Algorithm for Master-file Update

read the first master file record, m
read the first transaction file record, t

COSEQUENTIAL PROCESSING

while (at least one file has not been completely read)

if (m.key > t.key)
// No master record exists for this transaction.
if the transaction can be processed
process it
read the next transaction file record into t
else
log an error
end if

else if (m.key < t.key)
// No transaction exists for this master record.
print the [probably unchanged] record m
to the new master file
read the next master file record into m

else both keys are equal
// Transaction t applies to record m.
apply transaction to to record m
read the next transaction file record into t
. // There may be more transactions for m, so
Reading: // don’t read the next master record.

e FZR section 8.1-8.3 end if

end while

20 21

Recap on sequential files

. . . As we've seen, a number of useful things can
File Structures for Direct Files: be done efficiently using only sequential access

Introduction to files. Examples:

Reading:
e FZR sections 7.1-7.5 on simple indexes
But other things cannot be done efficiently us-
e FZR sections 7.6—7.8 on fancy indexes ing only sequential access:
e FZR chapter 9 on B-trees
e FZR chapter 10 on fancy B-trees
e FZR chapter 11 on hashing
e FZR chapter 12 on incremental hashing

These topics constitute most of the remainder
of the course. (So you’ll have some time to
do these readings!)
22 23

How can we do searching more efficiently?

We are exploiting the fact that we don’t have
to access a file sequentially. We can instead
use “direct” access.

Limitations of keeping a sorted data file and
using binary search:

e can only perform efficient binary search ac-
cording to one field
(the one it's sorted by)

e insertion and deletion are inefficient

e must have fixed-length records, and this is
space-inefficient in some circumstances

Let's look more generally at direct access, and
some other ways we can exploit it.

24

Two general approaches

| Approach A:| For any possible key, compute
the location of the record associated with it.

We use a function to map
record key = location in file.

Approach B:| Explicitly store the location of
the record associated with a key.

Use some file structure to index the data file.
Each element of the index stores:

e a key plus
e the location of the record with that key.

To find a record, search index by key and then
go to the location it gives.

26

Direct files

With direct access, to access any file position
is O(1).

So if we have a way to go from
record key = location in file
then we can access any record in O(1) time.

NB: File access may be O(1), but it's very slow
relative to memory access.
So we still want to minimize jumping around.

There are many ways to organize a direct file! ...
25

Simple Indexed Files

Reading:
e FZR sections 7.1-7.5

27

An analogy used in FZR

Searching for topics in a book

One approach:

e Book: Sort the words and use binary search.

e File: Analogous to sorting records in a data
file and using binary search.

Problem:
e Book: the order of the words is lost!

e File: We may not be willing to re-order
records in a file.

Solution:

28

Advantages of indexes

We get fast searching, but we could get that
with sequential sorted files and binary search.
Advantages beyond that:

e The data file can be in any order — it
doesn’'t have to be sorted. This allows
faster insertion and deletion.

e \We can have as many indexes as we like.
This allows fast searching according to sev-
eral keys.

e Records do not have to be of fixed length.
This can permit the data file to use less
Sspace.

Once we create an index, the data records
are “pinned”: Because they are pointed to,
if we move them we must update all pointers
to them.

30

Searching for books by multiple fields

One approach:

e Library: Have 3 copies of each book, and
3 libraries, each sorted a different way.

e File: Duplicate the data in multiple files,
each sorted a different way.

Problem:
e Library: This requires 3 times the resources!

e File: Ditto. Plus the redundancy is danger-
ous. What if the copies of a record disagree
across files?7?

Solution:

29

File Structure for a Simple Index

(Remember, there may be several indexes on
the same data file, even one per field.)

Have one index entry per record in the data
file.

Index must consist of fixed-length records, and
must be sorted by some field.

Otherwise, we can’'t do fast binary searching
of the index; we might as well have just an
unsorted data file without an index.

An index can be in the same or a separate file.

If the index is small enough, we load it into
memory while we're using it. (A simple array
of structs will do.) This allows for much faster
searches etc.

31

Some of the Basic Operations

Search
e The binary search is done in memory.

e In total, just one seek is required.

Insertion

e Can just add the new record to the end of
the data file, since its order doesn't matter.

e Must update the index too. It's sorted, so
this usually means some shifting.

e That's O(n), where n is the number of
records in the index

e But n is also the size of the data file! Isn't
O(n) really slow? Linear search on the data
file would have been O(n)!

32

Creating an index the first time
e Method:

e May have to re-create the index if it is ever
destroyed.

Loading the index into memory

¢ Method:

Storing the index back into a file
e Method:

e Big worry: What if the index isn't rewrit-
ten, or is rewritten incompletely?

34

Deletion

e Have to update the index, which means
some shifting. Same points as for inser-
tion.

e But updating the data file isn't so simple.
What to do7?

33

Speeding Things Up

Problem: If the index won't fit into memory,
operations will be much slower!

Consider insertion. With our simple index up-
dating the index is

e O(logn) to find the right spot and
e O(n) to do the inserting

Thus it's O(n) over all.

Solution: How can we speed it up?

35

Using a BST for an Index

Now what’s the complexity of insertion? Search?

Solution:

Then our searching etc. time will much better:
O(logn) in the worst case.

(Cost:)
Problem: This improved search time may not
be good enough if we're searching in a really

large file.

Solution: 77

36

With a branching factor (or fan-out) of 100,
our multi-level index only needed 4 levels.

Now what's the complexity of search?

This is because the tree is perfectly balanced.

But at what cost did we achieve this?

We need a tree with a branching factor > 2
and restrictions forcing it to be reasonably bal-
anced. We also need efficient algorithms for
insertion and deletion which maintain that rea-
sonable balance.

38

Another Approach

Instead of using a BST for the index, let's
again consider a simple index for a large file.

Example: We have 6,000,000 records of 120

bytes with 8 byte keys. That's 6,000,000 key/referenc

pairs for the index.
Problem: We can’'t fit the index in memory

Solution: Build an index to the index. Sup-
pose we can put 100 of these pairs into a single
record of the index. Now our second index has
only 60,000 key/reference pairs.

Problem: It still doesn’t fit into memory

Solution:

37

B-trees

A tree with branching factor > 2, and restric-

tions forcing it to be reasonably balanced.

A B-tree of “order M" must obey these rules:
e all leaves at the same level

e branching factor is M,
i.e., no more than M children per node

e at least [M/2] children per node,
except the root.
(For the leaves, these children are all nil.)

e root has more flexibility:
at least 2 children, unlessit's the only node.

We'll cover B-trees in detail.

39

B Trees

Reading:
e FZR chapter 9 on B-trees
e FZR chapter 10 on Bt-trees

40

Height of a B-tree with n records

Recall that #pointers per node > [m/2]
(except for the root, which has > 2).

Minimum #£leaves in a B-tree of height h

Height Minimum Descendants
h = 1 (root) 2

2 2[m/2]

3 2[m /212

h 2[m/2]h1

So, in general, for any level of a B-tree, the
minimum number of descendants extending from
that level is 2[m/2]h1

42

Performance of B-tree Insertion

Best case:

e # nodes read =

e # nodes written =

Worst case:

e # nodes read =

e # written read =

Is this good?
It all depends on tree height.

41

For a B-tree with N keys in its leaves, the
minimum height of the tree h is expressed by
the relationship.
N > 2[m/2]"1

Height of a B-tree with n records

We can flip things around to find the minimum
height.

n > 2[m/2]h-1
2> [m/2]h1
100 /21 (3) = h—1

h <1097 2 (3) +1

43

Comparing to BSTs Bottom line

Worst height for a BST with n nodes? For a BST with n nodes
(and therefore n records),

|h > [loga(n + 1)1]

When do we get height about logo n?

For a B-tree with n nodes,

h <10G7m/21 (8) + 1

44 45
B-tree Deletion Handling underflow
Basic algorithm: Easier case:
e Search for the key to be deleted. e If an adjacent sibling has > the minimum,

steal a record from it.

e If it's not the highest key in the node, L o i
. e This is called redistribution.
just delete the key from the node.
e Higher level indexes will have to be modi-

e If it is the highest, fied

1. Delete the key, and

Harder case:
2. Modify the index (at possibly multiple
levels) to reflect the change. e If not, do the opposite of splitting: merge
two nodes together.

e A key will have to be deleted from the par-

Problem: Underflow. ent node.

Either kind of key deletion may leave a node e This is called concatenation.

too small. e Changes in the index may ripple all the way

to the top.

46 47

Hashing

Reading:
e FZR chapter 11 on basic hashing

48

We've already discussed in detail | Approach B:

explicitly store the location of the record asso-
ciated with a key.

Use some data structure to index the records.

Each element of the index stores:
e a key that is in use, plus

e the location of the record with that key.

To find a record, search data structure by key.

Bonus: can have multiple indexes.
50

Recap: Direct files

In a direct file:

e to access any file position is O(1).

So if we have a way to go from
record key =- location in file
then we can access any record in O(1) time.

NB: File access may be O(1), but it's very slow
relative to memory access.
So we want to minimize jumping around.

There are many ways to organize a direct file! ...
49

Approach A:| For any possible key, compute
the location of the record associated with it.

We use a function to map
record key = location in file.

We'll look at three ways to do this.

51

(1) Direct Mapping

The key itself is the position of the record in
the file.
Le., f(key) = key.

Problems:

52

We save space:

And we lose space:

When does this method beat Direct Mapping?

Bottom line re space:

What about time?

54

(2) Directory lookup

Keep a directory (probably in a separate file).
It tells you where in the record file to find the
record.

To find the appropriate directory entry, use the
record’s key directly.
So again, f(key) = key.

53

(3) Hashing

Don’t bother with a directory. Have just one
file, and use the key to find the record’'s loca-
tion in it.

(Just like Direct Mapping.)

But this time, use a mapping function that is

not “direct”. Use one that takes us from
large key space = small address space.

55

Hashing Issues

Must devise an appropriate hash function.
Because the hash function maps a large space
to a small space, we will have “collisions’.

We can make each location a “bucket” that
can store lots of records.

e But buckets must have fixed size,
thus they can still overflow.

We will need a scheme to handle this.
Must decide on the # and size of buckets.

When file gets very full, collisions can be too
numerous. May be worthwhile re-organizing
the file layout to have more buckets

56

Hash functions

A hash function is a mathematical function
that maps from
keys = locations.

There are some standard types of hash func-
tion, including

e mid-square: square the number and then
take some digits from the middle.

e folding: Divide the number in half and
combine the two halves, e.g., add them
together.

¢ modular division: Mod by some number,
preferably a prime.

See the text for more about hash functions.
Note that there is a lot of interesting theory
about hash functions and their properties. (csc
378 covers this.)

58

Hashing Performance

If everything is well designed, retrieval can be
very fast — just a few file accesses.

One operation is really slow:

57

Examples of hash functions

Say our key is a string. Before we hash it, we
need to turn it into an integer.

One solution: Concatenate together the al-
phabetic position of the 1st and the second

character. E.g. “{T|olyota” = [20]15].

Now we need a hash function to hash up the
integer. Examples of the three general types:

e Mid-square, taking the middle 2 digits. E.g.

20152 = 406 02]25.

e Folding: adding the two halves.
E.g. 2015 = 20 + 15 = 35.

e Mod by 97.
E.g. 2015 mod 97 = 75.

59

key h(key)

as string converted | mid-square folding mod 97
Toyota 2015 406/0225 35 75
Chev 0308 04/86 4 11 17
Ford 0615 37/82[25 21 33
Chrysler 0308 9486 4 11 17
Volkswagen 2215 49016225 37 81
Nissan 1409 1985281 23 51
Plymouth 1612 25985 44 28 60
Dodge 0415 17|22 5 19 27
Renault 1805 32525 23 59
Saab 1901 361/38 |01 20 58

Isuzu 0919 84/45 61 28 46
Pontiac 1615 2608225 31 63
Fiat 0609 37[08]81 15 27

Two kinds of collisions:

e collisions that occur because we begin with
the same 2 integers. Are collisions for ev-
ery hash function we might choose.

e collisions that occur even though we begin
with 2 different integers. Not necessarily
collisions with a different hash function.

60

Avoiding collisions?

Upon doing a new insertion, how likely is a
collision?

It's certainly more likely when many items have
already been inserted.

i . _ Frecords currently in the file
Loading factor: = #£records that the file can hold

In our cars example, the loading factor is only
{25 = 0.13, yet we already have collisions!

We could reduce collisions by making the ca-
pacity of the file bigger (and hence the loading
factor smaller). But ...

62

Couldn't we use the 2015 as the hashed value?

This would be a bad idea. With 4 digits, there
are 10,000 possible values (0...9999), yet only
a few will be used.

e Some are unlikely to crop up
E.g. “aa” = 0101.

e Some cannot crop up
E.g. 77 = 2701; 27 is out of range.

Yet we need our hash table to be continuous,
and therefore to have all 10,000 slots.
So our hash table will be largely empty.

With each of the 3 hash functions we looked
at, the range of h(key) is 0...99 (or less with
mod 97).

So our hash table only needs 100 slots.

Of course we might overflow it, but we have

to deal with this anyway.
61

Exactly how likely are collisions?

For a given file capacity, how likely are colli-
sions as file gets more loaded?

Example: A file of 365 buckets. Let Q(n) be

the probability that NO collisions occur during
n insertions.

Q(1) =
Q(2) =
QR(3) =
In general,
Q(n) =

Q1) =

63

Solution to the recurrence relation:

Q(n) = 365”?265é—n)!

The probability that collisions DO occur is
1—-Q(n).

n 1-Q(n)
10 0.1169
20 0.4114
23 0.5073
30 0.7063
40 0.8912
50 0.9704
60 0.9941

If the loading factor is only 2%, 50% chance.

If the loading factor is only s, > 95% chance!

So yes, collisions are a problem!
64

Handling collisions
What do we do when a collision occurs?
Easy case: the bucket has room for the record.

Hard case: the bucket doesn’'t have room for
the record. We call this “overflow" .
We need to figure out two things:

e A place to put the record that won't fit it
its home bucket.

e A way to find that record later!

How do you handle overflow in your address
book?

66

Buckets

The hash function h(k) tells us where to store
(or retrieve) a record with key k.

This could be a slot in an array in memory, or
a slot in a file. (For this course, a file.) Either
way, we often use the term “hash table”.

The slots are called “buckets”, because they
have capacity for > 1 record. We choose the
capacity based on the number of records that

can be read or written in one file access.

Analogy: your address book.
key:

hash function:

bucket:

65

Handling overflow
Two kinds of approach: either compute or

store where to try next. (Gee, where have we
heard that before?)

Open addressing

Compute another bucket to try, based on some
rule.

Closed addressing (or chaining)

Store the location of another bucket to try,
using some sort of pointer.

The “overflow” records may be kept in a sep-
arate overflow area, perhaps in a separate file.

67

Open Addressing

Compute where to look, based on the key.

General method for insertion:

(search is analogous; why?)

Let A; be where to look on the ith try.

e Use the hash function (k) to find the first

bucket where the record might go, Ag.
Ag = h(key)

e If that bucket is full,

use a new function (f) to find the next

bucket to try. Repeat as necessary.
A; = f(i, key)

e Stop when we hit a bucket with room, or
the sequence of A;'s starts to repeat (i.e.,

there is no room anywhere).

Many ways to design the function f ...

68

Linear probing example

n (# buckets) = 13 h(key) = (sum 1st 3) mod 13
bucket size =1
step size =2 So A; = (Ai-1 +2) mod 13

key h(key) probe sequence

Chevrolet 16 mod 13 = 3

Chrysler 29 mod 13 =3

Jaguar 18 mod 13 =5

Nissan 42 mod 13 = 3

Karman Ghia | 30 mod 13 = 4

Bucket #

Bucket Contents

O[O N|O|O| W N+

[
o

[y
[y

[
N

[
w

70

I. Linear Probing

Step through a sequence of buckets always us-
ing the same step size.

Use mod to wrap around when we hit the end
of the hash table.

‘Ai = (A;_1 + stepSize) mod n‘

(We can also express A; in terms of Ag.)

Example:
A; = (A1 +2)modn
= (Ag+2i) modn

The sequence of buckets considered is called
the “probe sequence”.

69

II. Non-linear Probing
Problem: Primary clustering.

If several records hash to the same spot, or
even any spot along the probe sequence, they
will all follow that same probe sequence.

Example: n = 100; step size = 2.
hash to: 5 probe seq:
hash to: 9 probe seq:

Solution: Make the step size depend on the
step number, 3.

This is called non-linear probing.

E.g., A; = (4;,_1+2i®) mod n

Example: n = 100; step size = 2i2.

hash to: 5 probe seq:
hash to: 9 probe seq:

71

III. Double Hashing
Problem: Secondary clustering.

All records that hash to the same spot still
have the same probe sequence.

Example: n = 100; step size = 2i2.
key 1; hash to: 5 probe seq:
key 2; hash to: 5 probe seq:

Solution: Make step size depend on the key
(but differently than in original hash function).
This is called double hashing.

E.g., A; = (A;_1 + ho(key)) mod n

72

Table-assisted Hashing

With ordinary hashing,

e the hash function tells us where to start
looking, and

e the collision resolution scheme tells us where
to go from there if necessary.

Can we instead come up with a way to be sure
which one bucket to look in, before we go into
the file?

What would we need to know about a bucket
that would tell us whether to look there?

Idea: Keep a table in memory that tells, for
each bucket, what's the largest key in it.

This is called table-assisted hashing.
74

Closed Addressing

Instead of computing where to look next, store
it, using a “pointer”.

Each full bucket has a pointer to an overflow
area,

e in the same file (for example at the end)
e or in another file

There are many ways to organize this, since
pointers are so flexible.

Cost vs open addressing:
Savings:

Do deletions introduce problems?

73

Example: Searching for key value 30, and we
hash to bucket 52.

bucket | largest key in it
26
5:2 13
8:5 27
9:2 36
116

The table tells us our record is definitely in
bucket 92 (if it's anywhere).

Benefits? Costs?

Can we likely keep the table in memory?
Would it be ok to keep it in a file?
75

“Incremental” Hashing

Reading:
e FZR chapter 12

76

Incremental Hashing

General Approach
As records are inserted, if performance becomes
too low, grow the file.

e e, “split" one bucket and disperse its
records; some stay put and others go to
a new bucket.

e This reduces overflow (collisions to full buck-
ets) and hence reduces the # of file ac-
cesses during search.

As records are deleted, if space usage becomes
too poor, shrink the file.

e [e., merge two buckets into one.

e This reduces the total # of buckets, and
hence reduces waste.

78

A Problem

Performance degrades if the file becomes heav-

ily loaded,

ie. if actual—number—of—recs
E num-—bucketsxbucket—size

gets large.

To make things better, it may be worthwhile
to increase the number of buckets (and reor-
ganize the data).

This general idea is called incremental hash-
ing.

Guess what? There are many ways to do it.
77

File growth and shrinkage is incremental, i.e.:

e It happens on the fly.
We do it during insertions and deletions, if
needed.

e It happens in small amounts.
We split one bucket rather than rehashing
the whole file.

Possible measures of performance include:
e load factor

e average # of disk accesses per search.

79

Method I: Linear Hashing

Method

e When performance becomes too poor, split
bucket 0. (Yes, this is arbitrary.)

e Split it by doubling the mod factor and re-
hashing its contents. E.g.,
h(k) =k mod3 becomes
h(k) = k mod 6.

e Next time, split bucket 1, then 2, etc.

e Keep a counter to remember which buckets
have been split.
Unsplit ones use the old hash function.
Split ones use the new.

Merging is analogous but opposite.

80

So when we hash k£ with the new hash function
h(k) = k mod 2T, we get either:

e b, in which case the record stays put, or

e T 4+ b, in which case it goes to the new
bucket, T+ b.

82

old new

buckets | T:0...(T-1) |T+1:0...T

hash fcn h(k)y =kmod 3 | h(k) =kmod 6
h(k) = k mod T | h(k) = k mod 2T

Guarantee: Every element of bucket 0 will
either stay put, or land in the new bucket T.

More generally, if we split bucket b, every record
will either stay put, or land in the new bucket
T+ b.
Let k£ be the record’s key.
If it was in bucket b originally, we know

k mod T =b.

So k must have been one of these:

h T+b 2T+b 3T+b 4T +b 5T +0b

81

Questions

Will linear hashing work if we use open ad-
dressing to solve collisions?

Why split the “next” bucket? Why not the
culprit, i.e., the one we inserted to when we
passed the performance threshold?

Decision: What if the split fails, i.e., everything
happens to stay put? We could split again.

What happens when we’ve split all the original
buckets?

83

Method II: Extendible Hashing How to “grow” the file

Build a dynamic directory (in memory for speed) When a bucket overflows:

that copes with the varying load factor.
e Split the one bucket in two.
e Hash function takes you to a directory en-

try, rather than directly to a bucket. e Half of the directory entries that pointed
to the old bucket will still do so, and half

B k r in n n' . .
e Because buckets are pointed to, needn't will point to the new bucket.

be consecutive in the file. So can add and

remove buckets as desired.

Eventually, we may reach a point where we
can’t split a bucket this way.

e Directory must grow and shrink with num-
ber of buckets.

e SO # of places to hash to changes. Cope e This occurs when only one directory entry
by using only the first so many bits of h(key); points to the bucket we want to split.
change this as necessary to change size of . .

. e Then we double the directory size, and re-
directory. .
organize.

e If using d bits, directory size is 2¢.

e So have capacity for 2d pyckets, but can
start with fewer; even just one.

84 85
Map of the World Direct files = compute location

. . e Direct mapping
A quick summary of topics that we've covered

concerning direct files. e Directory lookup

e Hashing

Direct files = store location 1. Need a hash function

e Simple static index — folding

i — mid-square
(index structure never changes) — modular division

e Dynamic index 2. Must handle bucket overflow
(index structure changes) — overflow = compute next bucket

(“open addressing”)

— BST
S x Linear probing

— (Not covered: AVL tree; M-way tree) x Non-linear probing
*+ Double hashing

- B- .
tlre.e B-t — overflow = store location of next bucket
x plain B-tree . . L
« B* tree (“closed addressing / chaining”)

x BT tree 3. May be table-assisted
4. May be incremental

— Linear hashing
— Extendible hashing

86 87

PROVIDING ACCESS BY
SECONDARY KEYS

DATABASES

Reading:

e FZR sections 7.6—7.8

88

Reading:

e None required

89

