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Abstract

Motion and interaction with the environment are funda-
mentally intertwined. Few people-tracking algorithms ex-
ploit such interactions, and those that do assume that sur-
face geometry and dynamics are given. This paper concerns
the converse problem, i.e., the inference of contact and en-
vironment properties from motion. For 3D human motion,
with a 12-segment articulated body model, we show how
one can estimate the forces acting on the body in terms
of internal forces (joint torques), gravity, and the param-
eters of a contact model (e.g., the geometry and dynamics
of a spring-based model). This is tested on motion capture
data and video-based tracking data, with walking, jogging,
cartwheels, and jumping.

1. Introduction
Motion and interaction with the environment are funda-

mentally intertwined. The motion of an object is determined
in part by its contact with the environment, and conversely,
motion is a rich source of information about contact, much
like the locations of people are informative about the ground
plane [8, 9]. Prior knowledge of an inelastic ground plane
has been incorporated in physics-based models for people
tracking with encouraging results [4, 5, 18]. The inference
of surface contact from motion is, however, unexplored in
computer vision.

We formulate a general physics-based model of motion
and contact for articulated bodies. Our principal results are
general, but our primary concern is with human pose track-
ing. We show how one can explain motion and contact
by decomposing the net forces acting on a body in terms
of external forces (contact and gravity) and internal forces
(muscle actuations at joints). We explore the intimate rela-
tion between internal and external forces, and we present a
method to simultaneously recover both from observed mo-
tion. At the same time we show how one can estimate the
parameters of a damped, elastic model of surface contact.

The resulting approach provides information about the
timing and location of contact. This includes, but it is not
restricted to, contact with the ground plane. Similarly, our
model explicitly allows for contact at arbitrary locations

Figure 1.Recovery of Contact Forces and Joint Torques:These
two figures show the skeleton of the subject (red), the joint torques
(cyan disks), a planar contact surface (blue grid), and the ground
reaction forces (green arrows) acting on the body as estimated
from synchronized video (left) and motion capture data (right) for
a jumping motion. The radii of the cyan disks are proportional to
joint torques, and the green arrows are proportional to the ground
reaction forces acting on the body.

over the surface of body, e.g., as someone leans on a ta-
ble, falls down, or performs a cartwheel (see Fig. 5). The
parametric contact model also provides information about
material properties such as stiffness and damping; these are
useful for prediction and control, and of course for under-
standing intrinsic surface properties.

In the process of recovering contact properties, our for-
mulation effectively decomposes the forces acting on a
body into external forces and internal joint torques (e.g.,see
Fig. 1). Such external and internal forces are valuable for
biomechanical research on human locomotion, and for clin-
ical applications where expensive and cumbersome force
plates are the principal source of existing data. Internal joint
torques should be useful for developing physics-based mod-
els of human motion for tracking, and they may also form a
useful basis for identifying motion and scene interpretation,
like inferring that a person is carrying a heavy object.

We demonstrate the approach on motion capture data and
video-based 3D pose tracking. We consider contact on both
hands and feet, and with several different activities, includ-
ing walking, jogging, jumping (Fig. 1), and gymnastics.

fleet
Text Box
Proceedings of the International Conference on Computer Vision, Kyoto, September 2009.



2. Related Work
Context is important for detecting and tracking people in

images. It has been shown, for example, that prior knowl-
edge of scene geometry significantly improves people de-
tection, and the detection of people is useful for estimating
scene geometry, assuming prior information about human
heights and that people are supported by the ground plane
(e.g., [8, 9]). With prior knowledge of foot contact on the
peddles of a bicycle Rosenhahn et al [15] showed how to
enforce kinematic constraints to improve 3D pose tracking.

The interplay between motion and contact is naturally
expressed in multi-body dynamics. Interaction and contact
are inherent in physics-based models. So one might hope
that they would facilitate the simultaneous inference of mo-
tion and interaction. Recent physics-based methods for 3D
people tracking incorporate an explicit representation ofthe
ground plane and contact dynamics [4, 5, 18]. Nevertheless,
rather than inferring contact properties (e.g., ground geom-
etry and elasticity) during pose inference, they assume that
these properties are known a priori.

While not extensive, there is other related work in com-
puter vision and in computer graphics that has inspired our
research. At a high-level, physics-based models and contact
have been used for image interpretation of simple scene do-
mains [3, 12, 17]. At a lower level, using modal analysis
Pentland and Williams considered the inference of material
properties from two non-rigid colliding bodies, assuming
that the time-varying shapes of the two bodies are given
[13]. Bhat et al [2] estimate physical properties of rigid
objects in free flight but do not address the issue of contact.

Physics-based animation with spring-based contact mod-
els is common in computer graphics [11, 14, 20]. In this
paper we adopt a similar class of models but, rather than
hand-specifying the contact geometry, the times of contact,
and the spring parameters for individual classes of motion,
we automatically infer the contact model parameters from
the observed kinematics.

3. Motivating Example
As a motivating example, Fig. 2(top) depicts a video of

a ball dropped onto a surface. The height of the ball is
tracked, as shown in the first row of plots in Fig. 2. By
measuring the accelerations, the net force acting on the ball
(up to mass) is determined by Newton’s second law of mo-
tion. These forces can be decomposed as the sum of forces
due to gravity and to contact (shown in the middle row of
plots in Fig. 2). This experiment was done with the same
ball dropped onto a hard table and then onto a soft mouse
pad (respectively the left and right plots in Fig. 2). In both
cases the occurrence of contact is clearly evident by virtue
of the spike in external forces. The somewhat smaller mag-
itude and broader temporal duration of the contact forces on
the right plot are consistent with the greater compliance and
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Figure 2. The image depicts a ball dropping onto a table. The plots
show results for a ball bouncing onto a hard surface (left) and onto
a soft mouse pad (right). The top plots show height as a function of
time as a ball bounces. The net forces are then decomposed into
gravitational forces (green) and contact forces (blue) in the mid-
dle two plots. The bottom plots compare contact forces to those
predicted by a damped eleastic contact model (dashed red).

damping of the softer surface.
Based on these forces one can infer properties of a sim-

ple contact model comprising a surface of unknown height
which, through a sigmoidal non-linearity, modulates a lin-
ear spring of unknown stiffness and damping (e.g., see
Fig. 3). The model parameters are optimized to minimize
the difference between the measured net contact forces and
those produced by the model (Fig. 2(bottom) plots). For the
two surfaces in Fig. 2, the optimization yields stiffness val-
ues of approximately 24 and 15N/m (Newtons per meter),
indicating that the table top is considerably harder (stiffer)
than the mousepad. The damping for the soft surface was
found to be marginally greater, and the heights of the two
surfaces were extremely close to ground truth.

This example demonstrates that motion contains infor-
mation about surface contact. Below we generalize this idea
to surfaces acting on articulated human motion. Obviously,
coping with human motion is much more challenging than
a bouncing ball. Far from a simple point mass, the human
body is a complex articulated body for which the dynam-
ics are the result of forces and torques on each body part,
which are constrained by rotational joints. The net force on
the body must be explained in terms of internal forces (e.g.,
joint torques) in addition to external forces (e.g., gravity and
contact). Finally, unlike the model of the ball, contact be-
tween a person and the environment can occur at one or
more points over the entire the surface of the body.



4. Physics of Motion and Contact
Consider an articulated body consisting ofP parts with

N degrees of freedom (DoF) comprisingN−6 joint angles
and 6 DoFs for the global position and orientation of the
root of the kinematic tree (usually the pelvis). A Lagrangian
formulation expresses the configuration of the body in terms
of its generalized coordinates, q ∈ R

N , andN second-
order differential equations that govern its motion:

M(q) q̈ = F(q, q̇) + A(q, q̇) (1)

whereq̇ andq̈ denote the first and second time derivatives
of q, M is called a generalized mass matrix,F denotes a
vector of generalized forces acting on theN DoFs (includ-
ing contact, gravity and joint torques), andA comprises all
other terms including those necessary to enforce joint con-
straints. These equations can be derived in different ways,
e.g., the TMT method described in [19, 20].

Our goal is toexplain theN generalized accelerations in
q̈. To begin we first expressF in terms of theN−6 internal
torques,τint ∈ R

N−6, induced by muscle actuations at the
joints, and the external forces acting on the body:

F(q, q̇) = Aintτint + τext(q, q̇) (2)

where the matrixAint maps the joint torques into the vec-
tor of N generalized forces (e.g.,Aint =[IN−6 0]T ). Given
just N−6 linear DoFs for the joint torques in (2) one can-
not fully model the generalized forces in (1). That is, with
only joint torques the model is underactuated and will not
be able to reproducëq ∈ R

N in general. External forces
must be taken into account. Indeed, estimates of internal
torques depend strongly on the external forces (e.g., knees
are passive when a person hangs freely by their hands, but
stiff while standing).

4.1. External Forces
A natural and convenient way to parameterize external

forces is through forces (torques) acting on (about) the cen-
ters of mass of each body part. This is straightforward
as there is a linear mapping from part-specific forces and
torques to generalized forces. We can further decompose
external forces into those due to gravityfg, and other, as of
yet unexplained forcesfe:

τext(q, q̇) = F (q) [ fg + fe(q, q̇) ] (3)

wherefg andfe are vectors inR6P , comprising 3 forces and
3 torques for each ofP body parts. The state dependent
Jacobian matrixF maps the forces (torques) on parts into
generalized forces. Finally, note thatfe is, in general, a
(non-linear) function ofq, q̇ and scene parameters (e.g., the
locations of contact surfaces).

Contact Forces: In this paper we assume that the con-
tact forces arise due to contact between the body and fixed

Figure 3.Continuous Model of Contact: Springs are modulated
by two sigmoids, one of distance from the surface and the other of
force. The distance sigmoid is illustrated here as a gradient with
brighter red indicating sigmoid activation.

surfaces in the scene. For many hard surfaces contact is ef-
fectively inelastic and velocity is discontinuous at contact
(e.g., [4]). While such models are appealing in their re-
alism, they are challenging computationally; they require
explicit detection of contact events, and often result in dif-
ficult, mixed discrete-continuous optimization problems.In
contrast, here we adopt a continuous contact model, similar
to those employed in space-time optimization (e.g., [11]).
As a result we estimate the contact model parameters using
efficient, gradient-based optimization techniques.

Our model for the force at a pointp on the body, due
to contact with surfaceS, is a damped, linear spring mod-
ulated by two sigmoidal functions. One sigmoid prevents
forces from being applied whenp is far from the surface
S. The other sigmoid prevents forces from pulling points
on the body towards the surface (i.e., sticky ground forces).
As depicted in Fig. 3, the model requiresdS(p), the signed
shortest distance (positive for outside/above, negative for
inside/below, in meters) fromp to S, andnS(p) the unit
normal ofS at the point onS closest top. The model con-
tact force acting onp, denotedfc ∈ R

3, is given by

fc(p, ṗ, θS) = h(−60 dS(p))h(5nc(p)) [nc(p)nS(p)+tc(p)]
(4)

whereh(x) = 1

2
(1 + tanh(x)) is the sigmoidal function,

nc(p) is the signed magnitude of the normal force due to
the linear spring alone, andtc(p) is the tangential force of
the frictional damper. The normal spring force is given by

nc(p) = −κN (dS(p) − 1) − δN ṗTnS(p) (5)

whereκN denotes stiffness, andδN denotes the normal
damping constant. The tangential force is given by

tc(p) = −δT (ṗ − (nS(p)T ṗ)nS(p)) (6)

whereδT is a damping constant, anḋp is the velocity ofp.
Finally, θS denotes the vector of surface parameters (e.g.,
the position and orientation of a plane, the spring stiffness
κN , and the damping constants,δN andδT ). The remaining
constants in the model are somewhat arbitrary but the same
values have worked well in all of our experiments.

The non-linear spring described above is applied inde-
pendently at a set of contact points defined over the surface



of the articulated body. When a force is applied to a contact
point on the body, it induces both a force at, and an angular
torque about, the center of mass of the corresponding part.
The net external force caused by contact betweenP contact
points andS surfaces, denotedfs ∈ R

6P , can be written as

fs(q, q̇; θ) =

S
∑

j=1

P
∑

k=1

Ak(q) fc(pk(q), ṗk(q, q̇), θj) (7)

whereθ = {θj}
S
j=1 are the parameters of the surfaces and

Ak(q) maps the force applied at pointk into a force and
torque on the part containing pointk.

Substitutingfs for fe in (3) we obtain a model for exter-
nal forces in terms of contact and gravity. A natural way
to estimate the joint torques and the contact model param-
eters is then to minimize the discrepancy between the ob-
served motion and that generated by simulating the equa-
tions of motion. This is, however, extremely challenging
due to noise and the existence of local minima. In our expe-
rience it is very difficult to obtain satisfactory results with
this approach, even assuming a single planar surface for the
ground plane. Accordingly, we consider alternative models.

Root Forces: Imagine that arbitrary forces and torques
could be applied to the root of the kinematic tree (or any
other body part). This provides 6 independent DoFs which
complement theN−6 internal joint torques. Then, the com-
bined joint torques and root forces would be sufficiently rich
to exactly account for the theN -dimensional accelerations.
Accordingly, there should be no accumulated error in the
output of a simulator that uses the estimated forces. This
greatly simplifies the estimation problem by decoupling the
estimation of the forces at each instant in time. This, there-
fore, avoids the need for optimization via simulation.

The problem with this model is obvious. It is not physi-
cally meaningful for almost all scenes of any interest.

Model of External Forces: The model of external forces
we use below is a combination of surface contact (7), grav-
ity and root forces, that is:

τext(q, q̇) = F (q) [ fg + fs(q, q̇) + Arootfroot ] (8)

where froot ∈ R
6 is the root force vector, and matrix

Aroot ∈ R
6P×6 maps the6 components of the root forces

into the forces and torques of the part to which root forces
are applied. The addition of root forces allows us to decou-
ple the estimation problem at different time steps. But the
model is redundant; i.e., there are multiple ways to repro-
duce the accelerations. Our objective below is to explain
as much of the accelerations as possible with the contact
model. The root forces are only used to explain residual ac-
celerations not accounted for by joint torques, gravity or the
contact model; i.e., to modelnoise not accounted for by the
contact model.

Joint DoFs
Ankle 2
Knee 1
Hip 3

Pelvis-Torso 3
Shoulder 3
Elbow 1

Figure 4. 3D Articulated model of the human body.

4.2. Parameter Estimation
In the experiments below we assume a single planar con-

tact surface parameterized by its normal and its distance
from the origin. We seek to estimate the parametersθ that
minimize the magnitude of the root forces,froot. Substitut-
ing (8) into (2) and subsequently (2) into (1) produces:

Â(q)

[

τint

froot

]

= M(q)q̈−A(q, q̇)−F (q)[fg + fs(q, q̇; θ)]

(9)
whereÂ(q) = [Aint, F (q)Aroot] ∈ R

N×N . This yields
closed-form expressions forfroot andτint, as functions of
θ, at every time step.

We solve forθ by mimimizing an objective function
equal to the sum of root force magnitudes through time:

O(θ) =
∑

t

‖froot(t, θ)‖
2 (10)

wherefroot(t, θ) are the root forces at timet with contact
model parametersθ. We also impose constraints on param-
etersκN ∈ [1, 20] andδN , δT ∈ [0.1, 20]. Small values
for these parameters produce an inactive contact model and
large values are implausible given the data sampling rates.
The objectiveO(θ) is differentiable with respect toθ, so
we use the L-BFGS-B optimizer [21] to minimize (10) sub-
ject to the bound constraints. Once estimated, we useθ to
compute the internal torquesτint at each time.

The objective function requiresq, q̇ andq̈ at each time.
To estimateq̇ andq̈ given a pose sequenceq1, . . . ,qT we
use forward differences,̇qt = (qt+1 −qt)/∆ and q̈t =
(q̇t+1−q̇t)/∆ for a time-step∆. This choice of derivative
estimator is consistent with the first-order Euler integration
qt+1 = qt + ∆q̇t, q̇t+1 = q̇t + ∆q̈t. Thus, forces that
reproduce such accelerations will automatically reproduce
the motion when integrated with this method.

5. Experiments
Our approach to estimating internal torques and contact

properties reduces to two steps: (1) Estimate velocity and
acceleration; (2) Estimate the contact model parameters and
internal torques by minimizing root forces. We have ap-
plied the algorithm to 3D mocap data and to the output of
a 3D people tracking algorithm. In both cases we estimate
ground contact properties and ground reaction forces with
the 12-part, 23-DoF 3D articulated model depicted in Fig. 4.



Figure 5.Cartwheel Sequence:The motion capture and estimated forces are shown for a cartwheel (from right to left). Joint torques and
ground reaction forces are indicated as in Fig. 1. Joint torques are small as the body initially stands comfortably and then as the the legs
rotate (almost passively) over the torso. They are larger during landing as the feet collide with the ground and the body regains balance.
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Figure 6. (left) Distribution over average root force magnitude per
frame for 500 sequences of walking (blue) and jogging (red),when
no contact model is present. External forces in jogging are much
larger than those in walking. (right) Distribution over thefraction
of root forcesnot explained by the contact model. For both mo-
tions the contact model explains approximately 90% of the root
forces shown in the left plot. (Forces normalized by subjectmass).

Joint angles are represented with quaternions (see Appendix
A for details). Body segment lengths are estimated from the
mocap data for each subject, and then combined with stan-
dard biomechanical data [6] to determine mass and inertial
properties. Eight contact points are placed around the end
of each body segment, except for the feet, which have four
contact points on the bottom.

5.1. Motion Capture Data
We have tested the algorithm on 120 subjects perform-

ing a wide range of activities, including walking, jogging,
jumping, hopscotch, and cartwheels. The estimated ground
forces and torques are illustrated in Fig. 1 for one such
jumping motion (joint torques in cyan, ground reaction
forces in green, ground plane in blue). Fig. 5 shows results
on a cartwheel sequence.

Fig. 6(left) shows the distribution of average root force
magnitudes per frame for several hundred walking and jog-
ging motions when there are no contact model forces (i.e.,
removefs from (9) before solving forfroot). Not surpris-
ingly, these root forces for jogging are much larger than
for walking. Fig. 6(right) shows the fraction of these root
forces that remain aften the contact model is incorporated.
For both walking and jogging, the contact model is explain-
ing approximately 90% of root force magnitudes.

We also find that joint torque estimates are remarkably
consistent over different subjects for running and walking.
Based on approximately 3 trials of jogging and walking for
each of 100 subjects, Fig. 7 shows the time-varying distri-

Time (s)

J
o
in

t
T
o
rq

u
e
 (

N
)

Time (s)

Figure 7.Consistency in Walking and Running:Estimated joint
torques (in Newtons) for the ankle, knee, hip and shoulder (from
top to bottom), based on 250 samples of walking (left) and 250
samples of running (right) from 115 subjects. Bold blue curves
show mean torque (in Newtons) as a function of time (in seconds).
Light green curves show one standard deivations. Despite vari-
ations in morphology, style, speed and steplength, the estimated
torques are consistent.

bution of joint torques for the ankle, knee, hip and shoulder
(mean in blue; one standard deviation in green). The contact
models are also consistent. Over all walking and running
data, the mean angle of the ground with respect to the mo-
cap ground plane (our ground truth, defined asZ = 0), is
−0.058◦, with standard deviation1.11◦. While the contact
model does not explicitly define the location of the ground,
the parameters do indicate its height. That is, we take the
ground height to be that at which ground forces exactly can-
cel force due to gravity for a motionless subject. Relative to
the mocap ground plane, the mean resting height is esti-
mated to be 6.8cm with a standard deviation of 1.13cm.

While ground plane geometry is consistent across sub-
jects and motions, the contact parameters are not. Fig. 8
shows a scatter plot of the estimated stiffness and the nor-
mal damping constants. Values for men and women are
similarly distributed, but jogging (crosses) consistently pro-
duces higher stiffness and damping values than walking
(circles). Stiffness and damping values are also correlated.
We computed the ratio of the average jogging stiffness to
the average walking stiffness for each subject and found an
average ratio of3.59 with a standard deviation of1.55; i.e.,
jogging requires a consistently stiffer ground model.
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Figure 9.Comparison of ground reaction force to force plate
data: (right) Force plate data for a walking motion. (left) Ground
reaction forces estimated from mocap of a different subject.

Fig. 9(left) shows the estimated vertical (normal) ground
reaction force on the feet for three strides of walking. Fig.
9(right) shows vertical ground reaction forces measured
with a force plate (for a different subject). The timing and
magnitudes are similar, but the shape of the curves differ.
We believe this is due to the (fixed) steepness of the sig-
moids in (4), and the placement of contact points only near
the heel of the foot, making toe-off hard to express.

Finally, to test the generality of the method it was applied
to gymnastic motions, namely, jumping, hopscotch (succes-
sive short jumps on one and two feet) and cartwheels. Fig. 5
depicts the cartwheel sequence, along with estimated joint
torques and ground forces. Note that the ground reaction
forces applied to the hands and feet have similar magni-
tudes. One can also see that the legs are nearly passive as
they rotate over the body.

5.2. Video-Based Human Tracking
The algorithm can also be applied to 3D poses estimated

from video. Our pose tracker used two views of a subject
(one roughly sagittal and one roughly frontal). The cameras
were stationary and calibrated with a mocap system to en-
able a comparison of estimated contact models and internal
torques with those obtained using mocap (see Fig 11).

3D pose tracking was achieved with an Annealed Parti-
cle Filter (APF) [7] using the implementation of Balan et al.
[1]. The likelihood used a probabilistic background model
and the output of the 2D region-based WSL tracker [10].
The background model comprised the mean color image
and intensity gradient, along with a single 5D covariance
matrix (estimated over the entire image). Typical measure-

Figure 10.WSL Tracks: This depicts a cropped, time-lapse im-
age sequence where 7 regions were tracked, for input to a 3D peo-
ple tracker. Red curves depict 2D tracks for the head and leftfoot.

ments from the WSL tracker are shown in Fig. 10, the like-
lihood for which was a truncated Gaussian (for robustness)
on the 2D joint locations. The pose tracker did not employ a
prior model other than weak joint limit constraints (learned
from mocap) and interpenetration constraints. Following
[7], the tracker used a first-order diffusion process whose
variance was loosely learned from mocap (based on inter-
frame differences in joint angles). All experiments used an
APF with200 particles per layer and10 layers.

The performance of the tracker and the estimated dynam-
ics are demonstrated in Fig 11, for walking, a long jump,
and hopscotch (alternating jumps on one or two feet). While
the tracker results are noisy they were sufficient to estimate
the parameters of the contact model, as well as the inter-
nal torques in all cases. Rows 7 and 8 of Fig. 11 illustrate
that the recovered ground reaction forces and internal joint
torques correlate well with those recovered from the syn-
chronized mocap. Not surprisingly, due to tracking noise,
the joint torques are somewhat overpowered. Nevertheless
their behavior is consistent with the mocap.

6. Discussion and Future Work

This paper descibes a method for recovering joint
torques and a parametric contact model from motion. Ex-
perimental results demonstrate the validity, generality and
robustness of the algorithm and contact model for a wide
range of subjects and motions, from video and mocap data.
There are, however, many interesting issues remaining for
future work. These include the investigation of ambiguities
when estimating contact with multiple surfaces, better mod-
els of human morphology to yield more accurate estimates
of biomechanically interesting quantities, and the inclusion
of different contact models (e.g., to allow active, or grasp-
ing, contact). Taken with previous work showing the bene-
fits of physics-based pose tracking [4, 5, 18], it would also
be natural to consider the recovery of contact properties and
surface geometry during tracking.
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Figure 11.Video-Based Estimation: Rows 1, 3, and 5 show results for binocular tracking from two views (only one view shown). Rows
2, 4, and 6 show results on the corresponding mocap. Each figure shows the stick figure (red), the estimated ground plane (blue), the ground
reaction forces (green) generated by the estimated model, and the magnitude of internal joint torques (diameter of the cyan disks). Plots on
rows 7 and 8 compare the mocap (blue) and video tracking results (smoothed (red) and unsmoothed (green)) for the hopscotch sequence.
Row 7 (8) shows, from left to right, ground reaction forces, knee torque and ankle torque for the left (right) leg with respect to time.
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A. Dynamics of Quaternions
Unit length quaternions form a convenient, singularity

free parameterization of 3D rotations. Their use in dynam-
ics requires modifications to the equations of motion and the
simulation method to maintain their unit length. Failure to
properly account for this yields quaternions that no longer
represent rotations and simulate motion properly. (See [16]
for further detail on using quaternions in dynamics.)

For a quaternionq the length constraint is written as a
function,c(q) ≡ 1

2
(‖q‖2 − 1) = 0. Further, sincec(q) = 0

for q at all times, the first two temporal derivatives ofc(q)
must also be equal to zero. This yields constraints

ċ(q) = q̇T q = 0 (11)

c̈(q) = q̈T q + q̇T q̇ = 0 . (12)

Satisfying (12) can be done by augmenting the equations
of motion (1) in two ways. First, virtual generalized forces
in the direction of the constraints are added to the equations
corresponding to that quaternion. That is,

Mq(q)q̈ = Fq(q) + Aq(q, q̇) + ρqq (13)

where theq subscript corresponds to the rows of the matrix
corresponding to the quaternionq andρq is the magnitude
of the virtual force. Second, the constraintqT q̈ = −q̇T q̇ is
added to the system. The magnitude of the virtual forceρq

is unknown but can be solved for along with the accelera-
tionsq̈. This augmentation is done for each quaternion.

With exact integration of the augmented equations of
motion and valid initial conditions, the two constraints
above are always satisfied. However, numerical integration
will violate the constraints. To address this, the quaternion
and its time derivative are projected to satisfy the constraints
at the end of each time step. Specifically,q = q̂/‖q̂‖ and
q̇ = ˆ̇q−(ˆ̇qT q)q whereq̂ andˆ̇q are the quaternion and its time
derivative after the integration step but prior to projection.

The projection changes the estimates of velocity and ac-
celeration. Specifically, the quaternionq is observed but the
result of the integration step̂q is unobserved. However, it is
known thatq̂ = αq for some unknownα. So the velocity
can be written aṡqt = (αqt+1 − qt)/∆ and we solve for
the value ofα by constraining the recovered velocityq̇t to
satisfy (11). The same problem with quaternion velocity is
solved by noting that the observed velocityq̇ is related to
ˆ̇q by ˆ̇q = q̇ + βq. We solve forβ while ensuring that the
recovered acceleration̈qt satisfies (12).




