001Y 2,010 Y 2,011 Y 2,100 Y 2,101

Y 3,0 Y 3,1

Figure 2.2: Phases I and II of Rectangle Partition. In each Xj × Y j,β , x[Ij ] is fixed to αj and y[Ij ] is

fixed so that IndIjm(Xj
Ij
, Y j,βIj ) = β.

To perform the partition we will need to find sets Xj × Y j,β along with a corresponding assignment

ρj,β for which they are ρj,β-structured. This is done in two phases. Our goal in Phase I will be to break

up X into disjoint parts Xj , such that each Xj is fixed on some set Ij ⊆ J̄ (as well as J , of course) and

has blockwise min-entropy (1− δ) logm on J̄ r Ij—hence this partition is “density-restoring” when XJ̄

starts off with blockwise min-entropy below (1− δ) logm. To do this, the procedure iteratively finds a

maximal partial assignment (Ij , αj) such that the assignment x[Ij ] = αj violates (1− δ) logm blockwise

min-entropy in XJ̄ , splits the remaining X into the part Xj satisfying this assignment and the part

X rXj not satisfying it, and recurses on the latter part. We do this until we’ve covered at least half of

X by Xj subsets.

Our goal in Phase II will be to break up Y into disjoint parts Y j,β for each Xj from Phase I, such that

each Xj × Y j,β is ρj,β-structured for some restriction ρj,β . We already have the blockwise min-entropy of

Xj in the coordinates J̄ r Ij by our first goal, and clearly we will choose ρj,β such that fix(ρj,β) = J ∪ Ij
for each j. Thus we need to fix the coordinates of Y within the blocks Ij , and within each Y j,β it should

be the case that y[Ij , αj ] = β for all y ∈ Y j,β , at which point ρj,β can be fixed to β on Ij and left free

everywhere else in J̄ (with the coordinates of J being fixed by assumption).

Algorithm Rectangle Partition

1: Initialize F = ∅, j = 1, and X≥1 := X
2: PHASE I (Xj):
3: while |X≥j | ≥ |X|/2 do
4: Let Ij be a maximal subset of J̄ such that X≥j violates (1− δ) logm-blockwise min-entropy on
Ij , or let Ij = ∅ if no such subset exists

5: Let αj ∈ [m]Ij be an outcome such that Prx∼X≥j (x[Ij ] = αj) > 2−(1−δ)|Ij | logm

6: Define Xj := {x ∈ X≥j : x[Ij ] = αj}
7: Update F ← F ∪ {(Ij , αj)}, X≥j+1 := X≥j rXj , and j ← j + 1 5

8: PHASE II (Y j,β):
9: for (Ij , αj) ∈ F , β ∈ {0, 1}Ij do

10: Define Y j,β := {y ∈ Y : y[Ij , αj ] = β}
11: Return F , {Xj}j , {Y j,β}j,β

Our algorithm is formally described in Rectangle Partition. Let X × Y be ρ-almost structured for
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some ρ with fix(ρ) = J where |J | = O(d), and let F , {Xj}j , {Y j,β}j,β be the result of Rectangle Partition

on X × Y . Recall that our goal was to break X × Y up into ρj,β-structured rectangles Xj × Y j,β ; the

following simple claims show that the obvious choice of ρj,β achieves two of the three conditions needed

(outside of the part of X that we never touch before the procedure ends).

Lemma 5. For all j and for all β ∈ {0, 1}Ij , define ρj,β ∈ {0, 1, ∗}n to be the restriction extending ρ by

ρj,β [Ij ] = β. Then Xj
Ij

= {αj} and IndJ∪Ijm (Xj , Y j,β) = ρj,β [J ∪ Ij ].

Proof. By definition Xj is fixed to αj on the coordinates Ij , while Y j,β only contains values y such that

y[αj ] = β.

Lemma 6. For all j, H�
∞(Xj

J∪Ij
) ≥ (1− δ) logm.

Proof. Assume for contradiction that I∗ ⊆ J̄rIj such thatXj violates (1−δ) logm-blockwise min-entropy

on I∗, and let α∗ be an outcome witnessing this. Then

Prx∼X≥j (x[Ij ] = αj ∧ x[I∗] = α∗) > 2−(1−δ)|Ij | logm ·Prx∼Xj (x[I∗] = α∗)

> 2−(1−δ)|Ij | logm−(1−δ)|I∗| logm = 2−(1−δ)|Ij∪I∗| logm

which contradicts the maximality of Ij .

So far in Lemmas 5 and 6 we have not used the fact that X × Y was ρ-almost structured. For our

third condition, instead of showing that |Y j,β | is large for every j and every β, we want to show that

|Y j,β | is large for some j and every β. If every β were equally likely then |Y j,β | ≈ |Y |/2|Ij |; for us it is

enough that the smallest Y j,β be has size at least |Y |/2|Ij | logm. For convenience we redefine X to only

be the union of the Xj parts—since we terminate after |X≥j | < |X|/2 we can do this and only decrease

the blockwise min-entropy of X by 1—and furthermore we restrict down to the free coordinates J̄ .

Lemma 7. Let X × Y be ρ-almost structured for some ρ with fix(ρ) = J ⊆ [n] and let F , {Xj}j,
{Y j,β}j,β be the result of Rectangle Partition on X × Y . Let X ′ := (∪jXj)J̄ be such that H�

∞(X ′) ≥
(1− δ) logm−O(1), and let Y be such that |Y | ≥ 2mn−d logm−|J| logm. Then there is a j such that for

all β ∈ {0, 1}Ij ,
|Y j,β | ≥ 2mn−d logm−|J∪Ij | logm

Proof. We will show that there is a j such that for all β ∈ {0, 1}Ij , |Y j,β | ≥ |Y |/2|Ij | logm, which is

sufficient by our bound on |Y |. Assume for contradiction that for every j there exists a βj such that

|Y j,βj | < |Y |/2|Ij | logm. Define Y= := {y ∈ Y : ∃j, y[Ij , αj ] = βj} and Y6= := Y r Y= = {y ∈ Y :

∀j, y[Ij , αj ] 6= βj}.
We first show that |Y=| < |Y |/2. Define F(k) := {(Ij , αj) ∈ F : |Ij | = k}. Assume that there exists

some k such that |F(k)| > 2m0.95k. Note that every set (Ij , αj) ∈ F(k) corresponds to an assignment

to X which occurs with probability greater than 2−(1−δ)k logm in X≥j , which has size at least |X|/2 by

construction, and so by a union bound we get that

|X ′| > |F(k)| · (2−(1−δ)k logm |X|
2

) > (
1

2
· 2(1−δ)·k logm+1 · 2−(1−δ)·k logm)|X| = |X|

which is clearly a contradiction. Thus we can assume that |F(k)| ≤ 2m0.95k for all k, then because we
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assumed |Y j,βj | < |Y |/2|Ij | logm we get that

|Y=| <
n∑
k=1

(2m(1−δ)k · |Y |
2k logm

)

<

n∑
k=1

(2(1−δ/2)k logm−1 · |Y |
2k logm

)

=
|Y |
2
·
n∑
k=1

(2(δ/2) logm)−k

<
|Y |
2
·
∞∑
k=1

2−k =
|Y |
2

Now because |Y=| < |Y |/2, it must be the case that |Y6=| ≥ |Y |/2 ≥ 2mn−d logm−|J| logm > 2mn−2n logm.

The following lemma, whose proof we defer to the end of the section, is our central contribution; it shows

that if X ′ has high blockwise min-entropy outside some set of coordinates J , and furthermore Y is large,

then it’s possible to find an x∗ ∈ X ′ such that the full image of the index gadget is available to x∗ outside

J , or in other words IndJ̄m(x∗, Y ) = {0, 1}J̄ . We also emphasize that this is the only place in the proof of

Query-to-Communication Lifting Theorem where we use the size of the gadget, and it will also be the

only place where we are restricted in our choice of δ.

Full Range Lemma. Let m1−δ ≥ O(n log n) and let J ⊆ [n]. Let X × Y ⊆ [m]J̄ × ({0, 1}m)n be such

that H�
∞(X) ≥ (1− δ) logm−O(1) and |Y | > 2mn−2n logm. Then there exists an x∗ ∈ X such that for

every β ∈ {0, 1}J̄ , there exists a yβ ∈ Y such that IndJ̄m(x∗, yβ) = β.

By Full Range Lemma on X ′×Y6=, there must exist some x∗ ∈ X ′ such that for every β ∈ {0, 1}J̄ there

exists yβ ∈ Y6= such that yβ [J̄ , x∗] = β. Since x∗ ∈ X ′, there exists some j such that x∗ ∈ Xj

J̄
, and thus for

any β ∈ {0, 1}J̄ such that β[Ij ] = βj , there exists a yβ ∈ Y6= such that yβ [J̄ , x∗[J̄ ]] = β. But since x∗ ∈ Xj

J̄
,

x∗[Ij ] = αj , so yβ [Ij , αj ] = βj which is a contradiction since Y6= = {y ∈ Y : ∀j, y[Ij , αj ] 6= βj}.

Lemmas 5, 6, and 7 together imply that for the choice of j given by Lemma 7, every rectangle Rj,β is

ρj,β-structured, where ρj,β extends ρ by fixing x[Ij ] = βj . Before moving into the simulation theorem,

we make a last observation, showing that the deficiency of each Xj drops by Ω(|Ij | logm). This will be

used later to show the efficiency of our simulation.

Lemma 8. For all (Ij , αj) ∈ F , D∞(Xj

J∪Ij
) ≤ D∞(XJ̄)− δ|Ij | logm+ 1.

Proof. By our choice of (Ij , αj) it must be that |Xj | = |X≥j | ·Prx∼X≥j (x[Ij ] = αj) ≥ |X≥j | ·2−(1−δ) logm.

Then by the fact that Xj is fixed on J ∪ Ij and and X is fixed on J ,

D∞(Xj

J∪Ij
) = |J ∪ Ij | logm− log |Xj |

≤ (n− |J ∪ Ij |) logm− log(|X≥j | · 2−(1−δ)|Ij | logm)

≤ ((n logm− |J | logm)− |Ij | logm)− log |X≥j |+ (1− δ)|Ij | logm− log |X|+ log |X|

= (|J | logm− log |X|)− δ|Ij | logm+ log(|X|/|X≥j |)

≤ D∞(XJ̄)− δ|Ij | logm+ 1
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where the last step used the fact that |X≥j | ≥ |X|/2, since we terminate as soon as |X≥j | < |X|/2 at

the start of the j-th iteration.

2.2.3 Simulation

We now describe our high level procedure using this partitioning subroutine. Fix δ such that (1−δ)(1+ε) >

1 + Ω(1), and let m = n1+ε; note that m1−δ = n(1−δ)(1+ε) ≥ O(n log n) as required. In addition to the

rectangles Rv corresponding to each node v of Π, we maintain a ρ-structure subrectangle R = X × Y ,

which will be our guide for how to proceed down Π. We start at the root, where R = Rv = X × Y and

ρ = ∗n. At each step we go down to the child v with the larger rectangle R ∩ Rv—which guarantees

that the blockwise min-entropy of X ∩Xv (in the free coordinates) goes down by at most 1 from X,

as required—and update R to be R ∩Rv for whichever child v we picked. We continue going down the

protocol and taking the child with the larger intersection with R until we find that a set of coordinates has

blockwise min-entropy less than (1− δ) logm in R. After running the rectangle partition, we will decide

which set of variables z[Ij ] to query using Lemma 7, with the resulting rectangle Rj,β corresponding to

query answer β is ρj,β-structured as observed. Lastly, the invariant that |J |—i.e. the number of fixed

coordinates, and by extension the depth of our tree T—is at most O(d) follows from three facts about

the deficiency of X: 1) D∞(X) = 0 at the start of the protocol; 2) D∞(XJ̄) ≤ d logm− δ|J | logm by

Lemma 8; 3) D∞(s) ≥ 0 for any random variable s by definition of deficiency.

We describe our query simulation of the communication protocol Π in Simulation Protocol. For all

v ∈ Π let Rv = Xv × Yv be the rectangle induced at node v by the protocol Π. The query and output

actions listed in bold are the ones performed by our decision tree.

Algorithm Simulation protocol

1: Initialize v := root of Π; R := [m]n × ({0, 1}m)n; ρ = ∗n
2: while v is not a leaf do
3: Precondition: R = X × Y is ρ-structured; for convenience define J := fix(ρ)
4: Let v`, vr be the children of v, and update v ← v` if |R ∩Rv` | ≥ |R|/2 and v ← vr otherwise
5: Execute Rectangle Partition on (X ∩Xv)× (Y ∩ Yv) and let F = {(Ij , αj)}j , {Xj}j , {Y j,β}j,β

be the outputs
6: Apply Lemma 7 to F , {Xj}j , {Y j,β}j,β to get some index j corresponding to (Ij , αj) ∈ F
7: Query each variable zi for every i ∈ Ij , and let β ∈ {0, 1}Ij be the result
8: Update X ← Xj and Y ← Y j,β

9: Update ρ← ρj,β (recall that ρj,β ∈ {0, 1, ∗}n is the restriction extending ρ by ρj,β [Ij ] = β)
10: Output the same value as v does

Before we prove the correctness and efficiency of our algorithm, we note that we make no distinction

between Alice speaking and Bob speaking in our procedure. Here we note that each Rv is a rectangle

induced by the protocol Π, and so updating v only splits X or Y—corresponding to when Alice and Bob

speak respectively—but not both, and so since R ⊆ Rv we get that |X∩Xv| ≥ |X|/2 and |Y ∩Yv| ≥ |Y |/2.

Efficiency and correctness. To prove the efficiency and correctness of our algorithm, consider the

start of the t-th iteration, where we are at a node v and maintaining Rt = Xt × Y t and ρt.6 Again for

6We understand that this notation is somewhat overloaded with Xj , Y j,β , and ρj,β . Since the proof that the invariants
hold is short and we only ever use t (or t+ 1) for the time stamps and j for the indices, hopefully this won’t cause any
confusion.
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Rv` Rvr

R

Figure 2.3: One iteration of Simulation Protocol. We perform Rectangle Partition (green lines) on the
larger half of R after moving from v to its child (shaded in purple), use Lemma 7 to identify a part j
(shaded in blue), and then query Ij and set R to Xj × Y j,β for the result z[Ij ] = β (shaded in brown).

convenience we write J t := fix(ρt). Let (It, αt) be the (possibly empty) assignment returned by Lemma 7

corresponding to index jt, and let βt be the result of querying z[It].

We show that our precondition that Rt is ρt-structured holds for all t ≤ d logm, as well as the fact

that ρt fixes at most O(d) coordinates:

(i) IndJ
t

m (Xt
Jt , Y

t
Jt) = ρt[J t]

(ii) XJt is fixed to a single value and Xt
Jt

has blockwise min-entropy at least (1− δ) logm

(iii) |Y t| ≥ 2mn−t−|J
t| logm.

(iv) D∞(Xt
Jt

) ≤ 2t− δ|J t| logm, which implies |J t| ≤ (2/δ)d by non-negativity of deficiency

All invariants hold at the start of the algorithm since ρ0 = ∗n and X0 × Y 0 = [m]n × ({0, 1}m)n.

Inductively consider the (t + 1)-th iteration assuming all invariant holds for the t-th iteration. After

applying Rectangle Partition, invariant (i) follows by Lemma 5 and invariant (ii) follows by Lemmas 5

and 6. For invariant (iii) we first show that it is valid to apply Lemma 7 in the (t+ 1)-th iteration. First,

because |Xt ∩Xv| ≥ |Xt|/2 we know that the blockwise min-entropy of (Xt ∩Xv)Jt is at most one less

than the blockwise min-entropy of Xt
Jt

, which is at least (1− δ) logm. Second, we have

|(Y t ∩ Yv)| ≥ |Y t|/2 ≥ 2mn−t−|J
t| logm−1 = 2mn−(t+1)−|Jt| logm ≥ 2mn−(2/δ+1)d logm

recalling that t+ 1 ≤ d logm. Thus we can apply Lemma 7 and we get

|Y t+1| = |Y j
t,βt |

≥ 2mn−t−|J
t| logm−1−|It| logm

≥ 2mn−t−1−(|Jt|+It|) logm = 2mn−(t+1)−|Jt+1| logm

For invariant (iv), by Lemma 8 and induction we get that

D∞(Xt+1

Jt+1
) = D∞(Xjt

Jt+1
)

≤ D∞((X ∩Xv)Jt)− δ|I
t| logm+ 1
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≤ (2t− δ|J t| logm+ 1)− δ|It| logm+ 1 = 2(t+ 1)− δ|J t+1| logm

which completes the proof of our invariants. Thus our procedure is well-defined.

Leaves. Lastly we have to argue that if we reach a leaf v of Π while maintaining R and ρ with fixed

coordinates J , then the solution o ∈ O output by Π is also valid solution to the values of z, of which the

decision-tree knows that z[J ] = ρ[J ]. Suppose Π outputs o ∈ O at the leaf v, and assume for contradiction

that there exists β ∈ {0, 1}n consistent with ρ such that β /∈ f−1(o). Since IndJm(x, y) = ρ[J ] = β[J ]

for all (x, y) ∈ R, we focus on J̄ = free(ρ). Since R is ρ-structured, H�
∞(XJ̄) ≥ (1 − δ) logm and

|Y | > 2mn−d logm−|J| logm > 2mn−2n logm. Thus we can again apply Full Range Lemma to X × Y ,

we know that that there exists (x, y) ∈ R such that Indnm(x, y) = β, which is a contradiction as

R ⊆ Rv ⊆ (f ◦ Indnm)−1(o).

2.2.4 Proving the Full Range Lemma

Our last task, and the main contribution of this thesis, is to prove Full Range Lemma. The key ingredient

in the proof is a conversion from looking at x and y as pointers and strings to looking at them as set

systems, at which point we can use tools from combinatorics. In particular we will use the following

lemma, which enabled all of the recent innovations in the famous sunflower lemma, starting with the work

of Alweiss et al. [ALWZ20] and subsequently improved by a flurry of work [FKNP19, Rao19, BCW21].

Blockwise Robust Sunflower Lemma. There exists an absolute constant K such that the following

holds: let s ∈ N and κ > 0, and let F : {γ} be a set system over any universe U such that 1) |γ| ≤ s for

all γ ∈ F ; and 2) H�
∞(F) ≥ log(K log(s/κ)). Then

Pry⊆U (∀γ ∈ F : γ 6⊆ y) ≤ κ

where y is the uniform distribution over subsets of U .

Blockwise Robust Sunflower Lemma has a straightforward but somewhat technical proof, and so we

defer interested readers to e.g. [Rao19]. For now we use this result plus some simple math to prove Full

Range Lemma, thus concluding the proof of Query-to-Communication Lifting Theorem.

Proof of Full Range Lemma. Assume for contradiction that for all x there exists a βx ∈ {0, 1}J̄ such that

|{y ∈ Y : y[x] = βx}| = 0, or in other words for all (x, y) ∈ X × Y , y[x] 6= βx. Our goal will be to show

that |{y ∈ Y : ∀x, y[x] 6= βx}| < 2mn−3n logm, which is a contradiction as |Y | > 2mn−2n logm.

First, we claim that |Y | is maximized when βx = 1J̄ for all x. To do this we use the following small

claim.

Claim 9. Let m,N ∈ N, and let C = C1 ∧ . . . ∧ Cm be a CNF on the variables x1 . . . xN such that no

clause contains both the literals xi and xi for any i. Let Cmon be the result of replacing, for every i, every

occurrence of xi in C with xi.
7 Then

|{x ∈ {0, 1}N : C(x) = 1}| ≤ |{x ∈ {0, 1}N : Cmon(x) = 1}|
7Intuitively Cmon is the monotone version of C, and note that it does not matter whether our monotone version has all

variables occurring positively or negatively. This version will happen to be more suggestive later.
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Proof. Let Ci be the result of replacing every occurrence of xi in C with xi. It is enough to show that for

any i, Ci(x) is satisfied by at least as many assignments β ∈ {0, 1}N to x as C(x) is, as we can then apply

the argument inductively for i = 1 . . . N . Let β−i ∈ {0, 1}[N ]r{i} be an assignment to every variable

except xi. We claim that for every β−i, Ci(β−i, xi) is satisfied by at least as many assignments βi ∈ {0, 1}
to xi as C(β−i, xi).

Since there are no clauses with both xi and xi, each clause in C is of the form xi ∨ A, xi ∨ B, or

C, where A, B, and C don’t depend on xi; the corresponding clauses in Ci are xi ∨ A, xi ∨ B, and

C. If Ci(β−i, 1) = 1, then A(β−i) = B(β−i) = C(β−i) = 1 for all A, B, and C, and so Ci(β−i, xi)
is always satisfied. If Ci(β−i, 0) = 0, then it must be that C(β−i) = 0 for some C, and so C(β−i, xi)
has no satisfying assignments. Finally assume neither of these cases hold, and so Ci(β−i, 1) = 0 and

Ci(β−i, 0) = 1. Then it must be that either A(β−i) = 0 for some A, in which case C(β−i, 0) = 0, or

B(β−i) = 0 for some B, in which case C(β−i, 1) = 0. Therefore C(β−i, xi) has at least one falsifying

assignment, while Ci(β−i, xi) has exactly one.

Consider the CNF over y1 . . . ymn where clause Cx is the clause uniquely falsified by y[x] = βx; then

by Claim 9 we see that |{y ∈ ({0, 1}m)n : ∀x, y[x] 6= βx}| is maximized when βx = 1J̄ . Thus because

Y ⊆ ({0, 1}m)n,

|{y ∈ Y : ∀x, y[x] 6= βx}| ≤ |{y ∈ ({0, 1}m)n : ∀x, y[x] 6= 1J̄}|

Consider the space [mn] where each element is indexed by (i, α) ∈ [n] × [m]. For each x ∈ X, let

Sx ⊆ [mn] be the set defined by including (i, α) iff x[i] = α, and let SX = {Sx : x ∈ X}. By the fact that

m1−δ ≥ O(n logm) and |J̄ | ≤ n,

H�
∞(SX) ≥ (1− δ) logm−O(1) ≥ log(O(n logm)) > log(K log(|J̄ |/κ))

where κ := 2−3n logm and K is the constant given by Blockwise Robust Sunflower Lemma. Thus we can

apply Blockwise Robust Sunflower Lemma to SX and get that PrSy⊆[mn](∀Sx ∈ SX , Sx 6⊆ Sy) ≤ κ, and

if we look at y as being the indicator vector for Sy then we get that Pry∼{0,1}mn(∀x ∈ X, y[x] 6= 1J̄ ) ≤ κ.

Thus by counting we get

|Y | = |{y ∈ Y : ∀x, y[x] 6= βx}|

≤ |{y ∈ ({0, 1}m)n : ∀x, y[x] 6= 1J̄}|

≤ κ · 2mn = 2mn−3n logm

which is a contradiction as |Y | > 2mn−2n logm by assumption.

2.2.5 Afterword: near-linear size gadgets

What happens if δ is chosen to be subconstant? We cannot hope to get a tight lifting theorem, as our

decision tree will be of depth (2/δ) · d /∈ O(d). Furthermore choosing δ = o(1/ logm) makes our blockwise

min-entropy threshold (1− δ) logm trivial, as logm is the maximum possible blockwise min-entropy for

X. However these are the only restrictions in the proof, and so as long as we choose δ = Ω(1/ logm) the

proof goes through:

Theorem 10. Let f be a search problem over {0, 1}n, let δ ≥ 1
logn , and let m be such that m1−δ ≥
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3Kn log n for K given by Blockwise Robust Sunflower Lemma. Then for g = Indm,

dec-tree-depth(f) · (logm+ 1) ≥ cc-tree-depth(f ◦ g) ≥ dec-tree-depth(f) · Ω(δ logm)

Note that for δ = Θ(1/ logm) this gives us a gadget of size O(n log n) while still guaranteeing that

our decision tree for f has depth asymptotically as good as any communication protocol for f ◦ Indm.

2.3 Dag-like lifting

In this section we show that we can perform our lifting theorem in the dag-like model, going from decision

dags to communication dags. This was originally proven by Garg et al. [GGKS20] using an alternate

proof of Full Range Lemma, and we follow their proof exactly; in fact the only difference is that the

parameters in Full Range Lemma require them to define ρ-structured with |Y | ≥ 2mn−n
3

, whereas our

definition of ρ-structured is the stricter—in fact, even moreso than in Query-to-Communication Lifting

Theorem—condition that |Y | ≥ 2mn−O(d logm), which will again allow us to show the same gadget size

improvements.

Dag-like Lifting Theorem. Let f be a search problem over {0, 1}n, and let m = n1+ε. Then

log rect-dag(f ◦ Indnm) = dec-dag-width(f) ·Θ(logm)

Again one direction is simple; given a conjunction dag D for f of width d we can construct a rectangle

dag Π for f ◦ Indnm of size mO(d) by simply replacing each edge in D with a short protocol that queries

all variables fixed by the edge. Let Π be a communication protocol for f ◦ Indnm of size md; our goal

will be to construct a decision-dag D of width O(d) for f . Again we fix δ such that (1− δ)(1 + ε) > 1,

and let m = n1+ε. In this proof we will also use the fact that d = o(n); note that if d = Ω(n) then the

theorem is trivial, as there always exists a decision-dag for f of width O(n).

2.3.1 Rectangle partition and forgetting bits

We start by slightly changing the definition of ρ-structured, specifically by making the largeness condition

on Y fixed with respect to d:

Definition 9 (Definition 8, dag-like version). Let ρ ∈ {0, 1, ∗}n be a partial assignment with J :=

fix(ρ) ⊆ [n]. A rectangle R = X × Y ⊆ [m]n × ({0, 1}m)n is ρ-structured if the following conditions hold:

� the gadget is fixed according to ρ: IndJm(XJ , YJ) = {ρ[J ]}

� X is fixed on fixed blocks and is free on free blocks: XJ is fixed to a single value α, and H�
∞(XJ̄ ) ≥

(1− δ) logm

� Y is large: |Y | ≥ 2mn−(2/δ+2)d logm

If the second condition only holds for (1− δ) logm−O(1), we say R is ρ-almost structured.

Our procedure is similar to before, maintaining a ρ-structured rectangle R ⊆ Rv at every step, but

now there’s a slight twist: the protocol may have depth greater than d and can decide to “forget” some
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bits at each stage, at which point we will have to make sure the assignment ρ we maintain also stays

small.

This presents two problems. First off, it won’t be enough to find a subrectangle of our current

rectangle R, since R has some bits fixed that may be forgotten by the protocol. We circumvent this

by applying the rectangle partition procedure to the actual rectangle Rv, which allows us to find the

“important bits” as before, and then shift to a good rectangle Xj × Y j,β , leaving R behind.

The second challenge is that whenever we apply Rectangle Partition we need to ensure that every set

Ij we find is of size O(d). The Rectangle Lemma is the main technical lemma of [GGKS20], establishing

extra properties of Rectangle Partition. We give a new proof of the Rectangle Lemma, showing that that

by slightly modifying Rectangle Partition we can remove some “error sets” from X and Y and afterwards

assume that all our rectangles Xj × Y j,β are ρ-structured for some small restriction ρ, aka one that

fixes O(d) coordinates. Similar to Lemmas 5 and 6, here we don’t require that X has high blockwise

min-entropy or Y is large (although we will use those conditions at a different part of the proof); recall

that in Rectangle Partition these conditions were only needed to a) find a “good” j and b) to ensure the

deficiency of X drops, neither of which we will need.

Rectangle Lemma. Let R = X × Y ⊆ X × Y be a rectangle and let d = o(n). Then there exists a

procedure which outputs {Xj × Y j,β}j,β , Xerr, Yerr, where Xerr and Yerr have density 2−2d logm in X
and Y respectively, and for each j, β one of the following holds:

� structured: Xj × Y j,β is ρj,β-structured for some ρj,β of width at most O(d)

� error: Xj × Y j,β ⊆ Xerr × {0, 1}mn ∪ [m]n × Yerr

Finally, a query alignment property holds: for every x ∈ [m]n rXerr there exists a subset Ix ⊆ [n] with

|Ix| ≤ O(d) such that every “structured” Xj × Y j,β intersecting {x} × {0, 1}mn has fix(ρj,β) ⊆ Ix.

We defer the proof of Rectangle Lemma to the end of the section; it will go in much the same way as

the facts about Rectangle Partition in Query-to-Communication Lifting Theorem.

2.3.2 Simulation (without errors)

With Rectangle Lemma at hand, the simulation algorithm (Dag-like Simulation Protocol) and proof of

correctness essentially follows [GGKS20]. We first present the proof under a simplifying assumption and

then remove that assumption in Section 2.3.3.

(∗) Assumption: If we apply Rectangle Lemma for k := 2d logm to any rectangle Rv in Π, then each

part in the produced partition Rj,β satisfies the “structured case”.

We will go through a similar iterative process as Simulation Protocol, for the moment assuming (∗).

As before, our goal will be to maintain a ρ-structured rectangle R where |fix(ρ)| ≤ O(d).

Root and leaves. At the root of Π our rectangle will be R = Rv = [m]n × ({0, 1}m)n, which is

ρ-structured for ρ = ∗n. The leaves case is analogous to Query-to-Communication Lifting Theorem

as well; if we reach a leaf node v while maintaining a restriction ρ with |fix(ρ)| ≤ O(d), applying Full

Range Lemma to R ⊆ Rv we are guaranteed that every extension to ρ is still possible, meaning that no

assignment extending ρ can contradict the monochromatic label at v.
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Rv`

Rvr

R

x∗

y∗

Figure 2.4: One iteration of Dag-like Simulation Protocol. We perform Rectangle Partition (green lines)
on both Rv` and Rvr separately, use Full Range Lemma find an x∗ ∈ R with full range, query all bits in
the sets Ij` and Ijr corresponding to Xj` , Xjr 3 x∗ (shaded in blue), find a y∗ for which Indnm(x∗, y∗)
matches the result, and set R to Xjc × Y jc,βc 3 (x∗, y∗) (shaded in brown) for c ∈ {`, r} (shaded in
purple).

Internal nodes. Fix an internal node v of the protocol with children v` and vr, and assume we are

maintaining a ρ-structured rectangle R ⊆ Rv ⊆ Rv` ∪ Rvr , where J = fix(ρ) has size at most O(d).

Our challenge, as noted above, is to figure out which variables to forget in order to not cross the O(d)

threshold. To do this, we use Rv` and Rvr as a guide not just for which new variables to query but also

for which old variables to remember. We do so using Rectangle Lemma.

We apply Rectangle Lemma to Rv` and Rvr , and by our assumption they will both only produce

structured rectangles Rj,β` and Rj,βr . Because R is ρ-structured, we can apply Full Range Lemma to R

and get a row x∗ which has the full range of the index gadget on blocks J̄ available to it. Now because

R ⊆ R` ∩Rr we know that X ⊆ X` ∪Xr, and in particular that there exists some c ∈ {`, r} such that

x∗ ∈ Xc. Furthermore, every row in R` and Rr belongs to a structured rectangle, and so there exists

some j, associated with a set Ix∗ by the query alignment property, such that x∗ ∈ Xj
c . We query all

variables in Ix∗ r J , forget all variables in J r Ix∗ , and set R = Xj
c × Y j,βc , where β is the result of our

query. This gives us a ρj,β-structured rectangle R where fix(ρ) = Ix, which has size O(d) by construction.

2.3.3 Dealing with errors

We turn our attention now to the error sets; note that if x∗ falls in the error sets of R` and Rr then we

will run into trouble. Our solution will be to remove all the error sets from X and Y before the start of

the protocol, which will ensure that all rectangles that Rv returns are structured.

We do this in a bottom-up fashion: for each v we remove from Rv all error sets appearing in any

descendant of v, and then after applying Rectangle Lemma to the remaining rectangle we remove all error

sets returned as well. By removing all error sets from the descendants of v, we ensure that any structured

rectangle R = Rj,βv we transition into will only overlap with the structured parts of its children R` and

Rr.

We also need to ensure that this preprocessing step does not throw away too much of our rectangles.

Since the number of descendants of any node v is at most |Π| = md, we know that after having removed
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all error sets below the current node v we’ve only lost a md × 2−2d logm � 1/2 fraction of Xv and

Yv. At the root of Π, after processing Rv in total we’ve lost an md · 2−2d logm � 1/2 fraction of [m]n

and ({0, 1}m)n each, meaning we start with |Xv| = mn/2 and |Yv| = 2mn/2. After this the rectangle

associated with the root we will never encounter an error rectangle in our procedure. We note that this

will be the only place where we use the fact that |Π| = md.

Algorithm Dag-like Simulation Protocol

1: PREPROCESSING: initialize X∗err = ∅ and Y ∗err = ∅, and for all v ∈ Π let Rv := Xv × Yv be the
rectangle corresponding to v

2: for v ∈ Π starting from the leaves and going up to the root do
3: Update Xv ← Xv rX∗err and Yv ← Yv r Y ∗err
4: Apply Rectangle Lemma to Xv × Yv and let {Xj

v}j , {Y j,βv }j,β , Xerr, Yerr, {Ix}x be the outputs
5: Update X∗err ← X∗err ∪Xerr and Y ∗err ← Y ∗err ∪ Yerr
6: Initialize v := root of Π; R := Rv; ρ = ∗n
7: while v is not a leaf do
8: Precondition: R = X × Y is ρ-structured, for convenience define J := fix(ρ), and furthermore
|J | ≤ O(d)

9: Apply Full Range Lemma to XJ̄ × Y to get x∗ ∈ X
10: Let v`, vr be the children of v, let j`, jr be the indices such that x∗ ∈ Xj`

v`
and x∗ ∈ Xjr

vr , and let
Ij` and Ijr be the query alignment sets Ix∗ for v` and vr respectively

11: Query each variable zi for every i ∈ (Ij` ∪ Ijr ) r J , let β` ∈ {0, 1}Ij` be the result concatenated
with ρ[J ] and restricted to Ij` , and let βr ∈ {0, 1}Ijr be defined analogously

12: Let y∗ ∈ Y be such that Ind
Ij`
m (x∗, y∗) = β` and IndIjrm (x∗, y∗) = βr, and let c ∈ {`, r} be such

that (x∗, y∗) ∈ Xjc
vc × Y

jc,βc
vc

13: Update X × Y = Xjc
vc × Y

jc,βc
vc and ρ← ρjc,βc

Output the same value as v does

We state the full algorithm formally in Dag-like Simulation Protocol. We briefly go over the invariants

needed to run our algorithm. First, at the root node v we set R = Rv, and since |X| ≥ |X |/2 and

|Y | ≥ |Y|/2, R is clearly ρ-structured for ρ = ∗n as before. In the main procedure, assuming the

precondition of R being ρ-structured holds we meet all conditions for applying Full Range Lemma. Since

x∗ has full range we know that every Y j`,β`v`
and Y jr,βrvr exists, and since we removed all error sets the

rectangle Xjc
vc × Y

jc,βc
vc we end up in must be in the “structured” case of Rectangle Lemma. Thus again

end up in an R which is ρj,βc-structured for some ρjc,βc which fixes at most O(d) coordinates, and so

we’ve met the preconditions for the next round.

Our argument at the leaves is identical to the proof of Query-to-Communication Lifting Theorem,

but we restate it formally for completeness. Suppose Π outputs o ∈ O at the leaf v, and assume for

contradiction that there exists β ∈ {0, 1}n consistent with ρ such that β /∈ f−1(o). Since IndJm(x, y) =

ρ[J ] = β[J ] for all (x, y) ∈ R, we focus on J̄ = free(ρ). Since R is ρ-structured, XJ̄ has blockwise

min-entropy 0.95 logm and |Y | > 2mn−d logm−|J| logm > 2mn−2n logm. Thus applying Full Range Lemma

to X × Y , we know that that there exists (x, y) ∈ R such that Indnm(x, y) = β, which is a contradiction

as R ⊆ Rv ⊆ (f ◦ Indnm)−1(o).

2.3.4 Proof of Rectangle Lemma

Our procedure for generating rectangles Xj × Y j,β will be very similar to Rectangle Partition, but with a

number of additions. First (and least important), we run Phase I until X≥j is empty instead of stopping
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Yerr

Xerr

Figure 2.5: Error rectangles shaded in blue. Xj is added to Xerr if Ij is too large (bottom), while Y j,β

is added to Yerr if Y j,β is too small (right).

after partitioning half of X.8 We then run Phase II exactly as before. Finally we will create the error

sets Xerr and Yerr as follows:

� Xerr will contain all the Xj sets where the corresponding assignment (Ij , αj) is too large, namely

when |Ij | > (2/δ)d

� Yerr will contain all the Y j,β sets which are too small, namely when |Y j,β | < 2mn−(2/δ+2)d logm.

Algorithm Small-set Rectangle Partition with Errors

1: Initialize F = ∅, j = 1, and X≥1 := X
2: Initialize Xerr, Yerr = ∅ and Jx, Jy = ∅
3: PHASE I (Xj):
4: while X≥j 6= ∅ do
5: Let Ij be a maximal subset of [n] such that X≥j violates 0.95 logm-blockwise min-entropy on Ij ,

or let Ij = ∅ if no such subset exists
6: Let αj ∈ [m]Ij be an outcome such that Prx∼X≥j (x[Ij ] = αj) > 2−0.95|Ij | logm

7: Define Xj := {x ∈ X≥j : x[Ij ] = αj}
8: Update F ← F ∪ {(Ij , αj)} and X≥j+1 := X≥j rXj

9: Update j ← j + 1

10: PHASE II (Y j,β):
11: for j, β ∈ {0, 1}Ij do
12: Define Y j,β := {y ∈ Y : y[Ij , αj ] = β}
13: PHASE X-ERR (Xerr):
14: while ∃j /∈ Jx such that |Ij | > 40d do
15: Update Xerr ← Xerr ∪Xj and Jx ← Jx ∪ {j}
16: PHASE Y-ERR (Yerr):
17: while ∃(j, β) /∈ Jy : j /∈ Jx, β ∈ {0, 1}Ij such that |Y j,β | < 2mn−42d logm do
18: Update Yerr ← Yerr ∪ Y j,β and Jy ← Jy ∪ {(j, β)}
19: return F , {Xj}j /∈Jx , {Y j,β}(j,β)/∈Jy , Xerr, Yerr

Our algorithm is presented in full in Rectangle Partition with Errors. We prove a series of short

claims, most of which immediately follow in the same way as Lemmas 5, 6, and 7. The first puts these

8Our procedure doesn’t require a drop in deficiency anymore, since it’s enough to maintain the invariant that we’ve
fixed at most O(d) coordinates. However it is important to not leave out any of X, since you want to ensure that the x∗ we
get from Full Range Lemma falls in one of the Xjs.



Chapter 2. Query-to-Communication Lifting Theorems 37

claims together to show that all rectangles corresponding to j /∈ Jx, (j, β) /∈ Jy fulfill the “structured”

case of Rectangle Lemma. In the second we handle the density of the error rectangles.

Lemma 11. For all j /∈ Jx and all β ∈ {0, 1}Ij such that (j, β) /∈ Jy, Xj × Y j,β is ρj,β-structured for

some ρj,β which fixes at most O(d) coordinates.

Proof. As usual, for all j and for all β ∈ {0, 1}Ij , define ρj,β ∈ {0, 1, ∗}n to be the restriction where

fix(ρj,β) = Ij and ρj,β [Ij ] = β. Then

� by Lemma 5, Xj
Ij

is fixed to αj and IndIjm(Xj
Ij
, Y j,βIj ) = ρj,β [Ij ].

� by Lemma 6, H�
∞(XJ∪Ij ) ≥ (1− δ) logm.

� since (j, β) /∈ Jy, it must be that |Y j,β | ≥ 2mn−(2/δ+2)d logm

and so Xj × Y j,β is ρj,β-structured. Furthermore, since j /∈ Jx it must be the case that |fix(ρj,β)| =

|Ij | ≤ (2/δ)d = O(d).

Lemma 12. |Xerr| ≤ mn · 2−2d logm and |Yerr| ≤ 2mn · 2−2d logm

Proof. For Xerr we have two cases: either Xerr is empty, in which case the claim is trivial, or Xerr

is not empty and there is some minimal j ∈ Jx such that Xj gets added to Xerr, and by extension

|Ij | > (2/δ)d. By the fact that (Ij , αj) violates (1− δ) logm blockwise min-entropy in X≥j we know that

|Xj | ≥ |X≥j | · 2−(1−δ)|Ij | logm, and because Xj is a set in [m]n fixed on coordinates Ij ⊆ n we also know

that |Xj | ≤ 2(n−|Ij |) logm, which together gives us

|Xerr| ≤ |X≥j | < 2(n−|Ij |) logm+(1−δ)|Ij | logm < 2(n−δ·(2/δ)d) logm < mn · 2−2d logm

For Yerr, as in the proof of Lemma 7 for all k ∈ [(2/δ)d] we get that |F(k)| ≤ 2m(1−δ)k,9 and so for each

there are at most 2k · 2m(1−δ)k < 2k logm tuples (Ij , αj , βj) such that |{y ∈ Y r Yerr : y[Ij , αj ] = β}| <
2mn−(2/δ+2)d logm. Taking a union bound we get that

|Yerr| ≤
(2/δ)d∑
k=1

2k logm · 2mn−(2/δ+2)d logm ≤ 2 · 2mn−(2/δ+2)d logm+(2/δ)d logm � 2mn · 2−2d logm

which completes the proof.

The proof of Rectangle Lemma is now fairly immediate. The density of Xerr and Yerr follows from

Lemma 12. For any Xj × Y j,β , if j /∈ Jx and (j, β) /∈ Jy, then by Lemma 11 this fulfills the structured

case, while if j ∈ Jx then Xj ⊆ Xerr, while if j ∈ Jy then Y j,β ⊆ Yerr by definition. The query alignment

property holds by taking Ix = Ij for all x /∈ Xerr, where j /∈ Jx is such that x ∈ Xj .

2.4 Graduated lifting

In this section we prove a variant on Query-to-Communication Lifting Theorem, which allows us to set

the gadget size m in terms of the target decision tree depth d. The tree-like theorem was originally

proven in [GKMP20] but it also follows immediately from our proof of Query-to-Communication Lifting

9Note that in the statement of the lemma we assume nothing about the blockwise min-entropy of X; however our union
bound still holds because every rectangle Xj corresponds to an assignment which has probability at least exp(−(1−δ)k logm).
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Theorem with significant improvements to the gadget size. The only technical detail is that for arbitrary

search problems we cannot allow the gadget size to go below Ω(log1+ε n),10 although future improvements

on the statement of Blockwise Robust Sunflower Lemma could change this restriction. In particular, the

Robust Sunflower Conjecture states that the precondition in Blockwise Robust Sunflower Lemma can be

improved to logO(log 1/ε); if this held then it would remove our restriction on d.

Theorem 13 (Graduated Lifting Theorem, large d). 1. Let f be a search problem over {0, 1}n and

let m ≥ max(dec-tree-depth(f), log n)1+ε for some ε > 0. Then

cc-tree-depth(f ◦ Indm) ≥ dec-tree-depth(f) · Ω(logm)

2. Let f be a search problem over {0, 1}n and let m ≥ max(dec-dag-width(f), log n)1+ε for some ε > 0.

Then

log rect-dag(f ◦ Indnm) = dec-dag-width(f) ·Θ(logm)

Proof sketch. We focus on tree-like lifting, as the proof is analogous for dag lifting. We start with a given

communication protocol Π of depth d · δ logm for the composed problem f ◦ Indnm, where δ is such that

(1 − δ)(1 + ε) > 1, and we construct a decision-tree of depth O(d) for f . We change the precondition

on |Y | in Full Range Lemma to read “|Y | ≥ 2mn−2d logm”, which is guaranteed by the preconditions

of Lemma 7 and our ρ-almost structured invariant whenever it is applied. Accordingly, in the proof

of Full Range Lemma we set κ = 2−3d logm. By our choice of m we get that (1 − δ) logm − O(1) ≥
log(K log n+K · 3d logm) ≥ logK log(n/κ).

We also note that for many natural search problems, the restriction m = Ω(log n) can be removed.

For a search problem S, a certificate for (x, o) ∈ S is a partial assignment ρ ∈ {0, 1, ∗}n consistent with x

such that for any y consistent with ρ we have (y, o) ∈ S. The certificate complexity of S is the maximum

over all inputs x ∈ {0, 1}n of the minimum over all o ∈ S(x) of the least size of a certificate for (x, o).

For example, if τ is an unsatisfiable k-CNF formula, then the canonical search problem Sτ , which we

discuss extensively in the next chapter, has certificate complexity at most k, because every o is a clause

of width at most k, and thus the certificate is just the assignment to each literal in o which falsifies it.

Theorem 14 (Graduated Lifting Theorem, small d). 1. Let f be a search problem over {0, 1}n with

certificate complexity 2O(d log d), and let m ≥ (dec-tree-depth(f))1+ε for some ε > 0. Then

cc-tree-depth(f ◦ Indm) ≥ dec-tree-depth(f) · Ω(logm)

2. Let f be a search problem over {0, 1}n with certificate complexity 2O(d log d), and let m ≥ (dec-dag-width(f))1+ε

for some ε > 0. Then

log rect-dag(f ◦ Indnm) = dec-dag-width(f) ·Θ(logm)

Proof sketch. We begin by apply all the changes to Full Range Lemma as stated in the previous proof.

In order to remove the difficulty of having the set size n in the statement of Blockwise Robust Sunflower

Lemma, we marginalize each x to subsets of size at most 2O(d logm).

10This necessarily holds whenever d = Ω(logn), which can be considered the “natural” range of parameters as otherwise
there is a variable that is never queried along any path of our decision tree, meaning f does not depend on all its variables.
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Lemma 15 (d-Full Range Lemma). Let m ≥ d1+ε and let J ⊆ [n]. Let X × Y ⊆ [m]J̄ × ({0, 1}m)n

be such that X has blockwise min-entropy at least (1 − δ) logm − O(1) and |Y | > 2mn−2d logm. Then

there exists an x∗ ∈ X such that for every constant C, every J ′ ⊆ J̄ with |J ′| ≤ 2Cd logm, and every

β ∈ {0, 1}J′ , there exists a yβ ∈ Y such that IndJ
′

m (x∗, yβ) = β.

Proof. Assume for contradiction that for all x there exists a set Ix ⊆ J̄ of size at most 2Cd logm and

an assignment βx ∈ {0, 1}Ix such that |{y ∈ Y : y[Ix, x[Ix]] = βx}| = 0. As before, by Claim 9 we can

assume that βx = 1Ix . For each x ∈ X, let Sx ⊆ [mn] be the set defined by including (i, α) iff x[i] = α

and i ∈ Ix, and let SX = {Sx : x ∈ X}.
As above we set κ = 2−3d logm. By our choice of m we get that (1 − δ) logm − O(1) ≥ log(K(C +

3)d logm) ≥ logK log(2Cd logm/κ). Thus by Blockwise Robust Sunflower Lemma we get that PrSy⊆[mn](∀Sx ∈
SX , Sx 6⊆ Sy) ≤ κ, and if we look at y as being the indicator vector for Sy then we get that

Pry∼{0,1}mn(∀x ∈ X, y[Ix, x[Ix]] 6= 1Ix) ≤ κ. Thus by counting we get

|Y | = |{y ∈ Y : ∀x, y[Ix, x[Ix]] 6= βx}|

≤ |{y ∈ ({0, 1}m)n : ∀x, y[Ix, x[Ix]] 6= 1Ix}|

≤ κ · 2mn = 2mn−3d logm

which is a contradiction as |Y | > 2mn−2d logm by assumption.

Marginalizing to sets of size 2O(d logm) causes no issue for us when we apply Full Range Lemma to

show that there exists a good j in the rectangle partition, as we can assume that all sets have size at

most O(d) by either deficiency or error sets.

The only other place we apply Full Range Lemma—and thus the only other place where the gadget

size matters—is at the leaves, where we need to certify that we output the correct answer. As usual

assume for contradiction that there exists an assignment x consistent with ρ such that f(x) 3 o, where o

is the label we assign to the leaf. Our challenge is that we can no longer assert that every joint assignment

to all remaining free variables exists, and so it is possible that x itself is not in R. However, we note that

we only need to focus on C bits of x, where C is the certificate complexity of f , because it is these C

bits that fix the value of f . Because C ≤ 2O(d log d), applying Lemma 15 shows that the smallest partial

assignment consistent with x which forces the output of f to not include o is indeed in R, and this gives

us our contradiction as usual.

2.5 A note on combinatorics and lifting

To reemphasize one more time, our central contribution to the lifting literature in this chapter is the use

of Blockwise Robust Sunflower Lemma to prove Full Range Lemma. The utility of this straightforward

application of combinatorics to lifting—an application which reduces a key piece of the analysis to one

well-studied lemma and a negligible amount of extra work—should justify itself purely by its simplicity,

utility, and future prospects. Nevertheless, we close this chapter by remarking that the addition of

Blockwise Robust Sunflower Lemma is an important—or indeed, essential—step forward in lifting, beyond

these obvious qualitative and quantitative contributions. In short, the sunflower lemma has always been

deeply tied to lifting because their proofs follow the same path, based on building useful mathematical

structures within chaotic systems.
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In combinatorics, as well as in many other fields, there is a recurring and natural question of finding,

inside any sufficiently large collection of objects, a particular well-behaved object of interest; the sunflower

lemma itself is an obvious case in point, as are many famous statements, including the recent resolution

of the Kahn-Kalai conjecture [PP22], as well as the best known techniques for proving monotone circuit

lower bounds [Raz85, CKR20]. For such statements, the central recurring proof technique is that of

“structure versus randomness” proofs. The key is to decompose our large collection into two parts: first,

we isolate a component which is well-structured, i.e. well-behaved; and second, we treat the rest as being

extremely random when we condition on having taken out the structured piece. We incorporate the

structured piece into our final object in some way, and then we prove that we find ourselves in a win-win

scenario: if the structured component is large, then we have our object of interest; whereas if the random

component is large, then we find ourselves in the same place that we started, with an erratic but very

large component, and with any drop in size over the original collection being compensated by having

made progress towards our final object by utilizing the structured piece.

This is of course a very abstract description, but it may also strike the reader as familiar from the

proofs in this chapter. In fact, the entire strategy of decomposing our almost-ρ-structured rectangle into

ρ′-structured subrectangles comes directly from this framework: by fixing new coordinates Ij to some

assignment αj (structure), we can assume that the rectangle conditioned on this assignment regains

blockwise min-entropy (random).11 Despite this direct inspiration, however, former proofs of lifting have

always involved various non-combinatorial arguments in the random case, unlike most other applications

of the structure versus randomness argument. With the application of Blockwise Robust Sunflower

Lemma, as well as with our other tweaks such as the new counting argument for Y=, we have grounded

the proof directly in such structural combinatorial ideas at every stage of the argument.

The next question is to explore this connection in greater detail. It may strike the reader as odd

to claim that lifting is inherently related to combinatorics when this whole proof structure may just

be one—possibly even a suboptimal one—among many; here it should be remarked that a converse is

actually known, and that improvements to Query-to-Communication Lifting Theorem immediately imply

better parameters for the sunflower lemma [LLZ18]. This seems to suggest that lifting is intimately tied in

with the deeper phenomenon of hardness versus randomness, and that any simulation of communication

protocols by way of fixing coordinates via decision tree queries gives us some way of iteratively isolating

structure in the communication matrix which is made possible by such mathematical structures. The

question is how tight this connection can be made, how this can be generalized to broader gadgets, and

ultimately whether or not this same structural approach can come to bear on the KRW Conjecture in

the non-monotone world.

Further reading

� Deterministic Communication vs. Partition Number [GPW18] / Query-to-Communication Lifting

for BPP [GPW20]. These two works brought query-to-communication lifting back into the public

eye and first developed most of the important tools used in the modern proofs.

11The debt to sunflowers is even more obvious when we consider the change from the original coordinate-by-coordinate
proofs of [RM99, GPW18]—which explicitly alternated between a “thickness lemma”, i.e. guaranteeing randomness, and a
“projection lemma”, i.e. fixing structure—to later blockwise proofs, a difference which also manifests itself in the change
from the basic coordinate-wise recursive proof of the sunflower lemma by [ER60] to modern blockwise “spreadness” proofs
a la [ALWZ20].
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� Monotone Circuit Lower Bounds from Resolution [GGKS20]. The first results for dag-like query-to-

communication lifting, and using a proof which has not been significantly changed since. This work

also provided the impetus for us to study the Full Range Lemma.

� Improved Bounds for the Sunflower Lemma [ALWZ20] / Coding for Sunflowers [Rao19] / A Note

on Sunflowers [BCW21]. The first progress on sunflowers in many decades, this sequence of works

also feature very clean proofs. The second paper gives the cleanest overall exposition, while the

third one gives a simplification of one key part of the former.

� Raz-McKenzie Simulation With the Inner Product Gadget [WYY17] / Query-to-Communication

Lifting Using Low-Discrepancy Gadgets [CFK+21]. Gives a query-to-communication lifting theorem

in the style of the older proofs for the inner product gadget, or in general any gadget satisfying

certain nice properties. As of now this is the only other gadget besides the index gadget for which

we know query-to-communication lifting holds, although for other types of lifting the gadgets can

vary considerably.



Chapter 3

Application: Cutting Planes Proofs

are Hard to Find

Now that we have a base lifting theorem at our disposal, it is time to see it in action. In this chapter we

will focus on one particular application of query-to-communication lifting in the world of proof complexity.

Proof complexity is the study of propositional proof systems, which are formal systems of reasoning

which allow us to map unsatisfiable formulas F to proofs of unsatisfiability π, in such a way that the

proof π can be efficiently checked for correctness. We measure efficiency of proofs primarily by their size

(also referred to as their length), the definition of which varies from system to system, as well as a mix of

related metrics such as depth, degree, width, etc. Two of the central problems in proof complexity, then,

are for a given proof system P to understand: 1) which formulas F require large P-proofs; and 2) how

long does it take to find P-proofs of F? We will focus on the second question in this chapter.

Propositional proof systems are by nature non-deterministic: a short refutation of a formula F in a

particular proof system constitutes an easy-to-check certificate (an NP-witness) of F ’s unsatisfiability

(which is a coNP-property). The question of efficiently finding such refutations is the foundational

problem of automated theorem proving with applications to algorithm design, e.g., for combinatorial

optimization [FKP19]. The following definition is due to Bonet et al. [BPR00].

Definition 10. A proof system P is automatable if there is an algorithm that on input an unsatisfiable

CNF formula F outputs some P-refutation of F in time polynomial in the length (or size) of the shortest

P-refutation of F .

Several basic propositional proof systems are automatable when restricted to proofs of bounded width

or degree. For example, Resolution refutations of width w can be found in time nO(w) for n-variate

formulas [BW01]. Efficient algorithms also exist for finding bounded-degree refutations in algebraic

proof systems such as Nullstellensatz, Polynomial Calculus [CEI96], Sherali–Adams, and Sum-of-Squares

(under technical assumptions) [O’D17, RW17].

Without restrictions on width or degree, many of these systems are known not to be automatable.

For the most basic system, Resolution, a long line of work [Iwa97, ABMP01, AR08, MPW19] recently

culminated in an optimal non-automatability result by Atserias and Müller [AM20]. They showed that

Resolution is not automatable unless P = NP. This result is optimal in two senses: 1) their reduction shows

that it is NP-hard to even approximate the minimum Resolution proof length up to a factor of 2n
ε

for some

42
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ε > 0, which is optimal up to the value of ε; 2) because UNSAT is coNP-complete, and any automating

algorithm must be in P, we cannot choose a weaker assumption than P = NP. These results have since

been extended to tree-like Resolution [dR21], regular and ordered Resolution [Bel20], Nullstellensatz,

Polynomial Calculus, Sherali-Adams [dRGN+21] ordered binary decision diagrams [IR22], and other

systems. Furthermore, under stronger hardness assumptions non-automatability results are known for

other systems such as k-Resolution [MPW19] and various Frege systems [KP98, BPR97, BDG+04]. Our

goal will be to extend the non-automatability results of [AM20, dR21] to the Cutting Planes system

using lifting techniques we saw in the previous chapter.

Cutting Planes Non-Automatability Theorem. Let A be an algorithm which, on input τ which is

a unsatisfiable set of m linear equations over n variables which has a Cutting Planes refutation of size

s, outputs a Cutting Planes refutation of A. Then assuming P 6= NP (assuming the Exponential Time

Hypothesis), A requires time Nω(1) (2Ω(N), respectively), where N = max(n,m, s).

Let A be an algorithm which, on input τ which is a unsatisfiable set of m linear equations over n

variables which has a tree-like Cutting Planes refutation of size s, outputs a tree-like Cutting Planes

refutation of A. Then assuming the Exponential Time Hypothesis, A requires time NΩ(logN/ log2 logN),

where N = max(n,m, s).

3.1 Proof complexity and lifting

3.1.1 Proof systems and query models

In order to prove Cutting Planes Non-Automatability Theorem via lifting, we need to connect the proof

systems in question to our existing query-to-communication lifting paradigm. And even before that, we

need to define the proof systems in question. For all the following definitions, Let τ = {C1, C2, . . . , Cm}
be an unsatisfiable CNF formula over X = {x1 . . . xn}. For the rest of this chapter, we will use N to

mean max(n,m, s), where s is the size of the smallest refutation of τ in whichever proof system we are

considering; automatability is always defined with respect to N .

Resolution

The most well-studied proof system in proof complexity is the Resolution (Res) system. A Res refutation

of τ is a sequence of clauses π = {D1, D2, . . . , DS} such that DS = ∅, and each line Di is either some

initial clause Cj ∈ τ or is derived from two previous lines using the resolution rule: from (E ∨ x), (F ∨ x)

we derive (E ∨ F ), where x ∈ X, E and F are clauses, and E ∨ F is their disjunction with repeated

literals removed. We can view a Res proof π as a directed acyclic graph with a unique clause Di at every

vertex, with initial clauses Cj ∈ τ at the leaves, ∅ at the root, and having an edge from Di to Dj if Di

was used to derive Dj . With this view, a tree-like Resolution (tree-Res) refutation is a Res refutation

where all non-leaf vertices of the underlying graph have outdegree 1 (so the underlying graph of any

tree-Res proof is tree-like).

Given a Res or tree-Res refutation π = {D1, D2, . . . , DS}, the size of π is the number of lines in π, in

this case S. The width of a clause Di is the number of literals in it, and the width of π is the maximum

width of a clause in the proof. We also extend the notion of width to block-width as follows: let X1 . . .Xk
be a partition of the variables; then the block-width of any Res proof π refuting τ is the maximum
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number of blocks any line D ∈ π contains variables from, i.e. we replace each variable with its block

label and then take the usual notion of width.

Using these, we define

res-dag(τ) := least size of a Res proof refuting τ ,

res-tree(τ) := least size of a tree-Res proof refuting τ ,

res-width(τ) := least width of a Res proof refuting τ ,

res-block-width(τ) := least block-width of a Res proof refuting τ ,

res-tree-depth(τ) := least depth of a tree-Res proof refuting τ .

where block-width will be defined with respect to some variable partition. Note that for the tree-like

models, i.e. tree-Res and decision trees, the relevant notion is depth, while for dag-like models, i.e. Res

and decision-dags, the relevant notion is width, or rather, for what follows, block-width. The notion of

block-width (with respect to a given variable partition as before) for decision-dags is immediate, and so

we define

w(S) := least block-width of a decision-dag solving S

As with formulas, our goal will be to connect res-dag and res-tree to the size of the associated query

models, i.e. dec-dag and dec-tree (the latter term being the size of the smallest decision tree), respectively;

thus we need to define some search problem Fτ whose query complexity captures the complexity of

resolution proofs of τ . In the falsified clause search problem Sτ , on an input α ∈ {0, 1}n to τ , our goal is

to output some i ∈ [m] such that the clause Ci is falsified by the assignment α.

Lemma 16. dec-dag(Sτ ) = res-dag(τ) and dec-tree(Sτ ) = res-tree(τ). Furthermore dec-dag-width(Sτ ) =

res-width(τ) and w(Sτ ) = res-block-width(τ).

Before moving on to Cutting Planes we note that Res and tree-Res are both known to not be automat-

able, under widely believed assumptions. These breakthrough results, due to Atserias–Müller [AM20] for

Res and de Rezende [dR21] for tree-Res, will be our starting point. These results are not unconditional—

obviously they cannot be, as P = NP would put automatability in P—but they work off three basic

assumptions: 1) P 6= NP; 2) the Exponential Time Hypothesis (ETH), which states that SAT can-

not be solved in time 2o(n); 3) W[P] 6= FPT, an assumption from parameterized complexity (see

e.g. [AR08, MPW19, dR21]).

Theorem 17. 1. Res is not automatable in time NO(1) unless P = NP, and is not automatable in

time 2o(N) unless ETH is false.

2. tree-Res is not automatable in time NO(1) unless W[P] = FPT, and is not automatable in time

No(logN) unless ETH is false.

Clearly the results for Res are tight with respect to their respective assumptions; this is also essentially

true for tree-Res.

Theorem 18. tree-Res is automatable in time NO(logN).
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Cutting Planes

Cutting Planes (CP) was first introduced algorithmically by Gomory and Chvátal [Gom63, Chv73] and

reinterpreted as a proof system by Cook, Coullard, and Turán [CCT87]. This is not only an important

system to study in proof complexity writ large, but particularly it is important to study the automatability

of Cutting Planes, as it was originally defined in the context of solving integer linear programs and has

been at the forefront of satisfiability solving for decades.

A CP refutation is a sequence of linear threshold functions (LTFs) `1, . . . , `m, where `j has the form∑
i aixi ≥ b for ai, b ∈ Z. For a CP refutation of τ , we first convert every clause of τ to an LTF in

the natural way: 1) we arithmetize each literal xi as xi and each literal xi as (1 − xi); 2) we assert

that the sum of the arithmetized literals is at least 1 (and reorganize all constant terms so they only

appear on the right hand side). Each line in the refutation is either an LTF version of an input clause

or is derived from a previous line; a tree-CP refutation is one where the corresponding DAG is a tree.

In the original paper [CCT87] the derivation rules were: (1) deriving from `j , `j′ any non-negative

integer linear combination of them; and (2) deriving from
∑
aixi ≥ b the line

∑
(ai/c)xi ≥ db/ce where

c := gcd(a1, . . . , an); this ceiling is where all our gains take place, as our goal is to refute integral solutions.

Finally in order to refute τ we require that the last line is the contradictory line 0 ≥ 1. We define

cut-dag(τ) := least size of a CP proof refuting τ ,

cut-tree(τ) := least size of a tree-CP proof refuting τ .

As a side note, stronger rules have also been studied, e.g., [CKS90, BCC93], the most general being

the semantic rule, which allows any sound inference: `i can be derived from `j , `j′ provided every boolean

vector x ∈ {0, 1}n that satisfies both `j and `j′ also satisfies `i.
1

To connect CP and tree-CP to query models, we need to use our abstract definition. We define an

LTF-dag to be a Q-dag where Q is the set of all n-bit LTFs over Z (and similarly for LTF-trees), and we

define

ltf-dag(S) := least size of an LTF-dag solving S,

ltf-tree(S) := least size of an LTF-tree solving S.

From the way we defined LTF-dags and trees, it should be no surprise that we have an exact equivalence

with CP and tree-CP refutations.

Lemma 19. ltf-dag(Sτ ) = cut-dag(τ) and ltf-tree(Sτ ) = cut-tree(τ).

3.1.2 Communication protocols

Lemmas 16 and 19 have allowed us to connect both Resolution and Cutting Planes to query models;

however, in order to utilize the results from Chapter 2 we need not just a query model but also a

communication model. As observed in the previous chapter, there is often a trivial way to lower bound a

query model, in this case our LTF models, by a communication model simply by splitting up the variables

1In this work, we adopt the best of all possible worlds: our lower bounds on CP refutation length will hold even against
the semantic system and our upper bounds use the weakest possible rules (in fact, our upper bounds hold for Resolution,
which is simulated by every variety of CP).
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to make the search problem in question bipartite. We take a similar but more controlled approach, by

generalizing the communication models seen in the previous chapter.

Real communication

We say that a function g : I → R is monotone iff I admits a total order � such that g(γ) ≤ g(γ′) for

every pair γ � γ′. For example, every n-bit LTF is monotone as an n-partite function: the orderings

are determined by the signs of the coefficients appearing in the linear form defining f . We also say that

a function g : X × Y → R is monotone if both X and Y admit total orders �X , �Y , such that g is

monotone with respect to both orders.2

For a bipartite search problem S : X × Y ×O, a real communication protocol is a Q-tree where Q is

the set of (combinatorial) triangles, which we define as any subset T ⊆ X × Y whose indicator function

is monotone. Real protocols were originally introduced in [Kra98] as being communication protocols

where each node is labeled with two functions aT : X → R and bT : Y → R, with the interpretation that

(x, y) ∈ T iff aT (x) < bT (y); clearly both definitions are equivalent as bT (y)− aT (x) is monotone. For a

bipartite search problem S we define

real-cc-tree-depth(S) := least depth of a real protocol solving S,

tri-dag(S) := least size of a real dag-like protocol solving S.

Real protocols are an established method for proving length lower bounds on tree-CP:

Lemma 20 (Kraj́ıček [Kra98]). Let Sτ ⊆ {0, 1}n1 × {0, 1}n2 × O be the search problem Sτ for an

unsatisfiable CNF formula τ together with an arbitrary bipartition of its n1 + n2 variables. Then

real-cc-tree-depth(Sτ ) ≤ O(log cut-tree(τ)).

Most known tree-like lifting theorems extend to real protocols with little difficulty, and this will be

the case with our results from Chapter 2 as well. This will be enough to prove the case of tree-CP with

no changes to the structure of our lifting.

Multi-party communication

Our definition above naturally extends to real dag-like communication protocols, which are not only

interesting for Cutting Planes but also are equivalent to real circuits [HC99, Pud97, HP18]. However, we

will give ourselves one more edge in proving our lifting theorem for CP, exploiting the fact that we are

using a multi-output gadget. Let k ≥ 1 and consider a fixed k-partite input domain I := I1 × · · · × Ik.

We generalize the definition of monotonicity by saying that g : I → R is monotone iff each Ij admits a

total order �j such that g(γ) ≤ g(γ′) for every pair γ, γ′ such that γj �j γ′j for all j. We also say that a

subset A ⊆ I1 × · · · × Ik is a (combinatorial) k-simplex if its indicator function is monotone. Note that

triangles are equivalent to 2-simplices.

For some partition of the variables I1 . . . Ik, a simplex protocol is a Q-tree (or Q-dag) where Q is

again the set of monotone functions over I1 × · · · × Ik; we emphasize that any two f, f ′ ∈ F may not

2As a technical note we say that x �X x for all x ∈ X and y �Y y for all y ∈ Y; this is an unnecessary condition in the
non-bipartite case.



Chapter 3. Application: Cutting Planes Proofs are Hard to Find 47

agree on the ordering of any part Ii. For simplicity3 we refer to dag-like simplex protocols as simplex-dags.

We define

sim-dag(S) := least size of a simplex-dag solving S.

The complexity measures introduced so far are related as follows:

sim-dag(Sk) ≤ ltf-dag(Sn) ≤ dec-dag(Sn) ≤ nO(dec-dag-width(Sn)).

where Sn ⊆ {0, 1}n ×O is any n-bit search problem, and Sk ⊆ {0, 1}Y1 × · · · × {0, 1}Yk ×O is a k-partite

version of Sn obtained from an arbitrary partition Y1 t · · · t Yk = [n]. The first inequality follows by

noting that each LTF f , defined by
∑
i aixi ≥ an+1, is a monotone k-partite function when the i-th

part {0, 1}Ii is ordered according to the partial sum
∑
j∈Yj ajxj (breaking ties arbitrarily). The second

inequality follows since every conjunction is an LTF. The last inequality is standard: the length of

any width-w Resolution refutation can be made nO(w) by eliminating repeated clauses (and the same

construction works for arbitrary search problems).

Our first motivation to consider multi-party models is that they have a flavor similar to block-width,

in the sense that each party can be made responsible for one part of the input variables; the focus on

block-width will become apparent when we consider our automatability proof later in this section. The

second motivation is that they can be vastly weaker than two-party models, and hence one expects it to

be easier to prove lower bounds for k-simplex-dags when k is large. For a toy example, consider the n-bit

Xorn function. It is easy to compute for traditional two-party communication protocols regardless of

how the n bits are split between the two players. By contrast, for n parties, each holding one input bit,

Xorn is hard to compute.

3.1.3 Lifting

Proving the non-automatability of Resolution

Lastly we turn our attention to automatability lower bounds in particular, and see how lifting will allow

us to move from Resolution to Cutting Planes. Thus we need to understand what our goal is when we

want to prove non-automatability results. We start by stating the main lemmas of [AM20, dR21] and

use them to prove Theorem 17.

Lemma 21. 1. There is a polynomial-time algorithm that on input an n-variate 3-CNF formula F

outputs an unsatisfiable4 CNF formula Ref(F ) such that

� If F is satisfiable, then Ref(F ) admits a nO(1)-size O(1)-block-width Res refutation.

� If F is unsatisfiable, then Ref(F ) requires Res refutations of size at leat 2Ω(n) and block-width

at least nΩ(1).

2. There is a time 2O(
√
n) algorithm that on input an n-variate 3-CNF formula F outputs an unsatis-

fiable CNF formula Ref(F ) such that

3No pun intended.
4Strictly speaking, Ref(F ), as defined in [AM20], may sometimes be satisfiable, in which case its Resolution width/size

complexity is understood as ∞. However this case is equivalent to our reformulation, as we can guarantee that Ref(F ) is
always unsatisfiable by considering instead the CNF formula Ref(F ) ∧ T where T is some formula over disjoint variables
known to require large width (e.g., Tseitin contradictions [Urq87]).
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� If F is satisfiable, then Ref(F ) admits a poly(n) · 2O(
√
n)-size tree-Res refutation.

� If F is unsatisfiable, then Ref(F ) requires tree-Res refutations of size at least 2Ω(n).

Proof of Theorem 17. Our argument will proceed analogously in both cases, save for the specifics of

runtime. Assume we have an algorithm A which, given an unsatisfiable CNF τ on n variables with m

clauses, outputs a Res refutation in time s(N) for some subexponential function s. We will use it to solve

SAT in time s(N), which gives us a contradiction of some assumption based on s.

Our reduction is simple: given a k-CNF F , we apply Lemma 21 to F to obtain Ref(F ) such that

Ref(F ) has size nO(1) if F is satisfiable and 2Ω(n) otherwise. We now run A on Ref(F ), and output

“satisfiable” iff A halts in time s,5 where s = s(nO(1)) for Res and s = s(2O(
√
n)) for tree-Res. If F was

satisfiable then Ref(F ) does have a refutation of subexponential size, and thus A will halt by definition.

Otherwise Ref(F ) has no refutations of subexponential size, and so regardless of the guarantees on A
there is no way for it to even output a refutation of Ref(F ) in time subexponential time.

To quickly check the specific time conditions for s:

� P = Res, s = NO(1): since we can solve SAT in polynomial time, this shows NP ⊆ P

� P = Res, s = 2o(N): since we can solve SAT in subexponential time, this shows ETH is false

� P = tree-Res, s = poly(N): see [dR21] for definitions and proof, as this will not be useful for our

results

� P = tree-Res, s = o(quasipoly(N)): since we can solve SAT in time No(logN) = (poly(n) ·
2O(
√
n))o(

√
n) = 2o(n), this shows ETH is false

Our goal will be to take these tautologies and lift them to communication models which are closely

related to Cutting Planes. Since lifting establishes tight upper and lower bounds on the communication

complexity of the lifted function, both the upper bound in the satisfiable case and the lower bound in the

unsatisfiable case are preserved–albeit with the Θ(logm) factor—and from there we can derive Cutting

Planes Non-Automatability Theorem in much the same way as Theorem 17.

Here we can take stock of the challenges facing us in obtaining Cutting Planes automatability lower

bounds, even assuming Query-to-Communication Lifting Theorem and Dag-like Lifting Theorem carried

over in the real communication realm. Applying Query-to-Communication Lifting Theorem in the case

of tree-CP will not work, as our gadget size m will be something like 2O(
√
n), which will kill our upper

bound as we from a refutation of size s for tree-Res we will get a refutation of size mres-tree-depth(τ) =

(2O(
√
n))O(

√
n) = 2n for tree-CP for the lifted formula, using the fact that res-tree-depth(τ) = log s.

Meanwhile applying Dag-like Lifting Theorem in the case of CP also fails, because Ref(F ) will actually

have width nΩ(1) in both the upper and lower bound, meaning we lose the crucial gap needed for the

reduction to solve SAT.

Tree-like lifting and gadget size

Our tree-like result is the more straightforward of the two. Before anything else, since we do not have a

balancing theorem for decision trees, and by extension for tree-Res, we need the following extra condition

of the tree-like tautology from Theorem 21.

5We do not even read the output of A here, although if A is defined to halt and output garbage after a certain amount
of time, by the definition of a proof system we can check As output for validity in time s as well.



Chapter 3. Application: Cutting Planes Proofs are Hard to Find 49

Lemma 22. There is a time 2O(
√
n) algorithm that on input an n-variate 3-CNF formula F outputs an

unsatisfiable CNF formula Ref(F ) such that

� If F is satisfiable, then Ref(F ) admits a O(
√
n)-depth tree-Res refutation.

� If F is unsatisfiable, then Ref(F ) requires tree-Res refutations of depth at least Ω(n).

The above result does not directly show up in [dR21], and their result in particular is not amenable

to lifting; however, as they discuss, their construction can be modified to give Lemma 22. Unfortunately

this modification is only useful for the ETH result in Theorem 17.2, and thus Cutting Planes Non-

Automatability Theorem does not extend the result assuming W[P] 6= FPT.

Now that we are working with depth, we can confront the problem of the gadget size. It turns out

that we we already created the tools to overcome this issue in Chapter 2: graduated lifting. While

the depth in both cases is poly(n), the formula itself has size 2O(
√
n), and so the depth lower bound

we are shooting for is only polylogarithmic in the size. Thus applying our graduated lifting gives us a

logm = log log 2O(
√
n) loss in the exponent, rather than a logN loss which would kill our upper bound;

while this does cause some loss in parameters over Theorem 17, it gets us quite close.

Dag-like lifting and block width

To move to dag-like lifting, we again consider the issue of width in Lemma 21. As remarked above, the

issue is that the width is actually maximally high for both the upper and lower bound. However, we can

get our gap by looking not at width but at block-width. Unlike for the tree-like case, this is immediate

from inspecting the proof of [AM20].

Lemma 23. There is a polynomial-time algorithm that on input an n-variate 3-CNF formula F outputs

an unsatisfiable CNF formula Ref(F ) such that

� If F is satisfiable, then Ref(F ) admits a O(1)-block-width Res refutation.

� If F is unsatisfiable, then Ref(F ) requires Res refutations of block-width at least Ω(n).

We thus focus on proving a lifting theorem for block-width, which brings us back to our idea of using

multi-party communication. The main idea is to switch from the index gadget outputting a single variable

to a whole block of variables at once. If we consider our argument for Dag-like Lifting Theorem, our whole

procedure was tuned towards charging the communication protocol for every variable it remembered (i.e.

each variable in the width), and so it should be clear why reworking the proof with blocks is a good first

step.

To do this, we will need to change the index gadget to be amenable to blockwise lifting. The column-

index gadget Ind`×m : [m] × {0, 1}`×m → {0, 1}` is defined by Ind`×m(x, y) := “x-th column of y”; in

other words Ind`×m is a version of Indm where each element of Bob’s array that Alice can point to is

now a whole vector of bits rather than a single bit. For the sake of making our composition easy, we

will think of our one-party function f as having ` · n inputs rather than n inputs, and so we can define

Sf ◦ Ind`×m in the natural way as before; we refer to this as a block-composed search problem since we

compose blocks of inputs to Sf rather than individual inputs.

We just defined block-composed search problems S ◦ Indn`×m, but how can we translate such objects

back to CNF formulas? The standard recipe is as follows. Fix any search problem S ⊆ {0, 1}n ×O (not

necessarily of a composed form). Recall our discussion of the certificate complexity of S from Section 2.4.
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As a converse to the statement about the certificate complexity of Sτ , any total search problem S

of certificate complexity k contains the search problem SF associated with some unsatisfiable k-CNF

formula F as a subproblem (S is at least as hard as Sτ ). Namely, consider τ :=
∧
x ¬Cx where Cx is the

conjunction that checks if the input is consistent with some fixed size-k certificate for x. Note that τ is

unsatisfiable because S is total.

For unbounded-width CNF formulas (such as Atserias–Müller’s Ref(F )), we need to interpret the

above recipe with care. Indeed, fix any unsatisfiable (unbounded-width) CNF formula F with |F | many

clauses and such that its n` variables are partitioned into n blocks of ` variables each. Denote by b the

maximum block-width of a clause of F . Then every clause D of F gives rise to a family of certificates

for SF ◦ Indn`×m. Namely, a certificate in the family for D consists of at most b logm bits (reading

b many pointer values associated with the blocks of D) together with |D| many bits read from the

pointed-to columns. Thus, altogether, we get at most |F |mb many certificates, at least one for each input

to SF ◦ Indn`×m. We define F ◦ Indn`×m as the formula obtained by listing all these certificates (more

precisely, the disjunctions that are the negations of the certificates).

The formula Ref(F ) of Atserias and Müller is such that its clauses have block-width 3 [AM20,

Appendix A]. Hence Ref(F ) ◦ Indn`×m has size nO(1) and moreover it is polynomial-time constructible.

Fact 24. Given an n-variate 3-CNF F , we can construct Ref(F ) ◦ Ind`×m in polynomial time.

Finally, we recall that our second motivation for considering multi-party communication was that

it had the potential to simplify the lower bound. In our case, we shift from having a single player Bob

to a set of players Bobij , each of which holds a single bit yi,j for i ∈ [`] and j ∈ [m]. Recall that the

difficult part in previous lifting proofs such as Dag-like Lifting Theorem was the proof of Full Range

Lemma; in proving the dag-like case of Cutting Planes Non-Automatability Theorem using simplex-dags,

having separate Bob players ends up giving an essentially trivial proof of Full Range Lemma, without

even resorting to sunflowers.

3.1.4 A note on our proof technique

Here it bears mention that lifting for multi-party models is somewhat novel, particularly in the context of

Cutting Planes. Non-automatability results for Cutting Planes have been elusive in part because of the

limitations of existing techniques to prove lower bounds on refutation length; the only technique available

for some twenty years has been monotone feasible interpolation [BPR97, Kra97, HP18], which translates

lower bounds for (real) monotone circuits to lower bounds on Cutting Planes length. Historically, the

downside with the technique was that it only seemed to apply to highly specialized formulas (e.g.,

clique-vs-coloring), although the technique was recently extended to handle a more general class of

formulas, random Θ(log n)-CNFs [HP17, FPPR17].

The only other available lower-bound technique is two-party lifting, i.e. Dag-like Lifting Theorem.

That technique is also powerful enough to prove lower bounds not only on CP length, but also on

monotone circuit size. (Whether lifting should be classified under monotone interpolation is up for debate,

since this depends on how broadly one defines monotone interpolation.) In contrast, our lifting theorem

is not proved through monotone circuit lower bounds, but through the weaker model of computation

that is simplex-dags. Considering a large number of communicating parties is what allows us to analyze

multi-output gadgets; we do not know how to do this with only two parties.
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3.2 Main proof 1: lifting for tree-like Cutting Planes

We first prove Cutting Planes Non-Automatability Theorem for tree-CP, as this will follow almost

immediately from our previous results. Our main result is a lifting theorem for real communication

protocols. We state our real lifting theorem in the most general way, subsuming tree-like all results from

Chapter 2.

Theorem 25 (Real Graduated Lifting Theorem). Let f be a search problem over {0, 1}n and let m, δ be

such that δ ≥ 1
logm , m1−δ = Ω(dec-tree-depth(f) · logm), and either m1−δ = Ω(log n) or f has certificate

complexity at most 2O(d log d). Then

real-cc-tree-depth(f ◦ Indm) ≥ dec-tree-depth(f) · Ω(δ · logm)

Proof. We need only go over one minor change to the proof of Query-to-Communication Lifting Theorem.

In Simulation Protocol at node v the children of v partition our current rectangle R into two triangles

T`, Tr, but our invariant will still be to maintain a rectangle. To do this, let x1/2 and y1/2 be the median

elements of R under �X and �Y , respectively, and let c ∈ {`, r} be such that (x1/2, y1/2) ∈ Tc. Note

that by monotonicity, either R≤ := {x× y ∈ R : x �X x1/2 ∧ y �Y y1/2} or R≥ := {x× y ∈ R : x1/2 �X
x ∧ y1/2 �Y y} is contained in Tc, and for R′ = X ′ × Y ′ ∈ {R≤, R≥} satisfying R′ ⊆ Tc also satisfies

|X ′| ≥ |X|/2 and |Y ′| ≥ |Y |/2. Note that this was already what we assumed in our invariants and when

executing Rectangle Partition,6 and so if we use R′ in place of R ∩Rv none of the rest of the proof needs

to be changed. This also holds for the tree-like items of Theorems 13 and 14, as well as when δ = o(1)

(see Section 2.2.5).

We can now prove the tree-like case of Cutting Planes Non-Automatability Theorem. As discussed in

the previous section, the graduated restriction is the key to avoiding a blowup in the gadget size. We

come back to the strength of this result in Chapter 6.

Proof (tree-like). Let A be any algorithm automating tree-CP in time s(N). Similar to proving Theo-

rem 17, given a k-CNF F we can decide if it is satisfiable by the following procedure: 1) apply Lemma 21

to get an unsatisfiable formula Ref(F ) in time 2O(
√
n); 2) lift Ref(F ) using Indm and convert it into an

unsatisfiable formula τ in polynomial time (see previous section); 3) run A on τ and output “satisfiable”

iff A halts in time s(2O(
√
n logn)). By Theorem 25 we have that

cut-tree(τ) = ltf-tree(Ref(F )◦Ind`×m) ≤ res-tree(Ref(F )◦Ind`×m) ≤ 2O(res-tree-depth(Ref(F )) log res-tree-depth(Ref(F )))

which guarantees that cut-tree(τ) ≤ 2O(
√
n logn) if F is satisfiable, and

2Ω(res-tree-depth(Ref(F )) log res-tree-depth(Ref(F ))) ≤ ltf-tree(Ref(F ) ◦ Ind`×m) = cut-tree(τ)

which guarantees that cut-dag(τ) ≥ 2Ω(n) if F is unsatisfiable. For s = No(logN/ log2 logN)—where now

N == 2O(
√
n logn) in the SAT case—this allows us to solve SAT in time

(2O(
√
n logn))o(

√
n logn/(0.5 logn+log logn)2) ≤ 2o(n log2 n/(log2 n+logn log logn)) = 2o(n)

6Before we made this assumption even though it was actually the case that either |X′| ≥ |X|/2 and |Y ′| = |Y | or
vice-versa, just for the sake of ease of presentation.
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thus violating ETH.

3.3 Main proof 2: lifting for dag-like Cutting Planes

The purpose of this section is to prove our block-lifting theorem, which will give us the dag-like result of

Cutting Planes Non-Automatability Theorem.

Theorem 26 (Real Blockwise Lifting Theorem). Let S ⊆ ({0, 1}`)n × O be any search problem. For

m := (n`)5 we have

mΩ(w(S)) ≤ sim-dag(S ◦ Indn`×m) ≤ dec-dag(S ◦ Indn`×m) ≤ mO(w(Π)) · |Π|,

where Π is any decision-dag solving S of size |Π| and block-width w(Π).

Since this proof is lengthier, we start by proving the other half of Cutting Planes Non-Automatability

Theorem assuming Theorem 26.

Proof (dag-like). Let A be any algorithm automating CP in time s(N). Similar to proving Theorem 17,

given a k-CNF F we can decide if it is satisfiable by the following procedure: 1) apply Lemma 21 to get

an unsatisfiable formula Ref(F ) in polynomial time; 2) lift Ref(F ) using Ind`×m and convert it into an

unsatisfiable formula τ in polynomial time (see previous section); 3) run A on τ and output “satisfiable”

iff A halts in time s(nO(1)). By Theorem 26 we have that

cut-dag(τ) = ltf-dag(Ref(F ) ◦ Ind`×m) ≤ dec-dag(Ref(F ) ◦ Ind`×m) ≤ mO(w(Π)) · |Π|

where Π has size poly(n) and block-width O(1) by Lemma 21, which guarantees that cut-dag(τ) ≤ nO(1)

if F is satisfiable, and

mΩ(w(Ref(F ))) ≤ sim-dag(Ref(F ) ◦ Ind`×m) ≤ ltf-dag(Ref(F ) ◦ Ind`×m) = cut-dag(τ)

which guarantees that cut-dag(τ) ≥ 2Ω(n) if F is unsatisfiable. Our analysis for each s(N) is the same as

for Theorem 17.

Upper bound. We now move on to proving Theorem 26. The last inequality is trivial as usual; we

only sketch it here. Given a decision-dag Π for S, we construct a decision-dag Π′ for S ◦ Indn`×m. For

every block-width-b conjunction C in Π, there corresponds a family of exactly mb many conjunctions

in Π′. Namely, the family is constructed by replacing each positive literal xij (resp. negative literal x̄ij)

of C with a sequence of logm+ 1 many literals that witness the j-th output bit of the i-th gadget being

1 (resp. 0). If C has children C ′, C ′′ that only touch blocks touched by C, then every conjunction in the

family for C can be directly connected to the families of C ′, C ′′. However, if C ′, C ′′ touch some block i

(there can be at most one) that is untouched by C, then the family for C is connected to the families of

C ′, C ′′ via decision trees that query the pointer value of the i-th gadget. We have |Π′| ≤ mO(w(Π)) · |Π|,
as desired.

Lower bound. To prove the first inequality of Theorem 26, fix a simplex-dag Π solving S ◦ Indn`×m
of size md. Our goal is to construct a decision-dag Π′ solving S that has block-width O(d). Our proof
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follows closely the plan from Dag-like Lifting Theorem, but here our proof of Full Range Lemma is even

simpler because of the multi-party nature of our lifting.

3.3.1 Rectangle partition: simplex edition

First we need to rework our definitions from Dag-like Lifting Theorem to the case of boxes, i.e. the

higher-dimension analogue of rectangles. We define a structured box much in the same way as a structured

rectangle, although we do not optimize the condition on the largeness of Y as we are not shooting for

quasilinear size gadgets.

Definition 11 (Structured boxes). Let ρ ∈ {0, 1, ∗}n be a partial assignment with J := fix(ρ) ⊆ [n]. A

box R = X × Y
∏
ij Y

ij ⊆ X ×
∏
ij Yij is ρ-structured if the following conditions hold:

1. the gadgets are fixed according to ρ: IndJ`×m(XJ ,
∏
i∈J,j Y

ij) = {ρ[J ]}

2. X has entropy on the free blocks: XJ is fixed to a single value α, and H�
∞(XJ̄) ≥ 0.9 logm

3. Y ijs are large: |Y ij | ≥ 2mn−m
1/2

for i ∈ J̄ , j ∈ [`].

The following lemma is the simplex analogue of our Rectangle Lemma. We prove it in Section 3.3.3.

Simplex Lemma. Let T ⊆ X ×
∏
i,j Yij be a simplex and let d = o(n). Then there exists a procedure

which outputs {Xj × Y j,β}j,β , Xerr, {Y ijerr}i,j, where 1) T ⊆ tj,βXj × Y j,β; 2) Xerr and each Y ijerr have

density 2−2d logm in X and Yij respectively; and 3) for each j, β one of the following holds:

� structured: Xj×Y j,β is ρj,β-structured for some ρj,β of width at most O(d); moreover there exists

an “inner box” R◦,j,β ⊆ T ∩Rj,β which is also ρj,β-structured

� error: Rj,β ⊆ Xerr ×
∏
i,j Yij ∪

⋃
i,j(X × Y ijerr ×

∏
i′j′ 6=ij Yij)

Finally, a query alignment property holds: for every x ∈ X rXerr there exists a subset Ix ⊆ [n] with

|Ix| ≤ O(d) such that every “structured” Xj × Y j,β intersecting {x} × {0, 1}mn has fix(ρj,β) ⊆ Ix.

3.3.2 Simulation

As usual our simulation will rely on Full Range Lemma, which will also need to be extended to higher

dimensions. We will rely on multi-party gadgets to give us an even simpler proof of Full Range Lemma,

but this will prevent us from getting the gadget size improvements from the previous chapter; these will

not be necessary for proving our main result.

Lemma 27. Let R := X ×
∏
ij Y

ij be ρ-structured. Then there is an x ∈ X so that Ind`×m({x} ×∏
ij Y

ij) = ρ.

Proof. Assume for simplicity that ρ = ∗n. Thus our goal is to find an x∗ ∈ X such that Indn`×m({x} ×∏
ij Y

ij) = ({0, 1}`)n. The key observation is that since each of the n` output bits is determined by

a different Bobij , the output bits are independent: Indn`×m({x} ×
∏
ij Y

ij) =
∏
ij Ind1×m({xi} × Y ij).

Therefore it suffices to find an x ∈ X such that for all i ∈ [n], j ∈ [`],

x is “good” for Y ij: Ind1×m({xi} × Y ij) = {0, 1}. (3.1)
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We claim that a uniform random choice x ∈ X satisfies all conditions (3.1) with positive probability.

Indeed, for a fixed ij, how many “bad” values xi ∈ [m] are there that fail to satisfy (3.1)? Each bad

value xi implies that the xi-th bit is fixed in Y ij . But there can be at most D∞(Y ij) ≤ m1/2 fixed such

bits. Using H∞(xi) ≥ 0.9 · logm for i ∈ [n] and recalling that m = (n`)5 we have

Pr[xi is “bad” for Y ij ] ≤ m1/2 · 2−0.9 logm < 1/(n`).

A union bound over all the n` many conditions (3.1) completes the proof.

Given Simplex Lemma and Lemma 27, our proof will go in much the same way as Dag-like Lifting

Theorem, using the inner boxes given by the structured case. As with Section 2.3.2 we can first state our

high level idea by ignoring errors, i.e. by making the same assumption as (∗) for Simplex Lemma. We

will trace down Π while maintaining a ρ-structured box R, where ρ is the restriction corresponding to

our current path in the decision-dag D we have built.

At each node v we partition Tv using Simplex Lemma, obtaining a set of ρj,β-structured boxes which

cover Tv and which also each have an inner ρj,β-structured box. Now our main subroutine for a given

node v in Π—starting at the root with R = X × ti,jYij—we we apply Simplex Lemma to partition the

simplices T` and Tr associated with the left and right children of v, and apply Lemma 27 to find a row

x∗ in X which has the full range in free(ρ) available to it. We find a set of structured boxes Rj,βc for one

of the nodes c ∈ {`, r} such that x∗ ∈ Rj,βc , use query alignment to find the Ix which is fixed for every

such box, and query those variables in our decision-dag. We then set ρ to be ρj,β for the result β that we

get from the query, namely by forgetting all variables in ρr ρj,β , and then we set R to be the inner box

of Rj,β given by Simplex Lemma. Finally when we reach a leaf we output the corresponding label.

To handle the errors, we apply a bottom-up preprocessing step. Starting at the leaves, for every v we

first remove all error sets (Xerr × ti,jY ij) ∪ (tijX × Y ijerr × ti′j′ 6=ijY i
′j′) coming from descendents of v

from Tv, then we apply Simplex Lemma to find the same error sets at v and remove them from Tv as

well. By the same union bound argument over md nodes,7 this removes at most a quarter of the mass

from the initial box at the root v, and for the rest of the procedure we can assume there are no error sets

as we did above.

The analysis will be the same as for Dag-like Lifting Theorem. At the root we have a rectangle

R = Tv (since the root note is associated with a triangle that also happens to be a rectangle) which is

ρ-structured for ρ = ∗n, since we have at least half of the mass remaining after removing error sets. At

each node we end up with a ρj,β-structured rectangle contained within our new Tv by the inner box

property, and furthermore we have fixed at most O(d) coordinates by the query alignment property. At

the leaves we need only apply Lemma 27 to ensure that Tv has all possible joint assignments to the free

coordinates available, which means that the fixed assignment given by the path in our decision-dag D is

sufficient to know the output.

3.3.3 Proof of Simplex Lemma

Our first observation is that Rectangle Partition with Errors works equally well to partition boxes

B ⊆ X ×
∏
ij Y. Indeed, each part output by Rectangle Scheme is obtained from R := X × Y by

restricting the set X arbitrarily and, crucially, restricting Y only via bit-wise restrictions (Round 2 of

7The union bound is now over mn Bob dimensions Y ij , but our density is small enough that this is still miniscule.
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Algorithm Triangle Partition with Errors

1: Initialize F = ∅, j = 1, and Ralive = {R ∩ T}
2: Initialize Xerr, Yerr = ∅, Rfinal = ∅, and Jy = ∅
3: Initialize Y I,α,β = {y ∈ Y : y[I, α] = β} for all (I, α, β) ∈ 2[n] × [m]I × {0, 1}I
4: PHASE Y-ERR (Yerr):

5: while ∃(I, α, β) ∈ 2[n] × [m]I × {0, 1}I r Jy, x ∈ [m]n such that |T ∩ (x× Y I,α,β)| < 2mn−m
2

do
6: Update Yerr ← Yerr ∪ Y I,α,β and Jy ← Jy ∪ {(I, α, β)}
7: Update Y ← Y r Yerr
8: MAIN PHASE:
9: while Ralive 6= ∅ do

10: for R = X × Y ∈ Ralive do
11: while R 6= emptyset do
12: Let Ij be a maximal subset of [n] such that X violates 0.9 logm-blockwise min-entropy on

Ij , or let Ij = ∅ if no such subset exists
13: Let αj ∈ [m]Ij be an outcome such that Prx∼X≥j (x[Ij ] = αj) > 2−0.95|Ij | logm

14: Define Xj := {x ∈ X≥j : x[Ij ] = αj}, and for all β ∈ {0, 1}Ij define Y j,β = Y Ij ,αj ,β

15: If |Xj ∩ T | ≥ |Xj |/2 then update F ← F ∪ {(Ij , αj)}, update Rfinal ← Rfinal ∪ {Rj,β}β ,
and update j ← j − 1

16: Else (|Xj ∩ T | < |Xj |/2) then update Ralive ← Ralive ∪Xj,top × Y , where Xj,top is the
half of Xj with larger intersection with T

17: Update j ← j + 1 and update R← RrXj × Y
18: PHASE X-ERR (Xerr):
19: while ∃j /∈ Jx such that |Ij | > 40d do
20: Update Xerr ← Xerr ∪Xj and Jx ← Jx ∪ {j}
21: return F , Rfinal, Xerr, Yerr

Rectangle Partition with Errors fixes pointed-to bits in all possible ways). But such bit-wise restrictions

when applied to a box B := X ×
∏
ij Y

ij still result in a box. With this understanding, we may do all

our normal rectangle partition procedures to a box, and so for the rest of this discussion we will focus on

the two-dimensional case, as it generalizes by a similar argument.

To move to triangles (and by extension k-simplices), we will change our procedure slightly. Whenever

we isolate an assignment (Ij , αj) and consider some corresponding structured box Rj,β = Xj × Y j,β

(ignoring the error sets for the moment), we need to ensure that we can get an inner structured box. To

do this we will remove any structured box Rj,β such that |T ∩Xj,β | < |Xj,β |/2, similar to how we had

to add an extra step in Theorem 25 where we make sure to go to the larger side of the rectangle. Since

we still have to cover such Rj,β , we will actually recursively perform Rectangle Partition on all such bad

Rj,β , and in order to make sure this process converges quickly we will toss out the half of Xj,β that does

not overlap with T .

The only issue with this process is that we could end up killing our inner structured box when we

remove the set Yerr at the end of our procedure. Thus we will move the Yerr phase to the beginning of

Rectangle Partition with Errors, before we even begin to partition T . This means we will have to loop

over every potential choice of (Ij , αj , βj) since we do not know what the partition procedure will find. In

fact, since we are dealing with a triangle T rather than a rectangle R, it is also necessary to loop over

all x and make our loop condition |T ∩ ({x} × (Y j,β r Yerr)| < 2mn−m
2

. In [GGKS20] this is called the

Column Cleanup procedure.8

8Naturally ours will be the multi-dimensional variant, so Y j,β will be a product set as necessary; by our earlier observation
this transformation is simple.
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Our algorithm is given by Triangle Partition with Errors. Clearly every rectangle Rj,β returned by

Triangle Partition with Errors fulfills the structured case, while the inner box is given by taking the largest

box B = Xj × Y satisfying B ⊆ T . Our analysis of the density of Xerr is the same as Dag-like Lifting

Theorem; for Yerr we union bound over all possible choices of (I, α, β, x), which gives us 2n ·mn ·2n ·mn =

22n(logm+1) possible sets, each of which has size at most 2mn−m
2 � 2mn−2d logm−2n(logm+1).

3.3.4 Afterword: two-party dag-like real lifting with smaller gadgets

We note that the proof of Theorem 26 also works for our usual two-party setup once we revert back

to using Full Range Lemma instead of Lemma 27. This gives us a dag-like variant of Theorem 25, or

alternatively a real variant of Dag-like Lifting Theorem. Our only job is to make sure the gadget size

goes through.

In proving Theorem 26 the gadget size appeared as usual during the equivalent of Full Range Lemma,

which we do not need to say any more about now that we are going back to using Full Range Lemma

itself. It also, however, appears in a new place, namely while performing the density-restoring partition

phase, in this case Simplex Lemma. Our coarse union bound gave us a total of roughly 22n logm sets, and

so this presents no issue for getting a gadget of size n1+ε; our Y condition for ρ-structured rectangles can

be changed to say |Y | ≥ 2mn−O(n logm) with no other changes.

However, this clearly presents an impediment for doing graduated lifting. Thus far we have managed

to use the blockwise min-entropy violation of each (Ij , αj) to upper bound the size of F , and by extension

Yerr (or alternatively Y= in the tree-like case). However, now we have to make our Yerr set using all

possible settings of (I, α), not just the ones that cause blockwise min-entropy violations. Thus we have to

use a union bound involving n, which is what prevents us from getting graduated lifting for real dag-like

protocols.

We note that this union bound was used by all previous arguments even for Query-to-Communication

Lifting Theorem, as the gadget size was nowhere near n log n and so finding a way around the näıve

union bound was probably not considered a priority in previous works. This was also not an issue for

tree-like graduated lifting as the argument was very different from Query-to-Communication Lifting

Theorem; see Appendix A for more details.

Further reading

� Automating Resolution is NP-Hard [AM20]. The first paper to kick off the “modern era” of

automatability lower bounds. Most recent results on automatability of other systems adapt their

tautology.

� Automating Tree-Like Resolution in Time no(logn) is ETH-Hard [dR21]. The most relevant extension

of [AM20] to our work, which circumvents the huge challenge posed by tree-Res’s quasi-polynomial

automatability.

� Resolution is Not Automatizable Unless W[P] is Tractable [AR08] / On the Automatability of

Polynomial Calculus [GL10] / Short Proofs Are Hard To Find [MPW19]. While these works use

an older method for automatability lower bounds, it involves a neat gadget setup which allow both

works to turn statements involving existential statements, typically a difficult object to work with,
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into tautologies involving universal statements as is more typical. See Appendix A for an overview

of these proofs.



Part II

Space: Algorithms for reusing

memory

58



Chapter 4

Upper Bounds for the Tree

Evaluation Problem

In the second technical part of the thesis, we attack the z-f conjecture by showing that space(〈z, f〉)�
|z|+ space(f) for all f and sufficiently large z, where 〈z, f〉(x1 . . . xn) = 〈z, f(x1 . . . xn)〉.

We begin by looking at the approach of [CMW+12] and others to show TreeEval lower bounds against

L. As discussed earlier, there is an algorithm called pebbling which was conjectured to be optimal. For

TreeEval the pebbling algorithm can be understood in a simple recursive fashion. Let spacek(h) be the

space required to compute a height h instance of TreeEval, fixing the value of k and recalling that we

assume d = 2. Given any TreeEvalk,2,h instance, in order to compute the root we must compute both

of its children, both of which are TreeEvalk,2,h−1 instances. We first compute one of the two children,

either one, using space spacek(h − 1). We then save the value we get, erase all our other memory,

and compute the other child. Since we are storing log k bits for the first child, our space usage is

max(spacek(h−1), log k+spacek(h−1)) = log k+spacek(h−1). Now we recurse: to compute the second

child we compute both of its children, which we do by computing and saving one and then recursing on

the other, and so forth. This strategy gives a clear h log k upper bound, but it also intuitively seems like

this should be a bottleneck since computing one child of the root is useless without knowing the other.

Our angle of attack on this bottleneck will be to accept that this pebbling style recursive computation

is necessary, but to object to the innocent suggestion that all the values we store need to be stored

in different blocks of memory. The catalytic computing framework of [BCK+14], which came out of a

fascinating line of work [Bar89, BC92] on branching programs and circuits, proposes a novel way to use

space in a more efficient way when computing circuits with simple invertible operations. The idea is

deceptively simple: assume that we have a small amount of clean work space but an exponentially larger

amount of “catalytic space”, which is free to use but is full of junk bits that have to be returned to their

original configuration at the end of the computation. Since we have no assumptions on the bits in the

catalytic space it would seem like it can’t help us compute anything, but Buhrman et al. [BCK+14] show

that if we are working with mathematical instructions that are invertible, this invertibility can help us in

two ways: first, by letting us use the space in a way that can be easily reset at the end of the computation,

and second, by cleverly cancelling out the “noise” that the bits in the catalytic space introduce into the

computation by inverting the computation and then subtracting off the contribution of the noise.

While there has been a flurry of work [Pot17, BKLS18, CDKS18, GJST19, DGJ+20] following the

59
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definition of catalytic computing in [BCK+14] (see e.g. [Kou16] for a survey of early results), the

preliminary results of [Bar89, BC92] solved a slightly different type of problem. The catalytic computing

model involves having a small clean work tape and exponentially more “catalytic space”, but [Bar89]

and [BC92] study what can be done by constantly reusing a small (even constant size) work tape. Since

we are looking to rule out logspace algorithms for TreeEval, it is this latter approach which seems more

immediately applicable.

We also make a note here that just having catalytic algorithms is not enough; the pebbling algorithm

is optimal for a number of very natural space-bounded algorithms. In the read-once restriction, our

algorithm only looks at each bit of the input at most once, while in the thrifty restriction the algorithm

must read only bits corresponding to the actual evaluation of the tree may be read—to wit, if the children

of a node v evaluate to x and y, the branching program must not read any values of the function at v

other than the value at (x, y). The pebbling algorithm fulfills both of these conditions, but either one

of them is enough to guarantee a lower bound of Ω(h log k) [EMP18, CMW+12], and neither of these

restrictions assume any other structure on the algorithm.

4.1 Preliminaries

In this chapter we will use inputs over the alphabet [k] rather than {0, 1}. This is not only a trivial

generalization to make (since we can always pick k = 2), but also for TreeEvalk,2,h we only ever care to

read whole values in [k] at once, as every input bit is either part of the value of a leaf or part of an entry

in an internal node’s table, both of which are values in [k]. Note that this will not affect the asymptotics

in any of our statements.

4.1.1 Branching programs

Our first model is the standard syntactic notion of space-bounded computation (see [CMW+12]).

Definition 12 (Branching program [CMW+12]). Let k, n := n(k), o := o(n, k) ∈ N, and let x =

{x1 . . . xn} be a set of variables over [k]. A branching program1 is a directed acyclic graph G with the

following properties:

� There is a single source node v and ko sink nodes.

� Every non-sink node is labeled with an input variable xi for i ∈ [n] and has k outgoing edges, one

for each value in [k]

� For every j ∈ [k]o there is one sink node labeled with j.

The size of the branching program is the number of non-sink nodes2 in G.

Given an assignment to x in [k]n, the execution of G on x is defined by the following process: 1) we

initialize v to be the source of G; 2) while v is not a sink, read the value of the xi labeling v, follow the

edge labeled with this value, and update v to be the node we reach; 3) output the value labelling the

1Typically a branching program refers to the case when k = 2, and a k-wise branching program for general k; this
distinction is unnecessary since we are treating the input and output as being values in [k] rather than bits in {0, 1}.

2This is somewhat non-standard, but when talking about layered branching programs this simplifies things by defining
the length as the number of times we read variables, which will in turn be connected to the number of instructions in our
register program model. This choice does not affect the asymptotics of any results.
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sink node v that we reach. The output of G, denoted G(x), is the value this process outputs. We say

that G computes the function f : [k]n → [k]o if G(x) = f(x) for all x ∈ [k]n.

Recall from our discussion of NC1 in Chapter 1 that a uniform circuit is one which can be described

succinctly; in this chapter we will similarly be focusing on uniform branching programs, although again

we do not focus on the exact notion of uniformity in this work.3 When we focus on uniform branching

programs, the connection to space-bounded computation is immediate, and allows us to focus on branching

programs for the rest of the thesis.

Observation 1. Let k ∈ N and let fn : [k]n → [k]o(n) be a family of functions. Then there exists a

uniform family of branching programs {Gn} such that Gn computes fn and has size kO(s(n)) iff fn can be

deterministically computed in space O(s(n) log k).

Proof. Consider the natural bijection between nodes in a graph of size ks and bitstrings of length s log k

describing strings of length s over [k]. Then any space s log k algorithm can be mimicked by a branching

program with ks states by adding edges from state v corresponding to the transitions from the worktape

state associated with v; this machine is uniform because the transitions can be locally determined from

the Turing Machine. Conversely, any branching program with ks states can be mimicked by a space

s log k machine (possibly with some overhead for the uniformity of the program) by transitioning on state

v according to the edges in the branching program from the node associated with v.

The branching programs that appear in this work will all have restrictions that make them well-

behaved. Most important and well-studied is that of layered branching programs. As the name suggests,

these are branching programs where the nodes can be organized into successive layers, each one feeding

only into the one immediately following it. With the added restriction that every node at the same layer

queries the same input variable, this very much resembles a space-bounded Turing Machine model, where

our runtime corresponds to the number of layers and we need only index into the current layer at any

time stamp. In fact, one utility of this definition comes from paying individual attention to these two

quantities, which we call length and width, rather than simply measuring size.

Definition 13. A branching program is layered if, for some ` ∈ N, there exists a function σ : G→ [`+ 1]

such that for all u ∈ G, the outgoing edges of u go to nodes v1 . . . vk such that σ(v1) = . . . = σ(vk) =

σ(u) + 1; we call the set of nodes {v ∈ σ−1(j)} the jth layer. Furthermore for each j ∈ [`] there exists an

input variable xji which is the variable labeling every v ∈ σ−1(j).4 The width of G is maxj∈[`] |σ−1(j)|
and the length of G is `. Note that the size of G is at most the product of the length and width of G.

In many cases we can place even further restrictions on layered branching programs and still capture

an interesting class of algorithms. These will not be important for our TreeEval discussion, but will play

a recurring role in Chapter 5, and so we defer them to later.

4.1.2 Register programs

Our second model comes from a line of work starting with [BC92], more recently fleshed out in [BCK+14]

and used in many follow-up works on catalytic computation [CM20, CM21].

3We are aiming for logspace algorithms for TreeEval and our branching programs will be at least logspace uniform.
4By construction layer `+ 1 will contain exactly the sink nodes of G. See the previous footnote for an explanation of

this somewhat non-standard convention.
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Definition 14 (Register program). Let k, n := n(k), o := o(n, k) ∈ N, let x = {x1 . . . xn} be a set of

variables over [k]. For some numbers s ≥ o, `, t ∈ N, a register program P over a ring R is defined by the

following: 1) a set of s registers R1 . . . Rs, each storing a value in R, with o of these registers designated

as output registers; and 2) an ordered list of t instructions where for every j ∈ [t] the jth instruction

has the form R` ← R` + pj(fj(xi), R1, . . . , R`−1, R`+1, . . . , Rs) for some i ∈ [n] (the input index ), ` ∈ [s],

function fj : [k]→ R, and polynomial pj ∈ Rs → R. The size of P is the number of registers s.

Given an assignment to x in [k]n, the execution of P on x is defined by initializing every register

to 0 ∈ R and then executing each instruction in order. The output of P , denoted P (x), is the tuple of

values stored in the designated output registers at the end of the execution of P on x. We say that G

computes the function f : [k]n → [k]o if G(x) = f(x) for all x ∈ [k]n.

We use register programs as a convenient means to describe branching programs, and by extension

space-bounded machines. When converting a register program to a branching program (Observation 2,

below), we will find that instructions that are independent of the input, or instructions that read the

same input index as the previous instructions, do not affect the size of the branching program. The

following definition of a register program’s time is motivated by this.

Definition 15 (Time of a register program). Let P be a register program with t instructions. For every

j ∈ [t] the jth instruction has one of the following two forms:

� an input-dependent instruction R` ← R` + pj(fj(xi), R1, . . . , R`−1, R`+1, . . . , Rs) for some i ∈ [n]

(the input index ), ` ∈ [s], function fj : [k]→ R, and polynomial pj , or

� an input-independent instruction R` ← R` + pj(R1, . . . , R`−1, R`+1, . . . , Rs) for some ` ∈ [s] and

polynomial pj .

The time of P is determined as follows. Let i1, . . . , it′ be the input indices of the input-dependent

instructions in P , in order, skipping all input-independent instructions. The time of P is the number of

consecutive runs of the same index in that sequence, or equivalently, 1 +
∑t′−1
j=1 [ij 6= ij+1].5

There are two properties of our allowable instructions to take note of here. First, each register

instruction can only directly depend on at most one input variable. We require this so that register

programs can be transformed into branching programs; as defined, one direction of the connection

between register programs and branching programs—and hence, in the case of uniformity, between

register programs and space-bounded Turing Machines—is again immediate.

Observation 2. Let k ∈ N, let {fn : [k]n → Ro(n)}n be a family of functions, and let {Pn}n be a family

of register programs such that Pn computes fn with size s(n, k, o(n)) and time t(n, k, o(n)). Then

1. fn can be computed by a family of layered branching programs {Gn}n of length t(n) and width

|R|s(n); furthermore if {Pn}n is uniform then {Gn}n is also uniform

2. if Pn is uniform, then fn can be deterministically computed in space s(n) · |R|+ log t(n)

There is a converse to Observation 2 for permutation branching programs, but we will not use this

fact anywhere in our results, as our upper bounds will always be in the form of register programs.

5Unlike many other models, register programs always run for the exact same amount of time regardless of the actual
value of the input, i.e. we get no benefits from getting a “trivial” input; this will not be of any concern to us.
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Second, all instructions are reversible; for any instructionR` ← R`+pj(fj(xi), R1, . . . , R`−1, R`+1, . . . , Rs)

in our program, we can always undo it using the instructionR` ← R`+(−pj(fj(xi), R1, . . . , R`−1, R`+1, . . . , Rs)).

We could imagine a more general form of register program similar to space-bounded computation, for

example allowing an instruction such as R1 ← 0, but this reversibility condition will be highly useful

throughout our constructions, especially for a restricted model of register programs called clean register

programs.

Definition 16 (Clean register program). Let k, n := n(k), o := o(n, k), s := s(n, k, o) ∈ N, let f : [k]n →
[k]o, and let P be a register program over R with registers R1 . . . Rs computing f ; for ease of notation

we assume R1 . . . Ro are the designating output registers. We say that P cleanly computes f if for every

value (τ1 . . . τs) ∈ Rs the following holds: on any input to x in [k]n, instead of initializing each Ri to

0 ∈ R, we initialize Ri to τi for every i, and then execute P as before; then at the end of P ’s execution

on x each non-output register Ri holds its initial value τi, while the tuple of output registers (R1 . . . Ro)

holds the value (τ1 . . . τo) + f(x). We also say that P is a clean register program.

While this definition looks very stringent, the restriction to polynomial instructions is well-suited for

clean register programs. For the output registers, our instructions are already built to add the outputs of

functions to our target registers over the field. For the non-output registers, the reversibility of every

instruction gives us an easy way to reset registers. Most importantly, although it is not yet clear how to

deal with the initial τi values, the polynomial instructions will allow us to precisely control, and hence

precisely cancel out, the contributions of the τis.

We make a last comment about the focus on register programs, or rather clean register programs,

and the connection to composition. The clean restriction may seem unnecessary, because we only want

to solve TreeEval in the classic space-bounded computation model where all memory is initialized to zero;

in other words, we will not need our final register program for TreeEval to be clean. In short, we want all

our subroutines to be clean in order to avoid composition lower bounds, as we can save earlier work while

running our new computation over top of it. In particular, the power of the clean restriction will come in

when we compose register programs with one another.

4.2 Main proof: recursive TreeEval register programs

Our main result will be a family of efficient register programs for TreeEval, and by extension an upper

bound on the branching program size and Turing Machine space required to solve the Tree Evaluation

Problem.

Tree Evaluation Algorithm. For any k and h, TreeEvalk,2,h can be solved in space O(h log k/ log h) =

o(h log k).

Our jumping off point will be a brilliant result of Ben-Or and Cleve [BC92] showing that TreeEval

can be solved very efficiently in the special case when each internal node is the + or × operation. They

were interested in arithmetic circuits; for a field F define #NC1(F) to be the class of all polynomials

which can be defined by a polynomial-size logarithmic-depth6 circuit with fan-in two where all leaves are

elements of F and each internal node computes either + or ×.

6Note that by definition h = O(logn) for any TreeEvalk,d,h instance, even if k and d are 2.
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Theorem 28 (Logspace TreeEval for fv ∈ {+,×} [BC92]). Let F be any field and let C be an #NC1(F)

circuit. Then there exists a register program over F of size 3 and time poly(n) which computes C.

We will not prove Theorem 28 now, as it will be the warm-up for our main technical lemma; however

it should be noted that the proof is extremely straightforward and can be shown with a short recursive

subroutine and a paragraph of analysis. We bring up this simplicity to make a quick historical side

note: [BC92] was directly inspired by the famous Barrington’s Theorem [Bar89], which showed that any

circuit in NC1 can be simulated by a width-5 poly-length branching program. Barrington’s Theorem

was considered a bolt from the blue, both for the shocking result it proved and the somewhat bizarre

and unlikely proof. However, in proving Theorem 28, [BC92] succeeded in reproving and generalizing

Barrington’s Theorem (up to a small loss in the width) even with their very simple proof. In particular, if

we let F = F2, then #NC1(F) = NC1, and combining Theorem 28 with Observation 2 gives us a width-8

poly-length branching program computing any C ∈ NC1.7

Unfortunately Theorem 28 is a very special case of TreeEval, and the purpose of using TreeEval for

lower bounds in the first place is to plug in maximally difficult functions at each internal node. Thus

our next goal will be to fit this more arbitrary case back into the framework of + and ×. The natural

candidate for such a transformation is interpolation; we can always look at a function f as being a

polynomial over any field. To take just two examples of how to apply this to the function fv : [k]2 → [k]

associated with the node v, we could get 1) a degree-2 polynomial over Fk; or 2) a set of log k different

degree-(2 log k) polynomial over F2, namely by representing each element in [k] in binary.

However, this is not sufficient by itself.8 Making this transformation does not immediately tell us

the best way to compute TreeEval, and the variety of options of differing field size and degree begs the

question of what parameters are relevant to the efficiency of our algorithm. This question of encodings

is one of the key points of discussion. It should be clear how our choice of storing values comes into

play, but to understand how degree comes into the mix, it is necessary to generalize [BC92] to work for

products of higher degree; here we contribute to the literature on catalytic computing.

With all of these parameters in mind, our main result, an algorithm for TreeEval beating pebbling,

is the result of a tradeoff between the space required for storing elements in [k] based on our choice of

encoding with the time required for computing products in a manner amenable to [BC92], i.e. reducing

the number of elements in [k] we need to store well below h, which will be determined by the degree of

our polynomial representation of fv given our chosen encoding. Our focus will be on a representation we

call the d-hot encoding, which is a generalization of two very basic encodings.9

4.2.1 An encoded representation of TreeEval

The catalytic TreeEval approach begins with moving from elements in [k] to a form that will be more

amenable to our register programs. For this section we will not deal with clean register programs, and

7The construction in [Bar89] is actually stronger than stated, as it is a permutation branching program, a restricted type
of branching program that we will see in Chapter 5. However we will also see that any clean branching program can be
converted into a permutation branching program, and Theorem 28 is indeed clean.

8In fact, combining Theorem 28 with either of the polynomials in the previous paragraph will give an algorithm exactly
matching the pebbling algorithm.

9For clarity, we emphasize that this d is not the same as the one in TreeEvalk,d,h as originally defined in Chapter 1.
In this chapter we focus on the case of TreeEvalk,2,h, i.e. where the fan-in of nodes in our TreeEval instance is 2; in this
context, the parameter d has nothing to do with the TreeEval instance itself and will rather be the name of an unrelated
parameter which we will optimize in the course of building our TreeEval algorithm. In Section 4.3 we briefly discuss the
case of more general fan-in TreeEval instances, and use a different naming convention in order to avoid confusion.
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so the reader is invited to think about the simple case where all registers are initialized to 0. This

section will also lay the foundation for an inductive argument by which we can compute TreeEvalk,2,h for

increasingly large values of h.

Encodings

Since we have chosen to work with register programs over F2, we will move from [k] to bitstrings; however,

we will not restrict ourselves to simply translating x ∈ [k] into binary. An encoding for [k] is a one-to-one

mapping E from [k] to {0, 1}κ for some κ ∈ N. We say that κ is the size of the encoding E.

Moving from [k] to encodings E indeed allows us to move from k-wise branching programs to register

programs over F2. In particular, we observe that we can simulate register programs over κ-bit strings

by branching programs as in Observation 2, because we can always translate the inputs we read from

elements of [k] into E-encoded strings in {0, 1}κ, and at the end we can translate the encoded string

representing the output back into [k].

Observation 3. Let k, h, κ ∈ N, let I be a TreeEvalk,2,h instance for some h, and let E be an encoding

of elements in [k] of size κ. Assume there exists a register program of size s and time t computing the

E-encoding of I. Then there exists a branching program of width 2κ·s and length t computing I.

We note in passing that this gives rise to an algorithm for the already-trivial case of h = 1, which

forms the base case of our induction.

Corollary 29. Let k, κ ∈ N, and fix an encoding E of size κ for values in [k]. Then TreeEvalk,2,1 can be

computed by a layered branching program of length 1 and width 2κ.

Polynomials

There are many different ways of choosing our encoding E, and one might immediately wonder why we

do not immediately choose the simplest and most space-efficient encoding, namely writing each element

of [k] in binary using κ = dlog ke bits. To answer this, first let us see how we will actually manipulate

our κ-bit encoded strings using the polynomial instructions of our register program.

Definition 17 (Polynomial representation of a function). Let k ∈ N, fix an encoding E of size κ for

values in [k], and let f : [k]× [k]→ [k] be any function. A polynomial representation of f with respect

to E is a tuple of κ polynomials
#  –

Qf = (Qf,1, . . . , Qf,s) over R = F2 which together compute f in the

following sense: for any x`, xr ∈ [k], let #–p`,
#–pr ∈ {0, 1}κ be their encodings. Then (Qf,i(

#–p`,
#–pr))i∈[κ] is the

encoding of f(x`, xr).

With our encodings we gave a base case for our inductive computation by giving a program to convert

a leaf value into our chosen encoding. As an initial example of how to use our new polynomial, we give

an example of how to compute an internal node using our polynomials.

Lemma 30. Let k, h ∈ N, fix an encoding E of size κ for values in [k], and for some given TreeEvalk,2,h

instance I and any node u, let # –pu ∈ Fs2 denote the encoding of the value at node u. Fix some node v with

children v` and vr, and let
# –

R` and
#  –

Rr each be a set of s registers such that
# –

R` holds value #  –pv` and
#  –

Rr

holds value #   –pvr . Then there is a register program Pv which computes #–pv in space 3κ and time k2.
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Proof. For each i ∈ [κ] define the function gi : [k] → {0, 1} so that gi(x) is the ith coordinate of the

E-encoding of x. Let
#  –

Rv be a set of s registers where we will store #–pv.

Let
#  –

Qv = Q1 . . . Qs be the polynomial representation of #–pv with respect to the encoding E and inputs
#–p`,

#–pr. We rewrite each Qi as
∑

(y,z)∈[k]2 mi,y,z, where mi,y,z only depends on the value fv(y, z) and no

value fv(y
′, z′) for (y′, z′) 6= (y, z). We now compute every monomial in every Qi in turn by cycling

through every pair (y, z) and adding all monomials in mi,y,z to Ri for every i. By definition of
#  –

Qv this

results in adding #–pv to
#  –

Rv.

Clearly all of these instructions read the same piece of the input, namely the same entry in the table

of fv, and all other values are stored in the registers
# –

R` and
#  –

Rr. Thus the time according to Definition 15

is k2, and we used no space besides the 3κ registers in
#  –

Rv,
# –

R`,
#  –

Rr.

Again we note in passing that this gives us a way to compute the already-trivial case of h = 2, which

suggests a way to begin our inductive argument on h.

Corollary 31. Let k, κ ∈ N, and fix an encoding E for values in [k] as κ-bit strings. Then TreeEvalk,2,2

can be computed by a layered branching program of length 2 + k2 and width 23κ.

Three specific encodings

It is now clear that for any choice of encoding we can a) translate all inputs we read directly into their

encoded values, b) compute the encoded values at any internal node, assuming we already have the

encoded values of its children, and c) translate our final result back into [k]. Furthermore, we have only

paid for the choice of encoding E by having to store 3κ bits for E of size κ, with no runtime or other

dependence. Thus Lemma 30 still begs the question of why we would ever consider other encodings.

In this section we will nevertheless define three particular encodings which will be the focus of the

next section. The first two are quite simple and natural, and the third is a particular way of generalizing

both.10

Definition 18 (One-hot, binary, d-hot encodings). Let k ∈ N, and let digit(b, x, i) denote the i-th digit

of the base b representation of x. For any x ∈ [k],

� The one-hot encoding of x is the vector #–p ∈ {0, 1}k where px = 1 and px′ = 0 for all x′ 6= x. (k

bits)

� The binary encoding of x is just x written in base 2; that is, a vector #–p ∈ {0, 1}dlog ke where

pi = digit(2, x, i). (dlog ke bits)

� The d-hot encoding of x is parameterized by positive integers b, d where bd ≥ k. We write x as

d digits in base b, and encode each digit using a one-hot encoding in {0, 1}b. In other words, the

encoding is a vector #–p ∈ {0, 1}d·b where for each i ∈ [d], pi,digit(b,x,i) = 1, and all other coordinates

are 0. (d · b ≥ d · dk1/de bits)

10[CM20] studied a different generalization which achieved weaker results.



Chapter 4. Upper Bounds for the Tree Evaluation Problem 67

one-hot binary base 4 d-hot with d = 2, b = 4

0 0000000000000001 0000 00 0001 0001

1 0000000000000010 0001 01 0001 0010

5 0000000000100000 0101 11 0010 0010

15 1000000000000000 1111 33 1000 1000

Table 4.1: Example encodings with k = 16, written in reverse to match the usual convention for writing
numbers. The encodings are described in Definition 18. The second-last column shows each number in
base 4, for comparison with the d-hot encoding.

Figure 4.1 shows examples of each of the encodings in Definition 18. We can also explicitly define

the polynomial representation of each of our encodings. For a Boolean statement F we let [F ] be the

indicator function, i.e. 1 if F is true and 0 otherwise.

Observation 4. Let k ∈ N, and let f : [k] × [k] → [k] be a function. For each encoding given by

Definition 18, the polynomial representation of f given by Definition 17 is as follows:

� One-hot encoding: for w ∈ [k],

Qf,w( #–p`,
#–pr) =

∑
(y,z)

[f(y, z) = w]p`,ypr,z

(degree 2).

� Binary encoding: for i ∈ dlog ke,

Qf,i(
#–p`,

#–pr) =
∑

(w,y,z)∈[k]3

[digit(2, w, i) = 1][f(y, z) = w]·

∏
i′∈[dlog ke]

(p`,i′ + digit(2, y, i′) + 1)(pr,i′ + digit(2, z, i′) + 1)

(degree 2dlog ke).

� d-hot encoding: for (i, a) ∈ [d]× [b],

Qf,i,a( #–p`,
#–pr) =

∑
(w,y,z)∈[k]3

[digit(b, w, i) = a][f(y, z) = w]·

∏
i′∈[d]

p`,i′,digit(b,y,i′)pr,i′,digit(b,z,i′)

(degree 2d).

For the rest of our discussion we will focus on the d-hot encoding, as it generalizes both other

encodings.11 However we close this section by contrasting the one-hot and binary encodings, representing

the two extremes of the d-hot encoding. As discussed, the binary encoding is the most space-efficient

choice possible, and thus appears to be optimal given the parameter dependence of Lemma 30. However,

11The binary encoding is not exactly the log k-hot encoding, but they behave almost identically in all algorithms in our
work, and the only difference in the encoding size is a negligible factor of 2.
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the one-hot encoding, as space-inefficient as it may be, minimizes another parameter not yet highlighted:

the degree of the corresponding polynomial representation. As we will see in the next section, while

encoding size will directly correspond to the space of our register programs, polynomial degree will

directly correspond to the time of those programs, and hence a tradeoff via the d-hot encoding becomes

essential.

4.2.2 Catalytic Products

Let us return to our inductive argument. Fix some k, h, κ ∈ N, some TreeEvalk,2,h instance I, and some

encoding E of [k] of size κ. In the previous section showed that we can read and immediately compute the

E-encoding of any input value of I, meaning in particular that we can store the encoded value of any leaf of

I in an κ-bit register in a single step; this gives us h = 1 at almost no cost by Corollary tep-cat:cor:height1.

Furthermore, given the encodings of the values of the two children of node v, stored directly into registers

R` and Rr, we can compute the encoded value of the function at node v directly into a third register Rv

using the TreeEval polynomials; this gives us h = 2 by Corollary tep-cat:cor:height2 with only a modest

additional cost over h = 1. What more is left to do?

Let us move on with our induction: when we consider h = 3 we are faced with a choice. The simple

answer for computing the root node is to 1) compute the left child using 3κ binary registers; 2) erase the

2κ registers holding leaf values, and use those plus s more binary registers to compute the right child; 3)

erase the leaf values once again, immediately compute the root function into one of the open chunks, and

declare victory. This uses a mere 4κ registers and only requires us to read each relevant input—each leaf

plus the appropriate entry in each internal node—exactly once! However, when we continue up the tree

we immediately see that this is just the pebbling algorithm, and so we cannot expect to use less than

h log k registers total.12

Nowhere yet have we really crucially used our encodings nor the TreeEval polynomials associated

with them. In this section we put the pieces together and show how to do efficient space-bounded

computation of polynomials using our notion of clean computation from Definition 16. The key insight is

that using clean computation as a subroutine lets us save space: rather than allocating new registers for

the subroutine’s scratch work, we can re-use registers the parent computation is already using. Looking

back at the h = 3 case, this means that in order to compute the root node, we 1) compute the left child

using 3κ binary registers; 2) erase the 2κ registers holding leaf values, and use the same 3s binary registers

to compute the right child into s of the free 2s registers (without erasing the left child); 3) erase the last

open s registers, immediately compute the root function into the one open set , and declare victory. In

fact for higher h we employ this recursively, where now we erase nothing and do all our computation

cleanly, rotating the role of left child, right child, and parent node between each chunk of our 3κ registers.

Thus our main goal is to cleanly compute catalytic products using no additional space. As we will see,

the time efficiency of our main lemma depends heavily on the degree of the polynomials we will compute,

which finally gives us the motivation for our d-hot encoding; our main theorem will be a consequence of

balancing d.

First, as a small technical aside, we define a type of nicely-behaved polynomial, which the TreeEval

polynomial for all our encodings obeys by definition.

12Since we only read each value once and are “thrifty” with our function reads, this runs into both known kh lower
bounds from our earlier discussion.
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Definition 19. Let s, d ∈ N, and define Xi := {xi,1 . . . xi,d} for all i ∈ [s]. A polynomial f(x1,1 . . . xs,d)

is set-multilinear with respect to {Xi} if every monomial in f is the product of exactly one variable

from each set Xi. A set of polynomials f1 . . . ft is set-multilinear with respect to {Xi} if they are all

set-multilinear with respect to {Xi}.
Note that all set-multilinear polynomials are homogeneous of degree d and have at most sd monomials.

The following is our main subroutine, and also our main contribution to the study of catalytic

computing. Here it is important for our recursion that we allow our subroutines to not just cleanly

compute the full input from the level below, but rather any subset of the inputs from the level below. In

previous works [BC92] every input was treated separately, and so this was essentially implicit; in our

case, in order to control the number of recursive calls we need for every recursive call to access many, but

again not all, inputs separately. This turns out to be a trivial fix, because computing any fixed subset of

the outputs given access to programs computing any fixed set of inputs—the necessary structure for our

subroutine to work inductively—will be essentially a trivial change from computing all outputs.

Catalytic Product Lemma. Let κ, d ∈ N, and let f1 . . . ft be a set of set-multilinear polynomials

with respect to {Xi = {xi,j}j∈[κ]}i∈[d]. Suppose that for all subsets S ⊆ [d]× [κ], there exists a register

program P in(S) which cleanly computes xij into register Rini,j for all (i, j) ∈ S. Then for every T ⊆ [t]

there exists a register program P out(T ) which cleanly computes fa(x1,1 . . . xd,κ) into Routa for all a ∈ T .

P out(T ) makes 2d calls to programs P in(S), plus 2d(|T | ·κd) basic instructions, and uses only the registers

Rini,j , R
out
i .

Proof. We proceed in stages, beginning from the case of a single degree-2 × function over F2, which

we handle in a similar way as [BC92, BCK+14], and moving up to the fully general case of t degree-d

polynomials over Fκ2 . To do this we tackle the two given challenges, first individually and then together:

parallelizing over many polynomials, and scaling up to higher degrees.

Warm-up: κ = 1, d = 2, t = 1. We start from the simplest possible case: computing a single product

of two inputs. As promised at the beginning of this section, this case is exactly Theorem 28, and though

it is simple to prove it contains all the centerpieces of our general proof. Let τout, τ in1 , and τ in2 be the

original values in Rout(:= Rout1 ), Rin1 (:= Rin1,1), and Rin2 (:= Rin2,1). Our program P out uses four recursive

calls plus four basic instructions:

1: P in({1})
2: Rout ← Rout −Rin1 Rin2 . Rout = τout − τ in1 τ in2 − x1τ

in
2

3: P in({2})
4: Rout ← Rout +Rin1 R

in
2 . Rout = τout + τ in1 x2 + x1x2

5: P in({1})
6: Rout ← Rout −Rin1 Rin2 . Rout = τout − τ in1 τ in2 + x1x2

7: P in({2})
8: Rout ← Rout +Rin1 R

in
2 . Rout = τout + x1x2

While correctness is given by the inline comments (the reader should verify the calculations), we motivate

this program intuitively in a way that will generalize. Define y1 = x1 + τ1 and y2 = x2 + τ2. We can

rewrite the product x1x2 over the y and τ variables using the substitution xi = yi − τi as

x1x2 = (y1 − τ1)(y2 − τ2) = y1y2 − y1τ2 − τ1y2 + τ1τ2
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With this view, we can see each loop in our algorithm as being responsible for one distinct term in our

new polynomial, since Rini either has the value τi or the value xi + τi = yi.

More monomials: d = 2, t = 1. The next step is to consider when we have a polynomial f which is

multilinear over two sets of variables X1 tX2. Looking closely at our algorithm, it has the nice property

that if we insert some instruction of the form Rout ← Rout + δ anywhere in the program, the result

will simply be that we get an extra δ in Rout at the end. This insight allows us to parallelize across

all monomials in f in the natural way, by simply running the same program but replacing each step

Rout ← Rout + Rin1 R
in
2 with steps Rout ← Rout + Rin1,j1R

in
2,j2

for every monomial x1,j1x2,j2 ∈ f . Each

term x1,j1x2,j2 will be isolated by the instructions of the form Rout ← Rout +Rin1,j1R
in
2,j2

while having no

effect on all other calculations running in parallel. Since f is set-multilinear, we can replace {1} with

{(1, j)}j∈[κ] and {2} with {(2, j)}j∈[κ] in our recursive calls, and each monomial will individually behave

as in the previous lemma.

1: P in({(1, j)}j∈[κ])

2: for x1,j1x2,j2 ∈ f do

3: Rout ← Rout −Rin1,j1R
in
2,j2

. Rout = τout −
∑

(i1,i2) τ
in
i1,1

τ ini2,2 + xi1,1τ
in
i2,2

4: P in({(2, j)}j∈[κ])

5: for x1,j1x2.j2 ∈ f do

6: Rout ← Rout +Rin1,j1R
in
2,j2

. Rout = τout +
∑

(i1,i2) τ
in
i1,1

xi2,2 + xi1,1xi2,2

7: P in({(1, j)}j∈[κ])

8: for x1,j1x2,j2 ∈ f do

9: Rout ← Rout −Rin1,j1R
in
2,j2

. Rout = τout +
∑

(i1,i2)−τ ini1,1τ
in
i2,2

+ xi1,1xi2,2

10: P in({(2, j)}j∈[κ])

11: for x1,j1x2,j2 ∈ f do

12: Rout ← Rout +Rin1,j1R
in
2,j2

. Rout = τout +
∑

(i1,i2) xi1,1xi2,2 = τout + f(x)

As before we use no additional space, and need only four recursive calls. Each internal instruction is now

split into one instruction for each monomial in f , which is at most κ2.

Higher degree: κ = 1, t = 1. We put parallelism on hold for a moment and consider the other

major roadblock, degree. Our goal now is to compute f(x1 . . . xd) =
∏
i∈[d] xi. Again we consider the

transformation of f using the definition yi = xi + τi, which yields the new polynomial

f(y1 − τ1, . . . , yd − τd) =
∑
S⊆[d]

(−1)d−|S| · (
∏
i∈S

yi)(
∏
i/∈S

τi)

As before we will have a loop where each iteration takes care of one of the 2d terms:

1: for S ⊆ [d] do

2: P in(S)

3: Rout ← Rout + (−1)d−|S|
∏
i∈[d]R

in
i

4: P in(S)

The correctness of this algorithm is clear from our definition of f( #–y , #–τ ). We make two calls to each

P in(S), which is twice as many recursive calls as we claimed. This can be fixed by removing the second
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call to P in(S) and replacing the first call with P in(S∆Sold), where Sold is the set of indices i such that

Rini contains yi at the start of the loop and S∆S′ = (S − S′) ∪ (S′ − S) is the symmetric difference

function; in other words we simply load in the values necessary to make Rini = yi iff i ∈ S before executing

our basic instruction. Thus we get a program that makes 2d total recursive calls plus one basic instruction

for each call.

General case. As in the case of d = 2, handling general κ is simply a matter of having an inner loop

running over all monomials in the polynomial f . We can also address the parallelism in the output, namely

when t is left unfixed, in the same way; clearly no instruction of the form Routa ← Routa +
∏
i∈[d]R

in
i,ji

affects any register Routa′ , neither directly nor indirectly.

Algorithm Main TreeEval Subroutine: Computing P out(T ) using programs P in

1: Sold ← ∅
2: for S ⊆ [d] do

3: P in({(i, j)}i∈S∆Sold,j∈[κ])

4: for a ∈ T,
∏
i∈[d] xi,ji ∈ fa do

5: Routa ← Routa + (−1)d−|S|
∏
i∈[d]R

in
i,ji

6: Sold ← Sin

Our final algorithm is presented in Catalytic Product Procedure Again our efficiency follows immedi-

ately by the conditions of each loop. We require a total of (at most) 2d recursive calls, and for each such

call we have one basic instruction for each monomial appearing in any output polynomial fa, for a total

of 2d(|T | · κd) basic instructions.

From this we can recursively compute TreeEval, which will give our main result when applied to the

d-hot encoding.

Theorem 32 (TreeEval algorithm). Let d ∈ N and let b ∈ N be such that bd ≥ k. For any subset

T ⊆ [d] × [b] there is a register program with 3db registers and length O(2(2d+1)(h−1)dbk2) that cleanly

computes bits T of the d-hot encoding of TreeEvalk,2,h.

Proof. We will prove by induction on the height h that the program has length at most 2(2d+1)h−1
22d+1−1

22ddbk2 =

O(2(2d+1)(h−1)dbk2). Lemma 3 solves the base case h = 1 using space db ≤ 3db and at most db ≤
2(2d+1)0−1
22d+1−1

22ddbk2 instructions. Now, assume for some height h ≥ 1 that for every subset S ⊂ [d]× [b], bits

S of the encoding of TreeEvalk,2,h can be cleanly computed. Given an instance of TreeEvalk,2,h+1, Let v

be the root and let ` and r be the children. Under the induction hypothesis, there exist programs P` and

Pr which can cleanly compute the d-hot encoding of f` and fr in space 3db and time 2(2d+1)h−1
22d+1−1

22ddbk2.

By Catalytic Product Lemma we can use P` and Pr to compute the d-hot encoding of fv—and thus the

output for the TreeEvalk,2,h+1 instance—in space 3db and time at most 22d
(

2 2(2d+1)h−1
22d+1−1

22ddbk2 + dbk2
)

=

2(2d+1)(h+1)−1
22d+1−1

22ddbk2 as desired.

The principle difference between Theorem 32 and previous algorithms that use the “catalytic” ap-

proach [CM20, Theorems 1–3] is the choice of encoding. Table 4.2 summarizes the trade-off between

time and space for different encodings.
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encoding one-hot binary d-hot

encoding bits (Def. 18) k dlog ke db(≥ ddk1/de)
total space 3k 3dlog ke 3db
degree (Def. 17) 2 dlog ke d
time for leaf node (Lem. 3) 3k 3dlog ke 3db
time for recursive step 2(2t+ k3) k2(2t+ k2dlog ke2) 22d(2t+ dbk2)
(Catalytic Product Lemma)

total time Θ(4h−1k3) Θ((2k2)h−1k2 log2 k) Θ(2(2d+1)(h−1)dbk2)

Table 4.2: Trade-offs in Theorem 32 if different encodings had been used. The number of registers depends
on the encoding (Definition 18). The total number of instructions depends on the number of recursive
calls in Catalytic Product Lemma, which in turn depends on the polynomial degree (Definition 17).

Theorem 32 immediately gives us the following two algorithms: one for the one-hot encoding

(d = 1, b = k) and one for the binary encoding (d = log k, b = 2); we refer readers interested in more

precise time/length analysis to Table 4.2.

Theorem 33 (One-hot algorithm). There exists a register program solving TreeEvalk,2,h using 3k registers

over {0, 1} and O(22h · poly k) total instructions.

Theorem 34 (Binary algorithm). There exists a register program solving TreeEvalk,2,h using 3dlog ke
registers over {0, 1} and O((2k2)h · poly k) total instructions.

Lastly, getting Tree Evaluation Algorithm from Theorem 32 is simply a matter of balancing the

parameters; we state it more precisely in a form similar to the other two encodings.

Theorem 35 (d-hot algorithm). Let k, h ∈ N. If k ≥ h, there exists a layered branching program solving

TreeEvalk,2,h with length at most k2h/ log h poly(k) and width at most k3h/ log h. If k < h, then there exists

a layered branching program solving TreeEvalk,2,h with length at most 22h poly(k) and width at most 23h.

Proof. Set d = dlog k/ log he and b = h; note that bd ≥ k. If we apply Theorem 32 for T = [d · b] and

for a set of registers initialized to 0, then we get a register program computing the d-hot encoding of

TreeEvalk,2,h into some registers while returning all other registers to 0. The register program uses 3dh

registers and has length O(2(2d+1)(h−1)dhk2) ≤ 22dh poly(k). When we convert this register program to

a branching program, note that each reachable output state corresponds to a different possible value

of the d-hot encoding of TreeEvalk,2,h in the output registers plus 0 in all other registers. Since there

are only k such values—one for each value in [k]—we relabel the k output nodes with the value their

output register value corresponds to. Thus this branching program clearly computes TreeEvalk,2,h, and

the length and width in both cases is as we claimed by plugging in the values of d and b we selected.

4.2.3 Afterword: more general recursion

Our work in Catalytic Product Lemma is somewhat specialized to the task at hand, and so it is worth

noting at this juncture the ways in which this can be used in more general ways. We hope that this

lemma in particular can be of future use in catalytic computing.

First, and already implicit in the proof, Catalytic Product Lemma holds over any field F. In our

earlier proof, adding was equivalent to subtracting because we were working over F2; for a more general

field, we need to define the inverse programs (P in(S))−1. Luckily, as noted in our introductory discussion
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all instructions for a register program are reversible, and thus (P in(S))−1 can be obtained by running

the instructions of P in(S) backwards and flipping the sign in each instruction. This adds no length or

width to our program as compared to Catalytic Product Lemma.

Even more generally, it is not too hard to see that for any vector B := (b1 . . . bt) ∈ Ft, we can create

a program P out(A) which adds bafa over F to Routa for every a ∈ [t].

1: for S ⊆ [d] do

2: P in({(i, j)}i∈S,j∈[κ])

3: for a ∈ T,
∏
i∈[d] xiji ∈ fa do

4: Routa ← Routa +
∏
i∈[d]R

in
iji

Again our efficiency follows immediately by the conditions of each loop. We require a total of (at most)

2d recursive calls, and for each such call we have one basic instruction for each monomial appearing in

any output polynomial fa, for a total of 2d(|T | · κd) basic instructions.

4.3 A note on general fan-in TreeEval

As a closing remark for this chapter, we return to the general case of tree evaluation, where we have a

full d-ary tree. We show that Tree Evaluation Algorithm generalizes to any d.

Theorem 36. For any k, d, and h, TreeEvalk,d,h can be solved in space O(dh log k/ log h) = o(dh log k).

Proof. For clarity of notation we let ∆ stand for the fan-in in our TreeEval instance—meaning we are

given an instance of TreeEvalk,∆,h—and d be from our d-hot encoding. Note that Catalytic Product

Lemma is still relevant here; our polynomials will now be over not just 2d blocks of variables, but ∆d

blocks, as we will have ∆ different incoming nodes with a d-hot encoded value in each. Our algorithm

will need to be adapted to have (∆ + 1)db registers, as we will need ∆db input registers and db output

registers, but other than that our procedure will go uninhibited. We will also need to make 2∆d recursive

calls at each step.

For specific numbers, we will prove by induction on the height h that the program has length at most
2(∆d+1)h−1

2∆d+1−1
2∆ddbk2 = O(2(∆d+1)(h−1)dbk2), while using space (∆ + 1)db. Lemma 3 solves the base case

h = 1 using space db ≤ (∆ + 1)db and at most db ≤ 2(2d+1)0−1
22d+1−1

22ddbk2 instructions. Now, assume for

some height h that for every subset S ⊂ [d]× [b], bits S of the encoding of TreeEvalk,∆,h can be cleanly

computed for some h ≥ 0. Given an instance of TreeEvalk,∆,h+1, Let v be the root and let v1 . . . v∆ be the

children. Under the induction hypothesis, there exist programs Pvi which can cleanly compute the d-hot

encoding of fvi in space (∆ + 1)db and time 2(2d+1)h−1
22d+1−1

22ddbk2. By Catalytic Product Lemma we can

use the Pvi programs to compute the d-hot encoding of fv—and thus the output for the TreeEvalk,∆,h+1

instance—in space (∆ + 1)db and time at most 2(∆d+1)(h+1)−1
2∆d+1−1

2∆ddbk2 as desired.

Clearly the ∆ factor does not change our balancing of parameters, and so setting d = dlog k/ log he
and b = h gives us space (∆ + 1)h log k/ log h and time O(2(∆(log k/ log h)+1)(h−1)hk2 log h/ log k.

In terms of parameter dependence, the pebbling algorithm gives O(dh log k) while a logspace algorithm

would require O(h log d+ d log k). As in the case of d = 2, the h factor on the d log k term is the focal

point of the lower bound, and Theorem 36 makes the same improvement over pebbling on this factor.

Thus the case of larger d seems to be largely irrelevant in the discussion of both upper and lower bounds.
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Perhaps an even more direct way to see that larger d is relatively unimportant is to note that we can

always turn any TreeEval algorithm which only works for some fixed d into one that works for any d,

with the tradeoff being one-to-one between fan-in and height. In this light we can think of the statement

of Theorem 36 as specifying where the hidden dependence in Tree Evaluation Algorithm on d lies, albeit

with better parameters due to the white-box nature of the proof.

Theorem 37. 1. Let d ∈ N and let Ad be an algorithm solving TreeEvalk,d,h for any k, h ∈ N in

space s(k, d, h). Then for every d′ < d there exists an algorithm Ad′ solving TreeEvalk,d′,h for any

k, h ∈ N in space s(k, d′, h/ logd′(d)) +O(log n).

2. Let d ∈ N and let Ad be an algorithm solving TreeEvalk,d,h for any k, h ∈ N in space s(k, d, h).

Then for every d′ > d there exists an algorithm Ad′ solving TreeEvalk,d′,h for any k, h ∈ N in space

s(kd
′/d, d′, h · logd(d

′)) +O(log n).

Proof. In both cases we will describe a logspace reduction from TreeEvalk′,d′,h′ to TreeEvalk,d,h, where k′

and h′ are the corresponding values in each statement. This is enough to complete the proof by applying

Ad. For simplicity we ignore divisibility concerns related to d, d′, and h.

If d′/d < 1, then given a TreeEvalk,d′,h instance we will obtain a TreeEvalk,d,h/ logd′ (d) instance by

merging every logd′(d) layers of fan-in d′ into a single layer of fan-in d′ logd′ (d) = d. This can clearly be

done in logspace as every entry in the function at the new layer can be computed using logd′(d) entries

from the original instance.

If d′/d > 1, then given a TreeEvalk,d′,h instance we will obtain a TreeEvalkd′/d,d,h·logd(d′) instance by

doing the opposite: we will split every layer into logd(d
′) layers of fan-in dlogd(d′) = d′. However, we

cannot do this naively using elements of [k], as the functions will be restricted by the tree-like structure.

Instead, let us view all inputs to the current layer—now split into logd(d
′)− 1 new layers plus the one

original output layer—as being written in binary with log k = d0 log k bits. At internal layer i we will

assume we have inputs written with di−1 log k bits; we then concatenate those inputs and output the

resulting string of di log k bits; this corresponds to an element in [kd
i

]. Finally at the output layer our

function will be the original function, where we interpret the d incoming values in [kd
logd(d′)−1

] = [kd
′/d]

as d′ incoming values in [k].

The upshot of Theorem 37 is that we can always get from one d to another by paying appropriately

in h and possibly k. The efficiency, and thus utility, of this simulation depends on how the runtime of

Ad depends on k, d, and h; if the goal is to get TreeEval upper bounds against any parameter regime

we can prove, it may be useful to choose one setting of d over another. We also note that our upper

bound is further strengthened by working against a larger n; this follows because we do not lose any

information in this transformation, and in fact we have a lot of redundant information, either in encoding

a very well-behaved fan-in-d function as a generic fan-in-d function, or by encoding many levels of

concatenation.

Further reading

� Computing Algebraic Formulas Using a Constant Number of Registers [BC92]. At only five pages,

this is an elegant paper which served as the precursor both to our results and the core techniques

of catalytic computing.
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� Computing with a Full Memory: Catalytic Space [BCK+14]. The introductory paper in the field of

catalytic computing is filled with techniques and ideas that underlie all our upper bounds. This

paper also provides preliminary lower bounds against catalytic computing, oracle results, and other

insights.



Chapter 5

Application: Catalytic/Amortized

Algorithms for Every Function

Taking stock of our results from Chapter 4, it seems inevitable that we explore our polynomial technique

further: combining it with Catalytic Product Lemma allowed us to compute arbitrary functions given by

our TreeEval instance. However, the idea of clean computation seems built for iterated functions, and

so it is not clear why this technique is useful outside of TreeEval-style composition. For this we need to

move to a different type of space-bounded computation and explore what questions are open.

5.1 Catalytic and amortized computation

5.1.1 Catalytic computation

As we have already seen, the question of whether pebbling is optimal for TreeEval—a question we resolved

in Chapter 4—partially hinged on whether or not the following space composition theorem holds: given

input x and some string z written on the work tape, does computing f(x) while still having z on the

work tape when we finish require space |z|+ space(f)? To take this question on directly, Buhrman et

al. [BCK+14] defined a variant of space-bounded computation where the work tape was partially filled

by the string z.

Definition 20 (Catalytic space [BCK+14]). Consider a space-bounded Turing Machine M which has

three tapes: 1) a read-only input tape of length n; 2) a write-only output tape of length m; 3) a read-write

work tape of length s(n). A catalytic Turing Machine additionally has a read-write catalytic tape of

length c(n) ≤ 2s(n) which is initialized to an arbitrary state τ ∈ {0, 1}c(n). A function f is computable in

CSPACE(s, c) if there exists a catalytic Turing Machine M with work space s and catalytic space c

such that, after executing M on x with the initial state of the catalytic tape being τ , the output tape

contains f(x) and the catalytic tape contains τ .

The term catalytic comes from chemistry, where a reaction which normally lacks the energy to occur

can take place due to the presence of a reagent, which itself is used up but then ultimately refabricated

by the end of the process. In our context, the catalytic tape represents the results of one copy of g that

we save while computing a different copy.

76
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5.1.2 Non-uniform catalytic computation

With this definition in mind, it is clear that Catalytic Product Lemma can be used to compute an

arbitrary given function f given the right amount of catalytic space. However, there is another important

change from TreeEval: f is no longer part of the input, and so a uniform Turing Machine does not know

what polynomial to compute using Catalytic Product Lemma.

Here is where branching programs come in handy: while they seemed like an interloper in our previous

chapter, a needless intermediary between register programs and space-bounded Turing Machines, they

have the advantage of capturing non-uniform space-bounded computation, just as formulas can capture

non-uniform parallel computation. Put simply, a non-uniform model is one where the construction can

take the truth table of f , as well as any other information unrelated to the input, into account. Thus we

start by moving to the branching program equivalent of catalytic computation.

Definition 21 (m-catalytic branching program [GKM15]). Let k, n := n(k), o := o(n, k),m := m(n, k) ∈
N, and let x = {x1 . . . xn} be a set of variables over [k]. An m-catalytic branching program is a directed

acyclic graph G with the following properties:

� There are m source nodes and m · ko sink nodes.

� Every non-sink node is labeled with an input variable xi for i ∈ [n] and has k outgoing edges, one

for each value in [k]

� For every source node u and every j ∈ [k]m there is one sink node labeled with (u, j).

As usual, the size of the m-catalytic branching program is the number of non-sink nodes in G.

Given an assignment to x in [k]n, the execution of G on x is defined by the following process: 1) set v

to be an arbitrary source u of G; 2) while v is not a sink, read the value of the xi labeling v, follow the

edge labeled with this value, and update v to be the node we reach; 3) if v reaches a sink labeled (u, b),

output b; otherwise, the program is deemed invalid. The output of G, denoted G(x), is the value this

process outputs. We say that G computes the function f : [k]n → [k]o if G(x) = f(x) for all x ∈ [k]n.

The essential condition, which matches up with the catalytic space restriction of resetting the catalytic

tape at the end of the execution, is that v always reaches a sink labeled with the source it started at. In

particular, it must be the case that from any source node u and any assignment to x, this process can

only reach sink nodes of the form (u, b).

5.1.3 Amortized space-bounded computation

Potechin [Pot17] also gave a second view of m-catalytic branching programs. Clearly one alternative

view of G is that if we restrict our attention to any fixed source node u, the set of reachable states of G

on any execution forms a standard branching program, and furthermore if we do this for all source nodes

u there is no overlap in the sinks of these residual branching programs. The trick is that outside the

sinks, there may be a large amount of overlap between executions from different start nodes, as if these

different programs are “sharing” memory configurations.

This suggests a second interesting view of m-catalytic branching programs: it gives a natural (non-

uniform) view of amortized space complexity. In particular, if f can be computed with branching

programs of size s, then for any m it can also be computed by m-catalytic branching programs of size
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sm, but it is also possible that for large enough m it can also be computed by m-catalytic branching

programs of size s′m, where s′ � s.

To recap, given an m-catalytic branching program G computing f which has size s, there are two

interpretations of interest. The first is that of a non-uniform catalytic machine with workspace log s/m

and catalytic space logm. The second is that of amortizing over non-uniform space-bounded machines,

witnessing that f has amortized space complexity at most log s/m as long as we amortize over m machines.

In both views, we want to simultaneously minimize s and m, or rather (log) s/m, and m, depending on

the goal we want to achieve.

In fact, in defining m-catalytic branching programs, [GKM15] gave one such concrete minimization

goal: given an arbitrary function f—a good start for us, considering we come at this from the perspective

of Catalytic Product Lemma—minimize s/m for any choice of m. Clearly minimizing m in isolation is

no problem, as every function has an ordinary branching program in the non-uniform world, while on the

other hand a basic counting argument shows that s must be at least 2n for almost every function. Thus,

minimizing s/m irrespective of m is perhaps the most natural minimization question which the definition

of m-catalytic branching programs poses.

Once we have achieved some s/m which we are happy with, we can then ask how small m can be

made while still achieving the optimal or some near-optimal value for s/m. By the counting argument

above, there is an inherent cap to how well we can do in this vein; if, for example, we could achieve

s/m = O(n), then we cannot hope for m to be any less than 2n/O(n), as we know that s ≈ 2n in the

worst case. Achieving m ≈ 2n and s/m = O(n), for example, would show us that while linear space is

necessary even in the non-uniform setting, almost all of this space can be made catalytic, which would be

very surprising.

We can also ask for the program to have some additional structure. For example, we can require it to

be a read-k branching program, meaning each variable is only seen at most k times during any execution.

These objects are of huge interest in the study of branching programs.1

5.1.4 Known results

Along with defining the amortized view of m-catalytic branching programs, [Pot17] also fully answered

this question: every function f has an m-catalytic branching program of size s = O(mn), or in other

words amortized size O(n). The only catch is that the number of copies is doubly exponential; specifically,

there exists a m-catalytic branching program of width 2m and length 4n, where m = 22n−1. In fact, it is

a layered read-4 branching program, almost the most restricted type of program we could hope for.

In terms of amortized size, i.e. s/m, the result of [Pot17] is clearly optimal up to constant factors,

and so following [GKM15] the central open question they posed is to understand whether or not m can

be improved while maintaining linear amortized size, and what the implications of this result may be.

Taking up this challenge, Robere and Zuiddam [RZ21] showed that any function f can be computed by

an m-catalytic branching program with the same parameters as [Pot17] even when m = 2( n≤d)−1, where d

is the degree of f as an F2 polynomial. Unfortunately this doesn’t allow us to go beyond [Pot17] for most

functions, but it provides a much sharper analysis for many functions that still appear quite difficult.

The proof uses properties of F2 polynomials under permutations of the input variables.

1As an example, recall from our introductory discussion in Chapter 4 that one obstruction to proving TreeEval upper
bounds was a result showing that no read-1 program could asymptotically beat pebbling.
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Our goal, then, will be to attack this problem of reducing m by using our space-saving catalytic

techniques from Tree Evaluation Algorithm.

5.2 Main proof: time/space tradeoffs for catalytic products

In this section, we show that we can indeed adapt our ideas from Tree Evaluation Algorithm in order to

make huge improvements on both [Pot17] and [RZ21].

General Catalytic/Amortized Algorithm. For any ε ≥ 2/n and any function f : {0, 1}n → {0, 1}
there is an m-catalytic branching program with length 21/ε · 2εn and width 2m that computes f , where

m = 2n+ε−1·2εn .

Furthermore, if f is an F2 polynomial of degree at most d and ε ≥ 2/d, there is an m-catalytic

branching program with length 21/ε · 2n and width 2m that computes f , where m = 2n+ε−1( n
≤εd).

Improving or even reproving [Pot17] is not at all immediate from arithmetizing f and applying

Catalytic Product Lemma; as before we need to find a way to use space to save in the polynomial degree

in some way, or we will end up with a program of length 2n and will have gained nothing. In fact it

seems that our tools are completely backwards: we know how to save plenty of space, but only at the

expense of time. So instead we will develop a new version of Catalytic Product Lemma which goes fully

the other way and uses space to save in time. From there we can find a balance between this algorithm

and our original Catalytic Product Lemma, ultimately giving General Catalytic/Amortized Algorithm as

a consequence. As with Tree Evaluation Algorithm, this tradeoff framework also gives an immediate

path forward, as any improvements to either version of Catalytic Product Lemma will shift the tradeoff

and give better algorithms.

We present our algorithms in three steps:

� In Section 5.2.1 we show a simpler version of our algorithm which is sufficient to reproduce—with a

negligible loss in parameters—Potechin’s result [Pot17] that any function can be computed with a

linear-amortized-size m-catalytic branching program. Our program has length 4n and width 2m,

where m = 22n+n. This will only be a stepping stone to proving General Catalytic/Amortized

Algorithm, introducing the reader to the ways we use, and depart from, the techniques in Chapter 4.

� In Section 5.2.2 we show how to trade off between m and amortized size, yielding for every k ∈ [d]

an m-catalytic branching program of length 2k · 4dn/ke and width 2m, where m = 2k·2
dn/ke+n. This

proves the first part of General Catalytic/Amortized Algorithm.

� In Section 5.2.3 we show a simple modification of our first algorithm which reproduces—again

with a negligible loss—the result of Robere and Zuiddam [RZ21] that m can be made as small as

2( n≤d)−1, where d is the degree of f as an F2 polynomial, with no cost to the length. Our program

has length 4n and width 2m, where m = 2( n≤d)+n. We then show that the tradeoff algorithm gives

us an m-catalytic branching program of length 2k · 2n and width 2m, where m = 2k·(
n

≤dd/ke)+n.2

This proves the second part of General Catalytic/Amortized Algorithm.

For the rest of this section, all our register programs will all operate over the field of two elements:

Rn = F2 for all n.

2While the program of [RZ21] matches or beats [Pot17] for all d, our improved version of [RZ21] is worse than our
improved version of [Pot17] when d = Ω(n) (although still an improvement over the original results of both papers), and
thus we state and prove both results separately rather than subsuming our improved version of [Pot17].
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5.2.1 From space efficiency to time efficiency

In this section, we will prove the central result of [Pot17]:

Theorem 38. For any function f : {0, 1}n → {0, 1} there is an m-catalytic branching program with

length 4n and width 2m that computes f , where m = 2n+2n .

Proof. We will design a program that uses n+ 2n work registers plus one output register Rout. First,

we have n registers Rin
1 , . . . , R

in
n , corresponding to the n input bits. This correspondence is given by the

following subroutine, which can be thought of as applying Lemma 3 at every “leaf”, with the identity

encoding from F2 to F2:

1: procedure ToggleInput

2: for i = 1, . . . , n do

3: Rin
i ← Rin

i + xi

After ToggleInput runs, the registers have values Rin
i = τ in

i + xi, where τ in
i stands for the initial value

of Rin
i . If we run it a second time, the registers are restored to their original values: Rin

i = τ in
i . Since we

query all n variables once, ToggleInput requires time n to run once.

Now as before we view f as being a multilinear polynomial pf ∈ F2[x1 . . . xn]. If we apply Catalytic

Product Lemma a single time, we will get an algorithm to compute pf in time 2n and using space n+ 1.

This is the opposite of our goal, and so we take a different approach. Instead of having a loop iteration

for each monomial m ∈ pf , we will designate a register Rm to this monomial instead.

As in the proof of Tree Evaluation Algorithm, we switch to variables #–y and #–τ by defining qf ( #–y , #–τ ) =

pf (
#        –
y − τ); note that yi is also the value in Rin

i after running ToggleInput. Every monomial m ∈ qf is of

the form
∏
i∈S τi

∏
i∈S′ yi for some sets S, S′ ⊆ [n]—in fact we know that S ∩ S′ = ∅ by construction but

we will not need to use this fact. For every S′ ⊆ [n] we will have a register RS′ which will be responsible

for
∏
i∈S′ yi, which will be observed by the following subroutine:

1: procedure ToggleMonomials

2: ToggleInput

3: for S′ ⊆ [n] do

4: RS′ ← RS′ +
∏
i∈S′ R

in
i

5: ToggleInput

After ToggleMonomials runs, we have RS′ = τS′ +
∏
i∈S′ yi for each S′ ⊆ [n], where τS′ stands for the

register’s initial value. The Rin registers have their initial values Rin
i = τ in

i . We run ToggleInput twice

and have 2n additional instructions, but since the additional instructions do not query any x variables

they can be computed in the last x query of ToggleInput, for a total runtime of 2n.

Our final algorithm for computing f is:

Algorithm Time-Efficient Catalytic Product Procedure

1: ToggleMonomials

2: Rout ← Rout +
∑
S,S′⊆[n] cS,S′

(∏
i∈S R

in
i

)
RS′

3: ToggleMonomials

4: Rout ← Rout −
∑
S,S′⊆[n] cS,S′

(∏
i∈S R

in
i

)
RS′

The proof of the correctness of Time-Efficient Catalytic Product Procedure follows by the same
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argument as that of Catalytic Product Procedure. The space of the program is n + 2n by construc-

tion, and lines 2 and 4 are input-independent, giving us a total runtime of 4n from the two calls to

ToggleMonomials.

5.2.2 Trading time and space

In this section, we will modify Time-Efficient Catalytic Product Procedure to make m dramatically

smaller, in exchange for making the branching program longer. This proves the first part of General

Catalytic/Amortized Algorithm.

Proof. Our goal is to balance Time-Efficient Catalytic Product Procedure with Catalytic Product

Procedure by removing the registers RS corresponding to large subsets S and using slow multiplication

to build the polynomial qf from the remaining small subsets. In particular, if we divide the input bits

into k groups each of size dn/ke, and only store all subsets within each group, then any monomial

cS,S′
∏
i∈S τ

in
i

∏
i∈S′ yi can be computed by multiplying together one subset from each group, namely

the restriction of S to the group. Instead of 2n registers for all subsets, we use only k · 2dn/ke registers

corresponding to subsets in the k groups, and we can compute all the corresponding monomials into

these registers in time 2n using the first half of Time-Efficient Catalytic Product Procedure. Then since

we are only multiplying k monomials together, we can compute qf using Catalytic Product Lemma in

time 2k · 2 · 2n, since each recursive call will come from our 2n time execution of Time-Efficient Catalytic

Product Procedure.

We first restate Catalytic Product Procedure as a register program using the notation from this

chapter.

1: procedure ToggleSomeInputs(S’)

2: for i ∈ S′ do

3: Rin
i ← Rin

i + xi

Algorithm Space-Efficient Catalytic Product Procedure

1: for S′ ⊆ [n] do

2: ToggleSomeInputs(S’)

3: Rout ← Rout +
∑
S⊆[n] cS,S′ ·

∏
i∈[n]R

in
i

4: ToggleSomeInputs(S’)

Now we continue on to balancing Time-Efficient Catalytic Product Procedure and Space-Efficient

Catalytic Product Procedure. For j ∈ [k] let bj = dnj/ke, and divide the range [n] into k groups:

G1 = {1, . . . , b1}, G2 = {b1 + 1, . . . , b2}, . . . , Gk = {bk−1 + 1, . . . , bn = n}. For each group Gj , we have

2|Gj | registers Rj,S indexed by subsets S ⊆ Gj . As in all previous algorithms we also use n registers

Rin
1 , . . . , R

in
n , corresponding to the n input bits, for a total of n+

∑k
j=1 2|Gj | registers plus the output

register Rout.

Now to use the Rj,S registers, we need to account for τj,S , which we do in the same way that we dealt

with the τ in
i values, namely by rewriting our polynomial qf once again over a new set of variables. For

every S′ ⊆ [n], define S′j := S′ ∩Gj , and for each j ∈ [k] and S ⊆ Gj , let zj,S = τj,S +
∏
i∈S yi, where

τj,S is the initial value of register Rj,S . Now for every monomial in qf , we split the term
∏
i∈S′ yi in the

monomial into k different products
∏
i∈S′j

yi, each of which we can replace with zj,S′j − τj,S′j . This gives
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us a new polynomial

rf (
#  –

τ in, #–τ , #–z ) =
∑

S,S′⊆[n]

cS,S′

(∏
i∈S

τ in
i

)(
k∏
i=1

(zj,S′ − τj,S′)

)
.

As we did with qf , for S, S′ ⊆ [n] and T ⊆ [k], let dS,S′,T be the coefficient of (
∏
i∈S τ

in
i )(

∏
j∈T zj,S′j )(

∏
j∈[k]\T τj,S′j )

in rf , so that

rf (
#  –

τ in, #–τ , #–z ) =
∑
S⊆[n]

∑
S′⊆[n]

∑
T⊆[k]

dS,S′,T

(∏
i∈S

τ in
i

)∏
j∈T

zj,S′j

 ∏
j∈[k]\T

τj,S′j


which is equivalent to f(x1 . . . fn) as long as zj,S′j = τj,S′j +

∏
i∈S′j

(xi + τ in
i + 1).

Following ToggleSomeInputs(S′), we define new versions of ToggleInput and ToggleMonomi-

als from Section 5.2.1 which focus on some groups and not others. In fact we will only focus on a single

group Gj rather than a subset of the groups, as we will order our subsets S′ in such a way that we will

only ever need to toggle one group at a time:

1: procedure ToggleInputForGroup(j)

2: for i ∈ Gj do

3: Rin
i ← Rin

i + xi

1: procedure ToggleMonomialsForGroup(j)

2: ToggleInputForGroup(j)

3: for S ⊆ Gj do

4: Rj,S ← Rj,S +
∏
i∈S R

in
i

5: ToggleInputForGroup(j)

We are now ready to assemble our main algorithm, which completes the proof. As a small note, we

will also order our subroutines in a way that allows us to shave a small factor off the length. A Gray

code [Gra53] T0 = ∅, . . . , T2k−1 is an ordering of all subsets of [k] such that each consecutive pair of sets

T`, T`+1 mod 2k differs by exactly one element e` ∈ [k]. Performing our loops in this order, we will only

need to toggle the group Ge` in each step.

Algorithm Balanced Catalytic Product Procedure

1: for ` = 0, . . . , 2k − 1 do

2: Rout ← Rout +
∑
S⊆[n]

∑
S′⊆[n] dS,S′,T`

(∏
i∈S R

in
i

) (∏k
j=1Rj,S′j

)
3: ToggleMonomialsForGroup(e`)

Each time Line 2 is reached, we have Rj,S = τj,S +
∏
i∈S yj for j ∈ T`, and Rj,S = τj,S for j ∈ [k] \ T`.

We also have Rin
i = τ in

i for each i ∈ [n]. So the effect of the line is to add

∑
S⊆[n]

∑
S′⊆[n]

dS,S′,T`

(∏
i∈S

τ in
i

)∏
j∈T`

zj,S′j

 ∏
j∈[k]\T`

τj,S′j


to Rout. Summing this expression over all possible subsets T` ⊆ [k] gives Rout = τout + rf (· · · ) =

τout + f(x1, . . . , xn), and so Balanced Catalytic Product Procedure cleanly computes f .
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It is not difficult to save k registers by removing R1,∅, . . . , Rk,∅, as we simply add each value

dS,∅,T (
∏
i∈S R

in
i ) to our polynomial without concerning ourselves with any xi (and by extension any yi

or zi) variables.

5.2.3 Less space from fewer monomials

Robere and Zuiddam [RZ21, Theorem 5.13] showed that if f is a polynomial of degree d < n, it is possible

to improve on Potechin’s theorem by decreasing m = 22n−1 down to m = 2( n≤d)−1. Here we show how to

adapt Time-Efficient Catalytic Product Procedure to get a similar result, and then at the end of the

section we build a tradeoff algorithm similar to Balanced Catalytic Product Procedure to improve it.

Theorem 39. For any function f : {0, 1}n → {0, 1} which is a degree-d polynomial, there is an

m-catalytic branching program with length 4n+ 1 and width 2m that computes f , where m ≤ 2n+( n≤d).

Again, while this is slightly worse than Robere and Zuiddam’s original result, we include it to show

the flexibility of our approach and as a stepping stone to our tradeoff result.

Proof. As before, let pf ∈ F2[x1, . . . , xn] be f as a polynomial. We make the following change to

Time-Efficient Catalytic Product Procedure: for every S′ ∈ [n] such that cS,S′ = 0 for all S, remove the

register RS′ .

Formally, as before define F2 polynomials

pf ( #–x ) =
∑

#–y ∈{0,1}n:f( #–y )=1

n∏
i=1

(xi + yi + 1)

qf (
#  –

τ in, #–y ) = pf ( #–y −
#  –

τ in) =
∑

S,S′⊆[n]

cS,S′

(∏
i∈S

τ in
i

)(∏
i∈S′

yi

)

Let Mf ⊆ 2[n] be the set of all S′ such that there exists an S where cS,S′ 6= 0. We define the following

subroutine:

1: procedure ToggleUsefulMonomials

2: ToggleInput

3: for S ∈Mf do

4: RS ← RS +
∏
i∈S R

in
i

5: ToggleInput

The only difference from ToggleMonomials is that we ignore subsets S which are not in Mf (not

“useful”). Our final algorithm is

Algorithm Low-Degree Time-Efficient Catalytic Product Procedure

1: ToggleUsefulMonomials

2: Rout ← Rout +
∑
S⊆[n]

∑
S′∈Mf

cS,S′
(∏

i∈S R
in
i

)
RS′

3: ToggleUsefulMonomials

4: Rout ← Rout −
∑
S⊆[n]

∑
S′∈Mf

cS,S′
(∏

i∈S R
in
i

)
RS′

To conclude the proof of Theorem 39, we need to show |Mf | ≤
(
n
≤d
)
. Indeed, since pf is a degree-d
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polynomial, qf also has degree d, which means cS,S′ = 0 whenever |S|+ |S′| > d. So, Mf only contains

sets S′ with size at most d, of which there are
(
n
≤d
)
.

The original algorithms of [Pot17, RZ21] rely on the symmetries of f as an F2 polynomial, in essence

having each start state represent a possible function g which can be obtained from f by negating input

variables or taking ⊕ with f itself. [Pot17] takes this set of functions to be the space of all n-variable

functions, while [RZ21] analyzes these rules and obtains a more exact characterization. While this

characterization is phrased in terms of orbit closures, it can also be described in terms of polynomials as

the span of the set of all monomials appearing in f as an F2 polynomial along with all submonomials

of this set; this exactly coincides with our notion as
∏
i∈S yi generates all submonomials

∏
i∈S′⊆S xi

for yi := xi + τi, which leads to the quantitative results being essentially the same despite taking two

completely different approaches.

Now we state our tradeoff algorithm, which goes much in the same way as the proof of the first part

of General Catalytic/Amortized Algorithm but without breaking the variables into groups. This will

prove the second part of General Catalytic/Amortized Algorithm and thus complete the proof of our

main result.

Proof. For any ∆ ∈ N, let M∆
f ⊆

(
n
≤∆

)
be the set of all S′′ of size at most ∆ such that there exists an

S ⊆ [n] and S′ ⊇ S′′ where cS,S′ 6= 0. We will have k registers Rj,S′′ for every S′′ ∈Mdd/kef , as well as

the usual registers Rin
1 . . . Rin

n , R
out. Note that this gives us our target space, as |Mdd/kef | ≤

(
n

≤dd/ke
)
.

Following our proof of the first part of General Catalytic/Amortized Algorithm, let zj,S = τj,S+
∏
i∈S yi,

where τj,S is the initial value of register Rj,S , and for every monomial in qf we split the term
∏
i∈S′ yi

in the monomial arbitrarily into k different products
∏
i∈S′j

yi—each of which we can replace with

zj,S′j − τj,S′j—where S′j ∈M
dd/ke
f and ∪j∈[k]S

′
j = S′. This is possible because each non-zero term in qf

has degree at most d, meaning that |S′| ≤ d and furthermore every subset of S′ of size at most dd/ke
appears in Mdd/kef by construction.3

Fixing some particular partition (S′j)j∈[k] for each S′, this gives us a new polynomial

rf (
#  –

τ in, #–τ , #–z ) =
∑
S⊆[n]

∑
S′⊆[n]

∑
T⊆[k]

dS,S′,T

(∏
i∈S

τ in
i

)∏
j∈T

zj,S′j

 ∏
j∈[k]\T

τj,S′j


which is equivalent to f(x1 . . . fn) as long as zj,S′j = τj,S′j +

∏
i∈S′j

(xi + τ in
i + 1). We define Toggle-

MonomialsForGroup as before, using ToggleInput instead of ToggleInputForGroup since the

variables are no longer split into groups, and using a Gray code we get our final algorithm:

Algorithm Low-Degree Balanced Catalytic Product Procedure

1: for ` = 0, . . . , 2k − 1 do

2: Rout ← Rout +
∑
S⊆[n]

∑
S′⊆[n] dS,S′,T`

(∏
i∈S R

in
i

) (∏k
j=1Rj,S′j

)
3: ToggleMonomialsForGroup(e`)

3Our use of j here is slightly different than in our previous proof; namely, j is not linked to a specific block of variables,
and rather we arbitrarily partitioned S′ into k sets and assigned them each a distinct j. This will result in us having to
spend time n to load the monomials in, rather than time dn/ke as in the previous proof, but this is necessary as we have no
guarantee that there is a partition of the variables such that every monomial of degree at most d is split into k monomials
of degree at most dd/ke. Note that this is where our algorithm performs worse than Balanced Catalytic Product Procedure
when d = Ω(n).
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The analysis of Low-Degree Balanced Catalytic Product Procedure is identical to that of Balanced

Catalytic Product Procedure using Low-Degree Time-Efficient Catalytic Product Procedure in place of

Time-Efficient Catalytic Product Procedure, except the runtime is 2k · 2n rather than 2k · 2dn/ke because

we do not split the variables into groups.

5.2.4 Afterword: a simplified view of Potechin’s original argument

We came to our reproof and subsequent improvement of Theorem 38 from the confluence of two

circumstances. First, as discussed in the introduction, our work on Catalytic Product Lemma immediately

suggested that we may find other uses of the polynomial time-space tradeoff method, particularly in the

realm of catalytic computing. Second, in reading and understanding the original proof of Theorem 38

given by [Pot17], we came across a somewhat simplified presentation of the original result with slightly

better parameters. We present this proof below, although it must be stressed that this proof is more or

less implicit in the original construction.

Theorem 40. For any function f : {0, 1}n → {0, 1} there is an m-catalytic branching program with

length 4n and width 4m that computes f , where m = 22n−1.

Proof. We will view our program as a clean register program with 2n − 1 registers whose values are

already filled in, plus two additional registers initialized to 0: one for output and one for work. We will

rename the registers as follows: our output register will be labeled Rout, our one free work register will be

labeled R00...0, and our other registers will each be labeled Rα for some unique α ∈ {0, 1}n r {00 . . . 0}.
Furthermore we will only have the following two types of instruction: 1) swapping the labels of two

registers; 2) adding a fixed constant value to a register, or (in one step) add one register value to another.

At every step we will view our memory (not including the output register) as the truth table of a

function g, where the value of g(α) is given by the value in Rα. Thus at the start we are storing an

arbitrary function g subject to the restriction that g(00 . . . 0) = 0.

We now describe our program.

1. we read each value x1 . . . xn, and for each xi we do nothing if xi = 0 and otherwise we swap each

label Rα with Rα⊕i , where α⊕i is α with the ith coordinate flipped. The net result is to go from

our original function g to a new function g⊕x where g⊕x(x) = 0, because the register R00...0 has

been swapped into position Rx.

2. for every α we add f(α) to Rα modulo 2. The net result is to go from g⊕x to g⊕x ⊕ f where

(g⊕x ⊕ f)(x) = f(x).

3. we undo Step 1 by running it in reverse.4 The net result is to go from g⊕x ⊕ f to (g⊕x ⊕ f)⊕x

where (g⊕x ⊕ f)⊕x(00 . . . 0) = f(x).

4. we add the value in R00...0 to Rout. We now have the answer f(x) stored in Rout, since Rout was 0

beforehand and R00...0 is storing f(x).

5. we undo Steps 1-3 by running them in reverse. The net result is to reset our function to the original

g without touching our answer in register Rout.

The correctness of our program is given inline. The length of the program is 4n because we query each

xi four times, and the width of our program is 4m by construction.
4The order does not actually matter but is helpful for visualizing what this step does.
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5.3 Better results for restricted functions

Invariably there are many cases where General Catalytic/Amortized Algorithm can be dramatically

improved. The obvious and immediate example is programs which already have read-O(1) branching

programs without any catalytic restriction; there is nothing to be done here, as we already have our

results for m = 1. However, even when we move to functions known to have polynomial size (but not

read-O(1)) branching programs, it is not immediately obvious how to proceed. We give an example of

such a class, called TC1, which can be made read-O(1) using m-catalytic branching programs for singly

exponential m. We also show how relaxing the read-O(1) constraint to read-nε for any ε > 0 allows us to

capture a class not known to have, and conjectured to not have, polynomial size branching programs of

any kind.

5.3.1 Register programs over larger fields

For the results in this section, we will need to switch from working over F2 to more general fields.

Observation 2 produces an m-catalytic branching program of width |Rn|m. The following lemma shows

how to reduce the width to 3m when Rn is a finite field, at the cost of a factor of |Rn| increase in m.

Lemma 41. Let Kn be a family of finite fields. Let fn : {0, 1}n → {0, 1} be a family of functions and

let Pn be a family of register programs over the fields Kn with size s(n) + 1 and time t(n) each cleanly

computing fn. Then fn can be computed by a family of m-catalytic branching programs of width 3m and

length t(n), where m = |Kn|s(n)+1.

Proof. We will proceed as in Observation 2, except that instead of initializing Rout to 0, we will allow it

to take on any starting value (hence the factor-of-|Kn| increase in m). In order to detect whether Rout

has changed at the end of the program, we store a minimal amount of information about the starting

value of Rout.

Let g : Kn → {0, 1, 2} be a function with the following property: for any x ∈ K, g(x + 1) 6= g(x).

One way to construct g is as follows. Let p be the characteristic of K, i.e.

p︷ ︸︸ ︷
1 + 1 + · · ·+ 1 = 0 in p.

Then Kn can be viewed as a field extension of Fp, and so Kn can be viewed as a vector space over Fp.
Let {e1, e2, . . . , ek} be a basis for Kn over Fp, where e1 = 1 ∈ Kn. For any x ∈ Kn, let x1 ∈ Fp be

its first coordinate under this basis. Then set g(x) = 2 if x1 = p− 1 and for x1 ∈ {0, 1, . . . , p− 2} set

g(x) = x1 mod 2.

Each node (except the sink nodes) will be labelled with a tuple (a,Rout, R1, . . . , Rs(n)) ∈ {0, 1, 2} ×
Fs(n)+1
p , representing an assignment of values to registers and one extra value a ∈ {0, 1, 2}.

Each intermediate (non-source non-sink) layer will have 3 · ps(n)+1 nodes, representing all possible

tuples. The source layer will have all tuples satisfying the constraint a = g(Rout), for a total of m = ps(n)+1

nodes. In this way, the program “remembers” g(τout) where τout is the initial value of Rout.

We proceed as in the proof of Observation 2: for each instruction of the register program querying

an input variable xi, we include a branching program layer which reads that same input, and modifies

the values of the stored registers appropriately. These layers preserve the extra value a, so that all the

non-sink nodes reached by a computation have the same value of a, which is equal to g(τout).

The final (sink) layer is constructed the same way, with two changes. First, nodes where a 6∈
{g(Rout), g(Rout − 1} are removed. Because the register program computes f(x) ∈ {0, 1}, the final value

of Rout is guaranteed to be either τout or τout + 1, and so those removed nodes were not reachable
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anyway. Second, we relabel each node (a,Rout, R1, . . . , Rs(n)) to (a′, Rout, R1, . . . , Rs(n)) where a′ = 0 if

a = g(Rout and a′ = 1 if a 6= g(Rout). By the construction of g, a′ is guaranteed to be 0 when Rout = τout

and 1 when Rout = τout + 1.

5.3.2 Constant depth circuits

Recall our definition of Boolean circuits from Chapter 1: these are the dag-like generalization of formulas.

The first result is fairly immediate from the main technical section of [BCK+14]. This does not directly

use any of our work from Tree Evaluation Algorithm or General Catalytic/Amortized Algorithm directly,

but the lemmas involved are very closely related to our algorithm in Catalytic Product Lemma.

Lemma 42. Let f be a function computed by a circuit C which has depth d, size s, and consists only of

MAJ gates. Then f can be computed by an m-catalytic branching program of length 4d · n and width 3m,

where m = (2s)2s3 .

Proof. Let ps be an arbitrary prime in the range (s, 2s]. Section 3.3 of [BCK+14] gives a register program

P simulating the computation of C, which reads leaves of C at most 4d · n times in total and uses

s · 2ps · s/2 ≤ 2s3 registers over Fps . Our result follows by Lemma 41.

Focusing on the case of TC0, defined as the set of all circuits of depth O(1) and size poly(n) consisting

only of MAJ gates, we get linear amortized size with m only singly exponential in n. While such circuits

are known to have poly-size branching programs even for m = 1—following directly from the fact that

TC0 ⊆ L—no results for linear amortized size were previously known. For example, even applying the

second part of General Catalytic/Amortized Algorithm to a single MAJ gate would result in m being

almost maximally large, as MAJ has degree n/2 over F2.

Corollary 43. Any function f ∈ TC0 can be computed by an m-catalytic branching program of amortized

size O(n), where m = 2poly(n).

5.3.3 Arithmetic circuits

Our second result will take us out of the realm of Boolean functions and into the world of polynomials.

Fix some field F for the rest of this section. An arithmetic circuit is similar to a Boolean circuit as defined

before, but now the leaves will carry values in F and the gates will compute the functions + and × over

F. Clearly such a circuit computes a polynomial over F. Note that a branching program computing the

output of an arbitrary such circuit would need to have |F| ·m output nodes, which would immediately

rule out any linear amortized size. To get around this, we will assume that whenever all inputs comes

from {0, 1} (over F), the output of our circuit will as well.5

We will focus on arithmetic circuits of logarithmic depth. Our techniques will be similar to the previous

result, meaning that we will incur a cost that is exponential in the depth, which will unfortunately take

us out of the regime of linear amortized size. Nevertheless, we will leverage the structure of VP along

with the second part of General Catalytic/Amortized Algorithm to substantially mitigate this loss and

still achieve a highly improved value of m.

5This corresponds to the Boolean part of an arithmetic circuit class, which gives a natural way of computing Boolean
functions with arithmetic circuits, and by extension a natural way to fit classes of arithmetic circuits into the broader
landscape of complexity theory.
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Lemma 44. Let F be any finite6 field. Let f be a polynomial over F the output of which is always 0 or 1,

and let C be an arithmetic circuit over F computing f which has depth d, size s, and consists of + gates

of unbounded fan-in and × gates of fan-in 2. Then for any k ≤ d, f can be computed by an m-catalytic

branching program of length 4dd/ke · n and width 3m, where m = |F|(
s
≤2k)·s.

Proof. We will describe a register program which uses
(
s
≤2k

)
· s registers which each contain an element

of F. Each register will be labeled with a unique gate g from the circuit C—in fact we will only need

registers for some of the gates, but we will potentially overcount to keep things simpler—as well as a

subset S ⊆ [s] of size at most 2k, and we write the corresponding register as Rg,S . We have
(
s
≤2k

)
· s

registers, so we get m = |F|(
s
≤2k)·s.

Our goal will be cleanly compute, for L = 1 . . . bd/kc, d/k, the value of every gate g at level Lk of the

circuit into Rg,∅, inductively using the fact that we can compute every gate appearing at level (L− 1)k.

To start this procedure off, we observe that for L = 0, we can compute all leaf nodes using n total input

queries, namely by handling all leaves labeled xi at the same time with one query to xi. Now we proceed

inductively using the following lemma:

Lemma 45. Let L ∈ [bd/kc], and let PL−1 be a register program which cleanly computes, for all g at

level (L− 1)k, the value at g into Rg,∅. Then there exists a register program PL making 4 calls to PL−1

which cleanly computes, for all g at level Lk, the value at g into Rg,∅.

Proof. Consider a single gate g at layer Lk, let g1 . . . gt be the gates at layer (L− 1)k, and let

pg =
∑
S

cS
∏
i∈S

gi

be the polynomial over F computed at gate g with inputs g1 . . . gt. By induction every layer ` ∈
[(L− 1)k..Lk] has degree at most 2`−(L−1)k in g1 . . . gt, and thus g has degree at most 2k.

We now follow our proof of General Catalytic/Amortized Algorithm exactly, except for two changes.

First, ToggleInput will be replaced with PL−1. Second, some calls to PL−1 or ToggleUsefulMonomialsg

will be replaced with their inverses P−1
L−1 or ToggleUsefulMonomialsg. Note that any clean register

program P has an inverse P−1 of the same length such that PP−1 has no effect; see for example

[BCK+14]. In the previous sections this was not necessary because the field had characteristic 2, and so

each procedure was its own inverse.

Let τi be the initial value in gi, let xi be the value computed into gi, define yi = τi + xi, and let

qg(
#–y , #–τ ) =

∑
S,S′

cS,S′
∏
i∈S

τi
∏
i∈S′

yi

be equal to p( #–y − #–τ ). Let Mg be the set of all non-empty monomials for which cS,S′ 6= 0 for some S;

note that |Mg| ≤ s2k by our degree upper bound. For each S′ ∈ Mg, register Rg,S′ will correspond

to the sum of monomials with coefficients cS,S′ . Since ∅ 6∈ Mg, we can repurpose Rg,∅ as our output

register. Together, the following two procedures together compute qg as before:

1: procedure ToggleUsefulMonomialsg

2: PL−1

3: for S ∈Mg do

6If F is not finite, the proof produces a branching program of infinite width, although later when we apply this lemma
we will use reducibility results to get around this for Z and Q.
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4: Rg,S ← Rg,S +
∏
i∈S Rgi,∅

5: P−1
L−1

1: procedure FinalComputeg

2: ToggleUsefulMonomialsg

3: Rg,∅ ← Rg,∅ +
∑
S⊆[t] cS,∅ +

∑
S′∈Mg

cS,S′
(∏

i∈S Rgi,∅
)
Rg,S′

4: ToggleUsefulMonomials−1
g

5: Rg,∅ ← Rg,∅ −
∑
S⊆[t] cS,∅ −

∑
S′∈Mg

cS,S′
(∏

i∈S Rgi,∅
)
Rg,S′

The analysis is identical to General Catalytic/Amortized Algorithm and so we leave it to the reader. To

compute all g at level Lk, we replace every basic instruction in both ToggleUsefulMonomialsg and

FinalComputeg with the same instruction looped over all g at level Lk; this does not add any recursive

calls to either program, and by the correctness of the original algorithm for one g this new algorithm

correctly computes all g. Thus level Lk requires four calls to level (L− 1)k as claimed.

If k divides d, then P := Pd/k computes C correctly. Otherwise the same argument gives a program

P making four calls to Pbd/kc computing C correctly. This gives a recursion of total height dd/ke where

h(0) = n and h(L) = 4h(L− 1), which gives us a program of length 4dd/ke · n as claimed. Thus our result

follows by Lemma 41.

One of the two most interesting classes of arithmetic circuits is VP , which corresponds to arithmetic

circuits of depth O(log n) and size poly(n) consisting of unbounded fan-in + gates and fan-in 2 × gates.

As before let ps be a prime in the range (s, 2s]. Using the fact that VP over Fps , Z, and Q are all

logspace-reducible7 to one another [AGM17]8, and fixing k = c/ε where d = c log2 n, we obtain the

following quasilinear result for VP.

Corollary 46. Let F ∈ {Fp∈[polyn],Z,Q}, and let ε > 0. Any polynomial f ∈ VP can be computed by an

m-catalytic branching program of amortized size O(n1+ε), where m = 2polyε n.

5.4 Length for permutation branching programs

In the previous section we took the length 4n branching programs of [Pot17, RZ21] as a starting point to

analyze whether m could be significantly reduced while still maintaining a linear amortized size. In this

section we investigate the opposite question: namely, is 4n optimal? Recall that if we do not restrict the

amortized size of our program, then every function has a branching program of length n even for m = 1.

We will not only consider branching programs of linear amortized size, but focus on the stricter model

of permutation branching programs. Once again we will focus on the case when R = F2 for this entire

section.

7Logspace-reducibility does not make much sense for arithmetic classes, so we again emphasize that we are focusing on
the Boolean part of these respective classes. It also may seem odd to talk about reducibility between syntactic classes, but
notice that the range available to ps depends on the input size, which may significantly change as a result of the reduction,
a fact that is actually necessary to reduce Z and Q to Fps . See [AGM17] for a more in-depth discussion of this result.

8This may strike the reader as odd, since Fps is finite and the other ones are not. The insight is that while e.g. Z may
be infinite, the elements of Z that appear in our circuit are part of the input and thus are bounded in terms of n; similarly
the circuit itself cannot make these elements grow too large to handle with a sufficiently large finite field.
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5.4.1 Permutation branching programs

To start, let us define the central focus of this section, that of permutation branching programs. We start

with an informal definition. Consider a (2-wise) layered branching program G which has length ` and

width m. Then G is a permutation branching program if every layer has exactly m nodes, and at any

layer j, if we fix the value of the variable xij to αij ∈ {0, 1}, every node in layer j goes to a unique node

in layer j+ 1. Note that putting these two conditions together, we see that the edges going from j to j+ 1

labeled with αij ∈ {0, 1} correspond to a permutation of [m], hence the name. We apply these conditions

to the start and end layers as well, so unlike in a typical branching program we do not have one source

and two sinks, but rather m sources and m sinks; the value computed by G will not directly correspond

to the sink we reach from a source, but rather by the permutation that we get by composing all the layers

together for the given input, guaranteed by the fact that every intermediate layer is a permutation itself.

Now we present the formal definition. Our notation will be non-standard and different from previous

branching program models. We also add some technical quirks to this definition, which we later justify.

Definition 22. Let n,m := m(n), ` := `(m,n) ∈ N. A permutation branching program is a sequence

P = π1 . . . π`, where each πj is a pair 〈ij , σj〉 where ij ∈ [0..n] and σj is a permutation of [m]. We refer

to each πj as an instruction of P . The width of P is m and the length of P is `.

Let o := o(k, n), and let f : [k]n → [k]o be a function. For any α ∈ {0, 1}n we define P (α) as follows:

fix σ = id, and for every j = 1 . . . `, we set σ to σσj
9 if πj = 〈0, σj〉 or πj = 〈ij , σj〉 where αij = 1, and

leave σ unchanged otherwise (that is, if πj = 〈ij , σj〉 where αij = 0). Our output is the final value of σ.

We say that P computes f if there exists a permutation σ∗ 6= α such that P (α) = id if f(α) = 0 and

P (α) = σ∗ if f(α) = 1.

This model is very different from all our previous branching programs, and so some discussion is

warranted. Let us start by seeing how it relates to our other models. Clearly we can extract a branching

program from a permutation branching program by choosing any source node u and removing all nodes

not reachable from u.

Furthermore, if we focus on the case when σ∗ is a set of disjoint swaps, this begins to look like a

restriction of our m-catalytic branching program model, where now each source of G is labeled (u, b) and

on input x we should reach the sink labeled (u, b⊕ f(x)), with the restriction that G is layered and with

fixed width. An astute reader may notice here that these conditions are in fact already satisfied when we

convert a clean register program to an m-catalytic branching program; in fact, permutation branching

programs were the original context for clean register programs [Bar89, BC92].

Observation 5. Let P be a clean register program over R with size s and time t such that for every

input x, P (x) ∈ {0, 1}. Then there exists a permutation branching program G of width |R|s and length t

such that G(x) = P (x) for every x.

This gives us some initial justification for restricting our attention to permutation branching programs;

all our algorithms in General Catalytic/Amortized Algorithm can be converted to permutation branching

programs. In fact, even the original results of [Pot17, RZ21] are amenable to this change:

Theorem 47. Every function f can be computed by a read-4 permutation branching program of width

22n (or 2( n≤d), where d is the F2-degree of pf ).

9We write σ1σ2 as a shorthand for σ2 ◦ σ1. As a branching program model, these permutations are applied left to right
instead of the more typical right-to-left form appearing in group theory.
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Given the strength of these results, only a factor of 4 away from the best conceivable amortized size,

there is no reason a priori to believe that permutation branching programs are too weak to consider even

better upper bounds. Indeed we will show that improvements are possible.

This leads to our other reason for focusing on permutation branching programs: lower bounds against

general branching programs are notoriously difficult. Besides the basic counting argument, the best

known branching program lower bounds for an explicit function are not even quadratic, using techniques

known to go no further [Neč66]. Considering the amortized branching program size needed to compute

any function f is always at most the basic branching program size, and considering the upper bound of

4n given by [Pot17], proving lower bounds for concrete functions seems exceedingly difficult. Furthermore,

even if we were to seek refuge in focusing on non-constructive lower bounds, the basic counting argument

fails to prove any non-trivial lower bounds in the case of m ≥ 2n/n.

Now we discuss the definition of permutation branching programs specifically as presented in Defi-

nition 22, which has some non-standard elements; in the process we will establish some basic tools for

our results. We make four points. First, the restriction that f(0 . . . 0) = 0 will be a convenience; we can

always compute ¬f instead if this condition does not hold, or change our definition such that P (α) = id

if f(α) = 1 and vice versa.10

Second, in a layer 〈i, σj〉 reading variable xi, we only fix a permutation in the case that xi is set to

1. This is without loss of generality, as adding a layer of the form 〈0, σ′j〉 before an instruction can be

thought of as choosing a permutation in the case that xi is set to 0 (while the permutation for xi = 1

can be adjusted accordingly).

Before going on to our third observation, we state and prove four simple lemmas which will allow us

to conveniently restructure our programs P .

Lemma 48. Let P be a permutation branching program computing f and let j be such that ij = ij+1.

Then the program P ′ resulting from replacing πj , πj+1 with π′j = 〈ij , σjσj+1〉 is also a valid program for

computing f .

Proof. In both P and P ′, the permutations σj and σj+1 are both applied when ij = 1 and neither are

applied when ij = 0.

Lemma 49. Let P be a permutation branching program computing f and let j be such that σjσj+1 =

σj+1σj. Then the program P ′ resulting from switching the order of πj and πj+1 is also a valid program

for computing f .

Proof. Consider any assignment α to x. In the case that either αij or αij+1
is set to 0, these programs

compute identical permutations as either σj or σj+1 will not be applied. If both are set to 1, then

P ′(α) = Σ1σj+1σjΣ2 = Σ1σjσj+1Σ2 = P (α)

where Σ1,Σ2 are the permutations corresponding to the rest of the instructions on input α.

Lemma 50. Let P = π1 . . . πs be a permutation branching program computing f , let πj = 〈ij , σj〉
for all j, and let j∗ ∈ [`] be such that ij∗ = 0. Then there exists a permutation branching program

P ′ = π′1 . . . π
′
j∗−1π

′
j∗+1 . . . π

′
`πj∗ computing f , where π′j = 〈ij , σ′j〉 for some permutation σ′j.

10We also note that if P computes ¬f , we can compute f by appending the instruction 〈0, (σ∗)−1〉 to P . We avoid taking
this route because a later observation will allow us to remove these fixed layers, but only when f(α) = 0, which would cause
our logic to become circular.
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Proof. For j < j∗ define σ′j = σj , and for j > j∗ define σ′j = σj∗σjσ
−1
j∗ . Clearly because σ−1

j∗ and σj∗

cancel out for every adjacent pair of permutations σ′j , P
′(α) contains exactly the same permutations as

P (α) in the same order regardless of the assignment α.11

Our last observation is that the layers of the form 〈0, σj〉 are only a convenience and are not necessary

to our definition. Let P be our program for f and let σ1 . . . σk be the permutations corresponding to

instructions πj where ij = 0. By our restriction that f(0 . . . 0) = 0 we get σ1 . . . σk = P (0 . . . 0) = id, and

by Lemma 50 we can move the instructions πj with ij = 0 to the end of the program, in order, at which

point we can simply remove them all using Lemma 48 as they compose to the identity for any input α.

We can also generalize Lemma 50 for restrictions of the function f , meaning when we fix the values

of some variables and consider the function on the remaining variables. This is simply the observation

that fixing variable xi turns all instructions of the form 〈i, σj〉 into fixed layers 〈0, σj〉.

Corollary 51. Let ρ ∈ {0, 1, ∗}n and let fρ be the function f with xi fixed to ρ(i) wherever ρ(i) 6= ∗.
Let P = π1 . . . π` be a permutation branching program computing f , let πj = 〈ij , σj〉 for all j, and

let j∗ ∈ [s] be such that ij∗ = 0 or ρ(ij∗) 6= ∗. Then there exists a permutation branching program

P ′ = π′1 . . . π
′
j∗−1π

′
j∗+1 . . . π

′
`πj∗ computing fρ, where π′j = 〈i′j , σ′j〉 for some permutation σ′j and i′j = ij

iff ρ(ij) = ∗ and 0 otherwise.

Proof. Let program P ′′ be the result of replacing ij with 0 in each instruction πj ∈ P such that ρ(ij) 6= ∗.
Clearly this program computes fρ, and so applying Lemma 50 to P ′′ completes the proof.

Assuming that fρ(0 . . . 0) = 0, by our previous observation this allows us to remove all layers that

read variables fixed by ρ. We also note that the other three lemmas hold for fρ with no changes.

Lastly, another option for defining permutation branching programs is to simply require that P (α) is

not id whenever f(α) = 1, and not restrict ourselves to a specific σ∗ 6= id. For example, this stronger

model was used in [Bar89] to capture NC1. Our lower bounds will actually hold against this stronger

model, while our upper bounds will hold in the weaker model presented in Definition 22, and so our choice

is somewhat arbitrary. We chose the definition as presented because it is much closer to the definition of

m-catalytic branching programs which we have used in the rest of this chapter, and in fact all our upper

bounds come directly from these prior results.

5.4.2 Upper bounds

For our main upper bound, we modify our algorithm recreating the result of [Pot17] (and analogously

[RZ21]) to have length 4n− 4. In particular, our program will read all but two variables four times, while

the last two variables will be read twice.

Theorem 52. For every function f , there is a read-4 permutation branching program of width 22n−1

and length 4n− 4 computing f .

Proof. First, we make an easy change to Theorem 38 which allows us to achieve 4n− 3. Observe that in

ToggleInput the order in which we add the inputs is irrelevant, and so consider ToggleMonomials

where we reverse the order of toggling on Line 5. Then notice that the last query on Line 2 and the first

query on Line 5 are both made to xn, and so we can merge these two layers along with our entire for loop

11This argument actually allows us to move πj∗ to any spot in the program we want, but we are content with just moving
them to the end, for reasons which will become immediately clear.
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(which reads no variables) into a single layer querying xn. Moving to Time-Efficient Catalytic Product

Procedure, this means we only query xn twice, and furthermore the last query on Line 1 and the first

query on Line 3 are both made to x1, and so again by merging these two queries along with Line 2 we

only query x1 three times.

Now we will change our program so that x1 is only read twice. Consider two new functions obtained

by fixing the value of x1, namely f0 = f(0, x2 . . . xn) and f1 = f(1, x2 . . . xn). Recall that we used the

following polynomial to compute f , where yi = τ in
i + xi:

qf =
∑

S,S′⊆[n]

cS,S′

(∏
i∈S

τ in
i

)(∏
i∈S′

yi

)

If we choose b ∈ {0, 1} and fix τ in
1 = 0 and y1 = x1 = b, we get the following, which can be used to

compute (since it is equal to) f b:

qfb =
∑

S,S′⊆[2..n]

(cS,S′ + b · cS,S′∪{1})(
∏
i∈S

τ in
i )(

∏
i∈S′

yi)

We will use Time-Efficient Catalytic Product Procedure to compute qfb , where b = x1, by removing

all reference to x1 from ToggleInput and ToggleMonomials, and querying x1 whenever we execute

Lines 2 or 4 to determine whether to compute qf0 or qf1 in place of qf . More specifically, ToggleInput

will now only loop over i = 2 . . . n, while ToggleMonomials will now only loop over S ⊆ [2..n]. Finally

in Time-Efficient Catalytic Product Procedure we change Lines 2 and 4 to

Rout ← Rout ±
∑

S,S′⊆[2..n]

(cS,S′ + x1 · cS,S′∪{1})(
∏
i∈S

Rin
i )RS′

where Line 2 uses + and Line 4 uses −. Note that to execute these lines correctly, we will query x1

and perform the corresponding instruction; thus we no longer ignore these two lines in calculating our

program length.

By our earlier definition of qfb , this exactly computes qfb for x1 = b as claimed. As above we will

reverse the order of the queries in ToggleInput the second time it is called in ToggleMonomials,

which allows us to read xn only once per execution for a total of two reads. x1 will be queried in Lines 2

and 4, and all other variables will be queried four times.

Note 5.4.1. This strategy also allows us to save an exponential number of registers, as we only need a

register RS for each S ⊆ [2..n]. While it may be tempting to extend this trick to more variables, say

by fixing the values of both x1 and x2, the fact that Lines 2 and 4 depend on the value(s) of the fixed

variable(s) means that we will have to store at least one of these values in a non-catalytic register, which

will add to our width and take us out of the realm of permutation programs. If we go back to m-catalytic

branching programs, this gives us another way to save over [Pot17, RZ21], but with worse parameters;

for any k ∈ [n] by fixing k values we can get a program of length 2(k + 1) + 4(n− k − 1) and amortized

size 2k ·O(n) as before, but for m = 22n−k−1 instead of 22n/k−1.

There are two known cases in which we can achieve better than read-4 for AND: n = 2, 3. The n = 2

case is unsurprising, as our argument allows for two variables to be read twice; it has appeared in many

previous works (see c.f. [Bar89]). The case of n = 3 is more surprising, and suggests that read-3 may be
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achievable in general. Note that because of the small values of n involved, neither result gives a program

smaller than length 4n− 4.

Lemma 53. There is a read-2 permutation branching program of width 3 computing AND(x1, x2).

Proof. Choose any two permutations σ1 and σ2 such that σ1σ2σ
−1
1 σ−1

2 6= id; for example we can choose

σ1 = (12) and σ2 = (23). Then consider the following program:

〈1, σ1〉, 〈2, σ2〉, 〈1, σ−1
1 〉, 〈2, σ

−1
2 〉

By definition of σ1 and σ2, P (1, 1) 6= id, and if either variable is set to 0 then the only permutations left

are σj and σ−1
j for some j ∈ {1, 2}, and the composition of these permutations is id.

Lemma 54. There is a read-3 permutation branching program of width 3 computing AND(x1, x2, x3).

Proof. We state the program and leave the reader to check correctness.12 Our permutations σj are given

in cycle notation.

〈1, (23)〉, 〈2, (12)〉, 〈3, (123)〉,

〈1, (12)〉, 〈2, (13)〉, 〈3, (23)〉,

〈1, (132)〉, 〈2, (132)〉, 〈3, (13)〉

Note 5.4.2. Recall that we could consider a stronger definition of permutation branching programs

where we only require that P (α) 6= id whenever f(α) = 1. In this case, it is not hard to show that for

any n, if we can compute AND(x1 . . . xn) in length `, we can also compute any function f(x1 . . . xn) in

length ` by “tensoring” the permutations in P with themselves for each α ∈ f−1(1).

5.4.3 Lower bounds

In this section we show that if one tries to get a program of length less than 3n, one cannot beat

Theorem 52.

Theorem 55. Any permutation branching program computing AND(x1, . . . , xn) which reads some variable

at most twice must have length at least 4n− 4.

Proof. Let P = π1π2 . . . πs be any program computing AND(x1, . . . , xn). We will write σji to refer to

the permutation in the jth instruction in P that reads variable xi; in other words, the instructions

corresponding to xi will be 〈i, σ1
i 〉 . . . 〈i, σki 〉 for some k. Since we are focusing on AND, which is symmetric,

we will assume without loss of generality that xi is read for the first time before any xi′ is read for i′ > i.

As usual let σ∗ 6= id refer to the permutation resulting from P when all variables are set to 1.

Claim 56. Any program P computing AND of more than one variable must read every variable at least

twice

12It should be noted that we found this program through an automated search, and it would be interesting to see what
nice properties of the program—of which there are many candidates—could be useful in searching for read-3 programs for
higher n.
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Proof. Assume that some variable xi is read only once in P . Then setting xi′ = 0 for all i′ 6= i, we get

σ1
i = P (0 . . . 0, 1, 0, . . . , 0) = id. Therefore P acts identically whether xi is 0 or 1, which is a contradiction

because AND depends on x1.

Now consider when some variable xi is read exactly twice. Let j1 < j2 be the locations of the two

instructions containing i, i.e. πj1 = 〈i, σj1〉 and πj2 = 〈i, σj2〉, and let Π1 = πj1+1 . . . πj2−1. The following

is our main claim.

Claim 57. Every variable besides xi is read at least once in Π1, and there is at most one such variable

xi′ which is not read at least twice in Π1.

Proof. First, assume for contradiction that there exists i′ 6= i such that xi′ does not appear in Π1. Then

if we fix xi′′ = 1 for all i′′ 6= i, i′, we can apply Lemma 51 to move all instructions querying variables

other than xi and xi′ to the end of the program, and then apply Lemma 48 to get an equivalent program

of the following form which computes AND(xi, xi′):

〈i, σ′i
1〉, 〈i, σ′i

2〉, 〈i′, σ′〉, 〈0, σ∗〉

where σ′ and σ∗ are some permutations (σ∗ comes from all the instructions πj∗ produced by Lemma 51).

This contradicts Claim 56 as i′ is only read once.

Next, assume for contradiction that there exist i′ 6= i′′ 6= i such that i′ and i′′ appear only once each

in Π1. If we fix xi′′′ = 0 for all i′′′ 6= i, i′, i′′, applying Lemmas 51 and 48, without loss of generality the

following program computes AND(xi, xi′):

〈i, σ′i
1〉, 〈i′, σi′〉, 〈i′′, σi′′〉, 〈i, σ′i

2〉,Σ

where σi′ and σi′′ are some permutations and Σ is a set of instructions reading only the variables xi′ and

xi′′ .

Define Σi′ to be the result of fixing xi′′ = 0 in Σ, and define Σi′′ to be the result of fixing xi′ = 0 in

Σ. Note that if only one remaining variable is set to 1 then the program must output 0, so σ′i
2

= (σ′i
1
)−1,

Σi′ = (σi′)
−1, and Σi′′ = (σi′′)

−1. Thus if we set xi′′ = 0 our resulting program is

〈i, σ′i
1〉, 〈i′, σi′〉, 〈i, (σ′i

1
)−1〉, 〈i′, (σ1

i′)
−1〉

and so setting xi = xi′ = 1 we get that σ′i
1
σi′(σ

′
i
1
)−1(σi′)

−1 = id. Therefore by Lemma 49 we can swap

the order of these two instructions and get an equivalent program for AND(xi, xi′ , xi′′) of the form

〈i′, σi′〉, 〈i, σ′i
1〉, 〈i′′, σi′′〉, 〈i, (σ′i

1
)−1〉,Σ

and similarly by fixing xi′ = 0 we have σ′i
1
σi′′(σ

′
i
1
)−1(σi′′)

−1 = id, which by Lemma 49 leaves us with

the program

〈i′, σi′〉, 〈i′′, σi′′〉, 〈i, σ′i
1〉, 〈i, (σ′i

1
)−1〉,Σ

and applying Lemma 48 on our two layers reading i gives us a program which never reads xi, which is a

contradiction.
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Define Π2 = πj2+1 . . . πs, π1 . . . πj1−1; to prove Claim 57 holds for Π2 as well we will need one more

observation. This is similar to our tools at the start of the section, but specifically for AND.13

Claim 58. Let P be a permutation branching program computing AND whose first instruction is π1.

Then the program P ′ resulting from removing π1 from the beginning of P and adding it to the end of P is

also a valid program for computing f .

Proof. Let π1 = 〈i1, σ1〉 for some i1, and recall that σ∗ = P (1 . . . 1) 6= id. Note that P ′ is equivalent to

the program 〈i1, σ−1
1 〉P 〈i1, σ1〉. Thus P ′(1, 1, . . . , 1) = σ−1

1 σ∗σ1 6= id, and for all α 6= 1, 1, . . . 1, P ′(α)

will either be σ−1
1 (id)σ1 = id or id.

Now we can prove the same statement for Π2.

Claim 59. Every variable besides xi is read at least once in Π2, and there is at most one such variable

xi′ which is not read at least twice in Π2.

Proof. Applying Lemma 58 repeatedly to P , we can get an equivalent program P ′ = π2Π2π1Π1, and

apply Claim 57 to P ′.

By a simple analysis of Claims 57 and 59, one of two cases must occur for the variables besides xi:

either 1) one variable xi′ is read at least twice and all other variables are read at least four times or 2)

two variables xi′ , xi′′ are read at least three times and all other variables are read at least four times.

This is because a read-2 variable can only be read at most once in each of Π1 and Π2, while a read-3

variable will be read at most once in either Π1 or Π2. In either of these cases, our branching program

must have length at least 4(n− 2) + 2 · 2 = 4(n− 3) + 2 · 1 + 3 · 2 = 4n− 4.

Note 5.4.3. Besides the fact that our lower bound in Theorem 55 quantitatively matches up with our

upper bound in Theorem 52 in the case of reading any variable twice, qualitatively both cases in the

analysis at the end of our lower bound proof match with a possible construction given by our upper

bound. After fixing a read-2 variable to condition f on, we get two halves to our top level program, and

in each of them we will merge two reads of a variable in order to save a further layer. The choice of which

variable to merge the reads of is arbitrary, so consider our choices for the first and second half. If we

choose the same variable for both halves, it will be read twice and all other variables will be read four

times. If we choose different variables in each half, both will be read three times and the rest will be read

four times.

Further reading

� A Note on Amortized Branching Program Complexity [Pot17]. This was the first paper to study

upper bounds for general m-catalytic branching programs, as well as drawing the connection

between them and amortized analysis. Their proof is different from the one we presented, but no

more difficult to understand.

13If we used our stronger notion of permutation branching program from the upper bounds section, it would apply to any
f more generally, but this is unnecessary for our proof.



Chapter 5. Application: Catalytic/Amortized Algorithms for Every Function 97

� Amortized Circuit Complexity, Formal Complexity Measures, and Catalytic Algorithms [RZ21].

Besides giving the first improvement to the results of [Pot17], this paper also sought to standardize

the study of formal complexity measures like the ones in this thesis, and showed that linear upper

bounds hold for the amortized complexity of more than just branching programs.



Chapter 6

Conclusion

This brings the present work to a close. Throughout the proofs we have tried to bring attention to various

bottlenecks, snags, and angles for future attack, and here we will state these and other open problems in

concrete terms, as well as a discussion about the possible future of composition as a general approach

within theoretical computer science.

6.1 Goals for the potential contrarian

We begin in an unorthodox way, by putting the call out to those who are skeptical of one or both of the

central goals of this thesis, namely proving composition lower bounds for depth and proving composition

upper bounds for space. There is indeed reason to be on the fence, but we hope that the evidence here

has tipped the reader’s mental scales somewhat.

Nevertheless, before ending on a positive note and recapitulating future directions which may interest

the believers, here we will give two potential research projects for the skeptics: one for the NC1 optimists

and one for the L pessimists. In the spirit of positivity, however, we will attempt do so without directly

undermining either of our central goals; both approaches will rely on composition, but neither will come

to bear on questions of the complexity of TreeEval itself.

Towards NC1 = L

As we remarked on when introducing composition-based lower bounds in Chapter 1, it is widely

conjectured that NC1 6= L, and in suggesting opposite answers to the conjectures that TreeEval /∈ NC1

and TreeEval /∈ L, we may have contributed to that perception. Of course, since many people believe

both of these conjectures, our suggestion that NC1 and L are different comes from an argument that

others would typically not make.

However, there may be reason to believe that NC1 actually can solved composed function, whether or

not this would be in a manner powerful enough to compute TreeEval. Ironically, this comes from the very

origins of all our upper bounds in Part II, a classic result known as Barrington’s Theorem [Bar89]. Put

simply, we do have a characterization of NC1 in terms of branching programs.

Theorem 60 (Barrington’s Theorem [Bar89]). NC1 is exactly equal to the class of problems solvable by

permutation branching programs of polynomial length and width 5.

98
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The non-trivial direction1 of Barrington’s Theorem is showing that such branching programs capture

NC1, and so the proof itself speaks to the weakness of NC1 rather than its strength. Nevertheless, now

that we have this characterization the question becomes whether or not we can use tricks such as our

time-space tradeoff to capture L. In other words, whatever one’s beliefs about TreeEval’s inclusion or

non-inclusion in L, it seems natural for us to test out our newfound compression strategies in the absolute

limit: register programs which store only a constant amount of information.

Towards L 6= P

While we are a long way off from showing TreeEval ∈ L, there seems no reason to be convinced that

constructions given by our techniques, i.e. Catalytic Product Lemma, are optimal. Still, it is entirely

possible that TreeEval ∈ L but L is still far from capturing P (see below for questions about the hardness

of TreeEval itself). Instead of TreeEval, the real challenge for L to overcome is the circuit evaluation

problem, the canonical P-complete problem.

Related to this problem, but even more immediate from our work, is the question of whether the dag

evaluation problem, which we define as TreeEval with no tree-like restriction, can be computed in L. Here

all our strategies run up against the wall of height; whether in our work or in the broader discussion of

catalytic logspace, we know of no techniques that are equipped to handle superlogarithmic height, on

which all recursive-based techniques exponentially depend on. We have faith that some progress can be

made on this front, and below we discuss the possibility for CL to capture classes such as NC2; however,

the threat posed by height—or perhaps, for those interested in this section, the possibility—is not to be

underestimated.

6.2 Open problems

We now leave nay-saying behind and go through some of the central questions posed directly and indirectly

by our results.

6.2.1 Main theorems

Our first and most obvious set of open problems is to improve the key theorems we have seen in this

work.

Stronger lifting

The key bottleneck in improving the gadget size in Query-to-Communication Lifting Theorem with

current techniques is the power of Full Range Lemma, which is determined by the strength of Blockwise

Robust Sunflower Lemma. However, attacking the parameters of Blockwise Robust Sunflower Lemma

directly may not be the best strategy: improving the blockwise min-entropy requirement to log log 1/ε

would give us a linear-size gadget, but it would also imply the famous Sunflower Conjecture of Erdos

and Rado [ER60], one of the most famous open problems in combinatorics; furthermore it would be an

optimal improvement, which would put us very far from constant-size gadgets.

1Neither direction is strictly trivial, but showing that such branching programs can be simulated in NC1 is a straightforward
application of divide-and-conquer of the variety that would appear in an undergraduate course.
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A better strategy may be to use the structure of our rectangles to get more specialized proofs.

For example, we could try to prove alternate forms of Blockwise Robust Sunflower Lemma which

get better results for more restricted set systems such as those coming from the rectangle partition.

Alternatively, we can reach a different conclusion than Blockwise Robust Sunflower Lemma, either by

having a different distribution over the y set, or possibly even a non-probabilistic statement which can

give us our contradiction.

Resolving the non-automatability of tree-like Cutting Planes

Our results in Cutting Planes Non-Automatability Theorem all but close the door for the automata-

bility of CP, and like [AM20] we do so with nearly-optimal parameters and hardness assumptions, i.e.

superpolynomial hardness assuming P 6= NP and exponential hardness assuming ETH. The situation for

tree-CP, on the other hand, is much murkier.

As discussed before, [dR21] is optimal for tree-Res, as the system is indeed quasi-polynomially

automatable, and this also implies that starting from the assumption that P 6= NP is unlikely to yield

similar results, as a polytime reduction from no instances of SAT to tautologies requiring quasipolynomial-

size tree-Res proofs would also put NP in quasipolynomial time. Because no quasipolynomial algorithm for

automating tree-CP is known, we cannot assume that our lifted formula is tight in either the parameters

nor the hardness assumption we base our results on.

If it turns out that tree-CP does indeed have an NO(logN)-time automating algorithm (where again

here N := max(n,m, cut-tree(τ))), then there is still some tightening up to do; Cutting Planes Non-

Automatability Theorem only shows that assuming ETH, we cannot hope for a runtime ofNo(logN/ log2 logN).

Clearly a tight result would follow from lifting using a constant-size gadget, giving another motivation

for the program discussed in Chapter 2 (although one could reasonably feel that this automatability

question is one of the weaker motivations for such an important result).

On the other hand, it could turn out that tree-CP is hard to even sub-exponentially automate. Here

a constant-size lifting result would be a start, but this would still only give us a quasipolynomial lower

bound. It would be good to understand the state of upper bounds on the automatability of tree-CP to

know whether or not to pursue a lower bound past quasipolynomial, and if we suspect that it is indeed

exponentially hard to automate then we cannot rely on lifting from tree-Res to take us any further, and

so other techniques will be necessary.

Better TreeEval space upper bounds

For the case of space-bounded computation, our mandate is simple: improve the state of Tree Evaluation

Algorithm. The most natural way to do so would be to improve Catalytic Product Lemma via a more

efficient algorithm than Catalytic Product Procedure, as any reduction in the runtime of computing a

degree-d polynomial below exponential would immediately give better TreeEval algorithms through a

new optimal tradeoff in our choice of d.

While our algorithm easily handled the challenge of parallelizing the computation of all of our degree-d

monomials, this is actually an obstruction to a very natural approach to such an improvement. A very

astute and clever reader may have noticed that we can actually do a single degree-d product much more

efficiently than exponential time, namely by repeatedly applying the algorithm from the d = 2 case to

iteratively reduce the degree by half, resulting in only d recursive calls. The issue is that we know of no

way to parallelize this algorithm across sd monomials without requiring the space for all of them. It is
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possible that a modification of this idea could parallelize, which after balancing would give an algorithm

for TreeEvalk,2,h which only uses space O(h log log k).

Alternatively, if one believes that TreeEval should ultimately be outside of L, it seems natural to

start by lower bounding our technique. Proving that Catalytic Product Lemma is essentially optimal

would shed a lot of light on the limitations of existing catalytic techniques, which could either suggest

lower bounds against classes such as CL or motivate us to start looking for different approaches beyond

polynomials.

Improved catalytic branching program width

Again the clearest path towards improving General Catalytic/Amortized Algorithm is in improving

Catalytic Product Procedure, which corresponds to Time-Efficient Catalytic Product Procedure in our

case. While the space-time tradeoff is focused on computing monomials rather than working with

encodings, getting Time-Efficient Catalytic Product Procedure to be more efficient allows us to balance

the parameters and ultimately could take us to m = 22o(n)

. Also as with Tree Evaluation Algorithm, an

optimal improvement, i.e. a constant number of recursive calls with only a linear size blowup, would give

a near-optimal result of linear amortized size for m = 2O(n).

Besides improving the catalytic techniques we developed for tree evaluation, another possible way to

improve m for amortized branching programs would be to leverage the non-uniformity of the model in a

more clever way. At the moment we only rely on the Fn2 polynomial representation of our target function,

and our branching program acts highly “uniformly” with this representation in hand. All known catalytic

techniques were developed for the uniform setting, but it may be interesting to consider non-uniform

catalytic tools. Aside from amortized analysis, it is possible that these techniques could be used to

show upper bounds for ordinary branching program where traditional space algorithms seem elusive, for

example in simulating restricted circuit classes such as TC1.

As before, lower bounds on Catalytic Product Lemma would rule out optimal tradeoffs and thus pose

an interesting obstruction to getting smaller m. A more simple and concrete open problem would be

to simply prove that some function requires m = 2n in order to obtain linear amortized size. A simple

counting argument shows that most functions require roughly exponential-size m-catalytic branching

programs for any choice of m, and by extension most functions require m = 2n/Ω(n log n). Shaving this

factor off the denominator already necessitates going out of the realm of these easy arguments, and may

give us some nice structural lower bound techniques.

6.2.2 Other improvements

There are a number of other sub-results that we discussed throughout this thesis that also could be

improved upon, as well as generalizations and extensions of our main results to other useful settings.

From lifting to KRW

Equally as important as extending our main theorems, we must not lose sight of the fact that we are

setting our sights on the KRW Conjecture, where g is not restricted and there is no monotonicity condition

when we move to formula depth. Of these two generalizations, the latter will require us to more fully

understand the path from query-to-communication lifting to formula composition.



Chapter 6. Conclusion 102

A recent line of work [dRMN+20] has begun the assault on non-monotone KRW by way of traditional

(i.e. non-lifting) composition techniques in the semi-monotone case. Perhaps there is a way to fit this

setting into a lifting theorem which could then be proven using the techniques developed in Query-to-

Communication Lifting Theorem.

Randomized lifting, inner product lifting, etc.

Our new proof of Query-to-Communication Lifting Theorem has thus far generalized to dag-like and

graduated lifting, but there are many more lifting theorems worthy of attention. The next clear frontier

for this counting style of lifting is the BPP lifting of [GPW20]. Most of the framework in Query-to-

Communication Lifting Theorem is also as it appears in [GPW20], and so the trouble can be boiled down

to the fact that Lemma 7 incurs a multiplicative loss in |Y j,β | (of 2−d logm) rather than an additive loss

(of n−O(1)). Note that this also has to work for a random choice of x ∼ X, rather than just one x∗ given

by Full Range Lemma, but this is not an issue as we can iteratively find good x∗s and then remove them

so we won’t rediscover them.

Another frontier, much more open, is that of lifting with the inner product gadget, or similarly

low-discrepancy gadgets. If we apply the arguments from Query-to-Communication Lifting Theorem as

they are, making some minor changes such as flipping the role of Alice and Bob based on who speaks, we

will run into trouble when applying Full Range Lemma because Y should no longer be thought of as a

large subset of ({0, 1}m)n, but rather a small subset of ({0, 1}m)n corresponding to the truth tables of

a large number of tuples of linear functions over Flogm
2 . Thus we need a version of Blockwise Robust

Sunflower Lemma that works for a different distribution of the random y sets; perhaps going back to the

proof of Blockwise Robust Sunflower Lemma itself, which finds its roots in Janson’s Inequality [Jan90],

will give us some insight.

Non-automatability for more systems

There are many proof systems for which automatability results are not known, the two most important

ones being Sherali-Adams and Sum-of-Squares.2 Most of these systems are of “intermediate” strength,

meaning that we have strong lower bounds for certain tautologies but not for very many examples. Here

the challenge is to generalize our lower bound techniques in said systems such that we can prove a

superpolynomial lower bound against whatever tautology is produced by the reduction, or possibly to

find new ways of doing the reduction besides the refutation tautologies of Atserias and Müller or even

those of earlier works.

As an example of such an alternative style of proving non-automatability, for strong systems such as

Extended Frege there are results known even for the weak version of automatability, but only modulo

cryptographic assumptions such as the hardness of factoring. There is an inherent limitation on using

Atserias-Müller style arguments for the time being, namely that they would require us to prove at

least superpolynomial lower bounds on concrete tautologies coming from the reduction, and so far no

superpolynomial lower bounds are known. If we ever want to base non-automatability on a more standard

assumption such as P 6= NP or ETH, this is a barrier we will eventually have to cross.

2Both systems were claimed to have been solved in an earlier work [dRGN+21], but these proofs were later retracted.
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Catalytic branching programs for more restricted functions

Rather than focusing exclusively on generic functions, it may be useful to approach the question of linear

amortized size from the bottom up, by extending our results to other restricted classes of functions.

There is a wide range of well-behaved classes at and around the ones studied here, and going slowly up

the complexity landscape may bring us incremental updates to the catalytic computing program.

For a concrete example, it is possible that our result for VP could be extended to VNP, with the idea

that VNP can be viewed as an exponential number of parallel copies of VP, and exponential parallelism

is something we are willing to suffer. This result may be delicate though; such a result would presumably

need to use non-uniformity in a stronger way lest we accidentally prove that uniform VNP is contained in

CL—and by extension ZPP [BCK+14].

Optimal length for permutation branching programs

Closing the gap between 3n and 4n − 4 on the upper and lower bounds for the optimal length of

permutation branching programs seems within reach. Given the qualitative and quantitative alignment

of Theorems 52 and 55, it seems natural to conjecture that the answer should be one or the other of

these values, and not something in between. At the very least, this view may be the most useful to base

our work on in the near-term.

A cursory machine search gave no read-3 permutation branching programs for AND on four variables,

and if we could formally verify this then it would immediately lead to fully closing the gap at 4n− 4. On

the other hand, it may be that some properties of our program from Lemma 54 can be scaled up, or

even that a program for lower n such as n = 3 implies programs for larger n with similar parameters in a

black-box way.

6.2.3 Deeper structural results

Finally we outline a number of questions about the relationships between computation models, as well as

the underlying structure of our proofs. These are questions with less immediate direction than our other

problems, and yet they cut deeper to the core of the power and limitations of composition for depth and

space; these can be thought of as a personal research statement for the years to come.

Lifting and combinatorics

It seems that focusing on combinatorial techniques to understand circuit lower bounds and the power of

lifting seems not just convenient but also integral. As previously mentioned, a converse to our result,

showing that better lifting theorems would imply progress on the sunflower conjecture, was previous

shown in [LLZ18], and so our results together suggest that the connection between lifting theorems

and sunflowers is deeper than we understand. Furthermore there are a number of monotone circuit

lower bounds, including the current benchmark of 2n
1/2−ε

[CKR20], which both use the sunflower lemma

directly as well as broader combinatorial techniques used in its proof. Thus if we want to achieve truly

exponential monotone lower bounds, or to move beyond the monotone setting—at least in the non-uniform

case—we feel that the focus on combinatorics is essential.
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Catalytic techniques for uniform log-depth circuit classes

In this vein of understanding the landscape of log-depth poly-size circuit classes, our interest in catalytic

computing originally came from studying the structure of complexity classes in the gap between L and

P, particularly the wide variety of uniform poly-size log-depth circuit classes. There are arithmetic

classes such as VP and #AC1, Boolean classes such as AC1 and TC1, and hybrid classes such as AC1[p]

and CC1[p]. While we know many containment relationships between these classes, We believe that

mathematical properties, particularly those of groups and polynomials, should allow us to make more

such connections and may even yield surprising equivalences.

In previous work we [AGM17] defined a number of new arithmetic circuit classes whose power seem

to sit between VP and #AC1, and in doing so we discovered many hidden connections between existing

classes in this gap. Perhaps most surprising, we showed that over some fields, poly-size log-depth circuits

corresponding to polynomials of (formal) degree nlogn can be transformed into poly-size log-depth circuits

corresponding to polynomials of (formal) degree nlog logn! This would normally be impossible, and so the

fact that the field size is constant—where there always exists a (potentially exponential size) circuit with

degree nO(1)—is essential, but this is still a huge step towards showing the power of uniform VP, most

notably laid out in the Immerman-Landau conjecture [IL95].

All these classes sit within the class TC1, which we know by [BCK+14] is contained in CL, and contain

the class NC1, which besides being the subject of interest in Part I was also the class where much of

the early work on cleverly reusing space [Bar89, BC92]—work which would eventually inspire catalytic

computing—was applied. It would be good to understand which classes in this range can utilize catalytic

techniques and to what extent, which we feel is essential to showing many of the equivalences conjectured

by our work, as well as understanding the fine-grained landscape between L and P.

The complexity of TreeEval

Despite being a very general problem which seems easy to reduce to—very closely related to one very

canonical P-complete problem called the Circuit Value Problem—TreeEval is not known to be complete

for any standard complexity class. It is not hard to see that it lies in AC1, which puts it very close to

NL in terms of “standard” complexity classes (i.e. depth-restricted circuit classes and space-restricted

Turing Machine classes), but previous work has conjectured TreeEval to not only be outside L but also NL.

Therefore it may be easier to look at a type of complexity class which lies close AC1 but is not known

to be comparable to NL; this has an added benefit, which is that the bold among us can work towards

proving TreeEval ∈ L without worrying that it will prove L = NL.

The most natural candidate is LogDCFL, which is equivalent to the class of multiplexor circuits.

Multiplexor is another name for the type of internal nodes we have in TreeEval, where the truth table of a

function is part of the input; in fact, while we chose to refer to TreeEval as the Tree Evaluation Problem

through this work, it also is known as the Iterated Multiplexor Problem for this reason. However, there

are some slight mismatches in parameters, not to mention the tree-like restriction, and so a different

class in the same vein may be more appropriate for TreeEval completeness.

Relating CL and P

There is a large gap in our understanding of where CL lies; we know that it contains TC1 and can be

computed in zero-error randomized polynomial time (ZPP). The proof that CL ⊇ TC1 goes by showing
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that CL can compute many useful composed functions—such as f(x) · g(x) or fk(x)—while only having

to recompute the subfunctions a constant number of times. However, this also means that we are

inherently “paying” for the compositional structure of circuits exponentially in the depth, which prevents

us from moving past circuits of depth O(log n). Because computing subfunctions with low amounts of

recursion has been more fruitful than finding ways of circumventing recursion altogether, it may be that

more powerful subfunctions, such as st-connectivity, can also be done efficiently, which could potentially

circumvent the barrier posed by depth. In fact, a statement similar to Time-Efficient Catalytic Product

Procedure for undirected s-t connectivity may be enough to show CL ⊇ NC2, which would give additional

hope of bootstrapping up to NC hierarchy more generally.

In the other direction, resolving CL ⊆ P is perhaps the largest open problem in catalytic computing,

and there are many potential approaches that are worth exploring.

Non-uniform space models

In terms of connecting uniform and non-uniform models of space, L/ poly is equivalent to the class of

problems solvable by poly n-size branching programs. However, this gets trickier for catalytic logspace

(CL), as the corresponding object for CL/ poly would be m-catalytic branching programs of amortized

size poly(n) for m = 2poly(n), which has exponential size and thus cannot be written down in polynomial

advice. It would be very interesting to understand the connection between such m-catalytic branching

programs and CL/ poly, as this would immediately give lower bounds on m for random functions.

6.3 Epilogue: Composition as computation

To the reader that has made it to these final pages, I hope that you have gained an impression of the

important technical questions raised by composition. I want to close by returning to the idea of what

composition could mean as a way of understanding computation itself. Without overstating the case,

following our initial discussions in Chapter 1 one can posit a view of computation, as we understand it,

as inherently compositional. I wish to use this view to pose a few broader research discussions.

We began this thesis by taking the abstract question of solving two tasks and rigorously defining the

terms of engagement: how are they combined, and what do we want to optimize? Rather than choosing

these answers based on our whims—not to mention our capabilities—let us turn these questions outward,

as the authors of our main conjectures did, and use them as new angles to attack the tenacious problems

of our field. Can we find a new algorithm by focusing on using resources for which we know composition

does not hold? Can we find a new lower bound by treating our hard function as compositional in an

inobvious way?

As an initial proposition of how to apply this lens, let us go through the other major complexity

measures in our field and decide which ones are or are not subject to composition theorems, and possibly

even focusing on multiple different “styles” of composition a la sequential vs parallel. This can be a

powerful method for separating complexity classes, as our conjectures about TreeEval hardness were

meant to do: if composition lower bounds hold for complexity measure A but not complexity measure B,

then the corresponding classes can be separated by a function built by the appropriate composition of

both measures. We also gain from focusing on just one measure. If we fail to refute composition for s,

this gives us a class of lower bounds which we can exploit going forward. If we fail to prove composition
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for s, then we can shift to analyzing not just functions that previously seemed impossible, but specifically

those for which the composition with respect to s is well understood.

This is hardly a radical suggestion, nor a view to adopt to the exclusion of all others; in fact it only

amounts to a different verbal description of the methods we employ every day. However, sometimes

our description can orient our thinking, and indeed studying composition has drastically changed the

way I approach my own work. I hope that we can integrate it alongside other philosophical views

underpenning our field, such as metacomplexity, hardness versus randomness, etc. to reach new heights

in our understanding—quantitative and qualitative alike—of the theory of computation.
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[dRGN+21] Susanna F. de Rezende, Mika Göös, Jakob Nordström, Toniann Pitassi, Robert Robere,

and Dmitry Sokolov. Automating algebraic proof systems is np-hard. In STOC ’21: 53rd

Annual ACM SIGACT Symposium on Theory of Computing, pages 209–222. ACM, 2021.

[dRMN+20] Susanna F. de Rezende, Or Meir, Jakob Nordström, Toniann Pitassi, and Robert Robere.

KRW composition theorems via lifting. In FOCS, pages 43–49. IEEE, 2020.

[dRNV16] Susanna F. de Rezende, Jakob Nordström, and Marc Vinyals. How limited interaction

hinders real communication (and what it means for proof and circuit complexity). In IEEE

57th Annual Symposium on Foundations of Computer Science, FOCS 2016, pages 295–304.

IEEE Computer Society, 2016.

https://eccc.weizmann.ac.il/report/2021/054


Bibliography 110

[EMP18] Jeff Edmonds, Venkatesh Medabalimi, and Toniann Pitassi. Hardness of function composition

for semantic read once branching programs. In 33rd Computational Complexity Conference,

CCC 2018, volume 102 of LIPIcs, pages 15:1–15:22. Schloss Dagstuhl - Leibniz-Zentrum für

Informatik, 2018.
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[Göö15] Mika Göös. Lower bounds for clique vs. independent set. In IEEE 56th Annual Symposium

on Foundations of Computer Science, FOCS 2015, pages 1066–1076. IEEE Computer Society,

2015.
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Appendix A

By the Wayside

After six years of work, it is inevitable that a good body of earlier proofs should be subsumed. In fact,

nearly all of the results that appear in this thesis are not just the finished product after a proof has been

refined; they are actually the second incarnation of previous published work which are now qualitatively

and quantitatively obsolete. In this appendix we recap all of these proofs, chapter by chapter, and note

how the work from the body of the thesis compares.

We include these for two reasons. First, while they fail to surpass the results and proofs presented

in the thesis, there is no provable reason that they will not circumvent future barriers and ultimately

provide better results. These are proofs that in many ways follow drastically different paths than the

ones taken, and thus it is quite possible that they will be useful, if not to these results then to others.

In addition to comparing these results to the ones in the thesis, we will point out the tangible ways in

which they may provide such improvements.

The second reason is a social one: I believe that there is value in showing younger researchers the

volume of work which falls by the wayside over the course of six years. These results are not particularly

impressive—if I may boldly claim that the proofs appearing in this thesis are any more noteworthy—yet

following Pareto’s Law1 they represent the sum total of almost three-quarters of my time in graduate

school. Their style, preserved with fewer edits than the rest of this thesis, is similarly uneven in many

parts, with an emphasis on readability coming in more and more as the proofs get more recent. I am

glad to have spent so many years writing mediocre proofs; in the end they taught me just as much.

A.1 Full range without Blockwise Robust Sunflower Lemma

The improved sunflower and robust sunflower lemmas of [ALWZ20, Rao19, BCW21] are powerful new

tools that came about in the past few years, and our sunflower approach in Chapter 2 was made possible

by the key subroutine Blockwise Robust Sunflower Lemma. Our project started well before these

results, however, and the parameter regime was such that we were not even considering it could lead to

subquadratic size gadgets.

This is not the only issue, however. Blockwise Robust Sunflower Lemma was a statement with the

exact form we needed, stating that high blockwise min-entropy implies that the probability of a random

subset of the universe missing every set in our set system is low. The original robust sunflower lemma, due

1More commonly known as the 80/20 rule.
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to Rossman [Ros14], was of a similar but more sunflower-like form: we need only assume the set system

is large enough, but in exchange the same statement only holds after conditioning on, and removing, a

core of elements.

Definition 23 (Robust sunflowers). Let p, κ ∈ (0, 1). A set system S over universe U is called a

(p, κ)-robust sunflower if there exists a set C ⊆ U , called the core of S, such that S ⊇ C for all S ∈ S and

Pry⊆pUrC(∀γ ∈ S : γ r C 6⊆ y) ≤ κ

where ⊆p means every element of U is added independently with probability p. If p = 1/2 we simply say

that S is a κ-robust sunflower.

Original Robust Sunflower Lemma. There exists an absolute constant K such that the following

holds: Let s ∈ N and κ > 0. Let F be a set system over U such that a) |γ| ≤ s for all γ ∈ F ; and b)

|F| ≥ (K log(s/κ))s. Then F contains a κ-robust sunflower.

Blockwise Robust Sunflower Lemma can be thought of as a version of Robust Sunflower Lemma

where the κ-robust sunflower we get is promised to have an empty core, which is essential to the proof of

Full Range Lemma. In this section we circumvent this issue and reprove Full Range Lemma—or rather,

the d-wise marginal version, i.e. Lemma 15—using only Robust Sunflower Lemma. The parameters will

be worse than Lemma 15, and the proof will be slightly more intricate.

Lemma 61. Let J ⊆ [n], let d = o(n), let m = d∆ for some ∆ ≥ 3+ε for some ε > 0, and let δ = ∆−3
∆ −ε′

for some ε′ > 0. Let X ⊆ [m]J be such that X has blockwise min-entropy (1− δ) logm−O(1), and let

F = {γj}j be a block-respecting set system over [m]J such that 1) for all x ∈ X there exists a γj ∈ F
consistent with x, and 2) |γj | ≤ O(d) for all j. Then for any constant c > 0,

Pry⊆[mn](∀j : γj 6⊆ y) < 2−cd logm

A.1.1 Proof sketch

To give our proof in one line, we iteratively replace a sunflower with its core in our set system until

we hit a sunflower with an empty core, i.e. one for which Robust Sunflower Lemma and Blockwise

Robust Sunflower Lemma give the same conclusion, while keeping track of the small amount of error this

produces. This technique originated with Razborov’s method of approximations [Raz85] and since has

seen much use, including the previous record for monotone circuit lower bounds [HR00] and the proof of

Blockwise Robust Sunflower Lemma itself.

We now go into more technical detail. Our goal will be to show that F contains an 2−cd logm-robust

sunflower with an empty core. We do not directly have a sie lower bound of F , which is necessary to apply

Robust Sunflower Lemma, and instead use the blockwise min-entropy of X to ensure F is large. More

specifically, because the blockwise min-entropy of X is at least (1− δ) logm−O(1), for any non-empty

set γj ∈ F the set of all x ∈ X consistent with γj can only cover a 2−(1−δ)|γj | logm+O(|γ|) fraction of X.

Since each x ∈ X must be consistent with some γj , there must be a huge number of sets γj in F , and so

by Robust Sunflower Lemma F contains some κ-robust sunflower FS̄ even for very small κ� 2−cd logm.

If |S| = 0 then we are done, but unfortunately using Robust Sunflower Lemma we have no control

over |S|. Instead, we employ an iterative strategy where we drive down the size of the smallest core S for
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which FS̄ is an κ-robust sunflower. For simplicity assume there is some s ≤ O(d) such that every set

in F has size s, and so in the worst case we can assume that every core S for which FS̄ is an κ-robust

sunflower has size s− 1. We want to show now that there exist enough such cores S that the collection

of these cores itself is an κ-robust sunflower, and so it must have a core S′ of size at most s− 2. If this is

true then it turns out FS̄′ is an κ′-robust sunflower for κ′ only slightly larger than κ. From this we’ve

made progress; by increasing κ slightly we’ve found a core of a smaller size.

Using this idea, at a high level we will perform an iterative procedure, where we repeat the following

three steps until we find a sunflower with an empty core in F : 1) repeatedly pluck κ-robust sunflowers

from F ; 2) when we have enough sunflowers, pluck an robust sunflower from their cores; 3) increase κ

enough so that the core of this new sunflower is the core of an κ-robust sunflower in F as well. In our

actual calculations we will need to keep track of the sets of cores of each size, as well as to focus only on

the sets in F of a certain size. This will allow us to know when we should pluck a sunflower from the

cores, and will give us a measure of progress towards finding an empty core, which will allow us to choose

our κ small enough to get 2−cd logm at the end.

The last remaining piece is showing that we can actually pluck enough sunflowers from F to repeat

this procedure enough to get an empty core, without running out of sets in F . Unfortunately when

we find a core S and pluck the sunflower FS̄ , we have no control over how many sets are actually in

FS̄ , and so it seems hopeless to control how many rounds we can run for. However, note that the

(1− δ) logm−O(1) lower bound on the blockwise min-entropy of X holds for any S over [m]J , which

applies to a) the original sets γj ∈ F , and b) the cores S that we pluck. Thus instead of arguing that

each FS̄ we find is small, we instead argue that the fraction of X covered by sets remaining in F is large,

using the blockwise min-entropy of X for all (non-empty) cores S we’ve found so far. Then, again using

the blockwise min-entropy of X on F , we know that F must still have many sets to cover the remaining

fraction of X, as we did when showing that F was originally big enough to apply Robust Sunflower

Lemma.

A.1.2 Full proof

It is sufficient to show that F contains an κ-robust sunflower with an empty core for some κ ≤ 2−cd logm.

Again we assume ∅ /∈ F as the lemma is trivial otherwise, and so for all s ∈ [O(d)] let F(s) be the set of

all sets in F of size exactly s, and let X(s) be the set of all x ∈ X consistent with a set in F(s). Since

every x is consistent with some γ ∈ F = ∪sF(s), we know that X = ∪sX(s). Therefore by averaging

there must exist some s ∈ [O(d)] such that |X(s)| ≥ 1
O(d) |X|, and so we fix an arbitrary such s.

We define an iterative procedure to find an robust sunflower with an empty core in F(s). Recall that

m = d∆ ≥ d3+ε and δ = ∆−3
∆ − ε′, and define δ′ := 1− 2

∆ −
ε′

2 .2

2Again if the reader is more interested in the general idea than the best lifting theorem, an easy setting of parameters is
m := d7, δ := 0.05, and δ′ := 0.4; at this range we can ignore ε and ε′.
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Algorithm Finding a sunflower with an empty core: pluck and replace

1: Initialization: set Sk ← ∅ for all k = 0 . . . s− 1, t← 0, κ0 ← 2−cd logm−s2 logm, F0 := F(s)

2: while S0 = ∅ do

3: Abort if the following invariants ever do not hold: 1) |Sk| ≤ 2(1−δ′)k logm; 2) |F t| ≥ 2(1−δ′)s logm;

3) for every k and every S ∈ Sk, |S| = k and F(s)S̄ is an κt-robust sunflower; 4) κt < 2−cd logn

4: Let F t
S̄

be an κt-robust sunflower in F t; if none exists, abort

5: Increment t and set κt ← κt−1

6: Set S |S| ← S |S| ∪ {S} and set F t ← F t−1 −F t−1
S̄

7: while there exists k such that |Sk| = 2(1−δ′)k logm do

8: If k = 0, exit and return κt

9: Let Sk
S̄

be an κ0-robust sunflower in Sk; if none exists, abort

10: Increment t and set κt ← κt−1 + κ0

11: Set S |S| ← S |S| ∪ {S}, set Sk′ ← Sk′ − Sk′
S̄

for all k′ > |S|, and set F t ← F t−1 −F t−1
S̄

If this process exits without aborting, clearly by invariants (c) and (d), F(s) is a 2−cd logn-robust

sunflower with an empty core as desired (note that when the procedure exits, |S0| = 2(1−δ′)·0 logm = 1).

Thus we prove that the process never aborts.

First we show that by Robust Sunflower Lemma, in steps 4 and 9 we always find an robust sunflower.

Note that by our choice of m,3

m1−δ′ = d(2/∆+ε′/2)∆ > d2+Ω(1)

� (O(d2 logm · log s · log log s))1+o(1)

≥ (log s) · (2 log log s · (cd logm+ s2 logm))1+o(1)

For step 4, by invariant (b) and the fact that 1/κt ≤ 1/κ0 = 2d logm+s2 logm we have

|F t| ≥ 2(1−δ′)s logm = (m1−δ′)s

≥ ((log s) · (2 log log s · (cd logm+ s2 logm))1+o(1))s

= (log s)s · (2 log log s · log 1/κ0)(1+o(1))s

≥ (log s)s · (2 log log s · log 1/κt)
(1+o(1))s

and for step 9 by the inner loop condition and the fact that k ≤ s, the same calculation shows

|Sk| = 2(1−δ′)k logm = (m1−δ′)k

≥ ((log k) · (2 log log k · (cd logm+ s2 logm))1+o(1))k

≥ (log k)k · (2 log log k · log 1/κ0)(1+o(1))k

We now prove that the invariants hold. For invariant (a), clearly after exiting the inner loop

|Sk| < 2(1−δ′)k logm for all k. Before the inner loop runs we add at most one element to at most one set

Sk, and thus for that set |Sk| < 2(1−δ′)k logm + 1, or in other words |Sk| ≤ 2(1−δ′)k logm. At the start of

each iteration of the inner loop at most one set Sk has size 2(1−δ′)k logm, and since we remove at least

3Using the easier parameters listed above, m1−δ′ = (d7)0.4 � d2.5.
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one element from it and add at most one element to at most one other set we maintain that invariant.

For invariant (b), assume for contradiction that |F t| < 2(1−δ′)s logm. Recall that X has blockwise min-

entropy at least (1−δ) logm, meaning that every set S over [m]N covers at most 2−(1−δ)|S| logm+O(|S|) ·|X|
elements in X, and by extension in X(s). In particular this applies to every set γj ∈ F t as well as

every set S ∈ Sk. Lastly by assumption |F t| < 2(1−δ′)s logm, and likewise by invariant (a) we know that

|Sk| < 2(1−δ′)k logm for every k. Therefore since4

mδ−δ′ = d( ∆−3
∆ −ε′−1+ 2

∆ +ε′/2)∆ = d∆−3−∆+2−∆ε′/2 � O(
1

s
)

it follows that

|X(s)| ≤ |F t| · (2−(1−δ)s logm+O(s) · |X|) +

s−1∑
k=1

|Sk| · (2−(1−δ)k logm+O(k) · |X|)

< 2(1−δ′)s logm · 2−(1−δ)s logm+O(s) · |X|+
s−1∑
k=1

2(1−δ′)k logm · 2−(1−δ)k logm+O(k) · |X|

= (

s∑
k=1

2(δ−δ′)k logm+O(k)) · |X|

≤ O(mδ−δ′) · |X| � 1

s
|X|

which is a contradiction of our choice of s.

For invariant (c), we first note the following simple observation about sunflowers.

Fact 62. Let F and H be any two set systems such that H ⊆ F , let κ, κ′ > 0 be such that κ ≤ κ′, and

let S be any set. Then if HS̄ is an κ-robust sunflower, FS̄ is also an κ′ robust sunflower.

Consider S ∈ Sk. Clearly |S| = k by construction, and so we show that F(s)S̄ is an κt-robust

sunflower. We consider only the value of t when S was added to Sk, as κt only grows, and we do this

by induction on t. First observe that for any t, if S was added to Sk in step 4 then the claim follows

immediately since F t ⊆ F(s). This establishes the base case since at t = 0 we are at the start of the

procedure, and so we consider t > 0. We show this with induction on k in reverse order from s− 1 to 0.

If k = s − 1, since there is no Sk′ for k′ > s − 1 it must have been added in step 4, and so again the

claim follows immediately. Thus we consider k < s− 1 and assume S was added in step 9.

Let k′ > k be such that Sk′S was the sunflower discovered in step 9 which made us add S to Sk. We

claim that F(s)S̄ is an (κt−1 + κ0)-robust sunflower, which completes the claim since κt = κt−1 + κ0.

Consider the probability that a random set y ⊆ [mN ] − S doesn’t contain any set in F(s)S̄ . For this

to happen, for every set S′ ∈ Sk′
S̄

either y contains no sets in F(s)S̄′ or it does not contain S′ itself. If

there is some S′ such that S′ ⊆ y, then by the inductive hypothesis on t and k we know that F t′S′ is an

κt′ -robust sunflower, where t′ ≤ t− 1 was the value of t when S′ was added to Sk. Since κt′ ≤ κt−1 and

F t′ ⊆ F(s), by extension y avoids every set in F(s)S′ with probability at most κt−1. In the other case

where no such S′ exists, then because Sk′
S̄

is an κ0-robust sunflower y avoids every set S′ ∈ Sk′
S̄

with

probability at most κ0. Taking a union bound over these two events gives us our claim.

4Using the easier parameters listed above, mδ−δ
′

= (d7)−0.35 � d−2.
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Finally for invariant (d), we claim that t ≤ 2s
2 logm − 1 when the process ends. Putting this fact

together with κ0 := 2−cd logm−s2 logm and κt ≤ κt−1 + 2−cd logm−s2 logm for all t gives us

κt ≤ κ0 + t · κ0 ≤ 2s
2 logm · 2−cd logm−s2 logm = 2−cd logm

We associate each tuple S := (Sk)k=1...s−1 with the string τ(S) = |S1|#|S2|# . . .#|Ss−1|. We claim

that for every t there is a unique string τt corresponding to τ(S) at the time t was incremented. This is

simply because in every round of the outer loop we increase the size of at least one set Sk, and in every

round of the inner loop that we cause some Sk to shrink in some round of the inner loop, we also cause

some set Sk′ to grow where k′ < k. By invariant (a) and the inner loop condition, |Sk| ≤ 2(1−δ′)k logm

for every k whenever we updated t, and so as long as |S0| = 0—in other words for all t except the very

last one—we have

t ≤ |τ(S)| =
s−1∏
k=1

2(1−δ′)k logm = (2(1−δ′) logm)
∑s−1
k=1 k < 2s

2 logm − 2

and so at the end of the procedure t ≤ 2s
2 logm − 1.

A.2 Graduated lifting through megacoordinates

In the previous section we saw another proof in which Full Range Lemma was amenable to setting

m = d1+ε. In either case, since Full Range Lemma was the only place in Query-to-Communication

Lifting Theorem where m was relevant, this gave us an immediate path to graduated lifting. As we noted,

however, there used to be another reliance on m in Lemma 7, namely when we union bound |Y=|; our

new argument on Y= exploited the blockwise min-entropy violations of each assignment corresponding to

an Xj , which gave us 2O(d logm).

What would happen if we did not have this more clever dodge, such as in our real dag-like lifting?

Is there still a way to do graduated lifting when the union bound gives us 2O(n logm) sets to work

over? In our original paper [GKMP20] we did not seek to avoid this union bound, as even the existing

Fourier-based techniques for Full Range Lemma were not amenable to moving from n to d. Thus, yet a

third proof of graduated lifting is required.

Our approach was to bring down the universe size. Let N = | free(ρ)| be the set of unfixed coordinates,

and we run Rectangle Partition as before, knowing that all our assignments have size O(d). We group

[N ] into poly(d) “megacoordinates” of size N/poly(d) such that most (I, α) assignments in the rectangle

partition each only point to one value per megacoordinate. We use the (I, α)’s to replace the xs with

shorter x′ vectors which only point to one value per megacoordinate, and repeat the argument in

Rectangle Lemma but only using sets of megacoordinates I ⊆ [poly(d)]. Since m = poly(d), m−Ω(|I|)

is enough to cancel out (poly(d))|I|, and so the union bound goes through, giving an x′ that makes

IndIm·N/ poly(d)(x
′,y) close to uniform. Using the way we constructed the x′s out of the rectangle partition,

this will give us an assignment (I, α) which is equally close to uniform from the partition.
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X1

X2

X3

...

h1 h2 h3
. . .

Figure A.1: After partitioning X into {Xj} (purple regions are the coordinates of Ij , the restriction
αj to Ij not pictured), we randomly block up the coordinate space [N ] into poly(d) megacoordinates
(labeled hi here). With high probability only a small fraction of X will be lost due to collisions.

A.2.1 Reproof of Lemma 7

We index the free coordinates free(ρ) by [N ], where N = | free(ρ)|, and for convenience we assume that

N ≥ d5.5 We group the coordinates in [N ] into d3 mega-coordinates. Let h be a random variable which

is uniform over all functions h mapping [N ] → [d3] where |h−1(ih)| = N
d3 for all ih ∈ [d3]. Consider

the subset of F consisting only of pairs (Ij , αj) such that all coordinates in Ij are mapped to different

mega-coordinates by h, or formally

Fh = {(Ij , αj) ∈ F : ∀i 6= i′ ∈ Ij , h(i) 6= h(i′)}

Let Xh ⊆ X be the union of all Xj sets of the rectangle partition such that (Ij , αj) ∈ Fh.

Claim 63. With high probability over h ∼ h, we have |Xh| ≥ 0.99|X|.

Proof. We show that for a uniform choice of x from X, with high probability the unique part Xj(x) which

contains x survives into Xh. See Figure A.1 for an illustration. Formally, Prh∼h[Prx∼x(Xj(x) 6⊆ Xh)] <

0.01. First we consider the case of a fixed x. We will switch the calculation by treating h as a fixed

partition from h and treating Ij(x) as a random set of size at most 10d. To see that these are equivalent,

we can treat h ∼ h as simply being a uniformly random permutation on [N ] with a fixed partition into

d3 equal sized megacoordinates, and so we can view Ij(x) as a random set over h([N ]).

Recalling that N ≥ d5, a straightforward calculation shows that

PrIj(x)
(∀i 6= i′ ∈ Ij(x) : h(i) 6= h(i′)) =

10d∏
i=0

1− i · (N/d3 − 1)

N − i

≥ (1− 10d ·N/d3

N/2
)10d

≥ (1− 20

d2
)10d

≥ e−200/d ≥ 0.99

5Indeed, real lifting theorems already exist for large enough gadgets; moreover, the statement is only easier to prove in
the case of large d.
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13 5 8 91 91 27 53 4 14 13 48 77 14 2 2 63 39 1 91 5

(8, 3)1(91, 1)2(15, 2)3(2, 4)4(91, 4)5

x =

αh =

Figure A.2: Example of sampling αh for d3 = 5 megacoordinates of size mN/d3 = 4. Here (Ij , αj) for
Ij = {3, 5, 15} and αj = {(8)3, (91)5, (2)15} is sampled. (8)3 goes to (8, 3) in the first coordinate, (91)5

goes to (91, 1) in the second coordinate, and (2)15 goes to (2, 4) in the fourth coordinate. For the third
and fifth coordinate a pair in [m]× [5] is chosen uniformly, choosing (15, 2) for the third and (91, 4) for
the fifth.

and so the same holds for Prh∼h(∀i 6= i′ ∈ Ij(x) : h(i) 6= h(i′)) by our previous argument. Therefore

Prh∼h[Prx∼x(Xj(x) 6⊆ Xh)] = Prh∼h[Prx∼x(∃i 6= i′ ∈ Ij(x) : h(i) = h(i′))]

= Prx∼x[Prh∼h(∃i 6= i′ ∈ Ij(x) : h(i) = h(i′))]

≤
∑
x∈X

Prx′∼x(x′ = x)Prh∼h(∃i 6= i′ ∈ Ij(x) : h(i) = h(i′))

<
∑
x∈X

Prx′∼x(x′ = x) · 0.01

= 0.01
∑
x∈X

Prx′∼x(x′ = x) = 0.01

which completes our claim.

Henceforth, fix any h satisfying |Xh| ≥ 0.99|X|. We shift to viewing each y ∈ Y as a matrix yh ∈ Y h

with m ·N/d3 rows and d3 columns in the canonical way, where each entry ((α, i), ih) in yh corresponds to

the entry (α, i′) in the original matrix y, where i′ is the ith element of the megacoordinate ih. Following

our usual conventions let xh be the uniform random variable for selecting x from Xh and let and yh be

the uniform random variable for selecting y from Y and viewing it as yh as described above.

Recall that X satisfied 0.9 logm-blockwise min-entropy, and so for any I ⊆ [N ], H∞(XI) ≥ 0.9 ·
|I| logm. Thus for all assignments αI ,

Prx∼xh(xI = αI) ≤
|X|
|Xh|

Prx∼x(xI = αI)

≤ 1

0.99
· 2−0.9|I| logm ≤ 2−0.89|I| logm

and so Xh satisfies 0.89 logm-blockwise min-entropy.

Now we define the random variable αh on ([m]× [Nd3 ])d
3

to be a random restriction on x that picks

one location in each mega-coordinate and assigns it a restriction α. Note that this can also be viewed

as choosing a location in each column of yh. The restriction will be sampled according to Fh, by first

sampling x ∼ xh and taking all assignments in the corresponding pair (Ij , αj)h(Ij) where j = j(x), and

then choosing a random assignment (i, αi)ih for all mega-coordinates ih left unassigned by αj .

Formally we define αh by the following procedure:

� sample x ∼ xh and let j = j(x)

� for each ih ∈ h(Ij) let i be the coordinate in Ij mapping to ih
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and set αh ← αh ∪ ((αj)i, i)ih

� for each ih /∈ h(Ij) choose i uniformly from h−1(ih), choose αi uniformly from [m], and set

αh ← αh ∪ (αi, i)ih

� return αh

Note that extending αj uniformly to αh does not change the min-entropy. Thus because Xh has

blockwise min-entropy at least 0.89 logm, αh has blockwise min-entropy at least 0.89 logm as well, and

the coordinates of every αh are exactly [d3].

To proceed we now state a key lemma which is a generalized version of the Uniform Marginals Lemma

of [GPW20]. For completeness, we prove it in Section A.2.2.

Definition 24 (Multiplicative uniformity). We say a random variable x ∈ S is ε-multiplicatively uniform

if Pr[x = x] = (1± ε) · 1
|S| for all outcomes x ∈ S.

Large Index Lemma. Let x ⊆ [`]k and y ∈ ({0, 1}`)k be random variables such that x has blockwise

min-entropy ≥ 50 log k and D∞(y) ≤ k. Then there exists x ∈ supp(x) such that Indk` (x,y) is o(1)-

multiplicatively uniform.

We apply Large Index Lemma with x := αh, y := Y h, ` := mN/d3, k := d3. Note that D∞(y) ≤
O(d) ≤ k and that x has blockwise min-entropy ≥ 0.89 logm ≥ 0.89 log d999 ≥ 50 log d3 = 50 log k. We

conclude that there is an αh ∈ suppαh such that IndmN/d3(αh,yh) is o(1)-multiplicatively uniform. Fix

such an αh and let (Ij , αj) be any pair from which αh can be sampled in our previous procedure.

We can now undo our grouping into mega-coordinates: Because IndmN/d3(αh,yh) is o(1)-multiplicatively

uniform, by marginalizing to Ij we have that for all x ∈ Xj , IndIjm(x,y) = Ind
Ij
mN/d3(αj ,y

h) is also

o(1)-multiplicatively-close to uniform.

Pry∼y(y ∈ Y j,β) ≥ (1± o(1))2−|Ij | ≥ 1

2
· 2−|Ij |

A.2.2 Proof of Large Index Lemma

We state two key lemmas before proving Large Index Lemma. For convenience we shorten the base of the

expectation when the variable in the inner expression is clear. The first lemma is a standard application

of Fourier analysis which appears in different forms in many papers; we state the version needed to prove

Large Index Lemma and prove it at the end of this subsection, following the proof of [LMV].

Lemma 64. Let Λ and Γ be random variables on X := [`]k and Y := ({±1}`)k respectively. Assume

that Λ has blockwise min-entropy β > 1/2 and Γ has deficiency s. Then for every I ⊆ [k],

|EΛ,Γ[χI(yx)]| ≤ (2−β/2−1(k + s))|I|

where χI(yx) =
∏
i∈I yi(xi)

The second lemma appeared in a different form in [GPW20] as Lemma 9. We omit the proof and

defer interested readers to [GPW20].

Lemma 65. Let x ∈ [`]k and Y ⊆ {±1}`×k be such that

|Ey[χI(yx)]| ≤ 2−10|I| log k
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for all I ⊆ [k]. Then yx is 1/k3-multiplicatively-close to uniform.

Proof of Large Index Lemma. We map all y from elements of {0, 1}`×k to ({±1}`)k in the natural way.

Applying Lemma 64 we get that for all I ⊆ [k]

|EΛ,y[χI(yx)]| ≤ (2−25 log k−1(k + k))|I| ≤ 2−20|I| log k

where the second inequality is by assumption. By Markov’s inequality then, for any I ⊆ [k]

Prx∼Λ(|Ey[χI(yx)]| > 2−10|I| log k) ≤ 2−10|I| log k

We say x is good if |Ey[χI(yx)]| ≤ 2−10|I| log k for all I ⊆ [k]. Taking a union bound over all such I we get

Prx∼Λ(x is not good) ≤
∑
I⊆[k]

Prx∼Λ(|Ey[χI(yx)]| > 2−10|I| log k)

≤
∑
I⊆[k]

2−10|I| log k

≤
k∑
t=1

(
k

t

)
2−10t log k

≤
k∑
t=1

2−9t log k ≤ 2/k9

Hence most x are good, and by Lemma 65 for any good x we have that Indk(x,y) is 1/k3-

multiplicatively-close to uniform.

Proof of Lemma 64. Because marginalizing Γ to any S ⊆ `× k cannot increase the deficiency of ΓS in

YS , it is enough to show that

|EΛ,Γ[χ(yx)]| ≤ (2−β/2−1(k + s))k

Let Λ(x) = Pr(Λ = x). Because Λ has blockwise min-entropy β, it has Renyi entropy at least β · k,

meaning
∑
x Λ(x)2 ≤ 2−β·k. By Cauchy-Schwarz

|EΛ,Γ[χ(yx)]| =
∑
x

Λ(x)|EΓ[χ(yx)]|

≤ (
∑
x

Λ(x)2)1/2(
∑
x

|EΓ[χ(yx)]|2)1/2

≤ 2−(β/2)k · (
∑
x

|EΓ[χ(yx)]|2)1/2

= 2−(β/2)k · (
∑
x

|EΓ[χ(yx)]|2)1/2

We thus turn our attention to proving a bound on
∑
x |EΓ[χ(yx)]|2. Let χ≥i(yx) = χ{i...k}(yx). Again by

Cauchy-Schwarz ∑
x

|EΓ[χ(yx)]|2 =
∑
x

|
∏
i

EΓ[χ≥i(yx)]|2

≤
∑
x

∏
i

EΓ[χ≥i(yx)]2
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=
∑
x2...xk

∏
i≥2

EΓ[χ≥i(yx)]2 ·
∑
x1

EΓ[χ≥1(yx)]2

Since H∞(Γ) ≥ `k − s, for a fixed x2 . . . xk

H(χ≥1(yx)) = H(Γ1 | Γ(x2) . . .Γ(xk)) ≥ `− (k + s)

By Pinsker’s inequality EΓ[χ≥1(yx)]2 ≤ (1−H(χ≥1(yx)))/2, and so by sub-additivity of the expectation∑
x1

EΓ[χ≥1(yx)]2 ≤ (`− (`− (k + s))/2 = (k + s)/2

Plugging this back into our previous expression we get

∑
x2...xk

∏
i≥2

EΓ[χ≥i(yx)]2 ·
∑
x1

EΓ[χ2
≥1(yx)]2 ≤ k + s

2

∑
x2...xk

∏
i≥2

EΓ[χ≥i(yx)]2

Finally we repeat for all i = 2 . . . k, and in the end we get∑
x

|EΓ[χ(yx)]|2 ≤
∑
x

∏
i

EΓ[χ≥i(yx)]2

≤ k + s

2

∑
x2...xk

∏
i≥2

EΓ[χ≥i(yx)]2

. . .

≤ (
k + s

2
)k
∏
i>k

EΓ[χ≥i(yx)]2 = (
k + s

2
)k

Putting this bound on
∑
x |EΓ[χ(yx)]|2 together with the earlier proof completes the lemma.

A.3 Quasipolynomial non-automatability of many systems

Before the results of Atserias and Müller [AM20], the automatability of Resolution and other systems

was wide open. However, it was not the case that nothing was known. Alekhnovich and Razborov [AR08]

gave the first major result for weaker systems, showing that under an assumption from parameterized

complexity—namely W[P] 6= FPT, the same assumption as in de Rezende’s result on non-polynomial

automatability of tree-like Resolution [dR21]—Resolution and tree-like Resolution are not polynomially

automatable. This result was later extended to two other systems, namely Nullstellensatz and Polynomial

Calculus, by Galesi and Lauria [GL10] using the same reduction.

In a later work, we [MPW19] adapted the reduction to give the first quasipolynomial automatability

lower bounds on all the above systems, as well as k-Resolution, under the stronger ETH assumption.

This was also the result that we lifted from in our original work on the non-automatability of tree-like

Cutting Planes [GKMP20]. These results have since been entirely subsumed by the extensions of [AM20]

of the past two years [dR21, dRGN+21], but the technique is still quite interesting as it cleverly encodes

a universal statement into an existential statement, which may have uses in the future. In this section we

will go through this reduction and sketch the proofs of non-automatability from them.
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A.3.1 Basic setup

We will not introduce the non-Resolution systems mentioned in the introduction, as we direct interested

readers to [MPW19] if they are interested in the (fairly standard) non-automatability proofs themselves.

In this section we focus on the reduction itself, as this contains the interesting ideas for future work.

First, we need a hard problem to encode. The starting point of our departure from [AR08] is our use

of the (gap version of the) hitting set problem. This will be more amenable to superpolynomial hardness

than the more general minimum monotone circuit satisfying assignment problem used in previous works.

Definition 25. Let S = {S1, . . . , Sn} be a collection of non-empty sets Sj over [n]. A hitting set H ⊆ [n]

is a set of elements such that H ∩ Sj 6= ∅ for all j ∈ [n]. Let γ(S) be the size of the smallest hitting set

for S. The gap hitting set problem is the task of distinguishing, on input (S, k, hk), the following two

cases: (1) γ(S) ≤ k; (2) γ(S) > hk.

In terms of the hardness of gap hitting set, our first goal was to deduce the following hardness

statement from an earlier construction by Chen and Lin [CL19].6.

Lemma 66 (ETH-Hardness of Hitting Set). Assuming ETH, for sufficiently large n and k = O(log1/7−ε log n)

no algorithm can solve the gap hitting set problem (S, k, k2) in time no(k).

Our main lemma will be similar to that of Cutting Planes Non-Automatability Theorem and other

works discussed: we will build a tautology whose proof size depends on the value of the given hitting set

instance, thus allowing us to solve gap hitting set given an automating algorithm.

Lemma 67. Let Q ∈ {Res, tree-Res, Nullsatz, PC, PCR}. For sufficiently large n and k = O(log1/3 n),

let (S, k, k2) be an instance of the gap hitting set problem over [n]. Then there exists an unsatisfiable

CNF τS which can be computed in time nO(1) such that the following two properties hold

1. if γ(S) ≤ k then SQ(τS) ≤ nO(1);

2. if γ(S) > k2 then SQ(τS) ≥ nΩ(k).

Furthermore for Q = Res[r], the same holds except SQ(τS) ≥ nΩ(k/ exp(r2)) in the latter case.

Hereafter, fix k = O(log1/7−ε log n). Note that the non-automatability that we get is only a function

of k for which we can prove hardness of gap hitting set, i.e. the value of k appearing in Lemma 66.

A.3.2 Constructing a hard tautology

We now move into the construction of our tautology. Define m := n1/k, and observe that k logm = log n

and k2 < logm for large enough n.

Basic tautology

Consider a set A ⊆ {0, 1}m of m-bit strings such that |A| = m. We say that A is (m, k)-universal if for

every subset J ⊆ [m] of up to k distinct positions in [m], the projection A|J (restricting the strings in

A to these positions) contains all possible 2|J| binary strings of length |J |. Observe that we can take

6The actual lemma we prove is slightly more technical but actually slightly stronger than the one we state here. Also a
similar result holds for the Gap Exponential Time Hypothesis, which we similarly deduced from recent work of Chalermsook
et al [CCK+20]. See the full version for more details.
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the dual of the set A in the following sense: if A = {a1, . . . , am}, and let B ⊆ {0, 1}m be the set of

all strings bj for j ∈ [m] such that the ith bit of bj is the jth bit of ai. Another way to think about

B is taking the strings of A to be the columns of an m ×m matrix and letting B be the columns of

that matrix’s transpose. We say A is (m, k)-dual-universal if B is (m, k)-universal. Equivalently A is

(m, k)-dual-universal if for every ordered subset I ⊆ A of up to k distinct strings in A and for every string

s ∈ {0, 1}|I|, there exists some position j ∈ [m] such that s is the string formed by concatenating the jth

bit of all strings in I in order.

The existence of efficiently constructible (m, logm/4)-universal sets is known. It is also known

that there exist efficiently constructible sets that are both (m, logm/4)-universal and (m, logm/4)-dual-

universal. For a concrete example, [AR08] uses the Paley graph Gm on m vertices 7 We will fix an arbitrary

A that is efficiently computable and is both (m, logm/4)-universal and (m, logm/4)-dual-universal.

In what follows we will abuse notation and xi, yj will denote a tuple of Boolean variables (rather

than a single Boolean variable). The tuple size of xi, yj will be clear from context, but generally xi will

be a O(logm)-tuple and yj will be a O(log n)-tuple. Additionally ~x = x1, . . . , xn, ~y = y1, . . . , ym will

denote vectors of the tuples xi and yj . αi and βj will denote a 0/1 assignment to the tuples xi and yj

respectively, and ~α, ~β will each denote a 0/1 assignment to the vector of tuples ~x, ~y respectively. We also

define the characteristic vector of a set S ⊆ [n] to be the binary vector s ∈ {0, 1}n such that si = 0 for

all i /∈ S and si = 1 for all i ∈ S.

The formula ψS will have variables ~x and ~y that will respectively encode n-by-m matrices M and N .

The variables of ~x will define M such that each of the n rows of M is some vector in A, and the variables

~y will define N such that each of the m columns of N is the characteristic vector for some set S from the

hitting set instance S. In particular, xi will indicate a vector in A to serve as the ith row of M , while yj

will indicate a set in S whose characteristic vector will serve as the jth column of N , with each xi and yj

being chosen separately. For the remainder of the section, we restrict our attention to matrices M and N

defined this way. We say that M and N intersect if M [i, j] = N [i, j] = 1 for some pair (i, j). ψS will be

defined so that it is falsified whenever M and N intersect and satisfied otherwise.

Notice that when some column of M is the characteristic vector of a hitting set, ψS is falsified

because there is no way to pick the corresponding column in N so that the two columns do not intersect.

Conversely, if none of the columns in M represent a hitting set, then there is always a way to pick N so

that ψS is satisfied (for each column we simply pick the set that was not hit). Therefore proving that ψS

is unsatisfiable boils down to proving that for any choice of M , some column of M represents a hitting

set.

Claim 68. ψS is unsatisfiable when γ(S) ≤ logm
4 .

Proof sketch. Let H be any hitting set of size at most logm
4 , which we interpret of as a set of row indices

into M . By the (m, (logm)/4)-dual-universality of A, any set I of at most (logm)/4 strings from A has

a location such that all the strings in I contain a 1 at that location.8 Since rows of M are strings in

A, taking I = H there must exist a column j∗ such that M [i, j∗] = 1 for every i ∈ H. Because H is a

7Many examples of universal sets (including the Paley graph construction) are discussed in [Juk12], as well as [NN93,
AGHP92]. Alternate constructions use properties such as k-wise independent sample spaces and linear codes, and counting
arguments for different parameter regimes exist. Notably the Paley construction fulfills our four essential properties of
being small (of size m), polytime constructible, (m, logm/4)-universal, and (m, logm/4)-dual-universal.

8We do not require that the rows of M are distinct rows of A, but because we are only looking for a location with a 1
for every row this does not pose an issue. In fact we only ever use the universal and dual universal properties to search for
a location with either all 0 or all 1, where repetition doesn’t break the universal properties we need.
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hitting set and the jth column of N is the indicator vector of a set S ∈ S, there must be some i∗ ∈ H
such that N [i∗, j∗] = 1, and so M and N intersect at (i∗, j∗).

Next, we define the formula more formally. The variables of ψS are ~x = {xi | i ∈ [n]} where xi

is a tuple of logm boolean variables, and ~y = {yj | j ∈ [m]} where yj is a tuple of log n boolean

variables. Given an assignment ~α = {αi | i ∈ [n]} to the ~x-variables, ~α encodes an n-by-m matrix

M~α where the i-th row of M~α equals aαi ∈ A (interpreting αi as an index in [m]). Similarly given an

assignment ~β = {βj | j ∈ [m]} to the ~y-variables, ~β encodes an n-by-m matrix N~β , where column j is the

characteristic vector of the set Sβj ∈ S (interpreting βj as an index in [n]). We will sometimes write

M~α[i, j] as Mαi [i, j] to stress that the ith row of M~α is determined by αi. Similarly, we will sometimes

write N~β [i, j] as Nβj [i, j].

Lastly, we formally define the clauses in ψS so that it is falsified whenever M~α and N~β intersect and

satisfied otherwise.

Definition 26. For every i ∈ [n] and j ∈ [m], and for every pair of values αi ∈ {0, 1}logm, βj ∈ {0, 1}logn

such that Mαi [i, j] = 1 and Nβj [i, j] = 1, we have the clause xαii ∧ y
βj
j where xαii = ∧t∈[n](xi)

(αi)t
t is the

conjunction of all variables in xi, each of which occurs positively when the corresponding bit of αi is 1

and negatively when the corresponding bit of αi is 0 (we define y
βj
j in the same way). This axiom is

falsified iff xi is assigned value αi and yj is assigned value βj .

This formula has the property we want because if M~α and N~β intersect at some location i, j, then

the axiom xαii ∧ y
βj
j exists in ψS and would be falsified. Conversely, if ψS is falsified, then some axiom

xαii ∧ y
βj
j is falsified, which means M~α[i, j] = N~β [i, j] = 1.

It is easy to check that the number of variables in ψS is n logm+m log n. The number of clauses is

at most n2m2, since for each i ∈ [n] and j ∈ [m], each of the mn possible assignments to (xi, yj) adds at

most one clause to ψS .

Redundantly encoding ψS

In order to prove our result we will need a way of proving both upper and lower bounds on SQ(ψS),

but it turns out that the lower bounds are difficult to prove if we use ψS as is. Thus, we will employ a

standard trick in proof complexity, which is to redundantly encode the variables in the formula; more

specifically we follow [AR08] and redundantly code blocks of variables, namely each row and column,

using error-correcting codes. It is interesting to note that for our formulas, we are unable to prove even

width lower bounds without the redundant encoding. In contrast, most proof complexity applications use

this trick solely for the purpose of reducing size lower bounds to width lower bounds.

Definition 27. For q, r, s ∈ N, a (q, r, s)-code is a total function f from {0, 1}q to {0, 1}r with the

property that for any ρ ∈ {0, 1, ∗}q such that ρ fixes at most s values to {0, 1}, f |ρ is surjective on

{0, 1}r. Efficiently computable constructions using linear codes are known for any r, q = 6r, s = 2r (see

e.g. [AR08]). We say that f is r-surjective.

Let fx : {0, 1}6 logm → [m] be a (6 logm, logm, 2 logm)-code and let fy : {0, 1}6 logn → [n] be

a (6 log n, log n, 2 log n)-code. We will have a vector xi ∈ {0, 1}6 logm for each i ∈ [n] and a vector

yj ∈ {0, 1}6 logn for each j ∈ [m]. Given an assignment ~α to all of the ~x-variables, we will associate with

~α an n-by-m matrix M~α, where the ith row of M~α will be the vector afx(αi) ∈ A. Similarly given an
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assignment ~β to all of the ~y-variables, we will associate with ~β an n-by-m matrix N~β , where column j is

the characteristic vector corresponding to the set Sfy(βj) ∈ S In other words, N~β [i, j] is 1 if and only if

set Sfy(βj) contains element i.

We now define our unsatisfiable CNF τS in the same way as ψS using these redundant encodings.

Note that it is unsatisfiable for exactly the same reason as stated before.

Definition 28. The clauses of τS are defined as follows. For every i ∈ [n], j ∈ [m] and for every pair of

assignments (αi, βj) to (xi, yj) such that Mαi [i, j] = 1 and Nβj [i, j] = 1, we have the clause xαii ∧ y
βj
j .

In the redundant encoding we have n · 6 logm x-variables and m · 6 log n y-variables, for a total of

O(n logm) variables when m = n1/k � n. The number of clauses in τS is at most n7m7, since for each

i ∈ [n] and j ∈ [m], each of the m6n6 possible assignments to (xi, yj) adds at most one clause to τS . We

also note that τS can indeed be constructed in polynomial time, which is important to using Lemma 67

to get non-automatability results.

It may be instructive to note that both the upper and lower bounds we will shoot for on the size of

proofs of τS are exactly nΘ(γ(S)/k) = mΘ(γ(S)), which is polynomial in the number of distinct assignments

to α1 . . . αγ(S), assuming without loss of generality that the minimum hitting set of S is the first γ(S)

elements {1 . . . γ(S)} ⊆ [n].

A.3.3 Upper bound

In order to prove Lemma 67, we need to start by showing that an upper bound exists in the case that

there exists a small hitting set. It suffices to prove the upper bound for tree-like Resolution, as all other

systems discussed can polynomially simulate tree-Res.

The proof is just a formalization of the argument given in the proof of Claim 68. Recall from Lemma 16

that res-tree(τS) = dec-tree(τS), and so it suffices to give a decision tree solving the search problem for

τS ; that is, a decision tree (over the underlying variables of τS), where every leaf l is labelled with a

clause of τS that is falsified by the partial assignment that labels the path to l.

We will first show that if γ(S) ≤ k, then there is a height 2 log n decision tree (and therefore size n2)

for the unencoded formula ψS . Since γ(S) ≤ k, assume without loss of generality that H = {1, . . . , k} is

a valid hitting set for S. The decision tree for ψS consists of two phases. First, the decision tree will

branch on all of the Boolean variables in x1, . . . , xk. This will result in a full binary tree, call it T , of

depth k logm. In the second phase, at each leaf vertex of T we will query all of the variables of some yj

variable, where the choice of yj will be a function of the path taken in T .

Consider some path in T leading to leaf l~α, corresponding to the assignment ~α = α1, . . . αk for

x1, . . . , xk. The assignment ~α corresponds to an ordered set of strings I ⊆ A, where |I| ≤ k. Since

k ∈ O(log1/3 n) and m = n1/k, k ≤ logm
4 for large n. By the (m, logm/4)-dual-universal property of A

there is some j ∈ [m] such that I restricted to position j is all 1’s, and thus M~α[i, j] = 1 for all i ∈ [k].

In the second phase, at this leaf vertex l~α of T we will then query all of the Boolean variables in yj . Let

βj be one partial assignment to these variables and consider the path labelled by ~αβj leading to the leaf

vertex l~αβj . Since {1, . . . , k} is a hitting set for S we are guaranteed that N~βj
[i, j] = 1 for at least one

i ∈ [k], and since M~α[i, j] = 1 for all i ∈ [k], one of the clauses in τS must be violated by the partial

assignment ~α, βj , so we label l~αβj with any such clause. The resulting decision tree thus solves the search

problem associated with ψS and has height k logm+ log n = 2 log n.
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The decision tree for the redundant version τS is essentially the same but instead we query the

redundant encodings of the variables. First, we query x1, . . . , xk, resulting in a full binary tree of height

k · 6 logm, and then, we query a particular yj (depending on the path taken in T ), which is 6 log n

variables, and thus the height is k · 6 logm+ 6 log n = 12 log n.

A.3.4 Lower bound

The other side of Lemma 67, and naturally the much more difficult side, is the lower bound. To give a

flavor of how we leverage our construction, as well as the standard techniques for proving lower bounds

against Resolution, we prove this lower bound for Res. Note that this also gives a lower bound for Res.

We begin by proving a wide clause lemma for τS , which alone is enough to prove lower bounds for

tree-Res (using the size-width relationship for tree-Res due to Ben-Sasson and Wigderson [BW01]); for

general Res, we apply a standard application of random restrictions to reduce to width.

Our notion of “wide” will be a bit richer than the usual definition. For a clause D, let I0(D) be the

set of all i ∈ [n] for which there are at least logm literals in D that correspond to variables from xi.

Likewise let J0(D) be the set of all j ∈ [m] for which there are at least log n literals in D that correspond

to variables from yj .

Wide Clause Lemma. For sufficiently large n, if γ(S) > k2 and fx (fy) is logm-surjective (log n-

surjective, respectively), then for any Res refutation π refuting τS there exists a clause D ∈ π such that

|I0(D)| ≥ k2 or |J0(D)| ≥ k.

Proof. We follow the prover-delayer game of [Pud00, AD08] in the style of [ALN16]. The width-w game

on an unsatisfiable formula τ is played between a Delayer, who is asserting that she has a satisfying

assignment for τ , and a Prover, who is trying to force the Delayer into a contradiction by asking her

values of the underlying variables. However, the Prover has limited memory and can only remember the

values of up to w of the variables at a time.

Both players know τ and the contents of the Prover’s memory, which is initially empty. At the start

of each round there are at most w − 1 values in memory. The Prover asks the Delayer the value of some

variable whose value is not currently in memory. The Delayer responds with an answer (either 0 or 1),

and upon receiving the answer, the Prover adds this assignment to his memory (increasing the number of

stored values by 1). He can then erase (forget) any existing values from memory, possibly decreasing the

number of stored values. The Prover declares victory if at some point, the partial assignment written in

his memory falsifies one of the clauses of τ . The Delayer has a winning strategy for the width-w game on

τ if no matter how the Prover plays the game, he cannot win. It was shown [Pud00, AD08] that the

Delayer has a winning strategy for the width-w game if and only if the Res width of τ is at least w − 1.

For our formula τS , the game proceeds as above, but now let D be the set of literals in the Prover’s

memory, and we demand instead of only holding w variables total in memory that |I0(D)| ≤ k2 and

|J0(D)| ≤ k. By the transformation from [Pud00], the Prover has a winning strategy for this game if

there is a Res refutation such that |I0(D)| ≤ k2 − 1 and |J0(D)| ≤ k − 1 for every clause D. Therefore

the Delayer has a winning strategy for this game if and only if the lemma holds. The Delayer’s winning

strategy is as follows.

� If the Prover asks about a variable in xi:

– If i /∈ I0(D) and after adding this bit there are still less than logm variables from xi in memory,

the Delayer can answer with either 0 or 1 arbitrarily.
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– If i /∈ I0(D) but after adding this bit to memory there are now logm variables from xi in

memory, the Delayer uses the fact that |J0(D)| ≤ k ≤ logm/4 and the (m, logm/4)-universal

property of A to find a string a0 ∈ A such that a0|J0(D) is the all-zeros string, and uses the

surjective property of fx to find an assignment αi consistent with the assignment to the xi

variables in memory such that fx(αi) = a0. The Delayer will remember the assignment αi for

xi from now on, and note that I0(D) now contains i.

– Finally if i ∈ I0(D) then the Delayer is maintaining an assignment αi for xi, so she answers

according to αi.

� If the Prover asks about a variable in yj :

– If j /∈ J0(D) and after adding this bit there are still less than log n variables from yj in memory,

the Delayer can answer with either 0 or 1 arbitrarily.

– If j /∈ J0(D) but there are now log n variables from yj in memory, the Delayer uses the fact

that |I0(D)| ≤ k2 < γ(S) and finds a set S0 that doesn’t contain any element i ∈ I0(D), and

uses the surjective property of fy to find an assignment βj consistent with the assignment to

the yj variables in memory such that fy(βj) = S0. The Delayer will remember the assignment

βj for xj , and note that J0(D) now contains j.

– Finally if j ∈ J0(D) then the Delayer is already maintaining an assignment βj for yj , so she

answers according to βj .

� Whenever the Prover erases a variable from xi from his memory, if i ∈ I0 and now there are less

than logm variables from xi in memory, the Delayer forgets αi. (note that i is no longer in I0)

Similarly, whenever the Prover erases a variable from yj from his memory, if j ∈ J0 and now there

are less than log n variables from yj in memory, the Delayer removes βj from J0. (note that j is no

longer in J0)

Assume for contradiction the game ends with the Prover winning. Consider when the game ends,

and say the Prover claims the axiom xαii ∧ y
βj
j was falsified, and thus that M~α[i, j] = N~β [i, j] = 1. First,

consider the case when either i /∈ I0 or j /∈ J0. In either case there are is at least one variable in the

axiom that is not in memory, which means that it has not been falsified, which is a contradiction. So

assume that i ∈ I0 and j ∈ J0, and consider the last time that i was added to I0 and the last time

that j was added to J0. Assume that i was added after j. Since j was in J0 at the time we defined αi,

Mαi [i, j] = 0 by our choice of αi, which is a contradiction. Finally assume that j was added after i. Then

since i was in I0 at the time we defined βj , fy(βj) does not contain i, and so Nβj [i, j] = 0, which is also

a contradiction.

Before proceeding on to the lower bound, we need to change Wide Clause Lemma slightly, in order to

be able to apply a restriction argument to turn width lower bounds into size lower bounds for τS . We

use the notation f |ρ to denote the restriction of the function f over x1 . . . xs by ρ ∈ {0, 1, ∗}s, which is

the function f over the variables xi for all i ∈ ρ−1(∗) obtained by setting all other variables xj to ρ(j).

Likewise we use the notation τ |ρ to denote the restriction of the tautology τ by ρ.

Definition 29. Let ρxi ∈ {0, 1, ∗}xi and let ρyj ∈ {0, 1, ∗}yj . Furthermore, let R be the set of all

~ρ = {ρx1
. . . ρxn , ρy1

. . . ρym}, such that for all i ∈ [n] and j ∈ [m], |ρ−1
xi (∗)| = 5 logm and |ρ−1

yj (∗)| = 5 log n.
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Let f ix be the function fx on the variables ρ−1
xi (∗) after restricting all other inputs to ρxi , and likewise for

f jy .

Lemma 69 (Wide Clause Lemma under restrictions). For sufficiently large n and ρ ∈ R, if γ(S) > k2

then for any Res refutation π refuting τS |~ρ there exists a clause D ∈ π such that |I0(D)| ≥ k2 or

|J0(D)| ≥ k.

We omit the proof of Lemma 69, as it is essentially identical to Wide Clause Lemma. The only

difference is that in each row i the Delayer chooses αi based on f ix instead of fx, and likewise for the

columns. Note that fx was 2 logm surjective before the restriction, and since only logm variables are

fixed in every row f ix is still logm surjective (and similarly for f jy ).

We can now complete our lower bound. Let π be a Res refutation of τS and assume for contradiction

that |π| < nk/16. First, consider a clause D ∈ π such that |I0(D)| ≥ k2. For each i ∈ I0(D), the chance

that a randomly chosen ~ρ ∈ R doesn’t set one of the xi literals in D to 1 is less than (1− ( 1
6 ·

1
2 ))logm.

Thus the probability that no i ∈ I0(D) sets D to 1 is at most ( 11
12 )k

2 logm = ( 11
12 )k logn < 1

nk/8 . By a

union bound the probability that some clause D in π satisfying |I0(D)| ≥ k2 is not set to 1 is less than
nk/16

nk/8 = 1
nk/16 , using the fact that |π| < nk/16.

Similarly the probability that some clause D ∈ π satisfying |J0(D)| ≥ k is not set to 1 is at most
1

nk/16 . Thus with probability at least 1− 2
nk/16 , all clauses D satisfying |I0(D)| ≥ k2 or |J0(D)| ≥ k are

set to 1 by a random restriction, and thus there exists a restriction ~ρ = {ρx1
. . . ρxn , ρy1

. . . ρym} setting

all such clauses to 1. However, this contradicts Lemma 69, as τS |~ρ must still have at least one such clause.

Thus SQ(τS) ≥ nclk for cl = 1
16 .
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