CSC411/CSCD11/CSCC11 Clustering

15 Clustering

Clustering is an unsupervised learning problem in which our goal is to discover “clusters” in the
data. A cluster is a collection of data that are similar in some way.

Clustering is often used for several different problems. For example, a market researcher might
want to identify distinct groups of the population with similar preferences and desires. When
working with documents you might want to find clusters of documents based on the occurrence
frequency of certain words. For example, this might allow one to discover financial documents,
legal documents, or email from friends. Working with image collections you might find clusters
of images which are images of people versus images of buildings. Often when we are given large
amounts of complicated data we want to look for some underlying structure in the data, which
might reflect certain natural kinds within the training data. Clustering can also be used to compress
data, by replacing all of the elements in a cluster with a single representative element.

15.1 K-means Clustering

We begin with a simple method called K -means. Given N input data vectors {y;},, we wish to
label each vector as belonging to one of K clusters. This labeling will be done via a binary matrix
L, the elements of which are given by

L, — { 1 if data point 7 belongs to cluster j)

0 otherwise

The clustering is mutually exclusive. Each data vector ¢ can only be assigned to only cluster:
Z]K:l L;; = 1. Along the way, we will also be estimating a center c; for each cluster.
The full objective function for K -means clustering is:

E(c,L) =) Lijllyi — ¢l (2)
i

This objective function penalizes the distance between each data point and the center of the cluster
to which it is assigned. Hence, to minimize this error, we want to bring the cluster centers close to
the data it has been assigned, and we also want to assign the data to nearby centers.

This objective function cannot be optimized in closed-form, and so an iterative method is re-
quired. It includes discrete variables (the labels L), and so gradient-based methods aren’t directly
applicable. Instead, we use a strategy called coordinate descent, in which we alternate between
closed-form optimization of one set of variables holding the other variables fixed. That is, we first
pick initial values, then we alternate between updating the labels for the current centers, and then
updating the centers for the current labels.

Copyright (©) 2015 Aaron Hertzmann, David J. Fleet and Marcus Brubaker 92

CSC411/CSCD11/CSCC11 Clustering

Here is the /-means algorithm:

pick initial values for L and c;.x
loop
// Labeling update: set L «+— arg ming, E(c, L)
for each data point i do
j « argmin; ||y; — ¢ |?

Li,j - 1
L;,=0foralla # j
end for

// Centers update: set ¢ < argmin. F(c, L)

for each center ; do
Zi Li, i Yi
cj < o Lij
end for end loop

Each step of the optimization is guaranteed to lower the objective function until the algorithm
converges (you should be able to show that each step is optimal.) However, there is no guarantee
that the algorithm will find the global optimum and indeed it may easily get trapped in a poor local
minima.

Initialization. The algorithm is sensitive to initialization, and poor initialization can sometimes
lead to very poor results. Here are a few strategies that can be used to initialize the algorithm:

1. Random labeling: Initialize the labeling L randomly, and then run the center-update step to
determine the initial centers. This approach is not recommended because the initial centers
will likely end up just being very close to the mean of the data.

2. Random initial centers: We could try to place initial center locations randomly, e.g., by
random sampling in the bounding box of the data. However, it is very likely that some of the
centers will fall into empty regions of the feature space, and will therefore be assigned no
data. Getting a good initialization this way can be difficult.

3. Random data points as centers: This method works much better: use a random subset of
the data as the initial center locations.

4. K-medoids clustering: This will be described below.

5. Multiple restarts. In multiple restarts, we run K-means multiple times, each time with a
different random initialization (using one of the above methods). We then take the best clus-
tering out of all of the runs, based on the value of the objective function above in Equation

).

Copyright (©) 2015 Aaron Hertzmann, David J. Fleet and Marcus Brubaker 93

CSC411/CSCD11/CSCC11 Clustering

6. K-Means++: k-means++ chooses the initial centers to be relatively far from one another.
That is, (1) Choose a center at random. (2) Then compute the distance between each data
point D(z) and the nearest existing center. (3) Then choose the next centre from among
the data points according to probability proportional to D(x)?. And once the new center is
chosen, repeat (2)-(3) until k£ centers have been chosen. Then optimize k-means as above.

Another key question is how one chooses the number of clusters, i.e., K. A common approach
is to fix KA based on some prior knowledge or computational constraints. One can also try different
values of K, adding another term to to the objective function to penalize model complexity.

15.2 K-medoids Clustering

(The material in this section is not required for this course.)

K-medoids clustering is a variant of &-means with the additional constraint that the cluster
centers must be drawn from the data. The following algorithm, called Farthest First Traversal, or
Hochbaum-Shmoys, is simple and effective:

Randomly select a data point y; as the first cluster center: ¢, < y;
forj =2t0 K
Find the data point furthest from all existing centers:
i < arg max; ming; ||y; — cl|?
Cj <Y
end for
Label all remaining data points according to their nearest centers (as in k-means)

This algorithm provides a quality guarantee: it gives a clustering that is no worse than twice
the error of the optimal clustering.

K-medoids clustering can also be improved by coordinate descent. The labeling step is the
same as in /K-means. However, the cluster updates must be done by brute-force search for each
candidate cluster center update.

15.3 Mixtures of Gaussians

The Mixtures-of-Gaussians (MoG) model is a generalization of K -means clustering. Whereas K-
means clustering works for clusters that are more or less spherical, the MoG model can handle
oblong clusters and overlapping clusters. The K -means algorithm does an excellent job when
clusters are well separated, but not when the clusters overlap. MoG algorithms compute a “soft,”
probabilistic clustering which allows the algorithm to better handle overlapping clusters. Finally,
the MoG model is probabilistic, and so it can be used to learn probability distributions from data.
The MoG model consists of K Gaussian distributions, each with their own means and covari-
ances { (4, K;)}. Each Gaussian also has an associated (prior) probability a;, such that) ja; =1
That is, the probabilities a; will represent the fraction of the data that are assigned to (or generated

Copyright (©) 2015 Aaron Hertzmann, David J. Fleet and Marcus Brubaker 94

CSC411/CSCD11/CSCC11 Clustering

451

40+

351

301

251

20

15

10

I I I I I I
-10 0 10 20 30 40

Figure 1: K-means applied to a dataset sampled from three Gaussian distributions. Each data
assigned to each cluster are drawn as circles with distinct colours. The cluster centers are shown
as red stars.

by) the different Gaussian components. As a shorthand, we will write all the model parameters
with a single variable, i.e., 0 = {a1.x, f11.5c, K1.x }. When used for clustering, the idea is that each
Gaussian component in the mixture should correspond to a single cluster.

The complete probabilistic model comprises the prior probabilities of each Gaussian compo-
nent, and Gaussian likelihood over the data (or feature) space for each component:

P(L=jl0) = aj (3)
p(yl0,L=j) = Gy; 1y, K;) “4)

To sample a single data point from this (generative) model, we first randomly select a Gaussian
component according to their prior probabilities {a;}, and then we randomly sample from the
corresponding Gaussian component. The likelihood of a single data point can be derived by the
product rule and the sum rule as follows:

K
p(yl0) = > ply. L =jl6) 5)
=1
jK
= > plylL=j0) P(L=j|0) (6)
=1
jK
_ Z a; ;efé(yfw)TK;l(yfw) (7)
—1 (2m)P| K]

J

where D is the dimension of data vectors. This model can be interpreted as a linear combination
(or blend) of Gaussians: we get a multimodal distribution by adding together unimodal Gaussians.

Copyright (©) 2015 Aaron Hertzmann, David J. Fleet and Marcus Brubaker 95

CSC411/CSCD11/CSCC11 Clustering

%

-10 -5 0 5 10 15 20 25 30 35 40 100 120 140 160 180 200

Figure 2: Mixture of Gaussians model applied to a dataset generated from three Gaussians. The
resulting ~y is visualized on the right. The data points are shown as colored circles. The color
is determined by the cluster with the highest posterior assignment probability ;;. One standard
deviation ellipses are shown for each Gaussian. Note that the blue points are well isolated and there
is little ambiguity in their assignments. The other two distributions overlap, and one can see how
the orientation and eccentricity of the covariance structure (the ellipses) influence the assignment
probabilities.

Interestingly, the MoG model is similar to the Gaussian Class-Conditional model that we used for
classification; the difference is that the class labels will no longer be included in the training set.

In general, the approach of building models by mixtures is quite general and can be used for
many other types of distributions as well, for example, we could build a mixture of Student-¢
distributions, or a mixture of a Gaussian and a uniform, and so on.

15.3.1 Learning

Given a data set y1.y, where each data point is assumed to be drawn independently from the model,
we learn the model parameters, ¢, by minimizing the negative log-likelihood of the data:

L(0) = —Inp(y.n|0) ®)
= —Zlnp(yim))

Note that this is a constrained optimization, since we require a; > 0 and) ; aj = 1. Furthermore,
K; must be symmetric, positive-definite matrix to be a covariance matrix. Unfortunately, this
optimization cannot be performed in closed-form.

One approach is to use gradient descent to optimization by gradient descent. There are a few
issues associated with doing so. First, some care is required to avoid numerical issues, as discussed
below. Second, this learning is a constrained optimization, due to constraints on the values of the

Copyright (©) 2015 Aaron Hertzmann, David J. Fleet and Marcus Brubaker 96

CSC411/CSCD11/CSCC11 Clustering

a’s. One solution is to project onto the constraints during optimization: at each gradient descent
step (and inside the line search loop), we clamp all negative a values to zero and renormalize the
a’s so that they sum to one. Another option is to reparameterize the problem to be unconstrained.
Specifically, we define new variables 3;, and define the a’s as functions of the s, e.g.,

e
a;(8) = S o (10)
j=1

This definition ensures that, for any choice of the [3s, the as will satisfy the constraints. We sub-
stitute this expression into the model definition and then optimize for the [3s instead of the as with
gradient descent. Similarly, we can enforce the constraints on the covariance matrix by reparame-
terization; this is normally done using a upper-triangular matrix U such that K = U7'U.

An alternative to gradient descent is the Expectation-Maximization algorithm, or EM. EM
is a quite general algorithm for “hidden variable” problems; in this case, the labels L are “hid-
den” (or “unobserved”). In EM, we define a probabilistic labeling variable +; ;. The variable
7i,; corresponds to the probability that data point ¢ came from cluster j: +; ; is meant to estimate
P(L = jly;). In EM, we optimize both ¢ and 7 together. The algorithm alternates between the
“E-step” which updates the s, and the “M-step”” which updates the model parameters 6.

pick initial values for « and 6
loop
E-step:
for each data point : do
Yij < P(L = jlyi,0)

end for

M-step:

for each cluster j do
aj <— —21]\7”
e

o i Vi Vi) (yi—pg)t

Kj > Vi

end for

end loop

Note that the E-step is the same as classification in the Gaussian Class-Conditional model.
The EM algorithm is a local optimization algorithm, and so the results will depend on initial-
ization. Initialization strategies similar to those used for /{-means above can be used.

Copyright (©) 2015 Aaron Hertzmann, David J. Fleet and Marcus Brubaker 97

CSC411/CSCD11/CSCC11 Clustering

15.3.2 Numerical issues

Exponentiating very small negative numbers can often lead to underflow when implemented in
floating-point arithmetic, e.g., e~ will give zero for large A, and In e~ will give an error (or
—Inf) whereas it should return — A. These issues will often cause machine learning algorithms to
fail; MoG has several steps which are susceptible. Fortunately, there are some simple tricks that
can be used.

1. Many computations can be performed directly in the log domain. For example, it may be

more stable to compute
ae (1D

as
eln a+b (1 2)

This avoids issues where b is so small that e evaluates to zero in floating point, but ae® is
much greater than zero.

2. When computing an expression of the form:
e P
> g e

large values of 3 could lead to the above expression being zero for all j, even though the
expression must sum to one. This may arise, for example, when computing the -y updates,
which have the above form. The solution is to make use of the identity:

13)

Zj e_/Bj o Z] e_ﬂj-i-c

for any value of C'. We can choose C' to prevent underflow; a suitable choice is C' = min; (3;.

(14)

3. Underflow can also occur when evaluating
Y e (15)

which can be fixed by using the identity

lnz e Pi = (1nze5j+c> —C (16)

Copyright (©) 2015 Aaron Hertzmann, David J. Fleet and Marcus Brubaker 98

CSC411/CSCD11/CSCC11 Clustering

15.3.3 The Free Energy

Amazingly, EM optimizes the log-likelihood, which doesn’t even have a -y parameter. In order to
understand the EM algorithm and why it works, it is helpful to introduce a quantity called the Free
Energy:

FO.v) = - Z%‘,j Inp(y:, L = jl0) + Z%‘,j In7; (17)
,J i,J
1 _
= 52 %y — 1) K (i —) (18)
irj
1
+3 Z i n(2m) P [K;| — Z i, Ina; (19)
] 1,7
+> iy (20)
i

The EM algorithm is a coordinate descent algorithm for optimizing the free energy, subject
to the constraint that » ;. v;; = 1 and the constraints on a. In other words, EM can be written
compactly as:

pick initial values for v and 6
loop

E-step:

7y < argmin, F(6,7)

M-step:

6 < argming F(6,)
end loop

However, the free energy is different from the negative log-likelihood £(6) that we initially set
out to minimize. Fortunately, the free energy has the following important properties:

e When the value of v is optimal, the Free Energy is equal to the negative log-likelihood:
L(0) = min F(0,7) (21)
Y

We can use this fact to evaluate the negative log-likelihood simply by running an E-step and
then computing the free energy. In fact, this is often more efficient than directly computing
the negative log-likelihood. The proof is given in the next section.

e The minima of the free energy are also minima of the negative log-likelihood:

min £(6) = min F(0,) (22)
6 0,y

This follows from the previous property. Hence, optimizing the free energy is the same as
optimizing the negative log-likelihood.

Copyright (©) 2015 Aaron Hertzmann, David J. Fleet and Marcus Brubaker 99

CSC411/CSCD11/CSCC11 Clustering

e The Free Energy is an upper-bound on the negative log-likelihood:
F(0,7) = L(0) (23)

for all values of . This observation gives a sanity check for debugging the free energy
computation.

The Free Energy also provides a very helpful tool for debugging: any step of an implementation
that increases the free energy must be incorrect. The term Free Energy arises from its original
definition in statistical physics.

15.3.4 Proofs

This content of this section is not required material for this course and you may skip it. Here we
outline proofs for the key features of the free energy.

EM updates. The steps of the EM algorithm may be derived by solving arg min. F(¢,~) and
arg ming F(6,~). In most cases, the derivations generalize familiar ones, e.g., weighted least-
squares. The a and ~ parameters are multinomial distributions, and optimization of them requires
Lagrange multipliers or reparameterization. One may ignore the positivity constraint, as it turns
out to be automatically satisfied. The details will be skipped here.

Equality after the E-step. The E-step computes the optimal value for :

" < argmin F(6,7) (24)
2!
which is given by:
Vi, = P(L=jly:) (25)
Substituting this into the Free Energy gives:
, p(yi, L =j)
FO,v") = — P(L=jly;,) In ——FF—= (26)
= =) P(L=jly:)lnp(y:) 27)
1]
= - (hlp(yi) > P(L= jb’z‘)) (28)
@ J
= — Z Inp(y;) (29)
_ 20 (30)
Hence,
L(0) = min F(0,) 31)
2!

Copyright (©) 2015 Aaron Hertzmann, David J. Fleet and Marcus Brubaker 100

CSC411/CSCD11/CSCC11 Clustering

Bound. An important building block in proving that F (9 v) > L(0) is Jensen’s Inequality,
which applies since In is a “concave” function and) | ;bj 1,b; >0
Iy bz, > > bjlnz;, or (32)
J J

~In) bz < = bilna, (33)
J J

We will not prove this here.
We can then derive the bound as follows, dropping the dependence on € for brevity:

L(O) = —Zanp yi, L = j) 34)
_ —Zlnz%’j p(yi, L = j) (35)

< _Z%jl p}’za,y =J) (36)
i,J

~ Fo.) 7

15.3.5 Relation to K -means

It should be clear that the /K -means algorithm is very closely related to EM. In fact, EM reduces
to K{-means if we make the following restrictions on the model:

1

e The class probabilities are equal: a; = +.

e The Gaussians are spherical with identical variances: K; = ¢*I for all j.

e The Gaussian variances are infinitesimal, i.e., we consider the algorithm in the limit as
o2 — 0. This causes the optimal values for 7 to be binary, since, if j is the nearest class,

lima2_>0 P(L =]lyl) =1.

With these modifications, the Free Energy becomes equivalent to the A -means objective function,
up to constant values, and the EM algorithm becomes identical to K -means.

15.3.6 Degeneracy

There is a degeneracy in the MoG objective function. Suppose we center one Gaussian at one of
the data points, so that ¢c; = y;. The error for this data point will be zero, and by reducing the
variance of this Gaussian, we can always increase the likelihood of the data. In the limit as this
Gaussian’s variance goes to zero, the data likelihood goes to infinity. Hence, some effort may be
required to avoid this situation. This degeneracy can also be avoided by using a more Bayesian
form of the algorithm, e.g., marginalizing out the cluster centers rather than estimating them.

Copyright (©) 2015 Aaron Hertzmann, David J. Fleet and Marcus Brubaker 101

CSC411/CSCD11/CSCC11 Clustering

15.4 Determining the number of clusters

Determining the value of K is a model selection problem: we want to determine the most-likely
value of K given the data. Cross validation is not appropriate here, since we do not have any super-
vision (e.g., correct labels from a subset of the data). Bayesian model selection can be employed,
e.g., by maximizing

K* = arg max P(K|y1.n) = arg mf?x/p(K,ﬂyl:N)d@ (38)

where 6 are the model parameters. This evaluation is somewhat mathematically-involved. A very
coarse approximation to this computation is Bayesian Information Criterion (BIC).

Copyright (©) 2015 Aaron Hertzmann, David J. Fleet and Marcus Brubaker 102

