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Model selection
The problem of model selection has come up at a number of points in the
course. How many dimensions in PCA? What degree of polynomial to select for
regression? How many clusters should we use in a GMM?

One way to answer this question is to try ask the data. That is, select
the model M with the highest probability given the data D. We’ll assume
that every model M has a unique set of parameters θ which would need to be
estimate. Given those parameters, the likelihood is then p(D|θ,M) and there
may be some prior on those parameters as p(θ|M). Now, using Bayes rule and
marginalization we get:

p(M |D) =
p(D|M)p(M)

p(D)

=
p(M)

´
p(D|M, θ)p(θ|M)dθ

p(D)

Unfortunately, as we’ve discussed elsewhere, there are very few cases where this
the integral here is tractable. So how are we supposed to evaluate this? One
approach which we’ll look at is called BIC or the Bayesian Information Criterion.

Bayesian Information Criterion
To begin, lets consider the negative log of the model probability. That is.

− log p(M |D) = log p(D)− log p(M)− log

ˆ
p(D|M, θ)p(θ|M)dθ

The first term doesn’t depend on M and the second term is a prior which we’ll
leave for later. The hard term here is the integral. To work on that we’re going
to construct a Taylor series approximation to the log likelihood term. That is if

LM (θ) = log p(D|M, θ) + log p(θ)
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then

LM (θ) ≈ LM (θ̂) + (θ − θ̂)T ∂LM (θ̂)

∂θ
+

1

2
(θ − θ̂)T ∂

2LM (θ̂)

∂2θ
(θ − θ̂)

If we select θ̂ to be a point where LM (θ) is maximized (ie, the MAP solution to
the problem) then ∂LM (θ̂)

∂θ = 0 and

LM (θ) ≈ LM (θ̂) +
1

2
(θ − θ̂)T ∂

2LM (θ̂)

∂2θ
(θ − θ̂)

= LM (θ̂)− 1

2
(θ − θ̂)T (nF(θ̂))(θ − θ̂)

where

F(θ̂) = − 1

N

∂2LM (θ̂)

∂2θ

= − 1

N

N∑
i=1

(
∂2 log p(Di|M, θ̂)

∂2θ
+

1

N

∂2 log p(θ̂|M)

∂2θ

)
is a matrix. An important property of this matrix is that it is basically an
average over data observations so that, as N increases, it should converge to a
constant.

Now, exponentiating our approximation, we get

p(D|M, θ)p(θ|M) ≈ p(D|M, θ̂)p(θ̂|M) exp

(
−1

2
(θ − θ̂)T (NI(θ̂))(θ − θ̂)

)
and plugging this into the integral above we getˆ
p(D|M, θ)p(θ|M)dθ ≈

ˆ
p(D|M, θ̂)p(θ̂|M) exp

(
−1

2
(θ − θ̂)T (NF(θ̂))(θ − θ̂)

)
dθ

Now, we can go ahead and move the constants outside the integral and what’s
left inside is just an unnormalized Gaussian distribution. Thenˆ
p(D|M, θ)p(θ|M)dθ ≈ p(D|M, θ̂)p(θ̂|M)

ˆ
exp

(
−1

2
(θ − θ̂)T (NF(θ̂))(θ − θ̂)

)
dθ

= p(D|M, θ̂)p(θ̂|M)(2π)
KM
2

∣∣∣NF(θ̂)
∣∣∣− 1

2

= p(D|M, θ̂)p(θ̂|M)

(
2π

N

)KM
2 ∣∣∣F(θ̂)

∣∣∣− 1
2

where KM is the dimensionality of θ for model M . Now, plugging this integral
into our equation above we get

− log p(M |D) ≈ log p(D)− log p(M)− log p(D|M, θ̂)p(θ̂|M) +
KM

2
log

N

2π
+

1

2
log
∣∣∣F(θ̂)

∣∣∣
= log p(D)− log p(M)− KM

2
log 2π +

1

2
log
∣∣∣F(θ̂)

∣∣∣− log p(D|M, θ̂)p(θ̂|M) +
KM

2
logN

Now, lets look at the limit of this as N increases to infinity.
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• The first three terms are constants in terms of N

• The fourth term 1
2 log

∣∣∣F(θ̂)
∣∣∣ will converge to a constant as N increases

• The fifth and sixth terms, − log p(D|M, θ̂)p(θ̂|M)+ KM

2 logN will grow as
the amount of data increases

So asymptotically, the only two terms we’re left with are the last two. Together,
this gives us what is know as the Bayes Information Criterion or BIC.

− log p(M |D) ∼ − log p(D|M, θ̂)p(θ̂|M) +
KM

2
logN

= BIC(M |D)

Uses of BIC
• First and foremost, BIC gives us a way to choose between two different

models with different numbers of parameters by selecting the one which
gives us the lowest BIC score.

• More complex models are almost always likely to fit the data better (and
therefore have a lower value of − log p(D|M, θ̂). BIC gives us a relatively
principled way to penalize these extra parameters in the form of the term
KM

2 logN . Note that this term doesn’t just penalize more parameters, it
also says that if you have more data, you expect those extra parameters
to help you that much more.

• Beyond basic model selection, BIC can give us some clue as to whether
the differences between models are meaningful. For instance, define ∆ =
BIC(M1|D) − BIC(M2|D). If ∆ is positive, then M2 is better than M1

but how much better? Roughly speaking,

|∆| =


0− 1 insignificant
1− 3 meaningful
3− 5 strong
5+ very strong

• Finally, sinceBIC(M |D) can be thought of as a surrogate for− log p(M |D)
we can use it to do model averaging. Specifically, consider making a pre-
diction for some value ynew given the data we’ve observed

p(ynew|D) =
∑
M

p(ynew,M |D)

=
∑
M

p(ynew|M,D)p(M |D)

≈
∑
M

p(ynew|M,D)wM

3



where
wM =

exp(−BIC(M |D))∑
M ′ exp(−BIC(M ′|D))

In other words, instead of picking the single model with the lowest BIC,
we can use the BIC to define weights and combine together all the models
we evaluated. This is generally found to work better. Plus, we already
went to all the trouble of evaluating all the models in the first place to
compute the BIC for all of them, might as well use them!

Other forms of Model Selection
BIC is but one of many model selection criterias. Some others that you should
be aware of include

• BIC is traditionally defined slightly differently. Specifically, it is assumed
that the prior is relatively weak around the the mode θ̂ and there is an
arbitrary scaling constant involved. Thus, the traditional BIC measure is

BICtrad(M |D) = −2 log p(D|M, θ̂) +KM logN

• A similar, but related, measure is called AIC (Akaike Information Crite-
rion) and is derived using information theory. It has a similar form to
BIC

AIC(M |D) = −2 log p(D|M, θ̂) + 2KM

and there are many variations of AIC which can be derived to improve the
quality of it’s estimate. Looking at this you can see that BIC will generally
penalize complex models more strongly than AIC whenever N > e2.

• BIC and AIC both can be considered an instance of a general technique
known as penalized likelihood, where a penalty term is added to the neg-
ative log likelihood which penalizes more complex models. This is not
unlike adding a prior. However, it is often difficult to come up with good,
general purpose priors for things like model complexity which AIC and
BIC.

• N-fold cross validation is another form of model selection which takes
a very different approach to BIC and, as a consequence, has somewhat
different properties. Specifically, BIC or AIC cannot differentiate between
two models with the same number of parameters. For instance, consider
trying to choose between a set of polynomial or sinusoidal basis functions
in basis function regression. In this case, they both simply devolve into
Maximum Likelihood. In contrast, N-fold cross validation can diffentiate
between different models with the same number of parameters.
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