
CSC 411 / CSC D11 / CSC C11 Gradient Descent

9 Gradient Descent

There are many situations in which we wish to minimize an objective function with respect to a

parameter vector:

w
∗ = argmin

w

E(w) (1)

but no closed-form solution for the minimum exists. In machine learning, this optimization is

normally a data-fitting objective function, but similar problems arise throughout computer science,

numerical analysis, physics, finance, and many other fields.

The solution we will use in this course is called gradient descent. It works for any differen-

tiable energy function. However, it does not come with many guarantees: it is only guaranteed to

find a local minima in the limit of infinite computation time.

Gradient descent is iterative. First, we obtain an initial estimate w1 of the unknown parameter

vector. How we obtain this vector depends on the problem; one approach is to randomly-sample

values for the parameters. Then, from this initial estimate, we note that the direction of steepest

descent from this point is to follow the negative gradient −∇E of the objective function evaluated

at w1. The gradient is defined as a vector of derivatives with respect to each of the parameters:

∇E ≡







dE

dw1

...
dE

dwN






(2)

The key point is that, if we follow the negative gradient direction in a small enough distance, the

objective function is guaranteed to decrease. (This can be shown by considering a Taylor-series

approximation to the objective function).

It is easiest to visualize this process by considering E(w) as a surface parameterized by w; we

are trying to finding the deepest pit in the surface. We do so by taking small downhill steps in the

negative gradient direction.

The entire process, in its simplest form, can be summarized as follows:

pick initial value w1

i← 1
loop

wi+1 ← wi − λ∇E|wi

i← i+ 1
end loop

Note that this process depends on three choices: the initialization, the termination conditions,

and the step-size λ. For the termination condition, one can run until a preset number of steps has

elapsed, or monitor convergence, i.e., terminate when

|E(wi+1)− E(wi)| < ǫ (3)

Copyright c© 2015 Aaron Hertzmann, David J. Fleet and Marcus Brubaker 53

CSC 411 / CSC D11 / CSC C11 Gradient Descent

for some preselected constant ǫ, or terminate when either condition is met.

The simplest way to determine the step-size λ is to pick a single value in advance, and this

approach is often taken in practice. However, it is somewhat unreliable: if we choose step-size too

large, than the objective function might actually get worse on some steps; if the step-size is too

small, then the algorithm will take a very long time to make any progress.

The solution is to use line search, namely, at each step, to search for a step-size that reduces

the objective function as much as possible. For example, a simple gradient search with line search

procedure is:

pick initial value w1

i← 1
loop

∆← ∇E|wi

λ← 1
while E(wi − λ∆) ≥ E(wi)

λ← λ

2

end while

wi+1 ← wi − λ∆
i← i+ 1

end loop

A more sophisticated approach is to reuse step-sizes between iterations:

pick initial value w1

i← 1
λ← 1
loop

∆← ∇E|wi

λ← 2λ
while E(wi − λ∆) ≥ E(wi)

λ← λ

2

end while

wi+1 ← wi − λ∆
i← i+ 1

end loop

Copyright c© 2015 Aaron Hertzmann, David J. Fleet and Marcus Brubaker 54

CSC 411 / CSC D11 / CSC C11 Gradient Descent

There are many, many more advanced methods for numerical optimization. For unconstrained

optimization, I recommend the L-BFGS-B library, which is available for download on the web. It

is written in Fortran, but there are wrappers for various languages out there. This method will be

vastly superior to gradient descent for most problems.

9.1 Finite differences

The gradient of any function can be computed approximately by numerical computations. This

is useful for debugging your gradient computations, and in situations where it’s too difficult or

tedious to implement the complete derivative. The numerical approximation follows directly from

the definition of derivative:
dE

dw

∣

∣

∣

∣

w

≈
E(w + h)− E(w)

h
(4)

for some suitably small stepsize h. Computing this value for each element of the parameter vector

gives you an approximate estimate of the gradient ∇E.

It is strongly recommend that you use this method to debug your derivative computations; many

errors can be detected this way! (This test is analogous to the use of “assertions”).

Aside:

The term backpropagation is sometimes used to refer to an efficient algorithm for

computing derivatives for Artificial Neural Networks. Confusingly, this term is also

used to refer to gradient descent (without line search) for ANNs.

Copyright c© 2015 Aaron Hertzmann, David J. Fleet and Marcus Brubaker 55

