From Weighted to Unweighted Model Counting * ' ¥

Supratik Chakraborty
Indian Institute of Technology,
Bombay

Abstract

The recent surge of interest in reasoning about
probabilistic graphical models has led to the de-
velopment of various techniques for probabilistic
reasoning. Of these, techniques based on weighted
model counting are particularly interesting since
they can potentially leverage recent advances in un-
weighted model counting and in propositional sat-
isfiability solving. In this paper, we present a new
approach to weighted model counting via reduc-
tion to unweighted model counting. Our reduction,
which is polynomial-time and preserves the normal
form (CNF/DNF) of the input formula, allows us
to exploit advances in unweighted model counting
to solve weighted model counting instances. Exper-
iments with weighted model counters built using
our reduction indicate that these counters performs
much better than a state-of-the-art weighted model
counter.

1 Introduction

Probabilistic reasoning on graphical models has seen an un-
wavering interest in recent years, with compelling applica-
tions from diverse domains like medical diagnostics, behav-
ioral studies, natural language processing and the like [Getoor
and Taskar, 2007]. Several computational techniques have
therefore been developed to address problems that arise in
reasoning about probabilistic graphical models [Koller and
Friedman, 2009]. One such important problem is that of prob-
abilistic inference, wherein we are given a graphical model
describing conditional dependencies between variables of in-
terest, and we are required to compute the conditional prob-
ability of an event, i.e. valuations of a subset of variables,
given some evidence in the form of valuations of another

*The author list has been sorted alphabetically by last name; this
should not be used to determine the extent of authors’ contributions.

TThe full version is available at http://www.cs.rice.
edu/CS/Verification/Projects/CUSP/

*This work was supported in part by NSF grants CNS 1049862, CCF-1139011,
by NSF Expeditions in Computing project "EXCAPE: Expeditions in Computer Aug-
mented Program Engineering”, by BSF grant 9800096, by a gift from Intel, by a grant

from the Board of Research in Nuclear Sciences, India, Data Analysis and Visualization
Cyberinfrastructure funded by NSF under grant OCI-0959097.

Dror Fried, Kuldeep S. Meel, Moshe Y. Vardi

Department of Computer Science,
Rice University

subset of variables. It is known [Cooper, 1990; Roth, 1996;
Chavira and Darwiche, 2008] that there is a deep connec-
tion between probabilistic inference and computing the ag-
gregate weight of all models (or satisfying assignments) of
a weighted propositional formula. Owing to the spectacular
and sustained improvements in the capabilities of modern
tools for propositional satisfiability solving and model count-
ing [Belov et al., 2014; Thurley, 20061, probabilistic infer-
ence via weighted model counting promises to be a strong
alternative to other probabilistic inference techniques, such
as variable elimination, belief propagation, and the like. This
motivates investigating further the problem of computing ag-
gregate weights of models of propositional formulas.

Given a propositional formula and a weight function that
assigns a non-negative weight to every assignment of val-
ues to variables, weighted model counting (henceforth WMC)
concerns summing weights of assignments that satisfy the
formula. If every assignment has weight 1, the corresponding
problem is often simply called model counting; for clarity of
presentation, we use unweighted model counting (henceforth
UMC) to denote this variant of the problem.

Both UMC and WMC have been extensively studied in the-
oretical and practical contexts. UMC for propositional for-
mulas in both conjunctive normal form (CNF) and disjunc-
tive normal form (DNF) were shown to be #P-complete in
[Valiant, 1979]. Subsequently, #P-completeness of WMC for
CNF formulas was stated in [Roth, 1996].

On the practical front, both UMC and WMC have appli-
cations in diverse areas even beyond probabilistic reasoning,
viz. network reliability estimation, statistical physics, pro-
gram synthesis and system verification [Roth, 1996; Sang
et al., 2004; Domshlak and Hoffmann, 2007; Xue et al.,
2012]. Several tools and algorithms for model counting, in
both the weighted and unweighted settings, have therefore
been proposed in the recent past [Bayardo and Schrag, 1997,
Darwiche, 2004; Sang e al., 2005; Thurley, 2006].

Many applications, including probabilistic inference, of
WMC arising from real-world can be expressed by a literal-
weighted representation, in which the weight of an assign-
ment is the product of weights of its literals [Chavira and
Darwiche, 2008]. We use this representation throughout this
paper, and use literal-weighted WMC to denote the corre-
sponding WMC problem. Note that literal-weighted WMC
problems for both CNF and DNF formulas arise in real-life

applications; e.g., DNF formulas are used in problems arising
from probabilistic databases [Dalvi and Suciu, 20071, while
CNF is the de-facto form of representation for probabilistic-
inference problems [Chavira and Darwiche, 2008].

Recent approaches to WMC have focused on adapting
UMC techniques to work in the weighted setting [Sang et al.,
2005; Choi and Darwiche, 2013; Chakraborty et al., 2014al.
Such adaption requires intimate understanding of the imple-
mentation details of the UMC techniques, and on-going main-
tenance, since some of these techniques evolve over time.
In this paper, we flip this approach and present an efficient
reduction of literal-weighted WMC to UMC. The reduction
preserves the normal form of the input formula, i.e. it pro-
vides the UMC formula in the same normal form as the in-
put WMC formula. Therefore, an important contribution of
our reduction is to provide a WMC-to-UMC module that al-
lows any UMC solver, viewed as a black box, to be converted
to a WMC solver. This enables the automatic leveraging of
progress in UMC solving to progress in WMC solving.

We have implemented our WMC-to-UMC module on top
of state-of-the-art exact unweighted model counters to obtain
exact weighted model counters for CNF formulas with literal-
weighted representation. Experiments on a suite of bench-
marks indicate that the resulting counters scale to signifi-
cantly larger problem instances than what can be handled
by a state-of-the-art exact weighted model counter [Choi and
Darwiche, 2013]. Our results suggest that we can leverage
powerful techniques developed for SAT and related domains
in recent years to handle probabilistic inference queries for
graphical models encoded as WMC instances. Furthermore,
we demonstrate that our techniques can be extended to more
general representations where weights are associated with
constraints instead of individual literals.

The remainder of the paper is organized as follows. We
introduce notation and preliminaries in Section 2, and dis-
cuss related work in Section 3. We present our main techni-
cal contribution — a polynomial-time reduction from WMC
to UMC — in Section 4. Using our reduction, we have imple-
mented a literal-weighted exact model counter module called
WeightCount. In Section 5, we present results of our exper-
iments using WeightCount on top of state-of-the-art UMC
solvers, and compare them with SDD - a state-of-the-art ex-
act weighted model counter. We then demonstrate, in Sec-
tion 6, that our reduction can be extended to more general rep-
resentation of associating weights with constraints. Finally,
we discuss future work and conclude in Section 7.

2 Notation and Preliminaries

Let F' be a Boolean formula and let X be the set of variables
appearing in F'. For a variable x € X, we denote the assign-
ment of x to true by x! and the assignment of z to false by
20, A satisfying assignment or a witness of F is an assignment
of variables in X that makes F' evaluate to true. We denote
the set of all witnesses of ' by Rp. If o is an assignment of
variables in X and x € X, we use o(z) to denote the value
assigned to z in o. For notational convenience, whenever the
formula F' is clear from the context, we omit mentioning it.
As mentioned earlier, we focus on literal-weighted WMC,

in which weights are assigned to literals, and the weight of an
assignment is the product of weights of its literals. For a vari-
able z of F' and a weight function W (-), we use W (z') and
W (:CO) to denote the weights of the positive and negative lit-
erals, respectively. Adopting terminology used in [Sang ef al.,
2005], we assume that every variable x either has an indiffer-
ent weight, i.e. W (z") = W (a') = 1, or a normal weight,
ie. W(a%) =1—W(a'), where 0 < W (z') < 1. This as-
sumption stands well, as many real-world applications, and in
particular probabilistic inference, can be efficiently reduced
to literal-weighted WMC where every variable has either in-
different or normal weight [Chavira and Darwiche, 2008]. For
notational convenience, henceforth whenever we say “literal-
weighted WMC”, we mean literal-weighted WMC with indif-
ferent or normal weights of variables. Note that having a vari-
able with a normal weight of W (z') = 1 (resp. W (z') = 0)
makes the variable z redundant for WMC, since in this case
only assignments o with o(z) = true (resp. o(z) = false)
can contribute to the total weight. Thus, we can assign true
(resp. false) to x without changing the overall weight of mod-
els of the formula. This suggests that we can further assume
0 < W (z') < 1 for every variable z with a normal weight.

To avoid notational clutter, we overload W (-) to denote
the weight of a literal, assignment or formula, depending on
the context. Given a set Y of assignments, we use W (Y') to
denote) .y W(c). Given a formula F', we use W (F) to
denote), W(0). For example, the formula F' = (71 +
—9) has two satisfying assignments: oy = (z1 : true, xs :
false), and o9 = (z1 : false, xo : true). Thus, we have
W(o1) = W(zl) - W(23) and W(o2) = W (29) - W (x3).
The weight of F, or W (F), is then W (o1) + W (o3).

For every variable z; with normal weight, we assume that
W(:cll) which is a positive fraction, is specified in binary
using m; bits. Without loss of generality, the least significant
bit in the binary representation of W(a:ll) is always taken to
be 1. Thus, the rational decimal representation of W(xll) is
k;/2™i, where k; is an odd integer in {1,...2™i — 1}. It
follows that W (2?) is (2™ — k;)/2™:. Let Np denote the
set of indices of variables in X that have normal weights, and
let m = Z;enem;. Let Cp = HieNF 2™ = 27" Note
that W (o) /CF is a natural number for every assignment o;
hence W (F') /C is a natural number as well.

An instance of literal-weighted WMC can be defined by a
pair (F,W(-)), where F' is a Boolean formula, and W () is
the weight function for literals. Given (F, W (-)), a weighted
model counter returns W (F').

Our work uses a special class of Boolean formulas, called
chain formulas, that are inductively defined as follows. Ev-
ery literal (i.e., a variable or its complement) is a chain for-
mula. In addition, if [is a literal and ¢ is a chain formula
in which neither ! nor —{ appears, then (I V) and (I A)
are also chain formulas. Note that chain formulas can be rep-
resented as I; Cy (I Ca (+ -+ (ly—1 Cr—11p) -+)), where the
[;’s are literals and every C} is either the connector “V” or the
connector “A”. It is easy to see from De Morgan’s laws that
if ¢ is a chain formula, then so is —p.

3 Related Work

Theoretical investigations into the problem of model count-
ing were initiated by Valiant, who first showed that UMC
is #P-complete for both CNF and DNF formulas [Valiant,
1979]. Subsequently, Roth asserted that probabilistic infer-
ence is #P-complete, which by a known connection with
WMC [Cooper, 1990; Chavira and Darwiche, 2008], implies
that WMC is also #P-complete for both CNF and DNF for-
mulas [Roth, 1996].

On the practical side, the earliest efforts at WMC such as
CDP [Birnbaum and Lozinskii, 1999] were inspired from
DPLL-style SAT solvers and consisted of incrementally
counting the number of solutions after a partial solution was
found. Subsequently, heuristics such as component caching,
clause learning, no-good learning and the like improved upon
the initial approach and ensuing counters such as Relsat [Ba-
yardo and Schrag, 1997], Cachet [Sang et al., 2004], and
sharpSAT [Thurley, 2006] have been shown to scale to larger
formulas. These approaches were later manually adapted for
WMC in Cachet [Sang ef al., 2005].Again, alternative ap-
proaches based on BDDs and their variants [Lobbing and
Wegener, 1996; Xue et al., 2012] have also been proposed
for UMC. Similar to SAT-based approaches, the resulting
solvers have also been manually adapted for WMC, resulting
in solvers like SDD [sdd, 2014].

In this paper, we adopt a different approach and propose
to solve WMC by reducing it to UMC. Our key contribu-
tion lies in showing that this reduction is efficient and ef-
fective, thereby making it possible to solve weighted model
counting problems using any unweighted model counter as
a black-box. Our reduction makes use of chain formulas to
encode each weighted variable. Interestingly, these formulas
can be viewed as adaptations of switching circuits proposed
by [Wilhelm and Bruck, 2008] in the context of stochas-
tic switching networks. Chain formulas are also reminis-
cent of the log-encoding approach of encoding variables with
bounded domains in the CSP literature [Eén and Sérensson,
2006; Frisch et al., 2006; Gavanelli, 2007; Huang, 2008;
Walsh, 2000]. Indeed, a chain formula encoding a variable
with weight k/2™ is logically equivalent to the constraint
(X > 2™ — k), where X is an unsigned integer represented
using m boolean variables, as described in [Gavanelli, 2007;
Walsh, 2000]. The use of log-encoding for exact counting
weighted models of Boolean formulas is novel, to the best
of our knowledge.

4 From Literal-weighted WMC to UMC

In this section, we first show how chain formulas can be used
to represent normal weights of variables. We then present two
polynomial-time reductions from WMC to UMC using chain
formulas. These constitute the key technical contributions of
the paper. These reductions, though related, are motivated by
the need to preserve different normal forms (CNF and DNF)
of the input formula. Finally, we discuss the optimality of
our reductions with respect to number of variables in the un-
weighted formula.

Representing Weights using Chain Formulas

The central idea of our reduction is the use of chain formulas
to represent weights. Let m > 0 be a natural number, and
k < 2™ be a positive odd number. Let ¢yco - - - ¢, be the m-
bit binary representation of k, where ¢, is the least significant
bit. We then construct a chain formula ¢y, ,,, (-) on m variables
ai,...an as follows. Forevery j in {1,...m — 1}, let C; be
the connector “V” if ¢; = 1, and the connector “A” if ¢; = 0.
Define

SDk,m(ah s am) =a,C; (02 02(' " (am—1 Cr-1 am) s))

For example, consider ¥ = 5 and m = 4. The bi-
nary representation of 5 using 4 bits is 0101. Therefore,
©s5.4(a1,a2,as3,a4) = a1 A (a2 V (ag A aq)). We first show
in Lemma 1 that ¢y ,,,(-) has exactly k satisfying assign-
ments. Next, as a simple application of the distributive laws
of Boolean algebra, Lemma 2 shows that every chain formula
can be efficiently represented in both CNF and DNF.

Lemma 1. Let m > 0 be a natural number, k < 2™ , and
©k,m as defined above. Then |y, | is linear in m and @i, m,
has exactly k satisfying assignments.

Proof. By construction, ¢y m (a1, - - - an,) is of size linear in
m. To prove that ¢y (a1, - @) has exactly k satisfying
assignments, we use induction on m. The base case (m = 1)
is trivial. For m > 1, let ¢y - - - ¢y, represent the number
k' in binary, and assume that asC5 (- - - (am—1Cm—1am))
has exactly k' satisfying assignments. If ¢; is 0, then
on one hand ¥ = k', and on the other hand C; is
the connector “A”. Therefore, g m (a1, -am) is a1 A
(a2Cs(- -+ (am—1Cm—1am) -+)), which has k' = Fk sat-
isfying assignments. Otherwise, if ¢; is 1, then on one
hand £ = 2™ ! 4+ k/, and on the other hand C; is
the connector “V”. Therefore, ¢y (a1, -am) is a1 V
(a205(-+ (@m—1Cm_1aGm) -+)), which has 2"~ + k' = k
satisfying assignments. This completes the induction. O

Recall from Section 2 that N denotes the set of indices
of normal-weighted variables in F. For i in N, let W (z}) =
k; /2™, where k; is a positive odd number less than 2. Ad-
ditionally, let {x; 1, ... Z; m, } be a set of m; “fresh” variables
(i.e. variables that were not used before) for each ¢ in Np. We
call the chain formula ¢y, , (Ti1 - Zim,), the represen-
tative formula of x;. For notational clarity, we simply write
©k,,m; when the arguments of the representative formula are
clear from the context.

Lemma 2. Every chain formula v on n variables is equiva-
lent to a CNF (resp., DNF) formula 1N (resp., 1)°NF) hav-
ing at most n clauses. In addition, |vy*NF| (resp., |yPNF|) is in

O(n?).

Proof. We first prove the CNF case and then obtain a simi-
lar proof for DNF. The proof is by induction on n. The base
case (n = 1) is trivial. To prove the induction step, we con-
sider two cases. First, assume that 1 is [; V ¢, where ¢ is
a chain formula on n — 1 variables. By the induction hy-
pothesis, ¢ is equivalent to a CNF formula ¢“NF. Let ¢“NF
be given by (41 A ---¢,—_1), where each ¢, is a disjunc-
tion of literals. Then, ¢ is equivalent to I; V (¢1 A« -+ ¢p—1).

Distributing “V” over “A”, we get the equivalent formula
(i V1) A---(li V dn—1). Since each ¢; is a disjunction of
literals, so is (I; V ¢;). Therefore, (I; V¢1)A--- (l; V ¢pr—1) is
the desired CNF formula 1)“NF. Next, assume that ¢ is [; A ¢,
where ¢ is a chain formula on n — 1 variables. By the in-
duction hypothesis, ¢ is equivalent to a CNF formula ¢“NF. It
follows immediately that I; A¢“NF is the desired CNF formula
pNF. To see why |¢NF| is in O(n?), recall that a variable
can appear only once (in negated or un-negated form) in a
chain formula. Therefore, NP as constructed above has at
most n clauses, each with at most n literals.

The proof for DNF is very similar to the above one. Again,
the proof is by induction on n. The base case (n = 1) is triv-
ial. To prove the induction step, we consider two cases. First,
assume that v is [; A ¢, where ¢ is a chain formula on n — 1
variables. By the induction hypothesis, ¢ is equivalent to a
DNF formula ¢PNF. Let ¢PNF be given by (¢1 V -+ 1),
where each ¢; is a conjunction of literals. Then, 1) is equiv-
alent to I; A (¢1 V - - - ¢,—1). Distributing “A” over “V”, we
get the equivalent formula (I; A ¢1) V -+ (I; A ¢p—1). Since
each ¢; is a conjunction of literals, so is (li A qﬁj). Therefore,
(I A1) V -+ (i A pr—1) is the desired DNF formula 1PN
Next, assume that) is [; V ¢, where ¢ is a chain formula
on n — 1 variables. By the induction hypothesis, ¢ is equiv-
alent to a DNF formula ¢PNF. Tt follows immediately that
I; A ¢PNF is the desired DNF formula ¢/°NF. Again, as ev-
ery variable can appear only once (in negated or un-negated
form) in a chain formula,)PNF as constructed above has at
most n clauses, each with at most n literals. Therefore |¢)PNF|
is in O(n?). O

Polynomial-time Reductions

We now present two reductions from literal-weighted WMC
to UMC. Since weighted model count is a real number in
general, while unweighted model count is a natural number,
any reduction from WMC to UMC must use a normaliza-
tion constant. Given that all literal weights are of the form
k;/2™i, a natural choice for the normalization constant is
Cr = Il Ny 27" Theorem 1la gives a transformation
of an instance (F, W (-)) of literal-weighted WMC to an un-

weighted Boolean formula F' such that W(F) = Cp - |R 5
This reduction is motivated by the need to preserve CNF form
of the input formula. We may also allow an additive correc-
tion term when doing the reduction. Theorem 1b provides a
transformation of (F, W (-)) to an unweighted Boolean for-
mula F such that W (F) = Cp - |Rj| — 2" + 2"~ INFI. The
motivation for this reduction comes from the need to preserve
DNF form of the input formula. Both reductions take time
linear in the size of F' and in the number of bits required to
represent the weights of normal-weighted variables in F'.

Note that since Cp = 2~™, computing Cr - | R | (respec-
tively, Cr - | Rjz|) amounts to computing |R | (respectively,
|R13\), which is an instance of UMC, and shifting the radix
point in the binary representation of the result to the left by
m positions.

Theorem 1. Let (F, W (-)) be an instance of literal-weighted
WMC, where F has n variables. Then, we can construct in

linear time the following unweighted Boolean formulas, each
of which has n+ m variables and is of size linear in |F'| + m.

(a) F such that W(F) = Cr - |Rp|.
(b) F such that W(F)=Cp- |RF| —2". (1 - 2*|NF|)

Proof. Let X = {x1, - ,x,} be the set of variables of F.
Without loss of generality, let Nz = {1,---7} be the set
of indices of the normal-weighted variables of F'. For each
normal-weighted variable x;, let ¢k, m, (i1, - Tim,;) be
the representative formula, as defined above. Let Q = (z; <
Plyyma) Ao A Tr < Pk m,)- N

Proof of part (a): We define the formula I’ as follows.

F=FAQ

Recalling m = 3, y, ™, it is easy to see that F
has n + m, variables. From Lemma 1, we know that
Okym; (i1, - Tim,) 1s of size linear in m;, for every 7 in
Nr. Therefore, the size of € is linear in 172, and the size of F
is linear in | F'| + m.

We now show that W (F) = Cr-|Rg|. Let W/(-) be a new
weight function, defined over the literals of X as follows. If
x; has indifferent weight, then W' (29) = W’ (z}) = 1. If z;
has normal weight with W (z}) = k;/2™¢, then W' (z}) =
k; and W' (2?) = 2™ — k;. By extending the definition of
W'(-) in a natural way (as was done for W(-)) to assign-
ments, sets of assignments and formulas, it is easy to see that
W(F) = W'(F) - [Lien, 27" = W(F) - Cr.

Next, for every assignment o of variables in X, let 0! =
{i € Np | o(x;) = true} and 0° = {i € Np | o(x;) =
false}. Then, we have W' (o) = [[;co1 ki [[ic00 (2™ — Ki).

~

Let o be an assignment of variables appearing in F'. We say
that & is compatible with o if for all variables x; in X, we
have 7(z;) = o(x;). Observe that & is compatible with ex-
actly one assignment, viz. o, of variables in X . Let S, denote
the set of all satisfying assignments of F' that are compati-
ble with 0. Then {S,|0c € Rp} is a partition of Rz. From
Lemma 1, we know that there are k; witnesses of ¢y, ,, and
2 — k; witnesses of ~py, . Since the representative for-
mula of every normal-weighted variable uses a fresh set of
variables, we have from the structure of F that if o is a wit-
ness of F', then |S, | = [[;c,1 ki [[;c00 (27 — k). Therefore
|S,| = W'(o). Note that if o is not a witness of F', then there

are no compatible satisfying assignments of F ; hence S, = 0
in this case. Overall, this gives

Rpl = Y 1o+ D> 1Sol= > IS, +0=W'(F).
ocERp oZRp oc€ERR

It follows that W (F) = Cp - W/(F) = Cp -

completes the proof of part (a).

Proof of part (b): We define the formula F' as follows.

|Rp|. This

F=Q—>F

Clearly, F has n + m variables. Since the size of € is linear
in m, the size of F'is linear in |F'| + .

We now show that W (F) = Cp+|Rp| —2"- (1 —27INrl),
First, note that £ is logically equivalent to ~2 V (F A Q) =
=) V F, where F' is as defined in part (a) above. Since

F and —() are mutually inconsistent, it follows that |R |
is the sum of |Rz| and the number of satisfying assign-

ments (over all variables in F‘) of —{). By definition, 2
does not contain any variable in X \ Np. Hence, the num-
ber of satisfying assignments (over all variables in F) of
- is 2"Vl . |R_q|. To calculate |R_gq|, observe that
|R($i<ﬂ,kivmi)| = 2™, and the sub-formulas (z; <> ¥k, m,)
and (x; <> @x;,m,) have disjoint variables for i # j. There-
fore, |Ro| = [[;cn, 2™ = 2™, and |R-q| = 2™ FINrl 2™
= 2™ . (2INrl 1), From part (a) above, we also know that
|Rp| = W(F)/Cp.Hence, |R;| = |[Rp| + 2"~ N7l |R g
= W(F)/Cp + 2"*t™ . (1 — 27INrl), Rearraging terms,
we get W(F) = Cp - (|Rp| —27+™ - (1 — 27INr1)). Since
Cp =2"™ weobtain W(F) = Cp-|R;s|—2"-(1—-27INrl),
This completes the proof of part (b). U

Preservation of Normal Forms

The representative formula of a normal-weighted variable is
a chain formula, which is generally neither in CNF nor in
DNF. Therefore, even if the input formula F' is in a normal
form (CNF/DNF), the formulas F and F in Theorem 1 may
be neither in CNF nor in DNF. We ask if our reductions can
be adapted to preserve the normal form (CNF/DNF) of F.
Theorem 2 answers this question affirmatively.

Theorem 2. Let (F, W (-)) be an instance of literal-weighted
WMC, where F is in CNF (resp., DNF) and has n vari-
ables. We can construct in polynomial time a CNF (resp.,
DNF) formula F* such that W(F) = Cp - |Rp«| (resp.,
Cp - |Rp+| — 2™ - (1 — 27 IN®1)), Moreover, F* has n + m
variables and its size is linear in (|F| + 37, n, m3).
Proof. We first prove the case of I’ in CNF. To this end, we
first show that {2 obtained in the proof of Theorem 1 can be
transformed to a CNF formula Q“NF. Transform € by replac-
ing every sub-formula (x; <> @k, m,) in F with the equiva-
lent sub-formula (—z; VoM,) A (25 V (=@k; m,)NF). Note
that since @y, m, is a chain formula, so is Pk, m, Hence,
by Lemma 2, —¢y, m, can be transformed into an equiva-
lent CNF formula (=g, mn,)“NT. We can obtain QNP (in
CNF) by distributing V over A in each of (—z; V ¢SNF) and

ki,m;

(25 V (m¢k; m;)NF). Finally F* is simply F' A Q°NF. Since
F* is semantically equivalent to F', we have |Rp-| = |Rp|.
From Theorem 1, we also know that W(F) = Cp - |Rg|.
Therefore, W(F) = Cp - |Rp«|. From the above construc-
tion, and from Lemma 2 and Theorem 1, it is also easy to
see that |F*| is linear in (|[F| + Y, y, m7). Moreover, F'*
has exactly the same variables as F. Hence, F'* has n + m
variables.

Next, we show how to construct in polynomial time a DNF

formula if F is in DNF. We first observe that £ obtained
in Theorem 1 can be rewritten as —{2 VV F'. Since {2 can be

transformed to Q°NF, we have =QNF in DNF. Therefore F*
is simply (—QNF) v F. Since F* is semantically equiva-
lent to F', we have |Rp.| = |R;|. From Theorem 1, we
know that W(F) = Cg(|Rp| — 2™t + 2™). Therefore,
W(F) = Cp(|Rp+| — 2™+" 4 2™). Again, from the above
construction, and from Lemma 2 and Theorem 1, it is also
easy to see that |F'*| is linear in (|[F| + Y, y, m7). More-
over, F'* has exactly the same variables as F. Hence, I'* has
n -+ M variables. O]

Optimality of Reductions

We now ask if there exists an algorithm that reduces literal-
weighted WMC to UMC and gives unweighted Boolean for-
mulas that have significantly fewer variables than F' or F.
We restrict our discussion to reductions that use C'r as a nor-
malization constant, and perhaps use an additive correction
term D(n, W(-)) that is agnostic to F, and depends only on
the number of variables in F' and on the weight function. An
example of such a term is —2" - (1 — 2~!Nr 1) used in Theo-
rem 1b, where N can be determined from W (-) by querying
the weights of individual literals.

Theorem 3. Let Reduce(-) be an algorithm that takes as in-
put an instance (F, W (-)) of literal-weighted WMC, and re-

turns an unweighted Boolean formula F' such that W(F') =
Cr-|Rg|4+ D(n,W(-)), where D(,-) is a real-valued func-
tion and n is the number of variables in F. Then I has at
leastn — 1 + m — 2|Np| variables.

Observe that the number of variables in £ and F' in The-
orem 1 differ from the lower bound given by Theorem 3 by
2|Np| 4 1, which is independent of n as well as the number
of bits () used to represent weights.

Proof. We first show that D(-,-) must always be non-
positive. Otherwise, suppose D(n, W(-)) > 0. Consider the
instance (G,W(-)) of literal-weighted UMC, where G =
G1NGo, where G1 = x1 A—x1 and Go = 2o AT3 A ... ATy,
Since G is unsatisfiable, W (G) = 0. However, G - [Rg| +
D(n, W (-)) is positive for every G that Reduce(G, W (-))
may generate. This gives a contradiction; hence D(-, -) must
be non-positive.

Now, let F be the formula (z; A 2o - A x,) A

—(Zpp1 A ---2y,), where Np = {1,2,...r}. Further-
more, let W(xll) = 27;:,;1, for every ¢ in Np. Clearly,
W(F)=2""7"=1) [lien, % Factoring out Cp, i.e.

[Licn, 2™ we get W(F) = Cp- (27" ~1) TL1ey, (27—
1). In order to have W (F) = CF - |Rg| 4+ D(n,W(-)), we

1) [Lien, (2™ = 1) - D(n(l“;[/(-))
nesses of F. Since D(-,+) <0, we need at least (2" — 1) -
[Lien, (2™ —1) witnesses of F.In other words, F must have
atleast [log, ((2"7"—1) [[;c . (2™ —1))] variables. Noting
that 7 = |[Np|and 2™ — 1 > 2™~ ! for all m > 1, we con-
clude that F' must have at least n— | N | — 14> en, (mi—1)
variables. Rearranging terms, we get the desired lower bound
on the number of variables.

must have (2"~ — wit-

Every Boolean formula in } ;5. (m; — 1) variables is
trivially of size Q(D_;c n,. mi). Now, assume that the algo-
rithm Reduce(F, W (-)) uses the input formula F' as a black
box. Then to ensure that W(F) = Cr - |[Rgz| + D(n, W(-)),

the formula F' generated by Reduce(F, W (-)) must have F
as a sub-formula. Otherwise, C'r - [Rz| + D(n, W (-)) will
be independent of Rr. However, this cannot happen since
W(F) = Cp - |Rz| + D(n,|Nrl|). Hence F' must have F' as
a sub-formula, and the size of F is at least as large as that of

F. Putting the above arguments together, the size of Fisin
QE| + Xien, mi)- 0

S Experimental Analysis

The construction outlined in the proof of Theorem 1 nat-
urally suggests an algorithm for solving WMC using a
UMC solver as a black-box. This is particularly important
in the context of weighted model counting, since state-of-
the-art unweighted model counters (viz. sharpSAT [Thur-
ley, 20061, DSharp [Muise er al., 2012]) scale to much
larger problem sizes than existing state-of-the-art weighted
model counters (viz. SDD [Darwiche, 2011]). To investi-
gate the practical advantages of using the reduction based
approach, we developed a literal-weighted model counter
module called WeightCount, that takes as input an instance
(F,W(-)) of literal-weighted WMC and reduces it to an in-
stance F* of UMC, as outlined in Theorem 1 and 2. The
WeightCount module then invokes an underlying state-of-
the-art exact UMC solver, to count the witnesses of F*. Fi-
nally, WeightCount computes Cr - |R%| as the weighted
model count of (F,W(-)). In our experiments we employed
both sharpSAT and DSharp as the underlying exact UMC
solver.

We conducted experiments on a suite of diverse CNF
benchmarks to compare the performance of WeightCount
with that of SDD. We also tried to compare our tool with the
weighted variant of Cachet [Sang er al., 20051, but despite ex-
tensive efforts, we have not been able to run this tool on our
system.! We focused on CNF formulas because of the avail-
ability of CNF model counters and the lack of DNF model
counters in the public-domain. The suite of benchmarks used
in our experiments consisted of problems arising from prob-
ablistic inference in grid networks, synthetic grid-structured
random interaction Ising models, plan recognition, DQMR
networks, bit-blasted versions of SMTLIB benchmarks, IS-
CAS89 combinational circuits with weighted inputs, and pro-
gram synthesis examples. We used a high performance cluster
to conduct multiple experiments in parallel. Each node of the
cluster had a 12-core 2.83 GHz Intel Xeon processor, with
4GB of main memory, and each of our experiments was run
on a single core. Note that normal weights of variables in
our benchmarks typically correspond to (conditional) prob-
abilities of events in the original problem from which the
benchmark is derived. To allow specification of probabilities

!"The weighted variant of Cachet is broken, and its authors have
acknowledged this and expressed their inability to fix the tool. We
tried fixing it ourselves and have communicated with several other
researchers in this respect, but to no avail.

with a precision of up to to two decimal places, we rounded
off the weights such that all weights were of the form & /2
(1 <4 < 7). A uniform timeout of 5 hours was used for all
tools in our experiments.

Table 1 presents the results of comparing the performances
of WeightCount and SDD on a subset of our benchmarks. 2
In this table, the benchmarks are listed in Column 1. Columns
2 and 3 list the number of variables and clauses, respectively,
for each benchmark. Columns 4 through 8 present our ex-
perimental observations on running WeightCount via either
sharpSAT or DSharp as UMC solvers. Specifically, columns 4
and 5 give the total number of variables and clauses of the un-
weighted formula obtained after applying our reduction. Note
that these numbers are larger than the corresponding numbers
in the original problem, since all normal-weighted variables
in the original problem have been replaced by their respec-
tive representative formulas. The run-time of WeightCount
via sharpSAT is the sum of the transform time taken to re-
duce a WMC instance to an instance of UMC, as presented
in Column 6, and the counting time taken by sharpSAT to
solve an instance of UMC, as presented in Column 7. The
run-time of WeightCount via DSharp is the sum of the trans-
form time as presented in Column 6, and and the counting
time taken by DSharp to solve an instance of UMC, as pre-
sented in Column 8. Finally, run-time for SDD to solve the
same instance of WMC is presented in column 9. A “-” in
a column indicates that the corresponding experiment either
did not complete within 5 hours or ran out of memory.

Overall, out of 79 benchmarks for which the weighted
model count could be computed by either SDD or
WeightCount, SDD timed/spaced out on 30 benchmarks,
WeightCount via sharpSAT timed out on 2 benchmarks, and
WeightCount via DSharp timed out on 11 benchmarks . Ta-
ble 1 clearly shows that on most benchmarks WeightCount
via either sharpSAT or DSharp outperformed SDD in terms
of running time by 1 to 3 orders of magnitude. Moreover,
WeightCount could generate weighted counts for a large
class of benchmarks for which SDD timed out. Thus, our re-
duction helps in solving instances of literal-weighted WMC
that are otherwise beyond the reach of a state-of-the-art
weighted model counter. Significantly, column 6 of Table 1
demonstrates that the overhead for reducing a WMC problem
to a UMC instance is very small. The comparison between
WeightCount via sharpSAT and WeightCount via DSharp is
interesting but beyond the scope of this work.

Overall, our experiments demonstrate that state-of-the-art
UMC solvers can be augmented with an implementation of
our reduction to obtain literal-weighted model counts on for-
mulas with tens of thousands of variables — problems that are
clearly beyond the reach of existing weighted model coun-
ters. Significantly, our approach requires no modification of
the implementation of the UMC solver, which can therefore
be treated as a black-box.

6 Beyond Literal Weights

While literal-weighted representation is typically employed
in applications of WMC, richer forms of representations of

2An extended version of Table 1 can be found in the appendix.

WeightCount SDD
Orig Orig Final Final | Transform | sharpSAT counting | DSharp counting | Qverall
Benchmark | #vars #clas #vars #claus time (s) time (s) time (s) time (s)
case_1_bl1_1 340 1026 550 1266 0.03 92.16 1059.82 64.3
s1196a_15_7 777 2165 867 2285 0.06 0.54 8.88 -
case 2 bl12.2 827 2725 917 2845 0.06 34.11 714.37 735.68
squaring1l 891 2839 981 2959 0.04 10.02 97.86 -
cliquen30 930 1800 2517 3821 0.11 300.86 - -
BN_63 1112 2661 1272 2853 0.04 0.68 8.68 -
BN_55 1154 2692 1314 2884 0.1 1.11 - -
BN_47 1336 3376 1406 3460 0.11 0.11 1.49 170.92
BN_61 1348 3388 1418 3472 0.05 0.2 1.77 157.88
squaring9 1434 5028 1524 5148 0.07 32.68 721.14 -
squaring16 1627 5835 1723 5963 0.07 - 2623.12 -
BN_43 1820 3806 2240 4286 0.34 8393.12 - -
BN_108 2289 8218 11028 19105 0.27 2.14 8.66 270.31
smokers_20 2580 3740 6840 8860 0.33 224.25 - -
treemax 24859 | 103762 | 26353 | 105754 1.5 3.93 338.16 -
BN_26 50470 | 93870 | 276675 | 352390 244.29 68.99 259.42 693.09

Table 1: Performance comparison of WeightCount vis-a-vis SDD

weights are increasingly used in a wide variety of applica-
tions. Of these, associating weights to constraints instead of
literals has been widely employed in probabilistic program-
ming, verification, and the like [Ver, 2015; Pfeffer, 2009]. For
example, Figaro, a popular probabilistic programming frame-
work, contains a construct called setConstraint that associates
weights with constraints. We now demonstrate that our tech-
niques can be generalized to handle such representations as
well.

Define ConstraintWMC to be a variant of WMC, wherein
the weight of an assignment is specified using a set of
constraints. Specifically, given a formula F, a set G =
(Gy,---G,) of Boolean constraints, and a weight function
W (-) over G, the weight of an assignment o is defined as the
product of the weights of constraints in G that are satisfied
by o. The weight of every constraint G; is assumed to be of
the form k; /2™, where k; is an odd integer between 1 and
2™i — 1. In case o satisfies none of the constraints in G, the
weight of o is defined to be 1. The ConstraintWMC problem
is to compute the sum of the weights of all witnesses of F.

By an extension of the reasoning used in the proof of
Theorem la, we can obtain an efficient reduction from
ConstraintWMC to UMC. We do not yet know how to pre-
serve the normal form of the input formula.

Theorem 4. Ler (F,G,W(:)) be an instance of
ConstraintWMC, where |G| = 1 and @g; m; (Ti1, " Tim,;)
is the chain formula that describes W (G;). Then by defining
F=FA(G — Okyomy) Ao AGr = Q. m,.), we get
a linear-time reduction from ConstraintWMC to UMC, such
that W(F) = Cg - |Rg|, where Cq = [[;_, 27 ™.

Proof. The proof is almost identical to the proof of Theo-
rem 1. Clearly, Fhasn + > i<r(ni +m;), variables. From
Lemma 1, we know that (Pki,m;(xi,la “+ - Tim,) is of size lin-
ear in m;, for every ¢ in N. Therefore, the size of F is linear

in (|F] + e, (1G] + ma).

We now show that W(F) = Cg - |[Rz|. Let W'(:) be a
new weight function, defined over the constraints G; of G
as follows. If W(G;) = k;/2™:, then W/(G;) = k;, and
W'(G;) = 2™i. We extend the definition of W’(-) in a nat-
ural way (as was done for W (-)) to assignments, sets of as-
signments and formulas. Note that for every assignment o for
the variables in X we have W(o) = W'(o) - [[,,27™
= W'(0) - Cg, and therefore we have W (F) = W/(F) - Cg.
In addition, for every assignment o of variables in X, Denote
by G(o) the set of indices of the constraints in G that satisfy
o.Then we also have W’(0) = [[;c (o) i HigG(o) 2™, Let

o be an assignment of variables appearing in F'. We say that
o is compatible with ¢ if for all variables x; in X, we have
o(x;) = o(x;). Observe that ¢ is compatible with exactly
one assignment, viz. o, of variables in X. Let S, denote the
set of all satisfying assignments of F' that are compatible with
0. Then {S;|o € Rp} is a partition of Rz. From Lemma 1,
we know that there are k; witnesses of @y, n,,. Since the rep-
resentative formula of every weighted constraintA uses a fresh
set of variables, we have from the structure of I that if o is
a witness to F then [S;| = [[,cq (o) ki [[i¢g (o) 2™ There-
fore |S,| = W'(0). Note that if o is not a witness of F', then
there are no compatible satisfying assignments of F’; hence
S, = () in this case. Overall, this gives

Rpl= " 18ol+ D 1Sel= Y IS, +0=W'(F).
oc€RF o¢Rp ocERFp

It follows that W(F) = Cg - W/(F) = Cg - |Rg|. Fi-

nally, note that C; = []/_;27™ = 27 2i<i<e ™ There-

fore, computing C¢ - |[Rz| amounts to computing |Rz| (an
instance of UMC) and shifting the radix point in the binary

representation of | R | left by (21 <i<p mi) positions. [

7 Discussion and Future Work

The recent surge of interest in probabilistic reasoning has pro-
pelled WMC to emerge as a key challenging problem. In this
paper, we presented new polynomial-time reductions from
WMC to UMC that preserve the normal form of the input for-
mula. This provides a framework that allows any UMC solver,
viewed as a black box, to be converted to a WMC solver. We
also showed that our approach leads to an efficient practical
algorithm for literal-weighted WMC for CNF formulas.

The proposed reductions open up new research directions.
While we focused on exact WMC in this paper, the com-
putational difficulty of exact inferencing in complex graph-
ical models has led to significant recent interest in approxi-
mate WMC [Chakraborty et al., 2014a]. Approximate WMC
concerns computing the weighted model count of a formula
within a specified multiplicative tolerance and with a desired
minimum confidence. In this context, it is worth noting that
the reduction proposed in Theorem la allows us to lift ap-
proximation guarantees from the unweighted to the weighted
setting for CNF formulas. Unfortunately, this is not the case
for the reduction proposed in Theorem 1b, which is required
for DNF formulas. The question of whether there exists an
approximation-preserving reduction from WMC to UMC that
also preserves DNF is open. The practical feasibility of solv-
ing approximate WMC problems by reducing them to their
unweighted counterpart, even in the case of CNF formu-
las, requires further detailed investigation. This is particu-
larly challenging since the current reductions introduce extra
variables, which is known to adversely affect XOR-hashing-
based state-of-the-art approximation techniques [Ermon et
al., 2014; Chakraborty et al., 2014b].

Another interesting direction of research is CNF/DNF-
preserving reductions from ConstraintWMC to UMC. Inves-
tigations in this direction can lead to improvements in both
modeling and inferencing techniques in probabilistic pro-
gramming frameworks. The design of practically efficient un-
weighted DNF model counters is also a fruitful line of re-
search, since our reduction allows us to transform any such
tool to a weighted DNF model counter.

References

[Bayardo and Schrag, 1997] R. J. Bayardo and R. Schrag.
Using CSP look-back techniques to solve real-world SAT
instances. In Proc. of AAAI pages 203-208, 1997.

[Belov er al., 2014] A. Belov, D. Diepold, M. J. Heule,
M. Jdrvisalo, et al. Proceedings of SAT competition. 2014.

[Birnbaum and Lozinskii, 1999] E. Birnbaum and E. L.
Lozinskii. The good old Davis-Putnam procedure helps
counting models. Journal of Artificial Intelligence Re-
search, 10(1):457-477, June 1999.

[Chakraborty et al., 2014a] S. Chakraborty, D. Fremont,
K. S. Meel, S. Seshia, and M. Y. Vardi. Distribution-aware
sampling and weighted model counting for SAT. In Proc.
of AAAI, 2014.

[Chakraborty et al., 2014b] S. Chakraborty, K. S. Meel, and
M. Y. Vardi. Balancing scalability and uniformity in sat-

witness generator.
2014.

[Chavira and Darwiche, 2008] M. Chavira and A. Darwiche.
On probabilistic inference by weighted model counting.
Artificial Intelligence, 172(6):772-799, 2008.

[Choi and Darwiche, 2013] A. Choi and A. Darwiche. Dy-
namic minimization of sentential decision diagrams. In
Proc. of AAAI, pages 187-194, 2013.

[Cooper, 1990] G. Cooper. The computational complexity
of probabilistic inference using bayesian belief networks
(research note). Artificial Intelligence, 42(2-3):393-405,
1990.

[Dalvi and Suciu, 2007] N. Dalvi and D. Suciu.
query evaluation on probabilistic databases.
Journal, 16(4):523-544, 2007.

[Darwiche, 2004] A. Darwiche. New advances in compiling
CNF to decomposable negation normal form. In Proc. of
ECAI, pages 328-332. Citeseer, 2004.

[Darwiche, 2011] A. Darwiche. SDD: A new canonical rep-
resentation of propositional knowledge bases. In Proc. of
1JCAI, volume 22, page 819, 2011.

[Domshlak and Hoffmann, 2007] C. Domshlak and J. Hoff-
mann. Probabilistic planning via heuristic forward search
and weighted model counting. Journal of Artificial Intelli-
gence Research, 30(1):565-620, 2007.

[Eén and Soérensson, 2006] N. Eén and N. Sérensson. Trans-
lating pseudo-boolean constraints into sat. JSAT, 2(1-4):1-
26, 2006.

[Ermon et al., 2014] S. Ermon, C. P. Gomes, A. Sabhar-
wal, and B. Selman. Low-density parity constraints for
hashing-based discrete integration. In Proc. of ICML,
pages 271-279, 2014.

[Frisch et al., 2006] A. M. Frisch, B. Hnich, Z. Kiziltan,
I. Miguel, and T. Walsh. Propagation algorithms for lex-
icographic ordering constraints. Artificial Intelligence,
170(10):803-834, 2006.

[Gavanelli, 2007] M. Gavanelli. The log-support encoding
of CSP into SAT. In Proc. of CP, pages 815-822. Springer,
2007.

[Getoor and Taskar, 2007] L. Getoor and B. Taskar. Intro-
duction to statistical relational learning. MIT press, 2007.

In Proc. of DAC, pages 60:1-60:6,

Efficient
The VLDB

[Huang, 2008] J. Huang. Universal booleanization of con-
straint models. In Proc. of CP, pages 144-158, 2008.

[Koller and Friedman, 2009] D. Koller and N. Friedman.
Probabilistic graphical models: principles and techniques.
MIT press, 2009.

[Lobbing and Wegener, 1996] M. Libbing and 1. Wegener.
The number of knight’s tours equals 33,439,123,484,294
— counting with binary decision diagrams. The Electronic
Journal of Combinatorics, 3(1):R5, 1996.

[Muise et al., 2012] C. Muise, S. A. Mcllraith, J. C. Beck,
and E. I. Hsu. Dsharp: fast d-dnnf compilation with sharp-
sat. In Advances in Artificial Intelligence, pages 356-361.
Springer, 2012.

[Pfeffer, 2009] A. Pfeffer. Figaro: An object-oriented prob-
abilistic programming language. Charles River Analytics
Technical Report, page 137, 2009.

[Roth, 1996] D. Roth. On the hardness of approximate rea-
soning. Artificial Intelligence, 82(1):273-302, 1996.

[Sang et al., 2004] T. Sang, F. Bacchus, P. Beame, H. Kautz,
and T. Pitassi. Combining component caching and clause
learning for effective model counting. In Proc. of SAT,
2004.

[Sang et al., 2005] T. Sang, P. Beame, and H. Kautz. Per-
forming Bayesian inference by weighted model counting.
In Proc. of AAAI, pages 475-481, 2005.

[sdd, 2014] The SDD package. http://reasoning.
cs.ucla.edu/sdd/, 2014.

[Thurley, 2006] M. Thurley. sharpSAT: Counting models
with advanced component caching and implicit bcp. In
Proc. of SAT, pages 424-429, 2006.

[Valiant, 1979] L. Valiant. The complexity of enumeration
and reliability problems. SIAM Journal on Computing,
8(3):410-421, 1979.

[Ver, 2015] System Verilog. http://www.
systemverilog.org, 2015.

[Walsh, 2000] T. Walsh. SAT v CSP. In Proc. of CP, pages
441-456. Springer, 2000.

[Wilhelm and Bruck, 2008] D. Wilhelm and J. Bruck.
Stochastic switching circuit synthesis. In Proc. of ISIT,
pages 1388-1392, 2008.

[Xue et al., 2012] Y. Xue, A. Choi, and A. Darwiche. Basing
decisions on sentences in decision diagrams. In Proc. of
AAAL 2012.

APPENDIX

Table 2: Extended Table of Runtime Performance comparison of
WeightCount vis-a-vis SDD

sharpSAT + Reduction = WeightCount DSharp SDD
Orig | Orig | Final | Final | Transform | Counting [Counting
Benchmark #vars #clas #vars | #claus time(s) time(s) time(s) time(s)
fs-01.net 32 38 242 278 0.38 0.04 0.01 0.01
or-50-10-10-UC-40 100 272 310 512 0.12 0.06 0.05 0.2
or-50-10-10-UC-30 100 264 190 384 0.02 0.06 0.05 0.49
or-50-10-1-UC-40 100 273 310 513 0.02 0.06 0.05 0.32
or-50-20-10-UC-30 100 267 310 507 0.03 0.15 0.45 3.92
or-50-20-10-UC-40 100 274 190 394 0.02 0.02 0.14 1.05
or-50-10-1-UC-30 100 266 190 386 0.02 0.07 0.06 0.39
or-50-20-1-UC-40 100 272 190 392 0.02 0.08 0.07 0.98
or-50-10-9-UC-40 100 264 190 384 0.04 0.15 0.08 0.67
or-50-10-1-UC-20 100 262 190 382 0.03 0.08 0.09 0.98
or-50-10-10-UC-20 100 261 310 501 0.16 0.09 0.04 0.78
cliquen10 110 200 276 411 0.06 0.34 - 11.26
or-60-5-2-UC-40 120 323 330 563 0.03 0.01 0.05 0.53
or-70-10-3-UC-40 140 383 230 503 0.03 0.01 0.06 -
or-70-10-3-UC-30 140 374 350 614 0.05 0.09 0.07 0.85
or-70-5-7-UC-40 140 381 350 621 0.06 0.09 0.05 0.57
or-70-20-9-UC-30 140 374 350 614 0.03 0.02 0.05 1.16
or-70-5-2-UC-30 140 371 350 611 0.11 0.06 0.05 1.43
or-70-5-7-UC-30 140 370 350 610 0.03 0.02 0.06 1.05
or-70-20-9-UC-40 140 383 230 503 0.02 0.07 0.07 0.73
or-70-5-2-UC-40 140 378 350 618 0.02 0.01 0.05 0.59
or-70-10-6-UC-40 140 391 230 511 0.02 0.01 0.05 0.37
or-70-20-6-UC-40 140 375 350 615 0.05 0.02 0.15 1.28
or-70-10-6-UC-30 140 379 230 499 0.02 0.06 0.08 1.21
Sstep 177 475 267 595 0.02 0.09 0.02 4.49
or-100-20-9-UC-50 200 557 290 677 0.04 0.03 0.07 1.17
or-100-20-9-UC-60 200 561 410 801 0.05 0.11 0.05 1.34
or-100-20-6-UC-60 200 564 290 684 0.04 0.06 0.05 0.95
cliquenl5 240 450 617 932 0.02 11.29 - 536.85
casel21 291 975 381 1095 0.04 0.12 12.46 6.6
BN_104 294 537 914 1307 0.03 0.07 0.31 0.73
case_1 bl1_1 340 1026 550 1266 0.03 92.16 1059.82 64.3
$526.32 365 943 455 1063 0.02 0.22 0.62 -
s526a_32 366 944 456 1064 0.04 0.17 1.79 -
case35 400 1414 490 1534 0.03 0.54 18.66 76.35
cliquen20 420 800 1750 2320 0.62 21.49 - -
$526_157 452 1303 542 1423 0.03 0.94 5.75 -
$953a.3 2 515 1297 605 1417 0.03 0.1 1.08 -
BN_112 541 1443 2187 3489 0.05 0.08 0.6 3.46
lang12 576 13584 786 13824 0.06 334.5 1276.3 -
BN_110 620 1568 3966 5392 0.46 0.08 0.48 9.74
BN_106 630 1692 2607 4155 0.07 0.14 0.25 3.6
cliquen25 650 1250 1742 2642 0.05 260.06 - -
s1238a.3.2 686 1850 896 2090 0.04 0.45 6.94 -
s1196a_32 690 1805 780 1925 0.04 0.34 10.53 -
s1238a.7 4 704 1926 914 2166 0.11 0.63 6.54 -
s1196a_7 4 708 1881 798 2001 0.07 0.61 7.28 -
s1238a_15_7 773 2210 863 2330 0.05 0.56 10.2 -

Continued on next page

sharpSAT + Reduction = WeightCount DSharp SDD
Orig | Orig Final | Final | Transform | Counting | Counting
Benchmark #vars #clas #vars #claus time(s) time(s) time(s) time(s)
s1196a_15_7 777 2165 867 2285 0.06 0.54 8.88 -
case 2 bl2.2 827 2725 917 2845 0.06 34.11 714.37 735.68
squaring1 891 2839 981 2959 0.04 10.02 97.86 -
BN_67 925 2063 1240 2423 0.07 0.38 2.11 3239.31
BN_65 925 2063 1150 2333 0.05 0.11 1.52 -
cliquen30 930 1800 2517 3821 0.11 300.86 - -
rbm_20 960 1760 4546 6226 0.1 1231.3 - -
squaring10 1099 3632 1189 3752 0.1 43.08 998.32 -
squaring8 1101 3642 1191 3762 0.06 21.41 392.11 -
BN_59 1112 2661 1272 2853 0.21 0.68 12.07 820.8
BN_63 1112 2661 1272 2853 0.04 0.68 8.68 -
BN_53 1154 2692 1314 2884 0.07 1.23 8.5 1425.19
BN_57 1154 2692 1378 2948 0.05 0.64 10.89 523.0
BN_55 1154 2692 1314 2884 0.1 1.11 - -
BN_47 1336 3376 1406 3460 0.11 0.11 1.49 170.92
BN_51 1336 3376 1434 3488 0.09 0.09 1.08 185.71
BN_49 1336 3376 1434 3488 0.09 0.24 - 1296.78
BN_61 1348 3388 1418 3472 0.05 0.2 1.77 157.88
blockmap_05_0Ol.net | 1411 2737 1501 2857 0.04 0.13 1.05 11.75
squaring9 1434 5028 1524 5148 0.07 32.68 721.14 -
squaring14 1458 5009 1548 5129 0.07 68.75 2152.41 -
squaring12 1507 5210 1597 5330 0.06 79.02 1305.58 -
squaring16 1627 5835 1723 5963 0.07 - 2623.12 -
squaring? 1628 5837 1724 5965 0.13 40.31 1383.83 -
blockmap_05_02.net | 1738 3452 1976 3724 0.09 0.08 2.35 15.45
BN_43 1820 3806 2240 4286 0.34 8393.12 - -
BN_108 2289 8218 11028 19105 0.27 2.14 8.66 270.31
smokers_20 2580 3740 6840 8860 0.33 224.25 - -
BN_38 3938 7661 8027 12800 - - - 5760.54
treemax 24859 | 103762 | 26353 | 105754 1.5 3.93 338.16 -
BN_26 50470 | 93870 | 276675 | 352390 244.29 68.99 259.42 693.09

