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Abstract. Given a Boolean formula ϕ, the problem of model counting,
also referred to as #SAT, is to compute the number of solutions of ϕ.
The hashing-based techniques for approximate counting have emerged
as a dominant approach, promising achievement of both scalability and
rigorous theoretical guarantees. The standard construction of strongly
2-universal hash functions employs dense XORs (i.e., involving half of the
variables in expectation), which is widely known to cause degradation in
the runtime performance of state of the art SAT solvers. Consequently,
the past few years have witnessed an intense activity in the design of
sparse XORs as hash functions. Such constructions have been proposed
with beliefs to provide runtime performance improvement along with
theoretical guarantees similar to that of dense XORs.
The primary contribution of this paper is a rigorous theoretical and
empirical analysis to understand the effect of the sparsity of XORs. In
contradiction to prior beliefs of applicability of analysis for sparse hash
functions to all the hashing-based techniques, we prove a contradictory
result. We show that the best-known bounds obtained for sparse XORs are
still too weak to yield theoretical guarantees for a large class of hashing-
based techniques, including the state of the art approach ApproxMC3. We
then turn to a rigorous empirical analysis of the performance benefits
of sparse hash functions. To this end, we first design, to the best of our
knowledge, the most efficient algorithm called SparseCount2 using sparse
hash functions, which achieves at least up to two orders of magnitude
performance improvement over its predecessor. Contradicting the current
beliefs, we observe that SparseCount2 still falls short of ApproxMC3 in
runtime performance despite the usage of dense XORs in ApproxMC3. In
conclusion, our work showcases that the question of whether it is possible
to use short XORs to achieve scalability while providing strong theoretical
guarantees is still wide open.

1 Background and Introduction

Given a Boolean formula ϕ, the problem of model counting, also referred to
as #SAT, is to compute the number of solutions of ϕ. Model counting is a

? The author list has been sorted alphabetically by last name; this order should not be
used to determine the extent of authors’ contributions. Part of the work was carried
out during the first two authors’ internships at National University of Singapore.
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fundamental problem in computer science with a wide range of applications
ranging from quantified information flow, reliability of networks, probabilistic
programming, Bayesian networks, and others [23,24,17,22,10,5,4].

Given the computational intractability of #SAT, attention has been focused
on the approximation of #SAT [31,29]. In a breakthrough result, Stockmeyer
provided a hashing-based randomized approximation scheme for counting that
makes polynomially many invocations of an NP oracle [28]. The procedure,
however, was computationally prohibitive in practice at that time, and no practical
tools existed based on Stockmeyer’s proposed algorithmic framework until the
early 2000s [17]. Motivated by the success of SAT solvers, there has been a surge
of interest in the design of hashing-based techniques for approximate model
counting in the past decade [16,8,13,9,26,25].

The core idea of the hashing-based framework is to employ pairwise inde-
pendent hash functions3 to partition the solution space into roughly equal-sized
small cells, wherein a cell is called small if it has solutions less than or equal to a
pre-computed threshold, denoted by thresh. A SAT solver is employed to check
if a cell is small by enumerating solutions one-by-one until either there are no
more solutions or we have already enumerated thresh+ 1 solutions. The current
state of the art techniques can be broadly classified into two categories:

– The first category of techniques, henceforth called Cat1, consists of techniques
that compute a constant factor approximation by setting thresh to a constant
and use Stockmeyer’s technique of constructing multiple copies of the input
formula. [30,12,2,1,32]

– The second class of techniques, henceforth called Cat2, consists of techniques
that directly compute an (ε, δ)-estimate by setting thresh to O( 1

ε2 ), and
hence invoking the underlying NP oracle O( 1

ε2 ) times [8,9,22,26,25,21,7].

The current state of the art technique, measured by runtime performance, is
ApproxMC3, which falls into the class of Cat2 techniques [26]. The proofs of
correctness for all the hashing-based techniques involve the use of concentration
bounds due to pairwise independent hash functions.

The standard construction of pairwise independent hash functions employed
in these techniques can be expressed as a conjunction of XOR constraints such
that every variable is chosen with probability f = 1/2 for each XORs. As such,
each XOR contains, on an average, n/2 variables. A SAT solver is invoked to
enumerate solutions of the formula ϕ in conjunction with these XOR constraints.
The performance of SAT solvers, however, degrades with an increase in the size of
XORs [16]. Therefore recent efforts have focused on the design of hash functions
where each variable is chosen with probability f < 1/2 [14,11,18,2,1]. We refer
to the XOR constructed with f = 1/2 as dense XORs while those constructed
with f < 1/2 as sparse XORs. In particular, given a hash function, h and cell α,
the random variable of interest, denoted by Cnt〈ϕ,h,α〉 is the number of solutions

3 Pairwise independent hash functions were initially referred to as strongly 2-universal
hash functions in [6]. The prior work on approximate counting often uses the term
2-universal hashing to refer to strongly 2-universal hash functions.
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of ϕ that h maps to cell α. The pairwise independence of dense XORs is known
to bound the variance of Cnt〈ϕ,h,α〉 by the expectation of Cnt〈ϕ,h,α〉, which is
sufficient for their usage for both Cat1 and Cat2 techniques.

In a significant result, Asteris and Dimakis [3], and Zhao et al. [32] showed that
f = O(log n/n) asymptotically suffices for Cat1 techniques. It is worth pointing
that f = O(log n/n) provides weaker guarantees on the variance of Cnt〈ϕ,h,α〉 as
compared to the case when f = 1/2. However, Zhao et al. showed that the weaker
guarantees are sufficient for Cat1 techniques with only polynomial overhead on
the time complexity. Furthermore, Zhao et al. provided necessary and sufficient
conditions on the required asymptotic value of f and proposed a new algorithm
SparseCount that uses the proposed family of hash functions. One would expect
that the result of Zhao et al. would settle the quest for efficient hash functions.
However, upon closer examination, few questions have been left unanswered in
Zhao et al.’s work and subsequent follow-up studies [1,22,9].

1. Can the hash function constructed by Zhao et al. be used for Cat2 techniques,
in particular for state of the art hashing-based techniques like ApproxMC3?

2. In practice, can the overhead due to the weakness of theoretical guarantees
of sparse XORs proposed by Zhao et al. be compensated by the gain of
performance due to sparse XORs in the runtime of SparseCount?

3. Is the runtime performance of SparseCount competitive to that of ApproxMC3?
The reader may observe that Zhao et al.’s paper does not compare their
proposed algorithm for (ε, δ)-guarantees, called SparseCount, with state of
the art algorithms at that time such as ApproxMC2, which is now in its third
version, ApproxMC3 [26]. Therefore the question of whether the proposed
sparse XORs are efficient in runtime was not settled. It is perhaps worth
remarking that another line of work based on the construction of sparse XORs
using low-density parity codes is known to introduce significant slowdown [2,1]
(See Section 9 of [1]).

The primary contribution of this paper is a rigorous theoretical and empirical
analysis to understand the effect of sparse XORs for approximate model counters.
In particular, we make the following key contributions:

1. We prove that the bounds obtained by Zhao et al., which are the strongest
known bounds at this point, for the variance of Cnt〈ϕ,h,α〉, are still too weak
for the analysis of ApproxMC3. To the best of our knowledge, this is the first
time the need for stronger bounds in the context of Cat2 techniques has been
identified.

2. Since the weakness of bounds prevents usage of sparse hash functions in
ApproxMC3, we design the most efficient algorithm, to the best of our knowl-
edge, using sparse hash functions. To this end, we propose an improvement of
SparseCount, called SparseCount2, that reduces the number of SAT calls from
linear to logarithmic and significantly improves the runtime performance of
SparseCount. The improvement from linear to logarithmic uses the idea of
prefix-slicing introduced by Chakraborty, Meel, and Vardi [9] for ApproxMC2.
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3. We next present a rigorous empirical study involving a benchmark suite
totaling over 1800 instances of runtime performance of SparseCount2 vis-a-vis
the state of the art approximate counting technique, ApproxMC3. Surprisingly
and contrary to current beliefs, we discover that ApproxMC3, which uses dense
XORs significantly outperforms SparseCount2 for every benchmark. It is worth
remarking that both ApproxMC3 and SparseCount2 use identical SAT solver
for underlying SAT calls and similar to other hashing-based techniques, over
99% for each of the algorithms is indeed consumed by the underlying SAT
solver.

Given the surprising nature of our results, few words are in order. First of all,
our work identifies the tradeoffs involved in the usage of sparse hash functions
and demonstrates that the variance bounds offered by sparse hash functions
are too weak to be employed in the state of the art techniques. Secondly, our
work demonstrates that the weakness of variance bounds leads to such a large
overhead that the algorithms using sparse hash functions scale much worse
compared to the algorithms without sparse XORs. Thirdly and finally, we believe
the negative results showcase that the question of the usage of sparse XORs
to achieve scalability while providing strong theoretical guarantees is still wide
open. In an upcoming work, Meel r© Akshay4 [21] define a new family of hash
functions, called concentrated hashing, and provide a new construction of sparse
hash functions belonging to concentrated hashing, and design a new algorithmic
framework on top of ApproxMC, which is shown to achieve runtime improvements.

The rest of the paper is organized as follows. We discuss notations and
preliminaries in Section 2. We then discuss the weakness of guarantees offered by
sparse XORs in Section 3. In Section 4, we seek to design an efficient algorithm
that utilizes all the advancements, to the best of our knowledge, in approximate
model counting community. We present a rigorous empirical study comparing
performance of SparseCount, SparseCount2, and ApproxMC3 in Section 5 and
conclude in Section 6.

2 Preliminaries and Notations

Let ϕ be a Boolean formula in conjunctive normal form (CNF), and let Vars(ϕ)
be the set of variables appearing in ϕ. The set Vars(ϕ) is also called the support
of ϕ. Unless otherwise stated, we will use n to denote the number of variables
in ϕ i.e., |Vars(ϕ)|. An assignment of truth values to the variables in Vars(ϕ) is
called a satisfying assignment or witness of ϕ if it makes ϕ evaluate to true. We
denote the set of all witnesses of ϕ by Rϕ.

We write Pr [Z] to denote the probability of outcome Z. The expected value
of Z is denoted E [Z] and its variance is denoted σ2 [Z].

The propositional model counting problem is to compute |Rϕ| for a given CNF
formula ϕ. A probably approximately correct (PAC) counter is a probabilistic
algorithm ApproxCount(·, ·, ·) that takes as inputs a formula F , a tolerance ε > 0,

4 r© is used to denote random author ordering, as suggested by the authors.
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and a confidence parameter δ ∈ (0, 1], and returns a count c with (ε, δ)-guarantees,

i.e., Pr
[
|Rϕ|/(1 + ε) ≤ c ≤ (1 + ε)|Rϕ|

]
≥ 1− δ.

In this work, we employ a family of universal hash functions. Let H(n,m) ,
{h : {0, 1}n → {0, 1}m} be a family of hash functions mapping {0, 1}n to {0, 1}m.

We use h
R←− H to denote the probability space obtained by choosing a function

h uniformly at random from H.
In this work, we will use the concept of prefix-slicing introduced by Chakraborty

et al. [9]. For h ∈ H(n,m), formally, for every j ∈ {1, . . . ,m}, the jth prefix-slice
of h, denoted h(j), is a map from {0, 1}n to {0, 1}j , such that h(j)(y)[i] = h(y)[i],
for all y ∈ {0, 1}n and for all i ∈ {1, . . . j}. Similarly, the jth prefix-slice of α,
denoted α(j), is an element of {0, 1}m such that α(j)[i] = α[i] for all i ∈ {1, . . . j}.
The randomness in the choices of h and α induce randomness in the choices of
h(m) and α(m). However, the (h(j), α(j)) pairs chosen for different values of j are
no longer independent. Specifically, h(k)(y)[i] = h(`)(y)[i] and α(k)[i] = α(l)[i] for
1 ≤ k ≤ ` ≤ m and for all i ∈ {1, . . . k}.

For a formula ϕ, h ∈ H(n,m), and α ∈ {0, 1}m, we define Cnt〈F,h(i),α(i)〉 :=

|{y ∈ Rϕ | h(i)(y) = α(i)}|, i.e. the number of solutions of ϕ mapped to α(i) by
h(i). For the sake of notational clarity, whenever h(i) and α(i) are clear from the
context, we will use Cnt〈i〉 as a shorthand for Cnt〈F,h(i),α(i)〉.

Definition 1. [6] A family of hash functions H(n,m) is pairwise independent
(also known as strongly 2-universal) if ∀ α1, α2 ∈ {0, 1}m, ∀ distinct y1, y2 ∈
{0, 1}n, h

R←− H, we have Pr[h(y1) = α1 ∧ h(y2) = α2] = 1
22m .

Definition 2. Let A ∈ {0, 1}m×n be a random matrix whose entries are Bernoulli
i.i.d. random variables such that fi = Pr [A[i, j] = 1] for all j ∈ [n]. Let b ∈
{0, 1}m be chosen uniformly at random, independently from A. Let hA,b(y) =

Ay+b and H{fi}(n,m) = {hA,b : {0, 1}n → {0, 1}m}, where hA,b
R←− H{fi}(n,m)

is chosen randomly according to this process. Then, H{fi}(n,m) is defined as
hash family with {fi}-sparsity.

Since we can represent hash functions in H{fi}(n,m) using a set of XORs;
we will use dense XORs to refer to hash functions with fi = 1

2 for all i while we
use sparse XORs to refer to hash functions with fi <

1
2 for some i. Note that

H{fi=
1
2}(n,m) is the standard pairwise independent hash family, also denoted

as Hxor(n,m) in earlier works [22].

Definition 3. [11] Let k ≥ 0 and δ > 2. Let Z be a random variable with
µ = E[Z]. Then Z is strongly (k, δ)-concentrated if Pr[|Z − µ| ≥

√
k] ≤ 1/δ and

weakly (k, δ)-concentrated if both Pr[Z ≤ µ −
√
k] ≤ 1/δ and Pr[Z ≥ µ +

√
k]

≤ 1/δ.

2.1 Related Work

Gomes et al. [15] first identified the improvements in solving time due to the
usage of sparse XORs in approximate model counting algorithms. The question
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of whether sparse XORs can provide the required theoretical guarantees was
left open. A significant progress in this direction was achieved by Ermon et
al. [11], who provided the first rigorous analysis of the usage of sparse XOR
constraints. Building on Ermon et al., Zhao et al. [32] and Asteris and Dimakis [3]
independently provided further improved analysis of Ermon et al. and showed
that probability f = O( logn

n ) suffices to provide constant factor approximation,
which can be amplified to (1 + ε) approximation.

While the above mentioned efforts focused on each entry of A to be i.i.d.,
Achlioptas and Theodorpoulos [2], Achlioptas, Hammoudeh, and Theodorpou-
los [1] investigated the design of hash functions where A is a structured matrix
by drawing on connections to the error correcting codes. While their techniques
provide a construction of sparse constraints, the constants involved in asymptotics
lead to impractical algorithms for (ε, δ) guarantees (See Section 9 of [1]). The
work of Achlioptas et al. demonstrates the promise and limitations of structured
random matrices in the design of hashing-based algorithms; however, there is no
such study in the case when all the entries are i.i.d. In this paper, we theoretically
improve the construction proposed by Asteris and Dimakis [3], and Zhao et
al. [32] and perform a rigorous empirical study to understand the tradeoffs of
sparsity.

3 Weakness of Guarantees offered by Sparse XORs

In this section, we present the first contribution of this paper: demonstration of
the weakness of theoretical guarantees obtained in prior work [11,3,32] for sparse
XORs. To this end, we investigate whether the bounds offered by Zhao et al. on
the variance of Cnt〈i〉, which are the strongest bounds known on sparse XORs,
can be employed in the analysis of Cat2 techniques. For clarity of exposition, we
focus on the usage of sparse XOR bounds in ApproxMC3, but our conclusions
extend to other Cat2 techniques, as pointed out below.

The analysis of ApproxMC3 employs the bounds on the variance of Cnt〈i〉
using the following standard concentration bounds.

Lemma 1. For every β > 0,0 < ε ≤ 1, 0 ≤ i ≤ n, we have:

1. Chebyshev Inequality

Pr

[∣∣Cnt〈i〉 − E[Cnt〈i〉]
∣∣ ≥ ε

1 + ε
E[Cnt〈i〉]

]
≤

(1 + ε)2σ2[Cnt〈i〉]

ε2E[Cnt〈i〉]2

2. Paley-Zygmund Inequality

Pr[Cnt〈i〉 ≤ βE[Cnt〈i〉]] ≤
1

1 +
(1− β)2E[Cnt〈i〉]

2

σ2[Cnt〈i〉]

The analysis of Cat2 techniques (and ApproxMC3 in particular) bounds the
failure probablity of the underlying algorithm by upper bounding the above
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expressions for appropriately chosen values of i. To obtain meaningful upper
bounds, these techniques employ the inequality σ2[Cnt〈i〉] ≤ E[Cnt〈i〉] obtained
via the usage of 2-universal hash functions5.

Recall, that the core idea of the hashing-based framework is to employ 2-
universal hash functions to partition the solution space into roughly equal sized
small cells, wherein a cell is called small if it has solutions less than or equal to a
pre-computed threshold, denoted by thresh, which is chosen as O(1/ε2). To this
end, the analysis lower bounds E[Cnt〈i〉] by thresh

2 , which allows the denominator

to be lower bounded by a constant. Given that thresh can be set to O( 1
ε2 )1/c for

some c > 0, we can relax the requirement on the chosen hash family to ensuring
σ2[Cnt〈i〉] ≤ E[Cnt〈i〉]

2−c for some c > 0. Note that pairwise independent hash
functions based on dense XORs ensure σ2[Cnt〈i〉] ≤ E[Cnt〈i〉] (i.e., c = 1).

We now investigate the guarantees provided by sparse XORs. To this end,
we first recall the following result, which follows from combining Theorem 1 and
Theorem 3 of [11].

Lemma 2. [11]6 For 2 ≤ |RF | ≤ 2n, let

w∗ = max

w ∣∣
w∑
j=1

(
n

j

)
≤ |RF | − 1


q∗ = |RF | − 1−

w∗∑
w=1

(
n

w

)

η =
1

|RF | − 1

(
q∗
(

1

2
+

1

2
(1− 2f)w

∗+1

)m
+

w∗∑
w=1

(
n

w

)(
1

2
+

1

2
(1− 2f)w

)m)

For h
R←− H{fj}(n,m), we have:

σ2[Cnt〈i〉] ≤ E[Cnt〈i〉] + ηE[Cnt〈i〉](|RF | − 1)− E[Cnt〈i〉]
2.

Zhao et al. [32], building on Ermon et al. [11], obtain the following bound
(see, Lemma 8 and Lemma 10 of [32]).

Lemma 3. [32] Define k = 2mη(1− 1
|RF | ). Then k ≤ γ for γ > 1.

The bound on σ2[Cnt〈i〉] from Zhao et al. can be stated as:

Theorem 1. σ2[Cnt〈i〉] ≤ ζ where ζ ∈ Ω(E[Cnt〈i〉]
2).

5 While we are focusing on ApproxMC3, the requirement of σ2[Cnt〈i〉] ≤ E[Cnt〈i〉] holds
for other Cat2 techniques.

6 The expression stated in the Theorem can be found in the revised version at https:

//cs.stanford.edu/~ermon/papers/SparseHashing-revised.pdf (Accessed: May
10, 2020).

https://cs.stanford.edu/~ermon/papers/SparseHashing-revised.pdf
https://cs.stanford.edu/~ermon/papers/SparseHashing-revised.pdf
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Proof.

σ2[Cnt〈i〉] ≤ E[Cnt〈i〉] + ηE[Cnt〈i〉](|RF | − 1)− E[Cnt〈i〉]
2.

(Substituting |RF | = E[Cnt〈i〉]× 2m, we have)

σ2[Cnt〈i〉] ≤ E[Cnt〈i〉] + 2mηE[Cnt〈i〉]
2(1− 1/|RF |)− E[Cnt〈i〉]

2

Substituting k = 2mη(1− 1
|RF | ), we have:

σ2[Cnt〈i〉] ≤ E[Cnt〈i〉] + (k − 1)E[Cnt〈i〉]
2 = ζ.

Using Corollary 3, we have ζ ∈ Ω(E[Cnt〈i〉]
2).

Recall, the analysis of ApproxMC3 requires us to upper bound σ2[Cnt〈i〉] by
E[Cnt〈i〉]

2−c for c > 0. Since the best-known bounds on σ2[Cnt〈i〉] lower bound
σ2[Cnt〈i〉] by E[Cnt〈i〉]

2, these bounds are not sufficient to be used by ApproxMC3.
At this point, one may wonder as to what is the key algorithmic difference between
Cat1 and Cat2 that necessitates the use of stronger bounds: Cat1 techniques
compute a constant factor approximation and then make use of Stockmeyer’s
argument to lift a constant factor approximation to (1+ε)-approximation, whereas,
Cat2 techniques directly compute a (1 + ε)-approximation, which necessitates
the usage of stronger concentration bounds.

4 SparseCount2: An Efficient Algorithm for Sparse XORs

The inability of sparse XORs to provide good enough bounds on variance for
usage in Cat2 techniques, in particular ApproxMC3, leads us to ask: how do we
design the most efficient algorithm for approximate model counting making use
of the existing gadgets in the model counting literature. We recall that Zhao et
al. [32] provided matching necessary and sufficient conditions on the required
asymptotic density of matrix A. Furthermore, they proposed a hashing-based
algorithm, SparseCount, that utilizes sparser constraints.

As mentioned earlier, Chakraborty et al. [9] proposed the technique of using
prefix-slicing of hash functions in the context of hashing-based techniques and
their empirical evaluation demonstrated significant theoretical and empirical
improvements owing to the usage of prefix hashing. In this work, we first show
a dramatic reduction in the complexity of SparseCount by utilizing the concept
of prefix-slicing and thereby improving the number of SAT calls from O(n log n)
to O((log n)2) for fixed ε and δ The modified algorithm, called SparseCount2,
significantly outperforms SparseCount, as demonstrated in Section 5.

Algorithm 1 shows the pseudo-code for SparseCount2. SparseCount2 assumes
access to SAT oracle that takes in a formula ϕ and returns YES if ϕ is satisfiable,
otherwise it returns NO. Furthermore, SparseCount2 assumes access to the sub-
routine MakeCopies that creates multiple copies of a given formula, a standard
technique first proposed by Stockmeyer [28] to lift a constant factor approxima-
tion to that of (1 + ε)-factor approximation for arbitrary ε. Similar to Algorithm
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Algorithm 1 SparseCount2 (ϕ, ε, δ) . Assume ϕ is satisfiable

1: ∆← 0.0042
2: ψ ← MakeCopies(ϕ, d 1

log4(1+ε)
e)

3: m← 0; iter ← 0; C ← EmptyList; n̂← |Vars(ψ)|

4: T ←
⌈ log(n̂/δ)

∆

⌉
5: {fj} ← ComputeSparseDensities(n̂)
6: repeat
7: iter ← iter + 1
8: m← CoreSearch(ψ, m, {fj})
9: AddToList(C, 2m)

10: until iter < T
11: ĉ← Median(C)
12: return ĉdlog4(1+ε)e

Algorithm 2 CoreSearch(ψ, mPrev, {fj})
1: Choose h uniformly at random from H{fj}(n̂, n̂)
2: Choose α uniformly at random from {0, 1}n̂
3: Y ← SAT(ψ ∧ h(n̂)(Vars(ψ)) = αn̂)
4: if Y is YES then
5: return n̂
6: m← LogSATSearch(ψ, h, α, mPrev)
7: return m

1 of [11], we choose {fj} in line 5, such that the resulting hash functions guaran-
tee weak (µ2

i , 9/4)-concentration for the random variable Cnt〈i〉 for all i, where
µi = E[Cnt〈i〉]. SparseCount2 shares similarity with SparseCount with the core
difference in the replacement of linear search in SparseCount with the procedure
CoreSearch. CoreSearch shares similarity with the procedure ApproxMC2Core of
Chakraborty et al. [9]. The subroutine CoreSearch employs prefix search, which
ensures that for all i, Cnt〈i〉 ≥ Cnt〈i+1〉. The monotonicity of Cnt〈i〉 allows us
to perform a binary search to find the value of i for which Cnt〈i〉 ≥ 1 and
Cnt〈i+1〉 = 0. Consequently, we make O(log n) calls to the underlying NP oracle
during each invocation of CoreSearch instead of O(n) calls in case of SparseCount.

Note that CoreSearch is invoked T times, where T =
⌈
log(n̂/δ)

∆

⌉
(n̂, δ,∆ as defined

in the algorithm) and the returned value is added to the list C. We then return
the median of C.

It is worth noting that SparseCount2 and ApproxMC3 differ only in the usage
of thresh, which is set to 1 for SparseCount2 and a function of ε for ApproxMC3,
as observed in the discussion following Lemma 1. The usage of thresh dependent
on ε requires stronger bounds on variance, which can not be provided by sparse
XORs as discussed in the previous section.
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Algorithm 3 LogSATSearch(ψ, h, α, mPrev)

1: loIndex ← 0; hiIndex ← n̂− 1; m← mPrev
2: BigCell[0] ← 1; BigCell[n̂]← 0
3: BigCell[i] ←⊥ ∀ i ∈ [1, n̂− 1]
4: while true do
5: Y ← SAT(ψ ∧ h(m)(Vars(ψ)) = α(m))
6: if Y is YES then
7: if BigCell[m+ 1] = 0 then
8: return m+ 1

9: BigCell[i] ← 1 ∀i ∈ {1, ...m}
10: loIndex ← m
11: if |m−mPrev| < 3 then
12: m← m+ 1
13: else if 2m < |n̂| then
14: m← 2m
15: else m← (hiIndex+m)/2

16: else
17: if BigCell[m− 1] = 1 then
18: return m
19: BigCell[i] ← 0 ∀ i ∈ {m, ...n̂}
20: hiIndex ← m
21: if |m−mPrev| < 3 then m← m− 1
22: else m← (loIndex+m)/2

4.1 Analysis of Correctness of SparseCount2

We now present the theoretical analysis of SparseCount2. It is worth asserting
that the proof structure and technique for SparseCount2 and ApproxMC3 are
significantly different, as is evident from the inability of ApproxMC3 to use sparse
XORs. Therefore, while the algorithmic change might look minor, the proof of
correctness requires a different analysis.

Theorem 2. Let SparseCount2 employ H{fj}
n
j=0 hash families, where {fj}nj=0

is chosen such that it guarantees weak (µ2
i , 9/4)-concentration for the random

variable Cnt〈i〉 for all i, then SparseCount2 returns count c such that

Pr

[
|Rϕ|
1 + ε

≤ c ≤ (1 + ε)× |Rϕ|
]
≥ 1− δ

Proof. Similar to [32], we assume that |Rϕ| is a power of 2; a relaxation of
the assumption simply introduces a constant factor in the approximation. Let
|Rψ| = 2i

∗
and for we define the variable Cntt〈i〉 to denote the value of Cnt〈i〉

when iter = t. Let µti = E[Cntt〈i〉] = 2i
∗

2i . Note that the choice of fi ensures that

Cntt〈i〉 is weakly ((µti)
2, 9/4) concentrated.

Let E denote the event that ĉ > 4× |Rψ| or ĉ <
|Rψ|
4 . We denote the event

ĉ > 4×|Rψ| as EH and the event ĉ <
|Rψ|
4 as EL. Note that Pr[E ] = Pr[EL]+Pr[EH ].

We now compute Pr[EL] and Pr[EH ] as follows:
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1. From Algorithm 1, we have ĉ = Median(C). For ĉ <
|Rψ|
4 , we have that for at

least T
2 iterations of CoreSearch returns m < i∗ − 2. For t-th invocation of

CoreSearch (i.e., iter = t) to return m− 1, then it is necessarily the case that
Cntt〈m〉 = 0. Since {fj}nj=0 is chosen such that the resulting hash function

guarantees ((µtm)2, 9/4)-concentration for the random variable Cntt〈m〉, we

have Pr[Cntt〈m〉 ≥ 1] ≥ 5/9 for m ≤ i∗ − 2.

Let us denote, by E iL, the event that at least for T
2 of {Cntt〈i〉}Tt=0 we have

Cntt〈i〉 = 0 . Therefore, by Chernoff bound we have Pr[E iL] ≤ e−ν
(1)T where

ν(1) = 2(4/9− 1/2)2. By applying union bound, we have Pr[EL] ≤ ne−ν(1)T

2. Again, from the Algorithm 1, we have ĉ = Median(C). Therefore, for ĉ >
4× |Rψ|, we have at least T

2 invocations of CoreSearch return m > i∗+ 2. For
t-th invocation of CoreSearch (i.e., iter = t) to return m, then it is necessarily
the case that Cntt〈m−1〉 ≥ 1.

Noting, E[Cntt〈m〉] = 2i
∗−m. For m ≥ i∗ + 2, we have for m ≥ i∗ + 2

Pr[Cntt〈m〉 ≥ 1] ≤ 1/4.

Let us denote by E iH , the event that for at least T
2 of {Cntt〈i〉}Tt=0 values, we

have Cntt〈i〉 ≥ 1. By Chernoff bound for m ≥ i∗+ 2, we have Pr[E iH ] ≤ e−ν(2)T

where ν(2) = 2(1/4 − 1/2)2. By applying union bound, we have Pr[EH ] ≤
ne−ν

(2)T .

Therefore, we have Pr[E ] = Pr[EL] + Pr[EH ] ≤ ne−ν(1)T + ne−ν
(2)T . Substituting

T , we have

Pr

[
|Rψ|

4
≤ ĉ ≤ 4× |Rψ|

]
≥ 1− δ.

Now notice that |Rψ| = |Rϕ|
1

log4(1+ε) ; Therefore,
|Rψ|
4 ≤ ĉ ≤ 4×|Rψ| ensures that

we have
|Rϕ|
1+ε ≤ c ≤ (1 + ε)× |Rϕ|. Therefore,

Pr

[
|Rϕ|
1 + ε

≤ c ≤ (1 + ε)× |Rϕ|
]
≥ 1− δ.

5 Empirical Studies

We focus on empirical study for comparison of runtime performance of SparseCount,
SparseCount2, and ApproxMC3. All the three algorithms, SparseCount, SparseCount2,
and ApproxMC3, are implemented in C++ and use the same underlying SAT
solver, CryptoMiniSat [27] augmented with the BIRD framework introduced
in [26,25]. CryptoMiniSat augmented with BIRD is state of the art SAT solver
equipped to handle XOR constraints natively. It is worth noting that for hashing-
based techniques, over 99% of the runtime is consumed by the underlying SAT
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Benchmark (.cnf) Vars Clauses
Time (s)

SparseCount SparseCount2 ApproxMC3

blasted case200 14 42 18.13 8.49 0.01
blasted case60 15 35 350.48 23.43 0.01
s27 3 2 20 43 1581.63 30.28 0.01
SetTest.sk 9 21 33744 148948 1679.62 171.02 0.81
lss.sk 6 7 82362 259552 1959.39 405.61 1.63
registerlesSwap.sk 3 10 372 1493 2498.02 60.23 0.03
polynomial.sk 7 25 313 1027 2896.49 99.94 0.02
02A-3 5488 21477 3576.82 467.26 0.06
blasted case24 65 190 TO 125.25 0.05
ConcreteActivityService.sk 13 28 2481 9011 TO 467.97 0.84
GuidanceService2.sk 2 27 715 2181 TO 498.14 0.29
ActivityService2.sk 10 27 1952 6867 TO 505.23 0.5
UserServiceImpl.sk 8 32 1509 5009 TO 511.09 0.33
or-100-10-4-UC-60 200 500 TO 608.86 0.05
02A-2 3857 15028 TO 1063.67 0.05
LoginService2.sk 23 36 11511 41411 TO 1127.36 2.96
17.sk 3 45 10090 27056 TO 1299.15 1.69
diagStencil.sk 35 36 319730 1774184 TO 2188.19 112.52
tableBasedAddition.sk 240 1024 1026 961 TO TO 2.17
blasted squaring9 1434 5028 TO TO 5.04
blasted TR b12 1 linear 1914 6619 TO TO 259.3

Table 1. Table of Comparison between SparseCount, SparseCount2, and ApproxMC3

solver [26]. Therefore, the difference in the performance of the algorithms is
primarily due to the number of SAT calls and the formulas over which the SAT
solver is invoked. Furthermore, our empirical conclusions do not change even
using the older versions of CryptoMiniSat.

We conducted experiments on a wide variety of publicly available benchmarks.
Our benchmark suite consists of 1896 formulas arising from probabilistic infer-
ence in grid networks, synthetic grid structured random interaction Ising models,
plan recognition, DQMR networks, bit-blasted versions of SMTLIB benchmarks,
ISCAS89 combinational circuits, and program synthesis examples. Every experi-
ment consisted of running a counting algorithm on a particular instance with a
timeout of 4500 seconds. The experiments were conducted on a high-performance
cluster, where each node consists of E5-2690 v3 CPU with 24 cores and 96GB of
RAM. We set ε = 0.8 and δ = 0.2 for all the tools.

The objective of our empirical study was to seek answers to the following
questions:

1. How does SparseCount compare against SparseCount2 in terms of runtime
performance?

2. How does SparseCount2 perform against ApproxMC3 in terms of runtime?
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Overall, we observe that SparseCount2 significantly outperforms SparseCount.
On the other hand, ApproxMC3 outperforms SparseCount2 with a mean speedup
of 568.53×.

Our conclusions are surprising and stand in stark contrast to the widely held
belief that the current construction of sparse XORs by Zhao et al. [32] and Ermon
et al. [11] lead to runtime improvement [1,20,19].

Figure 1 shows the cactus plot for SparseCount, SparseCount2, and ApproxMC3.
We present the number of benchmarks on x−axis and the time taken on y−axis.
A point (x, y) implies that x benchmarks took less than or equal to y seconds
for the corresponding tool to execute. We present a runtime comparison of
SparseCount2 vis-a-vis SparseCount and ApproxMC3 in Table 1. Column 1 of this
table gives the benchmark name while column 2 and 3 list the number of variables
and clauses, respectively. Column 4, 5, and 6 list the runtime (in seconds) of
SparseCount, SparseCount2 and ApproxMC3, respectively. Note that “TO” stands
for timeout. For lack of space, we present results only on a subset of benchmarks.
The detailed logs along with list of benchmarks and the binaries employed to run
the experiments are available at http://doi.org/10.5281/zenodo.3792748

We present relative comparisons separately for ease of exposition and clarity.

5.1 SparseCount vis-a-vis SparseCount2

As shown in Figure 1, with a timeout of 4500 seconds, SparseCount could only fin-
ish execution on 90 benchmarks while SparseCount2 completed on 379 benchmarks.
Note that SparseCount2 retains the same theoretical guarantees of SparseCount.

Fig. 1. Cactus plot of runtime performance (best viewed in color)

http://doi.org/10.5281/zenodo.3792748
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For a clear picture of performance gain achieved by SparseCount2 over
SparseCount, we turn to Table 1. Table 1 clearly demonstrates that SparseCount2
outperforms SparseCount significantly. In particular, for all the benchmarks where
both SparseCount and SparseCount2 did not timeout, the mean speedup is 10.94×.

Explanation The stark difference in the performance of SparseCount and
SparseCount2 is primarily due to a significant reduction in the number of SAT calls
in SparseCount2. Recall, SparseCount invokes the underlying SAT solver O(n log n)
times while SparseCount invokes the underlying SAT solver only O(log2 n) times.
As discussed above, such a difference was achieved due to the usage of prefix-slices.

5.2 ApproxMC3 vis-a-vis SparseCount2

With a timeout of 4500 seconds, SparseCount2 could only finish execution on 379
benchmarks while ApproxMC3 finishes execution on 1169 benchmarks. Further-
more, Table 1 clearly demonstrates that ApproxMC3 significantly outperforms
SparseCount2. In particular, for all the formulas where both SparseCount2 and
ApproxMC3 did not timeout, the mean speedup is 568.53×. In light of recent
improvements in CryptoMiniSat, one may wonder if the observations reported
in this paper are mere artifacts of how the SAT solvers have changed in the
past few years and perhaps such a study on an earlier version of CryptoMiniSat
may have led to a different conclusion. To account for this threat of validity, we
conducted preliminary experiments using the old versions of CryptoMiniSat and
again observed that similar observations hold. In particular, the latest improve-
ments in CryptoMiniSat such as BIRD framework [26,25] favor SparseCount and
SparseCount2 relatively in comparison to ApproxMC3.

Explanation The primary contributing factor for the difference in the runtime
performance of SparseCount2 and ApproxMC3 is the fact that weaker guarantees
for the variance of Cnt〈i〉 necessitates the usage of Stockmeyer’s trick of usage of
the amplification technique wherein the underlying routines are invoked over ψ
instead of ϕ. Furthermore, the weak theoretical guarantees also lead to a larger
value of T as compared to its analogous parameter in ApproxMC3. It is worth
noticing that prior work on the design of sparse hash function has claimed that
the usage of sparse hash functions leads to runtime performance improvement of
the underlying techniques. Such inference may perhaps be drawn based only on
observing the time taken by a SAT solver on CNF formula with a fixed number
of XORs and only varying the density of XORs. While such an observation does
indeed highlight that sparse XORs are easy for SAT solvers, but it fails, as has
been the case in prior work, to take into account the tradeoffs due to the weakness
of theoretical guarantees of sparse hash functions. To emphasize this further,
the best known theoretical guarantees offered by sparse XORs are so weak that
one can not merely replace the dense XORs with sparse XORs. The state of the
art counters such as ApproxMC3 require stronger guarantees than those known
today.
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6 Conclusion

Hashing-based techniques have emerged as a promising paradigm to attain
scalability and rigorous guarantees in the context of approximate model counting.
Since the performance of SAT solvers was observed to degrade with an increase
in the size of XORs, efforts have focused on the design of sparse XORs. In this
paper, we performed the first rigorous analysis to understand the theoretical and
empirical effect of sparse XORs. Our conclusions are surprising and stand in
stark contrast to the widely held belief that the current construction of sparse
XORs by Zhao et al. [32] and Ermon et al. [11] lead to runtime improvement.
We demonstrate that the theoretical guarantees offered by the construction
as mentioned earlier are still too weak to be employed in the state of the
art approximate counters such as ApproxMC3. Furthermore, the most efficient
algorithm using sparse XORs, to the best of our knowledge, still falls significantly
short of ApproxMC3 in runtime performance. While our analysis leads to negative
results for the current state of the art sparse construction of hash functions, we
hope our work would motivate other researchers in the community to investigate
the construction of efficient hash functions rigorously. In this spirit, concurrent
work of Meel r© Akshay [21] proposes a new family of hash functions called
concentrated hash functions, and design a new family of sparse hash functions of
the form Ay+b wherein every entry of A[i] is chosen with probability pi ∈ O( lognn ).
Meel r© Akshay propose an adaption of ApproxMC3 that can make use of the
newly designed sparse hash functions, and in turn, obtain promising speedups on
a subset of benchmarks.
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