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Abstract
Existing pronunciation error detection research assumes

that second language learners’ speech is advanced enough that
its segments are generally well articulated. However, learners
just beginning their studies, especially when those studies are
organized according to western, dialogue-driven pedagogies,
are unlikely to abide by those assumptions. This paper presents
an evaluation of pronunciation error detectors on the utterances
of second language learners just beginning their studies. A cor-
pus of nonnative speech data is collected through an experimen-
tal application teaching beginner French. Word-level binary
labels are acquired through successive pairwise comparisons
made by language experts with years of experience teaching.
Six error detectors are trained to classify these data: a classifier
inspired by phonetic distance algorithms; the Goodness of Pro-
nunciation classifier [1]; and four GMM-based discriminative
classifiers modelled after [2]. Three partitioning strategies for
4-fold cross-validation are tested: one based on corpus distribu-
tion, another leaving speakers out, and another leaving annota-
tors out. The best error detector, a log-likelihood ratio of native
versus nonnative GMMs, achieved detector-annotator agree-
ment of up to κ = .41, near the expected between-annotator
agreement.
Index Terms: pronunciation error detection, Computer As-
sisted Pronunciation Training (CAPT), Goodness of Pronunci-
ation (GOP), Gaussian Mixture Models

1. Introduction
Computer-Assisted Pronunciation Training (CAPT) is becom-
ing increasingly relevant to second language learning since it
has the potential to complement materials that are used in class-
rooms or individual instruction. Pronunciation error detec-
tion, also known as mispronunciation detection, is a subfield
of CAPT which focuses on finding nonnative pronunciations of
segments of speech. It is distinguished from pronunciation scor-
ing [3] in that it focuses on finding pronunciation errors rather
than assessing their severity. Pronunciation error detection can
be considered the groundwork that allows other modules of an
application to provide formative feedback to language learners.

Existing pronunciation error detection research focused on
providing detailed feedback to learners who have either had sig-
nificant exposure to the target language or for tasks where learn-
ers are focused on articulation, such as reading. The famous
Goodness of Pronunciation score detected phone-level errors on
read phrases [1]. Later adaptations and improvements to this al-
gorithm, with techniques such as Linear Discriminant Analysis
[4] and Deep Neural Networks [5], were similarly analyzed on
read phrases. When spontaneous speech has been evaluated, it
has been with learners competent enough to generate responses
to questions in standardized tests [6, 7]. Some work in non-
native prosody assessment has allowed for less skilled learners

to practice in a semi-spontaneous environment [8], but evalua-
tion has not been at the segmental level. Many other examples
of pronunciation error detectors can be found in [9] and in the
proceedings of modern language technology workshops such as
SLaTE. This sort of research is valuable, but it assumes learn-
ers have some aptitude for the target language and have alloted
time in their studies specifically for pronunciation.

The application of pronunciation error detectors to new
learners of a second language has yet to be explored. There
are a number of factors distinct to beginner learners: they must
be assessed more leniently, since their utterances are likely al-
ways going to be mispronounced in some way; their segmental
errors often span entire syllables or words, meaning accurately
transcribing phone-level boundaries (cf. [10]) would be very
difficult and isolating one problematic phone impossible (plus
it assumes the learner is capable of understanding this granu-
larity of feedback); and beginning learners are arguably more
focused on other goals, such as word acquisition. Furthermore,
popular communicative pedagogies [11] expect learners to be-
gin dialogue practice right away, deferring reading comprehen-
sion to a later date. In short, beginning second language learners
in realistic learning scenarios can be expected to produce lower
quality utterances than are accounted for in current literature.
For the same reason, beginning learners can receive the most
benefits from pronunciation error detectors.

2. Contribution
To our knowledge, the research presented here is the first to
adapt existing approaches of pronunciation error detection to
beginning learner speech data. This is an emerging field offered
by increasingly powerful mobile devices which can be used as
complementary tools in educational settings. No research as
of yet has been conducted to investigate how state-of-the-art
pronunication error detectors perform on speech data collected
from adult beginner learners of a second language in a realis-
tic educational task where learners interact with each other in
pairs, facilitated by a mobile-based tutoring app. Our research
addresses this gap and presents the results of an evaluation of
several error detectors, as described in section 3. Data collec-
tion is inspired by a communicative language learning curricu-
lum wherein participants must recall appropriate phrases in a
dialogue and sometimes generate new phrases, albeit highly re-
stricted ones. Binary labels of more and less native word seg-
ments (herein referred to as native and nonnative for the sake of
simplicity) are teased from expert French teachers using a se-
ries of pairwise comparisons. Word-level labels, if reliably pre-
dicted, could be incorporated into an implicit feedback mecha-
nism appropriate to the pedagogy. Experimental setup, includ-
ing the corpus description, can be found in section 4.1. The
results of the experiment are discussed in section 5, including a
discussion of potential pitfalls.



3. Methods
Six pronunciation error detectors, described below, are evalu-
ated in this experiment. It is commonplace in pronunciation
research to perform some form of threshold tuning per segment
on the test set [12, 13, 1, 2, 14]. However, it has been shown
that this practice can drastically improve the performance of
some error detectors over untuned or minimally tuned varieties
[15]. In addition, since these results may not align with real-
world performance, “untuned” methods of choosing thresholds
are explored. Both tuned thresholds (tuned to the Equal Error
Rate (EER), matching the number of false and true positives)
and untuned varieties are explored in this experiment.

Some of these models require Automatic Speech Recogni-
tion (ASR). In these cases, French acoustic models and pho-
netic dictionaries are from l’Université du Maine [16] and de-
coding is performed with Pocketsphinx [17]. A repository build
of Pocketsphinx will normalize per-frame scores according to
that frame’s most likely phone to prevent underflow. For this
experiment, Pocketsphinx has been patched to remove this safe-
guard.

3.1. Phonetic distance classifier

Often pronunciation error detectors build a neighbourhood of
incorrect phonetic dictionary entries that are “close” to a canon-
ical pronunciation of some word. If an alternate pronunciation
is recognized via ASR, that word is considered mispronounced.
An edit distance algorithm can be run to determine which spe-
cific phones or phonemes were mispronounced. Whether error
detectors use rules, confusion matrices, or some other tool to
develop alternate pronunciations [18, 13], they all serve to clus-
ter together similar but incorrect pronunciations of words.

A Phonetic Distance Classifier (PDC), inspired by such er-
ror detectors, is tested in this experiment. It builds a ranked
list of alternate pronunciations for every canonical one. This
list has some fixed size N . To populate the list, an iterative al-
gorithm generates all n size chains of phones from a list of m
(n− 1)-phone prefixes and sorts them in descending similarity
from any canonical pronunciation of the word. The first m en-
tries from the newly populated n-size list are then used to build
chains of size n + 1. This continues until chains reach the size
of 2 phones past the maximum size of alternate canonical pro-
nunciations. Then the topN most similar candidate are greedily
selected from all prefix lists. Pruning prefix lists to size m en-
sures at each iteration this algorithm runs inO(N). To measure
the similarity between canonical and generated pronunciations,
ALINE [19], an edit distance algorithm developed to find cog-
nates, is employed.

After decoding speech with ASR, labelling words mispro-
nounced is as simple as determining whether the recognized
pronunciation is ranked above or below a threshold in the tar-
get word neighbourhood. For the untuned threshold, each word
neighbourhood is bisected into equal halves.

3.2. Goodness of pronunciation

The GOP algorithm has been discussed extensively in pronun-
ciation error detection literature [1, 12, 15]. Though Witt and
Young [1] proposed the GOP score as a ratio between confi-
dence scores of phones, their experiment invloved frame-based
scores to avoid segment size mismatches. Given a phone in-
ventory P , a target phone p∗ ∈ P with corresponding feature
frames o ∈ O, with |o| = N and log-“likelihoods” `(Θ|o, p)
derived from acoustic scores from forced alignment using an

ASR system with parameters Θ, the GOP score is defined as

GOP (p∗,o,Θ) = maxp∈P
1
N

∣∣∣∑N
i=1 (`(Θ|oi, p∗)− `(Θ|oi, p))

∣∣∣ (1)

Adapting eq. (1) to the word level for this experiment is
straightforward. Given a set of canonical pronunciations for a
given wordW with the ith-indexed element of an vector w ∈ W
representing the ith frame’s aligned phone (w should traverse
the canonical pronunciation), p a similar vector for free phone
recognition, and with o spanning all the frames of the word,
word-level GOP can be defined as

GOP (W,o,Θ) = 1
N

∣∣∣maxw∈W
∑N

i=1 (`(Θ|oi, wi)− `(Θ|oi, pi))
∣∣∣ (2)

Witt and Young suggested per-phone thresholds based on the
number of times each phone was labelled mispronounced over
the total number of mispronunciations. Letting S be the set of
all experimental sessions in the training set and c(W ′, s) be the
count of nonnative labels of a specific word in a specific session,
a word-level adaptation can be defined as

TW = α

∣∣∣∣∣log

(
1

|S|
∑
s∈S

c(W, s)∑
W′ c(W ′, s)

)∣∣∣∣∣ (3)

α is a hyperparameter not in the original phone-level threshold
that is independent ofW and allows thresholds to be scaled into
the range of GOP scores.

In order to avoid wild inaccuracies due to improper seg-
ment boundaries from forced alignment, word-level scoring is
performed on only the manually segmented frames (see sec-
tion 4.1), plus a small amount of frames to the right and left
of the segment.

3.3. GMM discriminative classifiers

Franco et al. [2] built a series of four discriminative classifiers
which are implemented for this experiment. The error detec-
tors, originally inspired by the speaker verification systems of
Reynolds et al. [20], are independent of the size of the segments
they classify and can therefore be reproduced almost verbatim.
For this reason, technical details are omitted here.

The first system, dubbed GMM1, trains two GMMs per
word: one GMM on nonnative word instances, the other on na-
tive instances. New instances of a word are classified by the
Log-Likelihood Ratio (LLR) of matching the native GMM over
the nonnative GMM. The untuned per-word threshold is zero:
values over zero imply the native model is more likely and un-
der zero the opposite.

The second system, GMM2, has an identical decision-
making process as GMM1. However, the native and non-
native GMMs are Maximum A Posteriori (MAP) adaptations
of a Universal Background Model GMM (GMM-UBM). The
GMM-UBM is trained on all word instances, regardless of la-
bel. The individual GMMs are then MAP adapted with only
label-specific data. MAP’s hyperparameter, τ , controls the de-
gree to which training with the new data impacts the old model.
Again, zero is the untuned threshold.

The third system, GMM3, constructs per-word GMM-
UBMs, but then MAP-adapts individual word instances in iso-
lation to train another classifier. The weight and variance vec-
tors of a word instance are concatenated into a “supervector.”
The supervectors are used to train a per-word linear SVM that



distinguishes between native and non-native instances. Super-
vectors are normalized so that the global mean of training data
is 0 and its variance 1. The natural per-word untuned thresh-
old for GMM3 is the decision boundary of its associated SVM.
However, EER tuning can be performed on the signed distance
to the hyperplane (ibid.).

The fourth system, GMM4, is simply a threshold on the
weighted linear combination of scores of GMM2 and GMM3.
In the previous work, weights were chosen by observation;
GMM4 weighs scores of GMM2 and GMM3 according to the
range of scores observed per word between the lowest score of
the 2nd quartile and highest of the 3rd quartile.

For this experiment, GMMs are trained and adapted with
the Microsoft Speaker Recognition Toolkit [21]. scikit-learn
[22], which implements LIBLINEAR [23], is used to train and
test SVMs.

4. Experiment
4.1. Corpus

Audio data were collected as part of a preliminary experiment
at the University of Toronto. Beginner learners of French were
recruited to participate in an hour-and-a-half long experiment
wherein pairs took turns reciting phrases from dialogues. The
dialogues, modelled to participants by recorded videos of ac-
tors, had no subtitles. Furthermore, participants were expected
to make small changes to what they said according to context.
They could review the dialogues at any time, but they could not
shadow the actors. Pairs were expected to negotiate the mean-
ing of phrases. This mode of interaction, as well as the dialogue
content, are adaptations of a communicative pedagogical cur-
riculum [11], designed by an expert in the field, to the complex-
ities of CAPT.

Audio data from 29 sessions (58 participants) were tran-
scribed and segmented by hand, corresponding to approxi-
mately 4.1 hours of recorded audio. Data were recorded on
an iPad Mini 2 at 16 kHz mono PCM16. Efforts were made
to reduce the impact of noise: the experiment took place in a
relatively quiet room and participants were instructed to avoid
extraneous noise. Since any deployed mobile speech applica-
tion must be resilient to some noise, only severely distorted
segments were removed from analysis. Additionally, beginners
would often construct words piecemeal with either silence or
filled pauses between syllables. Such segments would be due
course for a CAPT application, and were thus retained. In to-
tal, 5286 segments are considered, which excludes contracted
determiners (l’, m’, etc.), foreign and non-words, and any word
with fewer than 30 instances (initial testing found words with
few instances only served to inflate tuned accuracy).

Of those participants who filled out demographic informa-
tion: 30 were female and 28 male; 26 spoke English as a first
language, 11 Portuguese, and 7 either Cantonese or Mandarin;
23 were bilingual, 19 monolingual, and 10 trilingual; and the
median age was 23. Though the vast majority of these partici-
pants ranked themselves a 1 on a 1-5 ascending scale of fluency
in French (48), 15 participants in this set reported having some
structured lessons in French. This is primarily due to the grades
4-8 core French program in Ontario, Canada. We included these
participants in the analysis to explore a greater range of pronun-
ciations.

Words were labelled as native or nonnative through a series
of pairwise comparisons. Four annotators with French teaching
experience were enlisted for the task. The definition of “na-

tiveness” was intentionally left vague to better align with their
individual criteria. Since this is not a well-defined task and most
words were observed to be mispronounced in some way, direct
labelling of word segments was replaced with a series of relative
assessments that could be manipulated into a partial ranking of
words by nativeness. Each annotator made a series of binary
decisions based on which of two instances of a given word was
more native. All pairs of 10 randomly drawn instances of each
word were compared by each annotator. Comparing each in-
stance with every other instance and counting the number of
“wins” provided a full ranking of those 10 by nativeness. As
this method requires a quadratic number of comparisons with
respect to the number of word instances (every instance must be
compared once to every other instance), the 4th and 6th ranked
points were extracted from each 10 instance subset to act as
boundaries for three discrete bins. Comparing new instances to
these boundary points determines whether it should be labelled
native, nonnative, or unsure (middling).

Table 1: Annotator agreement (described below)
κ1 κ2 %N %NN %Con %DB

A .16 .48 23 36 12 55
B .20 .52 29 41 9 10
C .17 .50 29 37 13 10
D .16 .51 31 23 14 25

Table 1 shows inter- and intra-annotator agreement over a
418 point overlap set. %N (%NN) is the percentage of instances
labelled by that annotator as (non)native. The remainder were
either unsure or simultaneously above and below the bound-
aries (“contradictory”, or %Con). κ1 measures one-versus-rest
inter-annotator agreement using Cohen’s κ over all points in
the overlap set. κ2 is Cohen’s κ on only the points labelled
native or nonnative by both the one annotator and the “rest” an-
notator. For reference, Fleiss’ κ, a generalization of Cohen’s
κ for greater than two annotators [24], reported κ1 = .18 and
κ2 = .59 with the same interpretation of subscripts (albeit for
κ2 the number of applicable points dropped to 80). The dispar-
ity between κ1 and κ2 suggests that nativeness was perceived
along a continuum that was difficult to distinguish near its mid-
dle but easily distinguished at its poles. It is then expected that
a good pronunciation error detector will lie between κ1 and κ2,
since it needs only to decide between two labels. Finally, %DB
lists the proportion of points labelled per annotator over all 5286
segments.

4.2. Preprocessing

Each error detector requires features to be extracted from the
audio signal prior to classification. Feature frames are calcu-
lated by convolving the audio signal with a 25 ms Hamming
Window, shifted 10 ms per frame. 12 Mel-frequency Cepstral
Coefficients (MFCCs) plus 1 energy coefficient, their deltas,
and their double deltas total a 39 coefficient feature vector per
frame. Cepstral Mean-Variance Normalization (CMVN) and
Automatic Gain Control (AGC) are performed on each utter-
ance.

4.3. Partitioning

The error detectors outlined in section 3 are evaluated using
4-fold cross-validation on each of three different partitioning
strategies.

4-Fold Stratified (4FS): The data set is split into
four roughly equal quadrants, each containing a database-



proportional repesentation of each word but with the specific
instances of those words randomly assigned.

4-Fold Participant (4FP): The data set is split into four
roughly equal quadrants, each receiving all points from a unique
set of randomly chosen pairs of participants, with the remaining
pairs distributed to the smallest quadrants.

4-Fold Annotator (4FA): The data set is partitioned accord-
ing to who annotated those points. The overlap set (which all
annotators annotated) is distributed to the two smallest folds.
Since some pairs of participants were only annotated by one
annotator, 4FA cannot be perfectly discriminated from 4FP.

Points in the overlap set are labelled according to majority
vote for 4FS and 4FP partitioning strategies. 4FA uses the labels
of whatever annotator represents the fold the data are placed in.

Both the tuned and untuned thresholds described in sec-
tion 3 are evaluated. To test how well the tuned thresholds gen-
eralize across folds, the unweighted average of per-word opti-
mal thresholds is evaluated.

Each fold in each partitioning strategy is tested once for
each value of a small set of adjustable hyperparameters. For
PDC, neighbourhood sizes of 10, 50, and 100 generated words
are tested. α of 0, 0.0005, 0.001, and 0.002 are tested for GOP.
τ ∈ (0, 1, 4, 6) are checked for GMM2 and GMM3.

5. Results and discussion

4FA 4FP 4FS
%Acc κ %Acc κ %Acc κ

PDC 51 .09 51 .08 51 .08
GOP 60 .12 58 .11 58 .11
GMM1 57 .12 61 .12 65 .19
GMM2 65 .27 62 .19 68 .31
GMM3 61 .19 58 .11 64 .23
GMM4 61 .18 61 .16 67 .29

Table 2: Results from untuned thresholds

4FA 4FP 4FS
%Acc κ %Acc κ %Acc κ

PDC 53 .06 55 .09 55 .08
GOP 62 .23 63 .25 63 .24
GMM1 63 .23 63 .25 66 .31
GMM2 68 .34 66 .31 71 .41
GMM3 65 .27 62 .23 67 .33
GMM4 64 .27 65 .29 70 .38

Table 3: Results from tuned thresholds

4FA 4FP 4FS
%Acc κ %Acc κ %Acc κ

PDC 54 .06 57 .07 57 .06
GOP 58 .17 58 .15 58 .16
GMM1 50 .11 56 .15 61 .21
GMM2 63 .27 60 .20 67 .32
GMM3 59 .19 57 .13 63 .23
GMM4 60 .19 60 .19 66 .30

Table 4: Results from average tuned thresholds

Tables 2 to 4 show the unweighted average accuracy and
detector-annotator Cohen’s κ across folds for each partitioning
strategy and each error detector.

GMM2 outperformed all other error detectors in all criteria.
GMM1 and GMM2 both incorporate more data than GOP and

PDC. The best setting of τ for GMM2 when using tuned thresh-
olds is 0: the iterative MAP adaptation places no weight on
the GMM-UBM when iterating. This means that GMM2 beats
GMM1 by virtue of having smarter initial parameters (those of
the GMM-UBM). GMM3 underperformed because there were
too few word instance points to choose a hyperplane robust to
noise. A lack of optimal setting for τ supports this hypothe-
sis. Given the performance of GMM3, it is no surprise that it
added minimal additional information to GMM4, the latter hav-
ing split the difference between GMM2 and GMM3 in terms of
performance.

PDC underperformed in all situations. This highlights that
more than just phonotactic knowledge is necessary to build a
phonetic distance classifier: knowledge about pronunciation er-
rors specific to an L1-L2 pair is necessary.

The choice of partitioning strategy had a visible effect on er-
ror detector performance. In general, error detectors performed
better when data from each annotator and each participant were
distributed across folds (4FS). It is clear that the error detectors
have difficulty generalizing across participants. However, be-
cause 4FP does not always share participants across folds, it is
unclear how well the error detectors generalize across annota-
tors.

All error detectors received impressive gains in perfomance
when word-level thresholds were tuned on the test set. Slight
gains are visible when average word-level optimal thresholds
are employed versus untuned varieties, but to a far smaller ef-
fect than per-fold tuning. This shows that tuned thresholds do
not necessarily generalize to new data. This is especially rele-
vant to error detectors such as GOP and PDC: they are usually
credited for needing little nonnative training data. To its credit,
GOP benefited most from taking the average thresholds. Tun-
ing thresholds on artificially permuted segments (cf. [4]) may
be worthwhile.

Regardless of the above qualifications, GMM2 performed
well within the expected range of gold-standard between-
annotator agreement, making it well suited to the task of finding
pronunciation errors at the word level.

6. Conclusions and future work
This research represents the first application of pronunciation
error detectors for beginning second language learners’ speech,
especially as facilitated by interactions with a mobile tutoring
app – an emerging field prompted by the increasing availability
and computing capabilities of consumer-grade mobile devices.
Results from this research, compared to those of previous word-
level findings [25], suggest that existing pronunciation error de-
tectors can be applied to more wholistic language learning ap-
plications, assuming one carefully defines and restricts the task.

Towards this end, there are many possible future avenues of
research. First, more complicated models, such as those based
on deep neural networks, should be tested. This is a promising
direction, considering the simplicity of this experiment’s opti-
mal model. Second, alternate labelling strategies that improve
inter-annotator agreement should be explored. Performing com-
parisons with more extreme boundary points or training/testing
on points two or more annotators agree on would be viable
strategies. For new beginners, the distinction between intelli-
gible and unintelligible [26] will likely be more pronounced.
Finally, corpus-based results need to be extrinsically evaluated
to determine just how useful word-level error detection is to be-
ginner learners (especially in relation to feedback), a subject of
our future research.
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