INTRODUCTION TO CSC228

Reading:
e none on this topic

e but see the week-by-week handout
for readings you should start (now)
on upcoming topics

Problem 1: The data is HUGE; it won't all
fit in memory.

Solution: Leave it in a file but bring smaller
pieces in memory when needed.

Problem 2: How are you going to perform
operations like searching?

The only way we've taught you to read a file
is to start at the top and read through to
the bottom. This rules out fast algorithms
like binary search. With so much data, that's
disastrous.

Solution: Adapt clever data structures (like
trees), but build them in the file rather than in
memory. Now we call them *“file structures”.

A pointer will now reference a location in the
file, rather than a location in memory. (We'll

learn how to implement file pointers in C.)
3

Scenario: You work for Statistics Canada and
your job is to write a program that will give
government statisticians easy access to the
census data, going back over several decades.
They want to retrieve data and perform in-
teresting queries.

Scenario: You want to make your first mil-
lion by writing a web search engine with some
amazing new capabilities.

Coming fresh out of csc148, what will be your
biggest stumbling blocks?

Facing another reality

When you follow a pointer in memory, what
has to happen?

When you follow a pointer in a file, what has
to happen?

Problem 3: Following a file pointer is so slow
that we have to be extremely careful to min-
imize the number of times we do it.

Solution: Use a binary search tree, but make
sure it stays balanced.



Think of the census data. O(logn) used to
sound good, but now the constants are so big
that we have to care about them.

e What we have to do O(logn) times is fol-
low a file pointer (plus some faster in-
memory work) — and that's a very slow
operation.

Plus, if n is huge, O(logn) itself can be big.

e If your file contains an index of web pages
around the world, n could be 20,000,000.
What's log, 20,000,0007

How can we speed things up?

It's also about how to manage large software
projects. More realistic.

e You will work on larger programs.

e You will be more responsible for figuring
things out yourself.

e You will be more responsible for making
your own design decisions.

e You will work in groups.

Students who effectively manage

e the software design process
(i.e., have a serious plan for designing, im-
plementing, and testing their code)

e and their team
(i.e., have a serious plan for who will do
what, when, and a strategy for coping
when that doesn't happen)

have a huge advantage over everyone else.
7

What 228 is all about

This course is about how to manage LARGE
amounts of data.

e Understanding how files work
so that we can better appreciate these is-
sues

e Clever data structures and algorithms
that try to offer efficiency in the face of
these issues

e Programming techniques
that allow us to implement the clever data
structures and algorithms

ADMINISTRATIVE DETAILS

Reading:
e Csc228 Course Information Sheet

e csc228 Course Guide



You

How many ...
e have taken csc209:
e have taken csc258:
e have taken csc238:

e have taken some third year:

How many ...
e are very comfortable in C:
e feel somewhat weak in C:
e are very comfortable in C++4:

o feel somewhat weak in C4++4:

Plagiarism; Helping each other

The usual.

e In brief: you must submit work that is your
own.

e But you should get to know other stu-
dents and work together to learn course
material.

e You will have an opportunity for group
work on the project.

11

Computers (St George only)
You will be using the CDF lab.

Account name: a228xxxx
Password: your student number
Internet address: @cdf.utoronto.ca

You can phone the CDF facility from your
home computer. See the CDF guide for de-
tails.

You are also free to do your assignments on
your own computer.

But, warning: you will be required to hand in

all assignments electronically, and they must
run on the CDF machines.

10

BASIC CONCEPTS: PHYSICAL
FILES, LOGICAL FILES,
RECORDS

Reading:

e FZR chapter 1. Warning: 1.4 and 1.5 (on
C++ basics) are confusing

FZR sections 2.1-2.5

FZR sections 3.1, 3.3, 3.4, and 3.6—-3.9
e FZR chapter 4

FZR sections 5.1 and 5.2

Other homework:
e Review C+4+4 basics from ¢sc270

12



COSEQUENTIAL PROCESSING

Reading:

e FZR section 8.1-8.3

13

Algorithm for Master-file Update

read the first master file record, m
read the first transaction file record, t

while (at least one file has not been completely read)

if (m.key > t.key)

// No master record exists for this transaction.
if the transaction can be processed

process it

read the next transaction file record into t
else

log an error
end if

else if (m.key < t.key)

// No transaction exists for this master record.
print the [probably unchanged] record m

to the new master file
read the next master file record into m

else both keys are equal

// Transaction t applies to record m.

apply transaction to to record m

read the next transaction file record into t
// There may be more transactions for m, so
// don’t read the next master record.

end if
end while

14



