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Abstract We introduce a physics-based model for 3D
person tracking. Based on a biomechanical characteri-
zation of lower-body dynamics, the model captures im-
portant physical properties of bipedal locomotion such
as balance and ground contact. The model generalizes
naturally to variations in style due to changes in speed,
step-length, and mass, and avoids common problems
(such as footskate) that arise with existing trackers. The
dynamics comprise a two degree-of-freedom represen-
tation of human locomotion with inelastic ground con-
tact. A stochastic controller generates impulsive forces
during the toe-o� stage of walking, and spring-like forces
between the legs. A higher-dimensional kinematic body
model is conditioned on the underlying dynamics. The
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combined model is used to track walking people in video,
including examples with turning, occlusion, and vary-
ing gait. We also report quantitative monocular and
binocular tracking results with the HumanEva dataset.
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1 Introduction

Most current methods for recovering human motion
from monocular video rely onkinematic models learned
from motion capture (mocap) data. Generative approaches
rely on density estimation to learn a prior distribution
over plausible human poses and motions, whereas dis-
criminative models typically learn a mapping from im-
age measurements to 3D pose. While the use of learned
kinematic models clearly reduces ambiguities in pose
estimation and tracking, the 3D motions estimated by
these methods are often physically implausible. The
most common artifacts include jerky motions, feet that
slide when in contact with the ground (or oat above
it), and out-of-plane rotations that violate balance.

The problem is, in part, due to the relatively small
amount of available training data, and, in part, due to
the limited ability of such models to generalize well be-
yond the training data. For example, a model trained on
walking with a short stride may have di�culty tracking
and reconstructing the motion of someone walking with
a long stride or at a very di�erent speed. Indeed, hu-
man motion depends signi�cantly on a wide variety of
factors including speed, step length, ground slope, ter-
rain variability, ground friction, and variations in body
mass distributions. The task of gathering enough mo-
tion capture data to span all these conditions, and gen-
eralize su�ciently well, is prohibitive.
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As an alternative to learned kinematic models, this
paper advocates the use ofphysics-based models. We
hypothesize that physics-based dynamics will lead to
natural parameterizations of human motion. Dynamics
also allows one to model interactions with the environ-
ment (such as ground contact and balance during loco-
motion), and it generalizes naturally to di�erent speeds
of locomotion, changes in mass distribution and other
sources of variation. Modeling the underlying dynamics
of motion should result in more accurate tracking and
produce more realistic motions which naturally obey
essential physical properties of human motion.

In this paper, we consider the important special
case of walking. Rather than attempting to model full-
body dynamics, our approach is inspired by simpli-
�ed biomechanical models of human locomotion [9,10,
24,29]. Such models are low-dimensional and exhibit
stable human-like gaits with realistic ground contact.
We design a generative model for people tracking that
comprises one such model, called theAnthropomorphic
Walker [24,25], with a stochastic controller to gener-
ate muscle forces, and a higher-dimensional kinematic
model conditioned on the low-dimensional dynamics.

Tracking is performed by simulating the model in a
particle �lter, producing physically plausible estimates
of human motion for the torso and lower body. In par-
ticular, we demonstrate stable monocular tracking over
long walking sequences. The tracker handles occlusion,
varying gait styles, and turning, producing realistic 3D
reconstructions. With lower-body occlusions, it still pro-
duces realistic reconstructions and infers the time and
location of ground contacts. We also applied the tracker
to the benchmark HumanEva dataset and report quan-
titative results.

2 Related Work

The 3D estimation of human pose from monocular video
is often poorly constrained, and, hence, prior models
play a central role in mitigating problems caused by am-
biguities, occlusion and measurement noise. Most hu-
man pose trackers rely onarticulated kinematic models.
Early generative models were speci�ed manually (e.g.,
with joint limits and smoothness constraints), while
many recent generative models have been learned from
motion capture data of people performing speci�c ac-
tions (e.g., [7,17,31,42,44,47,51]). Discriminative mod-
els also depend strongly on human motion capture data,
based on which direct mappings from image measure-
ments to human pose and motion are learned [1,13,38,
40,45].

In constrained cases, kinematic model-based track-
ers can produce good results. However, such models

generally su�er from two major problems. First, they
often make unrealistic assumptions; e.g., motions are
assumed to be smooth (which is violated at ground con-
tact), and independent of global position and orienta-
tion. As a result, tracking algorithms exhibit a number
of characteristic errors, including rotations of the body
that violate balance, and footskate, in which a foot in
contact with the ground appears to slide or oat in
space. Second, algorithms that learn kinematic models
have di�culty generalizing beyond the training data.
In essence, such models describe the probability of a
motion by comparison to training poses; i.e., motions
\similar" to the training data are considered likely. This
means that, for every motion to be tracked, there must
be a similar motion in the training database. In order
to build a general tracker using current methods, an
enormous database of human motion capture will be
necessary.

To cope with the high dimensionality of kinematic
models and the relative sparsity of available training
data, a major theme of recent research on people track-
ing has been dimensionality reduction [13,36,44,47,48].
It is thought that low-dimensional models are less likely
to over-�t the training data and will therefore general-
ize better. They also reduce the dimension of the state
estimation problem during tracking. Inspired by similar
ideas, our physics-based model is a low-dimensional ab-
straction based on biomechanical models. Such models
are known to accurately represent properties of human
locomotion (such as gait variation and ground contact)
that have not been demonstrated with learned mod-
els [3,15,24]. We thus aim to gain the advantages of
a physics-based model without the complexity of full-
body dynamics, and without the need for inference in
a high-dimensional state space.

A small number of authors have employed physics-
based models of motion for tracking. Pentland and Horowitz
[32] and Metaxas and Terzopoulos [30] describe elastic
solid models for tracking in conjunction with Kalman
�ltering, and give simple examples of articulated track-
ing by enforcing constraints. Wren and Pentland [54]
use a physics-based formulation of upper body dynam-
ics to track simple motions using binocular inputs. For
these tracking problems, the dynamics are relatively
smooth but high-dimensional. In contrast, we employ
a model that captures the speci�c features of walking,
including the nonlinearities of ground contact, without
the complexity of modeling elastic motion. Working
with 3D motion capture data and motivated by ab-
stract passive-dynamic models of bipedal motion, Bis-
sacco [2] uses a switching, linear dynamical system to
model motion and ground contact. We note that, de-
spite these attempts, the on-line tracking literature has
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Fig. 1 A cartoon outline of the graphical model used for visual
tracking. Conditioned on the control parameters one can sim u-
late the equations of motion for the planar model to produce a
sequence of 2D poses. The 3D kinematic model is conditioned
on the 2D dynamics simulation. The image likelihood functio n
then speci�es the dependence of the image measurements on th e
kinematic pose.

largely shied away from physics-based prior models. We
suspect that this is partly due to the perceived di�culty
in building appropriate models. We show that, with ju-
dicious choice of representation, building such models
is indeed possible.

It is also notable that the term \physics-based mod-
els" is used in di�erent ways in computer vision. Among
these, physics is often used as a metaphor for mini-
mization, by applying virtual \forces" (e.g., [6,11,19,
20,46]); unlike in our work, these forces are not meant
to represent forces in the world.

Physics-based models of human motion are also com-
mon in computer animation where two main approaches
have been employed. The Spacetime Constraints ap-
proach [53] solves for a minimal-energy motion that sat-
is�es animator-speci�ed constraints, and has recently
shown some success at synthesizing full-body human
motion [26,39]. However, such batch optimization is un-
suitable for online tracking. Controller-based methods
(e.g., [18,55]) employ on-line control schemes for inter-
action with physical environments. Our control mech-
anism is similar, but we use a minimal motion model
with stochastic control for probabilistic 3D tracking.
Finally, the model we develop is perhaps most simi-
lar to motion editing methods where low-dimensional
physical constraints [23,34,41] are applied to a high-
dimensional kinematic model. Here we do not require
example data to be transformed, and it is important to
note that for tracking we do not need a fully-realistic
dynamical model.

3 Motivation and Overview

Our primary goal is to track human locomotion from
monocular video sequences. We employ a probabilistic
formulation which requires a prior density model over
human motion and an image likelihood model. The key

idea, as discussed above, is to exploit basic physical
principles in the design of a prior probabilistic model.

One natural approach is to model full-body dynam-
ics as is sometimes done in humanoid robotics and com-
puter animation. Unfortunately, managing the dynam-
ics of full-body human motion, like the control of com-
plex dynamical systems in general, is extremely chal-
lenging. Nonetheless, work in biomechanics and robotics
suggests that the dynamics of bipedal walking may be
well described by relatively simplepassive-dynamic walk-
ing models. Such models exhibit stable, bipedal walking
as a natural limit cycle of their dynamics. Early models,
such as those introduced by McGeer [27], were entirely
passive and could walk downhill solely under the force
of gravity. Related models have since been developed,
including one with a passive knee [28], another with an
upper body [52], and one capable of running [29].

More recently, powered walkers based on passive-
dynamic principles have been demonstrated to walk
stably on level-ground [8,24,25]. These models exhibit
human-like gaits and energy-e�ciency. The energetics
of such models have also been shown to accurately pre-
dict the preferred relationship between speed and step-
length in human walking [24]. In contrast, traditional
approaches in robotics (e.g., as used by Honda's hu-
manoid robot Asimo), employ highly-conservative con-
trol strategies that are signi�cantly less energy-e�cient
and less human-like in appearance, making them a poor
basis for modeling human walking [8,35].

These issues motivate the form of the model sketched
in Fig. 1, the components of which are outlined below.

Dynamical model. Our walking model is based on
the Anthropomorphic Walker [24,25], a planar model of
human locomotion (Section 4.1). The model depends
on active forces applied to determine gait speed and
step length. A prior distribution over these control pa-
rameters, together with the physical model, de�nes a
distribution over planar walking motions (Section 4.2).

Kinematic model. The dynamics represent the mo-
tion of the lower body in the sagittal plane. As such it
does not specify all the parts of the human body that
we wish to track. We therefore de�ne a 3D kinematic
model for tracking (see Fig. 1). As described in Section
4.3, the kinematic model is constrained to be consistent
with the planar dynamics, and to move smoothly in its
remaining degrees of freedom (DOF).

Image likelihood. Conditioned on 3D kinematic state,
the likelihood model speci�es an observation density
over image measurements. For tracking we currently
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L 1.0m
C 0.645m
R 0.3m
m t 0.678
I t 0.167
m ` 0.161
I ` 0.017

Fig. 2 The planar Anthropomorphic Walker and inertial pa-
rameters. The model parameters in the table are taken from Ku o
[25]. Units of mass are given as a proportion of the total mass of
the walker.

exploit foreground and background appearance mod-
els as well as optical ow measurements (explained in
Section 5.1). With the prior generative model and the
likelihood, tracking is accomplished with a form of se-
quential Monte Carlo inference.

4 Dynamic Model of Human Walking

Our stochastic walking model is inspired by the minimally-
poweredAnthropomorphic Walker of Kuo [24,25]. Shown
in Fig. 2, the Anthropomorphic Walker is a planar ab-
straction with two straight legs of length L and a rigid
torso attached at the hip with mass mt and moment
of inertia I t . The \feet" are circles of radius R, which
roll along the ground as the model moves. Each leg has
massm` and moment of inertia I ` , centered at distance
C from the foot. The origin of the global frame of ref-
erence is de�ned to be the ground contact point of the
stance foot when the stance leg is vertical.

The legs are connected by a torsional spring to sim-
ulate muscle torques at the hips. The spring sti�ness
is denoted � . During normal walking, the stance legis
in contact with the ground, and the swing leg swings
freely. The walker also includes an impulsive \toe-o�"
force, with magnitude �, that allows the back leg to
push o� as support changes from the stance foot to the
swing foot.

4.1 Dynamics

As in a Lagrangian formulation, we de�ne generalized
coordinates representing the con�guration of the walker
at a given instant: q = ( � 1; � 2)T , where � 1 and � 2 are
the global orientations of the stance and swing legs, re-
spectively. The state of the walker is given by (q; _q),

where the generalized velocities are_q � dq
dt . The equa-

tions of motion during normal walking are then written
as a function of the current state:

M (q) •q = F (q; _q; � ) ; (1)

where M (q) is known as the generalized mass matrix,
F (q; _q; � ) is a generalized force vector which includes
gravity and the spring force between the legs, and�
denotes the spring sti�ness. This equation is a general-
ization of Newton's Second Law of Motion. Solving (1)
at any instant gives the generalized acceleration•q. The
details of (1) are given in Appendix A.

An important feature of walking is the collision of
the swing leg with the ground. The Anthropomorphic
Walker treats collisions of the swing leg with the ground
plane as impulsive and perfectly inelastic. As a conse-
quence, at each collision, all momentum of the body
in the direction of the ground plane is lost, resulting
in an instantaneous change in velocity. Our collision
model also allows for the characteristic \toe-o�" of hu-
man walking, in which the stance leg gives a small push
before swinging. By changing the instantaneous velocity
of the body, toe-o� helps to reduce the loss of momen-
tum upon ground contact.

The dynamics at ground collisions, as explained in
Appendix B, are based on a generalized conservation
of momentum equation which relates pre- and post-
collision velocities of the body, denoted _q� and _q+ ,
and the magnitude of the impulsive toe-o�, � ; i.e.,

M + (q) _q+ = M � (q) _q� + I (q; � ) (2)

where q is the pose at the time of collision, M � (q)
and M + (q) are the pre- and post-collision generalized
mass matrices, andI (q; � ) is the change in generalized
momentum due to the toe-o� force. The impulsive toe-
o� force depends on the angle at which the swing foot
strikes the ground and on magnitude of the impulse,� .

Given � and �, the dynamics equations of motion (1)
can be simulated using a standard ODE solver. We use
a fourth-order Runge-Kutta method with a step-size of
1
30 s. When a collision of the swing foot with the ground
is detected, we switch the roles of the stance and swing
legs (e.g., we swap� 1 and � 2), and then use (2) to solve
for the post-collision velocities. The simulation is then
restarted from this post-collision state.

4.2 Control

The walking model has two control parameters � =
(�; � ), where � is the spring sti�ness and � is the magni-
tude of the impulsive toe-o�. Because these parameters
are unknown prior to tracking, they are treated as hid-
den random variables. For e�ective tracking, we desire
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Fig. 3 Optimal sti�ness � (left) and impulse magnitude � (right)
as functions of speed and step length are shown. These plots i l-
lustrate the exibility and expressiveness of the model's c ontrol
parameters. Parameters were found by searching for cyclic mo-
tions with the desired speed and step length.

a prior distribution over � which, together with the dy-
namical model, de�nes a distribution over motions. A
gait may then be generated by sampling� and simulat-
ing the dynamics.

One might learn a prior over � by �tting the An-
thropomorphic Walker to human mocap data of people
walking with di�erent styles, speeds, step-lengths, etc.
This is challenging, however, as it requires a signi�cant
amount of mocap data, and the mapping from 3D kine-
matic description used for the mocap to the abstract 2D
planar model is not obvious. Rather, we take a simpler
approach motivated by the principle that walking mo-
tions are characterized by stable, cyclic gaits. Our prior
over � then assumes that likely control parameters lie
in the vicinity of those that produce cyclic gaits.

Determining cyclic gaits. The �rst step in the de-
sign of the prior is to determine the space of control
parameters that generate cyclic gaits spanning the nat-
ural range of human walking speeds and step-lengths.
This is readily formulated as an optimization problem.
For a given speed and step-length, we seek initial condi-
tions (q0; _q0) and parameters� such that the simulated
motion ends in the starting state. The initial pose q0

can be directly speci�ed since both feet must be on
the ground at the desired step-length. The simulation
duration T can determined by the desired speed and
step-length. We then use Newton's method to solve

D(q0; _q0; �; T ) � (q0; _q0) = 0 ; (3)

for _q0 and � where D is a function that simulates the
dynamics for duration T given an initial state (q0; _q0)
and parameters � . The necessary derivatives are com-
puted using �nite di�erences. In practice, the solver was
able to obtain control parameters satisfying (3) up to
numerical precision for the tested range of speeds and
step-lengths.

Solving (3) for a discrete set of speeds and step-
lengths produces the control parameters shown in Fig-
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Fig. 4 Impulse magnitude � of the optimal cyclic gaits plotted
versus pre-collision velocities _q � = ( _� �

1 ; _� �
2 ). During tracking,

a bilinear �t to the data shown here is used to determine the
conditional mean for a Gamma density over � at the beginning of
each stride.

ure 3. These plots show optimal control parameters for
the full range of human walking speeds, ranging from 2
to 7 km/h, and for a wide range of step-lengths, roughly
0.5-1.2m. In particular, note that the optimal sti�ness
and impulse magnitudes depend smoothly on the speed
and step-length of the motion. This is important as it
indicates that the Anthropomorphic Walker is reason-
ably stable. To facilitate the duplication of our results,
we have published Matlab code which simulates the
model, along with solutions to (3), at http://www.cs.
toronto.edu/ ~mbrubake/permanent/awalker .

Stochastic control. To design a prior distribution over
walking motions for the Anthropomorphic Walker, we
assume noisy control parameters that are expected to
lie in the vicinity of those that produce cyclic gaits.
We further assume that speed and step-length change
slowly from stride to stride. Walking motions are ob-
tained by sampling from the prior over the control pa-
rameters and then performing deterministic simulation
using the equations of motion.

We assume that the magnitude of the impulsive toe-
o� force, � > 0, follows a Gamma distribution. For the
optimal cyclic gaits, the impulse magnitude was very
well �t by a bilinear function � � ( _q� ) of the two pre-
collision velocities _q� (see Fig. 4). This �t was per-
formed using least-squares regression with the solutions
to (3). The parameters of the Gamma distribution are
set such that the mean is� � ( _q� ) and the variance is
0:052.

The unknown spring sti�ness at time t, � t , is as-
sumed to be nearly constant throughout each stride,
and to change slowly from one stride to the next. Ac-
cordingly, within a stride we de�ne � t to be Gaussian
with constant mean �� and variance � 2

� :

� t � N (��; � 2
� ) (4)

where N (�; � 2) is a Gaussian distribution with mean
� and variance� 2. Given the mean sti�ness for the i th
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Fig. 5 The 3D kinematic model is conditioned on the 2D planar
dynamics of the Anthropomorphic Walker.

stride, the mean sti�ness for the next stride �� ( i +1) is
given by

�� ( i +1) � N (�� � + (1 � � )�� ( i ) ; � 2
�� ) (5)

where � � is a global mean spring sti�ness and� deter-
mines how close �� ( i ) remains to � � over time. We use
� = 0 :85, � 2

� = 1 :0, � � = 0 :7 and � 2
�� = 0 :5.

During tracking, �� does not need to be explicitly
sampled. Instead, using a form of Rao-Blackwellization
[12,21], �� can be analytically marginalized out. Then,
only the su�cient statistics of the resulting Gaussian
distribution over �� needs to be maintained for each par-
ticle.

Because the walking model is very stable, the model
is relatively robust to the choice of stochastic control.
Other controllers may work just as well or better.

4.3 Conditional Kinematics

The model above is low-dimensional, easy to control,
and produces human-like gaits. Nevertheless, it is a
planar model, and hence it does not specify pose pa-
rameters in 3D. Nor does it specify all parameters of
interest, such as the torso, knees and feet. We therefore
add a higher-dimensional 3D kinematic model, condi-
tioned on the underlying dynamics. The coupling of a
simple physics-based model with a detailed kinematic
model is similar to Popovi�c and Witkin's physics-based
motion editing system [34].

The kinematic model, depicted in Fig. 5, has legs,
knees, feet and a torso. It has ball-and-socket joints at
the hips, a hinge joint for the knees and 2 DoF joints for
the ankles. Although the upper body is not used in the
physics model, it provides useful features for tracking.
The upper body in the kinematic model comprises a
single rigid body attached to the legs.

The kinematic model is constrained to match the
dynamics at every instant. In e�ect, the conditional
distribution of these kinematic parameters, given the

Joint Axis � * k � � ( min ;  max )

Torso
Side 0:9 5 0 25 (�1 ; 1 )

Front 0:9 5 0 25 (�1 ; 1 )
Up 0:75 0 0 300 (�1 ; 1 )

Hip
Front 0:5 5 0 50 (� �

8 ; �
8 )

Up 0:5 5 0 50 (� �
8 ; �

8 )
Stance Knee Side 0:75 20 0 50 (0; � )
Swing Knee Side 0:9 15 ** 300 (0; � )

Ankle
Side 0:9 50 0 50 (� �

8 ; �
8 )

Front 0:9 50 0 50 (� �
8 ; �

8 )

Table 1 The parameters of the conditional kinematic model
used in tracking. The degrees of freedom not listed (Hip X) ar e
constrained to be equal to that of the Anthropomorphic Walke r.
(*) Values of � shown here are for �t = 1

30 s. For �t = 1
60 s, the

square roots of these values are used. (**) � swing knee is handled
specially, see text for more details.

state of the dynamics, is a delta function. Speci�cally,
the upper-leg orientations of the kinematic model in
the sagittal plane are constrained to be equal to the
leg orientations in the dynamics. The ground contact
of stance foot in the kinematics and rounded \foot" of
the dynamics are also forced to be consistent. In par-
ticular, the foot of the stance leg is constrained to be in
contact with the ground. The location of this contact
point on the foot rolls along the foot proportional to the
arc-length with which the dynamics foot rolls forward
during the stride.

When the simulation of the Anthropomorphic Walker
predicts a collision, the stance leg, and thus the contact
constraint, switches to the other foot. If the correspond-
ing foot of the kinematic model is far from the ground,
applying this constraint could cause a \jump" in the
pose of the kinematic model. However, such jumps are
generally inconsistent with image data and are thus
not a signi�cant concern. In general, this discontinuity
would be largest when the knee is very bent, which does
not happen in most normal walking. Because the An-
thropomorphic Walker lacks knees, it is unable to han-
dle motions which rely on signi�cant knee bend during
contact, such as running and walking on steep slopes.
We anticipate that using a physical model with more
degrees-of-freedom should address this issue.

Each remaining kinematic DOF  j;t is modeled as
a smooth, 2nd-order Markov process:

 j;t =  j;t � 1+ �t� j
_ j;t � 1+ �t 2(kj ( � j �  j;t � 1))+ � j )(6)

where �t is the size of the timestep, _ j;t � 1 = (  j;t � 1 �
 j;t � 2)=�t is the joint angle velocity, and � j is IID
Gaussian noise with mean zero and variance� 2

j . This
model is analogous to a damped spring model with
noisy accelerations wherekj is the spring constant, � j is
the rest position, � j is related to the damping constant
and � j is noisy acceleration. Joint limits which require
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Fig. 6 A cropped image (left) is shown with a example of the
background negative log likelihood (middle), and a grid of m otion
trajectories (blue/yellow depict large/small speeds).

that  min
j �  j �  max

j are imposed where appropriate
and � j is truncated [37] to satisfy the joint limits.

The joint evolution parameters � , k, � and � 2 are
�xed to the values shown in Table 1, with the excep-
tion of the knee rest position of the swing leg. Due to
the sharp bend in the knee immediately after toe-o�,
a simple smoothness prior has di�culty modelling this
joint. To account for this, we de�ne � swing knee = 5  hip

where  hip is the sagittal angle between the two legs.
This encourages a bent knee at the beginning of a stride
and a straight knee towards the end of a stride.

It is interesting to note that, while most existing
methods for people tracking rely heavily on learned
models from motion capture data, our model does not
use any motion capture data. However, it is clear that
the kinematic model in general, and of the knee in par-
ticular, is crude, and could be improved greatly with
learning, as could other aspects of the model.

5 Sequential Monte Carlo Tracking

Pose tracking is formulated with a state-space repre-
sentation. The state st at time t comprises dynam-
ics parameters,d t , and the kinematic DOFs, k t ; i.e.,
st = ( d t ; k t ). The dynamics parameters comprises 2
continuous joint angles and their angular velocities, a
binary variable to specify the stance foot, and two vari-
ables for the su�cient statistics for the mean spring
sti�ness as described at the end of 4.2. The kinematic
state comprises 3 DOFs for the global torso position,
3 DOFs for global torso orientation, and 12 DOFs for
remaining joint angles. Note that, while the dynamics
contain the joint angles and angular velocities of the
Anthropomorphic Walker, they are deterministic given
the previous state and current control parameters. In
essence, inference is done over the control parameters
in lieu of the pose parameters.

With the Markov properties of the generative model
given in Section 4, and conditional independence of the
measurements, one can write the posterior density over

motions recursively;

p(s1:t j z1:t ) / p(zt j st ) p(st j st � 1) p(s1:t � 1 j z1:t � 1) (7)

where s1:t � [s1; :::; st ] denotes a state sequence,z1:t �
[z1; :::; zt ] denotes the observation history,p(zt j st ) is
the observation likelihood, and p(st j st � 1) is derived
from the generative model in Sec. 4.

By the de�nition of the generative model, the tem-
poral state evolution can be factored further; i.e.,

p(st j st � 1) = p(k t j d t ; k t � 1) p(d t j d t � 1) : (8)

Here p(d t jd t � 1) is the stochastic dynamics of the An-
thropomorphic Walker described in Sections 4.1 and 4.2
and p(k t jd t ; k t � 1) is the conditional kinematic model
explained in Section 4.3. Thus, to sample fromp(st jst � 1),
the dynamics stated t is sampled according top(d t jd t � 1)
and, conditioning on d t , the kinematic state k t is then
sampled from p(k t jd t ; k t � 1). The likelihood function
and the inference procedure are described below.

5.1 Likelihood

The 3D articulated body model comprises a torso and
lower limbs, each of which is modeled as a tapered el-
lipsoidal cylinder. The size of each part is set by hand,
as is the pose of the model in the �rst frame of each
sequence. To evaluate the likelihoodp(zt jst ), the 3D
model is projected into the image plane. This allows
self-occlusion to be handled naturally as the visibility
of each part can be determined for each pixel. The like-
lihood is then based on appearance models for the fore-
ground body and the background, and on optical ow
measurements [14].

A background model, learned from a small subset
of images, comprises mean color (RGB) and intensity
gradients at each pixel and a single 5� 5 covariance ma-
trix (e.g., see Fig. 6 (middle)). The foreground model
assumes that pixels are IID in each part (i.e., foot, legs,
torso, head), with densities given by Gaussian mixtures
over the same 5D measurements as the background
model. Each mixture has 3 components and its param-
eters are learned from hand labeled regions in a small
number of frames.

Optical ow is estimated at grid locations in each
frame (e.g., see Fig. 6 (right)), using a robust M-estimator
with non-overlapping regions of support. The eigenval-
ues/vectors of the local gradient tensor in each region of
support provide a crude approximation to the estima-
tor covariance � . For the likelihood of a ow estimate,
v , given the 2D motion speci�ed by the state, u, we
use a heavy-tailed Student's t distribution (chosen for
robustness). The log-likelihood is given by

logp(v ju) = �
log j� j

2
�

n+2
2

log(1+ e2) + c (9)



8

where e2 = 1
2 (v � u)T � � 1(v � u) and n = 2 is the

degrees of freedom, andc is a constant. Because the
camera is not moving in our image sequences, we de-
�ne the log-likelihood of a ow measurement on the
background as given by (9) with u = 0.

The visibility of each part de�nes a partition of
the observations, such thatzt (i ) are the measurements
which belong to part i . The background is simply treated
as another part. Then the log-likelihood contribution of
part i is

logp(zt (i )jst ) =
X

m 2 z t ( i )

logp(m jst ) (10)

where the sum is over the measurements belonging to
part i . To cope with large correlations between mea-
surement errors, we de�ne the appearance and ow log-
likelihood to be the weighted sum of log-likelihoods over
all visible measurements for each part

logp(zt jst ) =
X

i

wi logp(zt (i )jst ) (11)

where the weights are set inversely proportional to the
expected size of each part in the image.1 If multiple
cameras are available, they are assumed to be condi-
tionally independent given the state st . This yields a
combined log-likelihood of

logp(z1
t ; z2

t ; � � � j st ) =
X

i

logp(zi
t j st ) (12)

where zi
t is the observation from camerai .

5.2 Inference

Using a particle �lter, we approximate the posterior
(7) by a weighted set ofN samplesSt = f s( j )

1:t ; w( j )
t gN

j =1 .
Given the recursive form of (7), the posteriorSt , given
St� 1, can be computed in two steps; i.e.,

1. Draw sampless( j )
t � p(st j s( j )

t � 1) using (8) to form

the new state sequencess( j )
1:t = [ s( j )

1:t � 1; s( j )
t ]; and

2. Update the weightsw( j )
t = c w( j )

t � 1 p(zt j s( j )
t ) , where

c is used to normalize the weights so they sum to 1.

This approach, without re-sampling, often works well
until particle depletion becomes a problem, i.e., where
only a small number of weights are signi�cantly non-
zero. One common solution to this is to re-sample the
states in St according to their weights. This is well-
known to be suboptimal since it does not exploit the
current observation in determining which states should

1 To avoid computing the log-likelihood over the entire image ,
we equivalently compute log-likelihood ratios of foregrou nd ver-
sus background over regions of the image to which the 3D body
geometry projects.

be re-sampled (i.e., survive). Instead, inspired by the
auxiliary particle �lter [33], we use future data to pre-
dict how well current samples are likely to fare in the
future. This is of particular importance with a physics-
based model, where the quality of a sample is not al-
ways immediately evident based on current and past
likelihoods. For instance, the consequences of forces ap-
plied at the current time may not manifest until several
frames into the future.

In more detail, we maintain an approximation St :t + � =
f s( j )

t :t + � ; w( j )
t :t + � gN

j =1 to the marginal posterior distribu-
tion over state sequences in a small temporal window
of � + 1 frames, p(st :t + � j z1:t + � ). The sample set is ob-
tained by simulating the model for � + 1 time steps,
given St� 1, evaluating the likelihood of each trajectory
and setting

w( j )
t :t + � = c w( j )

t � 1

t + �Y

` = t

p(z` js
( j )
` ) (13)

where c is set such that the weights sum to one.
Following [12,22], when the e�ective number of sam-

ples,

Ne� =

0

@
X

j

(w( j )
t :t + � )2

1

A

� 1

; (14)

becomes too small we re-sampleSt� 1 using importance
sampling; i.e.,

1. Draw sampless(k )
t � 1 from the weights f ŵ( j )

t � 1gN
j =1 where

ŵ( j )
t � 1 = (1 �  )w( j )

t � 1 + w ( j )
t :t + � and  represents our

trust in our approximation St :t + � ;
2. Set the new weights to bew(k )

t � 1=ŵ(k )
t � 1, and then nor-

malize the weights so they sum to 1.

The importance re-weighting (step 2) is needed to main-
tain a properly weighted approximation to the posterior
(7). Below we use� = 3 and  = 0 :9. With this form of
importance sampling, resampling occurs once every 4
or 5 frames on average for the experiments below.

6 Results

Here we present the results of four experiments with
our model. The �rst three experiments use the same
set of parameters for the kinematic evolution and the
same prior over the control parameters for the dynam-
ics. The parameters for the fourth experiment were set
to similar values, but adjusted to account for a di�er-
ence in frame rate (30 frames per second for experi-
ments one through three and 60 frames per second for
experiment four). These parameters were empirically
determined. Finally, for each image sequence, we deter-
mine the camera intrinsics and extrinsics with respect
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Fig. 7 Composite images show the subject at several frames, depict ing the motion over the 130 frame sequence: (left) the origin al im-
ages; (middle) the inferred poses of the MAP kinematics over layed on the images, with the corresponding state of the Anth ropomorphic
Walker depicted along the bottom (the stance leg in red); (ri ght) a 3D rendering of MAP poses from a di�erent viewpoint.

Fig. 9 Two rows of cropped images showing every second frame of the M AP trajectory in Experiment 1 for two strides during change
of speed: (top) the kinematic skeleton is overlayed on the su bject; (middle) the corresponding state of the Anthropomor phic Walker
is shown with the stance printed in red; (bottom) a 3D renderi ng of the kinematic state.

to a world coordinate frame on the ground plane based
on 10-12 correspondences between image locations and
ground truth 3D locations in each scene. The direction
of gravity is assumed to be normal to the ground plane.

All experiments used 5000 particles, with resam-
pling when Ne� < 500. Experimentally we have found
that, while as few as 1000 particles can result in suc-

cessful tracking of some sequences (e.g., experiment 1),
5000 particles was necessary to consistently track well
across all experiments. Excluding likelihood computa-
tions, the tracker runs at around 30 frames per sec-
ond. The body geometry was set by hand and the mean
initial state was coarsely hand-determined. Initial par-
ticles were sampled with a large variance about that
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Fig. 10 Composite images show the input data (left), background mod el (middle) and MAP trajectory (right) at several frames for
Experiment 2. Only the outline of the occluder is shown for il lustration.

Fig. 11 Cropped images showing every 4th frame of the MAP trajectory (top), the corresponding state of the Anthropomorphic
walker (middle) and the posterior distribution (bottom) in Experiment 2. In the posterior points on the head (blue), lef t and right
feet (white and yellow), left and right knees (green and red) and hip (blue) are plotted for each particle with intensity p roportional to
their log weight.
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Fig. 8 Inferred speed as a function of time for the MAP
trajectory in Experiment 1 (blue). The dashed green line is
p(stance leg = left jz1: t ), the probability of the left leg being the
stance leg given the data up to that frame.

mean state. The inference procedure results in a set
of particles that approximate the posterior distribution
p(s1:t j z1:t ) for a given time t. Our demonstration of the

results will focus mainly on the maximum a-posteriori
(MAP) trajectory of states over all T frames,

sMAP
1:T = arg max

s1: T
p(s1:T j z1:T ) : (15)

This is crudely approximated by choosing the state se-
quence associated with the particle at timeT with the
largest weight. We present the MAP trajectory because
it ensures that the sequence of poses is consistent with
the underlying motion model.

Experiment 1: Changes in Speed. Figure 7 (left)
shows a composite image of a walking sequence in which
the subject's speed decreases from almost 7 to 3 km/h.
Figure 8 shows the recovered velocity of the subject
over time in the solid blue curve. Also shown with the
dashed green curve is the posterior probability of which
leg is the stance leg. Such speed changes are handled
naturally by the physics-based model. Fig. 7 (middle)
shows the recovered MAP trajectory from the original
camera position while Fig. 7 (right) shows that the re-
covered motion looks good in 3D from other views.



11

Fig. 12 3D rendering of the MAP trajectory in Experiment 2.

Figure 9 shows cropped versions of tracking results
for a short subsequence, demonstrating the consistency
of the tracker. Weakness in the conditional kinematic
model at high speeds leads to subtle anomolies, espe-
cially around the knees, which can be seen in the early
frames of this subsequence.

Experiment 2: Occlusion. We simulate occlusion by
blacking out an image region as shown in Figure 10. The
silhouette of the lower body is therefore lost, and we
discard all ow measurements that encroach upon the
occluder. Nevertheless, the subtle motion of the torso
is enough to track the person, infer foot positions, and
recover 3D pose.

It is particularly interesting to examine the poste-
rior distribution p(st jz1:t ) which can be seen in the bot-
tom row of Figure 11. These images show colour coded
points for the head, hip, knees and feet for each particle
in the posterior. The brightness of each point is propor-
tional to its log weight. While there is increased poste-
rior uncertainty during the occlusion, it does not di�use
monotonically. Rather, motion of the upper body allows
the tracker to infer the stance leg and contact location.
Notice that, soon after ground contacts, the marginal
posterior over the stance foot position tends to shrink.

Finally, during occlusion, leg-switching can occur
but is unlikely. This is visible in the posterior distribu-
tion as an overlap between yellow (right foot) and white
(left foot) points. However, the ambiguity is quickly re-
solved after the occlusion.

Experiment 3: Turning. While the Anthropomor-
phic Walker is a planar model we are still able to suc-
cessfully track 3D walking motions because of the con-
ditional kinematics. As can been seen in Figure 14, the
model successfully tracks the person through a sharp
turn in a sequence of more than 400 frames. Despite
the limitations of the physical model, it is able to accu-
rately represent the dynamics of the motion in 2D while
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Fig. 13 MAP trajectory velocity (blue) and stance leg posterior
p(stance leg = left jz1: t ) (dashed green) for the times shown in
Figure 14. The highlighted region, corresponding to the mid dle
row of Figure 14, exhibits signi�cant uncertainty about whi ch leg
is the stance leg.

the conditional kinematic model represents the turning
motion.

Figure 13 shows the speed of the subject and the
posterior probability of which leg is the stance leg. Be-
tween frames 250 and 300 there is signi�cant uncer-
tainty in which leg is in contact with the ground. This
is partly because, in these frames which correspond to
the middle row in Figure 14, there are few visual cues
to disambiguate when a foot has hit the ground.

Experiment 4: HumanEva. To quantitatively assess
the quality of tracking, we also report results on the Hu-
manEva benchmark dataset [43]. This dataset contains
multicamera video, synchronized with motion capture
data that can be used as ground truth. Error is mea-
sured as the average Euclidean distance over a set of
de�ned marker positions. Because our method does not
actively track the head and arms, we report results us-
ing only the markers on the torso and legs.

As above, tracking was hand initialized and segment
lengths were set based on the static motion capture
available for each subject. The camera calibration pro-
vided with the dataset was used and it was assumed
that the ground plane was located atZ = 0. We report
monocular and binocular results on subjects 2 and 4
from HumanEva II. Error is measured from the poses
in the MAP trajectory of states over all T frames. The
results are summarized in Table 2 and errors over time
are plotted in Figures 15 and 16.

It is important to note that the same model (dynam-
ics and kinematics) is used to track the two HumanEva
subjects as well as the subject in the preceeding exper-
iments. Only the body size parameters were di�erent.
This helps to demonstrate that the model can general-
ize to di�erent subjects.

In this paper, both relative and absolute 3D error
measures are reported. Absolute error is computed as
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Fig. 14 Cropped images showing every 5th frame of the MAP trajectory through an acceleration and sharp turn, starting at frame
200. The skeleton of the kinematic model is overlayed in gree n. The middle row corresponds to the shaded portion of Figure 13.

the average 3D Euclidean distance between predicted
and ground truth marker positions [43]. Following Hu-
manEva, relative error is computed by translating the
pelvis of the resulting pose to the correct 3D position
before measuring the 3D Euclidean distance. This re-
moves gross errors in depth.

The type of error reported is signi�cant, as di�erent
measures make meaningful comparisons di�cult. Both
error types are reported here to allow a more direct
comparison with other methods. For example, relative
error is often used by discriminative methods which do
not recover absolute 3D depth.

The di�erence between the relative and absolute er-
rors is also indicative of the nature of errors made by
the tracker. Table 2 shows that, unsurprisingly, absolute
errors are lower when using two cameras. In contrast,
the plots in Figure 16 suggest a negligable gain in rel-
ative error when using two cameras. Taken together,
these results suggest that depth uncertainty remains
the primary source of monocular tracking error. With
these depth errors removed, the errors in binocular and
monocular tracking are comparable.

This is further illustrated in Figures 17(a) and 17(b)
which show frames from the monocular trackers. The
pose of the subject �ts well in 2D and is likely to have
a high likelihood at that frame. However, when viewed
from other cameras, the errors in depth are evident.

Table 2 also reveals that relative error can be higher
than absolute error, particularly for binocular tracking.
This peculiar result can be explained with two observa-
tions. First, while relative error removes error from the
pelvic marker, it may introduce error in other markers.
Further, direct correspondences between positions on
any articulated model and the virtual markers of the
motion capture may not be possible as the motion cap-
ture models have signi�cantly more degrees of freedom.
These correspondence errors can then be magni�ed by
the translation of the pelvic marker, particularly if there
are errors in the pelvic marker itself.

Interestingly, the monocular tracking errors shown
in Figure 15 (the green and blue curves) tend to have
signi�cant peaks which fall o� slowly with time. While
evident in all experiments, this can be most clearly seen
when tracking subject 4 from camera 2. These peaks are
the combined result of depth uncertainty and a physi-
cally plausible motion model. According to the motion
model, the only way the subject can move in depth
is by walking there. If a foot is misplaced it cannot
gradually slide to the correct position, rather the sub-
ject must take a step. This results in errors persisting
over at least one stride. However, this is also the same
behaviour which prevents footskate and ensures more
realistic motions.
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Sequence Error Type
Monocular (Camera 2) Monocular (Camera 3) Binocular (Cameras 2 and 3)
Median Mean Median Mean Median Mean

Subject 2, Combo 1, Frames 25-350
Absolute 82mm 88mm � 38 67mm 82mm � 34 52mm 53mm � 9
Relative 67mm 70mm � 13 67mm 67mm � 11 64mm 66mm � 9

Subject 4, Combo 4, Frames 15-350*
Absolute 98mm 127mm � 70 77mm 96mm � 42 52mm 54mm � 10
Relative 74mm 76mm � 17 71mm 70mm � 10 65mm 66mm � 10

Table 2 Quantitative results on sequences from HumanEva II. (*) As n oted on the HumanEva II website, frames 298-335 are excluded
from the calculation due to errors in the ground truth motion capture data.
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Fig. 15 Average absolute marker error over time for Subject 2, Combo 1 (left) and Subject 4, Combo 4 (right). Plots are shown
for monocular tracking with camera 2 (solid blue) and camera 3 (dashed green) as well as binocular tracking with cameras 2 and 3
(dot-dashed red).
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Fig. 16 Average relative marker error over time for Subject 2, Combo 1 (left) and Subject 4, Combo 4 (right). Plots are shown
for monocular tracking with camera 2 (solid blue) and camera 3 (dashed green) as well as binocular tracking with cameras 2 and 3
(dot-dashed red).

(a) Subject 2, Combo 1, Camera 3. The pose at frame 225 of
the MAP trajectory is shown from camera 3 on the left. On
the right are the views from cameras 2 and 4 respectively.

(b) Subject 4, Combo 4, Camera 2. The pose at frame 125 of
the MAP trajectory is shown from camera 2 on the left. On
the right are the views from cameras 3 and 4 respectively.

Fig. 17 Monocular tracking errors due to depth ambiguities. In both examples, the model appears to �t well in the view from which
tracking is done. However, when viewed from other cameras th e errors in depth become evident.
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7 Discussion and Future Work

In this paper we showed that physics-based models of-
fer signi�cant bene�ts in terms of accuracy, stability,
and generality for person tracking. Results on three dif-
ferent subjects in a variety of conditions, including in
the presence of severe occlusion, are presented which
demonstrate the ability of the tracker to generalize.
Quantitative results for monocular and binocular 3D
tracking on the HumanEva dataset [43] allows for di-
rect comparison with other methods.

Here we used a simple powered walking model, but
we are currently exploring more sophisticated physical
models [4] which may yield even more general trackers
for other types of motion. There will, generally, be a
trade-o� between model generality and the di�culty of
designing a controller [50]. We note that, while control
of humanoid dynamical models is a challenging prob-
lem, there is a substantial literature in robotics and
animation from which to draw inspiration.

Although our approach employs online Bayesian in-
ference, it should also be possible to incorporate phys-
ical laws within other tracking frameworks such as dis-
criminative methods. Models similar to this may also
be used for modelling and tracking other animals [15].

Acknowledgements Thanks to Zoran Popovi�c and Allan Jep-
son for valuable discussions. Thanks to Jack Wang for some in itial
software.
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A Equations of motion

Here we describe the equations of motion for the Anthropomor-
phic Walker , shown in Fig. 2. While general-purpose physics en-

gines may be used to implement the physical model and the
impulsive collisions with the ground, most do not support ex -
act ground constraints, but instead e�ectively require the use
of springs to model static contact. In our experience it is no t
possible to make the springs sti� enough to accurately model the
data without resulting in slow or unstable simulations. Hen ce, we
derive equations of motion which exactly enforce static con tact
constraints. These equations produces stable simulations which
allow (3) to be solved e�ciently.

In order to derive the equations of motion for the walking
model, we employ the TMT method [49], a convenient recipe
for constrained dynamics. The TMT formulation is equivalen t to
Lagrange's equations of motion and can be derived in a simila r
way, using d'Alembert's Principle of virtual work [16]. How ever,
we �nd the derivation of equations of motion using the TMT
method simpler and more intuitive for articulated bodies.

We begin by de�ning the kinematic transformation, which
maps from the generalized coordinates q = ( � 1 ; � 2 ) to a 6 � 1
vector that contains the linear and angular coordinates of e ach
rigid body which specify state for the Newton-Euler equatio ns
of motion. The torso is treated as being rigidly connected to the
stance leg and hence we have only two rigid parts in the An-
thropomorphic Walker. The kinematic transformation can th en
be written as

k (q) =

2

6
6
6
6
4

� R� 1 � (C1 � R) sin � 1

R + ( C1 � R) cos � 1

� 1

� R� 1 � (L � R) sin � 1 + ( L � C) sin � 2

R + ( L � R) cos � 1 � (L � C) cos � 2

� 2

3

7
7
7
7
5

(16)

where C1 = ( Cm ` + Lm t )
m ` + m t

is the location along the stance leg of
the combined center rigid body. Dependence of angles on time
is omitted for brevity. The origin, O, of the coordinate system is
on the ground as shown in Fig. 2. The origin is positioned such
that, when the stance leg is vertical, the bottom of the stanc e
leg and the origin are coincident. Assuming in�nite frictio n, the
contact point between the rounded foot and the ground moves a s
the stance leg rotates.

The equations of motion are summarized as

T T MT •q = f + T T M (a � g) (17)

where the matrix T is the 6 � 2 Jacobian of k , i.e., T = @k =@q.
The reduced mass matrix is

M = diag( m1 ; m1 ; I 1 ; m ` ; m ` ; I ` ) ; (18)

where m1 = m ` + m t is the combined mass of the stance leg. The
combined moment of inertia of the stance leg is given by

I 1 = I ` + I t + ( C1 � C)2m ` + ( L � C1 )2m t (19)

The convective acceleration is

g =
@

@q

�
@k

@q
_q
�

_q (20)

and a = g[0; � 1; 0; 0; � 1; 0]T is the generalized acceleration vector
due to gravity ( g = 9 :8m=s2 ). The generalized spring force is
f = � [� 2 � � 1 ; � 1 � � 2 ]T . By substitution of variables, it can be
seen that (17) is equivalent to (1), with M (q) = T T MT and
F (q; _q; � ) = f + T T M (a � g).

B Collision and support transfer

Since the end of the swing leg is even with the ground when
� 1 = � � 2 , collisions are found by detecting zero-crossings of
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C(� 1 ; � 2 ) = � 1 + � 2 . However, our model also allows the swing
foot to move below the ground 2 , and thus a zero-crossing can
occur when the foot passes above the ground. Hence, we detect
collisions by detecting zero-crossings of C when � 1 < 0 and _C < 0.

The dynamical consequence of collision is determined by a
system of equations relating the instantaneous velocities imme-
diately before and after the collision. By assuming ground c olli-
sions to be impulsive and inelastic the result can be determi ned
by solving a set of equations for the post-collision velocit y. To
model toe-o� before such a collision, an impulse along the st ance
leg is added. In particular, the post-collision velocities _q+ can be
solved for using

T + T MT + _q+ = T + T (v + MT _q � ) (21)

where _q � are the pre-collision velocities, T is the pre-collision
kinematic transfer matrix speci�ed above,

k + (q � ) =

2

6
6
6
6
4

� R� 2 � (L � R) sin � 2 + ( L � C) sin � 1

R + ( L � R) cos � 2 � (L � C) cos � 1

� 1

� R� 2 � (C1 � R) sin � 2

R + ( C1 � R) cos � 2

� 2

3

7
7
7
7
5

(22)

is the post-collision kinematic transformation function, T + =
@k + =@q, is the post-collision kinematic transfer matrix, M is
the mass matrix as above and

v = � [� sin � 1 ; cos� 1 ; 0; 0; 0; 0]T (23)

is the impulse vector with magnitude � . De�ning

M + (q) = T + T MT + T (24)

M � (q) = T + T MT (25)

I (q; � ) = T + T v (26)

and substituting into (21) gives (2).
At collision, the origin of the coordinate system shifts for ward

by 2( R� 2 +( L � R) sin � 2). The swing and stance leg switch roles;
i.e., � 1 and � 2 and their velocities are swapped. Simulation then
continues as before.

2 Because the Anthropomorphic Walker does not have knees,
it can walk only by passing a foot through the ground.


