
Proceedings of the 2nd Int’l. Conference on Language Resources and Evaluation - LREC, Athens, Greece, 2000

MDWOZ: A Wizard of Oz Environment
for Dialog Systems Development

Cosmin Munteanu, Marian Boldea

Computer Science Department,
”Politehnica” University of Timişoara,

Bd. V. Pârvan 2, Timişoara 1900, Romania�
cosmin,boldea � @cs.utt.ro

Abstract
This paper describes MDWOZ, a development environment for spoken dialog systems based on the Wizard of Oz technique, whose main
goal is to facilitate data collection (speech signal and dialog related information) and interaction model building. Both these tasks can be
quite difficult, and such an environment can facilitate them very much. Due to the modular way in which MDWOZ was implemented, it
is possible to reuse parts of it in the final dialog system. The environment provides language-transparent facilities and accessible methods
such that even non-computing specialists can participate in spoken dialog systems development. The main features of the environment
are presented, together with some test experiments.

1. Introduction

During the last years, spoken dialog systems have be-
come an important option in human-computer interfaces,
especially for access to various public information systems,
but despite this rapid growth, there are yet a lot of con-
straints that slow down their development. Among these,
the long time and high cost of building such a system, and
the lack of expertise and data (Sutton et al., 1996).

Regarded as user interfaces, spoken dialog systems
should obey the classical software engineering prototyping
cycle. But building a prototype dialog system could be as
expensive as building a working one, and yet far from the
desired final functionality. The main problem is that the in-
teraction models built off-line are poor approximations of
the way people actually interact with computers.

To overcome some of these problems, the Wizard of
Oz method (Fraser and Gilbert, 1991; Gibbon et al., 1997;
Bernsen et al., 1998) was introduced starting from an idea
in Frank Baum’s story (Baum, 1900): one human “wizard”,
possibly with some assistance, simulates a dialog system,
and collects data to be used for building a real one (not
only the interaction model, but also acoustic, language, and
semantic models).

For such a simulation to be as close as possible to the
final system’s behavior, a number of appropriate support-
ing tools are necessary. In the ideal case, these tools should
offer the possibility for the wizard to simulate and/or con-
trol all parts of a typical dialog system (Lamel, 1998):
speech recognition, semantic analysis, dialog management,
domain knowledge base, natural language generation, and
text-to-speech conversion. At the same time, they should
allow for relevant data to be collected, and new components
to be included as they become functional, passing gradually
from a pure simulation to a “system in the loop” situation.

Even if lately publicly available software packages that
allow to build dialog systems started to appear, like Philips’
SpeechMania, or the CSLU Toolkit (Sutton et al., 1996),
none of them seems to support the Wizard of Oz technique,
although it is very used for spoken dialog systems develop-
ment, as a large number of papers demonstrate. This means

a considerable effort has to be repeatedly spent in preparing
the simulations, and was the main incentive for this work.

In an attempt to fill in this vacancy, the MDWOZ de-
velopment environment provides a set of tools suitable for
dialog interaction model design and test, database building
and query, system simulation, and data collection. They re-
duce the time required to prepare simulations, provide easy
ways to collect data in realistic conditions, and ultimately
facilitate the building of new dialog systems.

2. MDWOZ Structure
MDWOZ was conceived in a modular manner, to pro-

vide the possibility of using just parts of it during simula-
tions, and for an easy transition from the simulation phase
to the final system, including the reuse of some components
and/or the use of external ones. It runs on two computers
connected by a local network, and its overall structure, out-
lined in Figure 1, consists of four modules: Wizard, User,
Data Acquisition, and Communication.

2.1. The Wizard Module

As the part where the tools supporting the wizard are lo-
cated, this is the most complex module in the environment,
and includes components for domain knowledge database
building and access, dialog control and interaction model
building and refinement, and output generation. Although
automatic speech recognition, semantic analysis, dialog
management, and natural language generation are only sim-
ulated at this moment, provisions have been made for them
to be easily included as they become available.

2.1.1. Database Subsystem
Whatever the domain for which a dialog system is to

be built, the corresponding knowledge has to be stored in
a database in order to be used during human-computer in-
teractions, and easily accessible during Wizard of Oz sim-
ulations. To support both these aspects, the database sub-
system (Figure 2) includes, besides a database engine, a
couple of graphic interface tools that facilitate building and
consulting domain specific knowledge bases.



DIALOG
CONTROL

DATABASE
ACCESS

GENERATION
OUTPUT

HISTORY
DIALOG

Sound

Network

DATABASE

USER COMMUNICATION WIZARD

DATA ACQUISITIONSPEECH
SIGNALS

Figure 1: MDWOZ structure

The Database Engine, implemented using the mySQL
(mySQL, 2000) package, is connected to the graphic inter-
face tools DBinput and DBask, both based on the Xforms
library (Zhao and Overmars, 1996), via a C-language API,
and has a client-server architecture. A knowledge base can
be built according to a configuration file using DBinput,
and queried through DBask.

DATA
BASE

SQL

xforms
library

mysql
C API

mysql
daemon

mysql
server

interfaces
Graphic

D
at

ab
as

e 
A

cc
es

s
D

at
ab

as
e 

E
ng

in
e

Figure 2: Database subsystem

During simulations, the wizard can search the database
using DBask: (s)he can select any number of up to 12 dis-
played fields, and DBaskwill build an SQL query based on
the values in the selected fields. Logical, comparison, and
wildcard operators are accepted for performing more com-
plicated queries: combining them, especially range values
are easier to represent (e.g. afternoon could become: >14
AND <20). The query results will be displayed using the
same interface, and in case of more than one answer, the
wizard can choose a specific one using scroll buttons.

DBinput is similar to DBask, with supplemental ca-
pabilities for adding, deleting, and modifying records.

2.1.2. Dialog Control
Multiple solutions have been proposed to model and

control the interactions between a dialog system and its
users, but most of them can not be easily represented (if
at all) in a form suitable to assist a wizard during simula-
tions, so that for the initial version of MDWOZ we chose
the least problematic from this point of view – that based
on finite state models, representable as oriented graphs.

In the dialog model graph, user and system (wizard)
nodes exist, according to the party which is expected to
produce an utterance in that state. For an easier use during
simulations, each node is uniquely named, and has associ-
ated a text, all stored in a graph configuration file indicating
this name-text correspondence.

To facilitate both the graphical representation of the in-
teraction model, and wizard’s work, the Dialog Control is
built around the daVinci (daVinci, 1998) graphs visual-
ization package, chosen due to its unique features that allow
not only drawing, but also interacting with graph nodes. A
dialog model can thus be designed and refined based on a
graph configuration file, and using daVinci’s graph draw-
ing capabilities.

At the start of a simulation, the entire graph is displayed,
in which each node is labeled with its name. Once the wiz-
ard selects a node, only that node and its immediate suc-
cessors are displayed, each labeled with the associated text
from the graph configuration file (Figure 3). From now on,
the wizard can navigate through the graph, but can choose
only from the currently active node’s successors.

In a user node, an utterance from the subject is expected,
based on which the wizard can formulate a query whose
results will be used to generate the next wizard utterance.
When the currently selected node is a wizard one, an output
utterance is produced.

2.1.3. Output Generation
As mentioned before, there are user and wizard nodes

in the dialog description graph. When a wizard node is



Figure 3: Dialog control and output generation

selected, an Output window is started (Figure 3), display-
ing the text associated to the selected node. This text can
be subsequently modified, e.g. by adding certain DBask
query results: to speed up this editing, database fields can
be stored in an abbreviated form (e.g. “/ai” for “Artificial
Intelligence”), and expanded according to a configurable
set of conventions stored in a file.

In the general case, the output text can be sent to an
external text-to-speech (TTS) program, and/or to the user’s
terminal. In the existing implementation, although a TTS
system is available, to avoid potential problems due to the
quality of the synthesized signal, pre-recorded words are
used to synthesize the speech signal after the text is nor-
malized.

2.2. The User Module

At the opposite end of the MDWOZ environment, the
User module runs on a separate computer, and is connected
to the wizard’s one through the Communication module.
It takes wizard outputs (text and/or voice), and displays
and/or replays them to the user, which interacts with the
system just by voice.

2.3. The Data Acquisition Module

As the main purpose of a Wizard of Oz simulation is
the collection of various data concerning human-computer
dialogs in conditions as realistic as possible, the Data Ac-
quisition module, running on both the wizard’s and user’s
computers, includes a series of facilities aimed at this end.

On the user side, the speech signal from the subject
is recorded, together with the signal from the wizard: al-
though the latter might be useless in most situations, as the
text from which it is generated is also recorded, we include
it to allow for echo cancellation and barge-in work.

On the wizard side, the dialog history is recorded, con-
sisting of two files: one with wizard’s text outputs, the other
with the trace of the dialog, i.e. the names of the nodes on
the path through the dialog interaction model graph. For
reference, the graph configuration file used in every dialog
session is also saved.

2.4. The Communication Module

This module insures the synchronization between the
user and the wizard using a local network to connect the
user’s computer to the wizard’s one. The communication is
done through an audio and a data channel. The audio chan-
nel transports the speech signal between the two comput-
ers and combines the wizard and user signals into a stereo
channel. The data channel synchronizes the beginning and
the end of recordings, and optionally transmits the wizard’s
output texts to the user’s terminal.

3. Experiments
The development of MDWOZ and the experiments pre-

sented here are both parts of a larger project on spoken
dialog systems, and the experiments had two aims: first,
to evaluate the environment itself; secondly, to collect data
for training and testing a speech recognition system and a
stochastic semantic analyzer, also parts of this project.

In developing a dialog system using the Wizard of Oz
technique, three phases can be identified (Gibbon et al.,
1997): (1) pre-experimental – for defining the dialog struc-
tures and restrictions, (2) first experimental phase – for
a first system evaluation, and (3) secondary experimental
phase – for recordings and improvements. In setting up the
experiments, we followed almost the same staging:

1. Domain analysis and definition

2. MDWOZ setup and test

3. System simulations

(1) As a pilot project, we chose to develop a system
providing information about classes timetable and exami-
nations schedule, and to facilitate domain analysis and def-
inition an appropriate database was built using DBinput.

(2) To setup and test MDWOZ, a smaller dialog system
offering information only about the examinations sched-
ule was simulated, using an appropriate interaction model,
which after these tests was extended to cover also classes
timetable.

3.1. System simulations

Wizard of Oz simulations usually take place in two sep-
arate rooms, but this solution implies a very good synchro-
nization between the two sides, so for the first experiments
we chose to run the tests in a single room, with a large fold-
ing screen between the two computers (which reminds us
the alternative name “Pay No Attention to the Man Behind
the Curtain” used for such experiments). To prevent users
from hearing the wizard typing and clicking, we used a
close-talking microphone attached to a pair of headphones.

To make sure the collected data are appropriate for
training the semantic analyzer, i.e. at least the concepts in
the database are covered, a number of scenarios have been
prepared. Besides at least one scenario, each subject could
also try some free dialogs, to allow for more variability.

Until the moment of this writing, 17 subjects partici-
pated in the simulations, each trying two or three scenarios
and at least a free session, for a total of 49 sessions that
covered about 3 hours of dialog containing 537 turns, with



an average of 10.9, a minimum of 5 and a maximum of 21
turns/session.

During the simulations period, the interaction model
was changed, usually after a dialog session in which the
subject asked a valid question, but there were no paths
through the dialog graph allowing to answer it. This way,
the interaction model size increased from 23 to 32 states.
Besides adding states, in certain cases states were removed,
and texts associated to wizard nodes were changed.

Data concerning the dialogs and acoustic signals were
collected as described in section 2.3. The speech signals
are being transcribed to be used for building an automatic
speech recognition system, and together with the dialog
data – to train and test a stochastic semantic analyzer, and
study dialog management aspects.

3.2. Wizard Difficulties

Even if the Wizard of Oz method is a powerful tech-
nique for simulating dialog systems, it can raise a lot of
problems. The main trouble we faced was ”lying” to the
subjects: this was particularly difficult as most of them
were students in computer science, and some of them very
suspicious about the system.

To be technically plausible, we told users that, with a
view to a possible deployment in a distributed environment,
the dialog system was implemented in a client-server man-
ner, so it needs a person to watch the server and take notes
of what is going on/wrong.

A good way to strengthen the belief that the system is
real was to systematically simulate the same errors, espe-
cially at the semantic level. A few times, some users were
particularly keen to keep talking to a computer, so we used
some known MDWOZ instabilities to make it crash, which
was also useful to increase this belief.

3.3. Users feedback

In evaluating a dialog system, questionnaires are very
useful, as shown e.g. in (Andernach et al., 1993), and we
collected user feedback both during experiments and im-
mediately after, using such a questionnaire.

The questions asked were: Have you ever used such a
system? Is this the first time you use this system? Did the
system supply all the information you wanted? How diffi-
cult it was for you to obtain the information you wanted?
Do you think the system understood everything that you
asked? When the system misunderstood your question, was
it difficult to reformulate it?.

The feedback is summarized in Table 1. After each di-
alog was over, it was evaluated from two points of view:
user and system. From the user point of view, the dialogs
were divided in satisfactory and unsatisfactory (meaning
the user got/didn’t get the desired information), and from
the system point of view, in failure and success, depending
on the system (purposely) crashing or not.

4. Conclusions and Future Work
Although MDWOZ is still evolving, we expect it to be-

come fully functional shortly. However, from the tests al-
ready run, we can conclude that it provides a simple, non-
expensive solution for acquiring knowledge necessary to

Used other information No 73%
system before Yes 27%

First time using No 6%
this system Yes 94%

System provided No 0%
all information Almost 67%

Yes 33%
Obtaining information Difficult 0%

was . . . Acceptable 46%
Easy 54%

System understood No 0%
user’s questions Mostly 67%

All 33%
Questions difficult No 94%

to reformulate Yes 6%

User satisfaction No 26%
Yes 74%

System performance Failure 4%
Success 96%

Table 1: Feedback statistics

develop spoken dialog systems, not only by data collection
and interaction model definition and refinement, but also
observing user behavior.

A future improvement will be a new implementation
for the Dialogue Control module using a dialog description
language instead of (or optionally along with) the interac-
tive dialog graph design.

As more data will be collected, we also expect it to go
from a pure simulation use to a “system in the loop” one,
by the inclusion of the automatic speech recognizer and
stochastic semantic analyzer trained on these data.

5. References
Andernach, T., G. Deville, and L. Mortier, 1993. The De-

sign of a Real World Wizard of Oz Experiment for a
Speech Driven Telephone Directory Information System.
In Proceedings EUROSPEECH’93.

Baum, F., 1900. The Wizard of Oz.
Bernsen, N. O., H. Dybkjaer, and L. Dybkjaer, 1998. De-

signing Interactive Speech Systems. Springer.
daVinci, 1998. www.tzi.de/˜davinci.
Fraser, N. and G. Gilbert, 1991. Simulating speech sys-

tems. Computer Speech and Language, 5:81–99.
Gibbon, D., R. Moore, and R. Winski, 1997. Handbook of

Standards and Resources for Spoken Language Systems.
Mouton de Gruyter.

Lamel, L., 1998. Spoken Language Dialog System Deve-
lopment and Evaluation at LIMSI. In Proceedings Inter-
national Symposium on Spoken Dialogue. Sydney.

mySQL, 2000. http://www.mysql.com.
Sutton, S., D. G. Novick, R. Cole, P. Vermeulen, J. de Vil-

liers, J. Schalkwyk, and M. Fanty, 1996. Building 10,000
Spoken Dialogue Systems. In Proceedings ICSLP’96.

Zhao, T. C. and M. Overmars, 1996. Forms Li-
brary: A Graphical User Interface Toolkit for X.
http://bragg.phys.uwm.edu/xforms.


