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1 Introduction

Vision-based human pose tracking promises to be a key ewgatdchnology for
myriad applications, including the analysis of human diitis for perceptive envi-
ronments and novel man-machine interfaces. While progoeegartl that goal has
been exciting, and limited applications have been dematesty the recovery of hu-
man pose from video in unconstrained settings remainserigitig. One of the key
challenges stems from the complexity of the human kinensaticcture itself. The
sheer number and variety of joints in the human body (theraatfiwhich is an
active area of biomechanics research) entails the estimafi many parameters.
The estimation problem is also challenging because muaol@sther body tissues
obscure the skeletal structure, making it impossible teatly observe the pose of
the skeleton. Clothing further obscures the skeleton, aedtly increases the vari-
ability of individual appearance, which further exacedsate problem. Finally, the
imaging process itself produces a number of ambiguitigseebecause of occlu-
sion, limited image resolution, or the inability to easiligaiminate the parts of a
person from one another or from the background. Some of teeges are inherent,
yielding ambiguities that can only be resolved with priookiedge; others lead to
computational burdens that require clever engineeringfisois.

The estimation of 3D human pose is currently possible inttaimed situations,
for example with multiple cameras, with little occlusionomnfounding background
clutter, or with restricted types of movement. Nevertheleespite a decade of ac-
tive research, monocular 3D pose tracking remains largedplved. From a single
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Fig. 1 Challengesin human pose estimation. Variation in body size and shape (a), occlusions of
body parts (b), inability to observe the skeletal motion duelathing (c), difficulty segmenting
the person from the background (d), and complex interactiensden people in the environment
(e), are challenges that plague the recovery of human poseanstrained scenes.

view it is hard to escape ambiguities in depth and scale ctedleambiguities where
different 3D poses produce similar images, and missingrebtens of certain parts
of the body because of self-occlusions.

This chapter introduces the basic elements of modern apipesao pose track-
ing. We focus primarily on monocular pose tracking with akabilistic formula-
tion. While multiview tracking in constrained settings, .ewjith minimal occlusion,
may be relatively straightforward (Kakadiaris and Meta2300; Corazza, Muen-
dermann, Chaudhari, Demattio, Cobelli, and Andriacch@&)Q@he problems faced
in monocular tracking often arise in the general multivi@seas well. This chapter
is not intended to be a thorough review of human tracking atitar a tutorial in-
troduction for practitioners interested in applying visibased human tracking sys-
tems. For a more exhaustive review of the literature we nefaders to (Forsyth,
Arikan, lkemoto, O’Brien, and Ramanan, 2006; Moeslundtd#i] and Kiiger,
2006).

1.1 Tracking as Inference

Because of the inescapable uncertainty that arises dueliigaity, and the preva-
lence of noisy or missing observations of body parts, it lee®me common to for-
mulate human pose tracking in probabilistic terms. As stiehgoal is to determine
the posterior probability distribution over human posesotions, conditioned on
the image measurements (or observations).

Formally, lets denote the state of the body at titét represents the unknown
parameters of the model we wish to estimate. In our caseittaifp comprises the
joint angles of the body along with the position and orientabf the body in world
coordinates. We also have observations at each time, denofehis might simply
be the image at timeor it might be a set of image measurements (e.g., edge loca-
tions or optical flow). Tracking can then be formulated asgiablem of inferring
the probability distribution over state sequencgg,= (s1,...,%), conditioned on
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the observation historg;+ = (z1,...,z); that is,p(sit|z11) . Using Bayes'’ rule, it
is common to express the posterior distribution as

p(zl:t) (l)

p(sit|zt) =
Here,p(zit|s11) is called the likelihood. It is the probability of observitige image
measurements given a state sequence. In effect the likelipvides a measure of
the consistency between a hypothetical motion and the gimage measurements.
The other major factor in (1) is the prior probability of thiate sequencey(sit).
In effect this prior distribution captures whether a giveation is plausible or not.
During pose tracking we aim to find motions that are both pkdesand consis-
tent with the image measurements. Finally, the denominat¢t), p(z11), often
called the partition function, does not depend on the stjaence, and is therefore
considered to be constant for the purposes of this chapter.

To simplify the task of approximating the posterior distition over human mo-
tion (1), or of finding the most probable motion (i.e., the MA&timate), it is com-
mon to assume that the likelihood and prior models can beredtfurther. For
example, itis common to assume that the observations atieaelare independent
given the states. This allows the likelihood to be rewritésna product of simpler
likelihoods, one at each time:

t
p(z1t|sit) = Up(zi\s). ()

This assumption and resulting factorization allows for enefficient inference and
easier specification of the likelihood. Common measuremmertels and likelihood
functions are in Section 3.

The prior distribution over human motion also plays a keeradh particular,
ambiguities and noisy measurements often necessitateranpoidel to resolve un-
certainty. The prior model typically involves a specificatiof which poses are plau-
sible or implausible, and which sequences of poses areiplau®ften this involves
learning dynamical models from training data. This is désad in Section 4.

The last two elements in a probabilistic approach to positng are inference
and initialization. Inference refers to the process of figdjood computational ap-
proximations to the posterior distribution, or to motiohattare most probable. This
is discussed in Section 5. Furthermore, tracking most afguires a good initial
guess for the pose at the first frame, to initialize the infees Section 6 discusses
methods for automatic initialization of tracking and focogery from tracking fail-
ures.
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skeleton skin & soft tissue clothing image

Fig. 2 Simple image formation model for a human pose. The skeleton of the human body is
overlaid with soft tissue and clothing. Furthermore, the fororatif an image of the person (on
the right) also depends on lighting and camera parameters.

2 Generative Model for Human Pose

To begin to formulate pose tracking in more detail, we regjaiparameterization
of human pose. While special parameterizations might benexdjtor certain tasks,
most approaches to pose tracking assume an articulatest@ketomprising con-
nected, rigid parts. We also need to specify the relatiowéen this skeleton and
the image observations. This is complex since we do not wbdbe skeleton di-
rectly. Rather, as illustrated in Figure 2, the skeletonvierkaid with soft tissue,
which in turn is often covered by clothes. The image of thelltegy surface also
then depends on the viewpoint of the camera, the perspqutdjection onto the
image plane, the scene illumination and several otherifacto

2.1 Kinematic Parameterization

An articulated skeleton, comprising rigid parts connedigdoints, can be repre-
sented as a tree. One part, such as the upper torso, is defibedHe root node and
all remaining parts are either a child of the root or of anotheat. In this way, the
entire pose can be described by the position and orientafidime root node in a
global coordinate frame, and the position and orientatfceach part in the coordi-
nate frame of its parent. The statthen comprises these positions and orientations.

If parts are rigidly attached at joints then the number ofrdeg of freedom
(DOFs) required will be less than the full 6 DOFs necessamepresent pose in
a 3D space. The precise nhumber of degrees of freedom varses! lman the type
of joint. For instance, a hinge joint is commonly used to esent the knee and has
one rotational DOF while a ball-and-socket joint, oftendugerepresent the hip, has
three rotational DOFs. While real joints in the body are digantly more complex,
such simple models greatly reduce the number of parametestimate.

One critical issue when designing the state space is thengdesization of ro-
tations. Formally, rotations iiR® are 3x 3 matrices with determinant 1, the set of
which is denoted5Q(3). Unfortunately, 3 3 matrices have significantly more pa-
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rameters than necessary to specify the rotation, and itisreely difficult to keep
a matrix inSQ(3) as it changes over time. Lower dimensional parameterizai
rotations are therefore preferred. Most common are Eulgleanwhich represent
a rotation as a sequence of 3 elementary rotations aboutdiesl Unfortunately,
Euler angles suffer from several problems including amibiigg) and singularities
known as Gimbal lock. The most commonly used alternativekidte exponential
maps (Grassia, 1998) and quaternions (Kuipers, 2002).

2.2 Body Geometry

The skeleton is overlaid with soft tissue and clothing. kdieve do not observe
the skeleton but rather the surface properties of the iegu8D volume. Both the
geometry and the appearance of the body (and clothing) erefte critical factors
in the estimation of human pose and motion.

Body geometry has been modeled in many ways and remains elylargex-
plored issue in tracking and pose estimation. A commonlyl usedel treats the
segments of the body as rigid parts whose shapes can be appted using simple
primitives such as cylinders or ellipsoids. These geometrimitives have the ad-
vantage of being simple to design and efficient to work witdemperspective pro-
jection (Stenger, 2004; Wachter and Nagel, 1999). Otherermamplex shape mod-
els have been used such as deformable super-quadrics @detad Terzopoulos,
1993), and implicit functions comprising mixtures of Gaaasdensities to model
3D occupancy (Plankers and Fua, 2001). The greater expeassis allows one to
more accurately model the body, which can improve pose attim but it increases
the number of parameters to estimate, and the projectidrediady onto the image
plane becomes more computationally expensive.

Recent efforts have been made to build detailed models gfeshraterms of
deformable triangulated meshes that are anchored to aakeke well-known ex-
ample of which is the SCAPE model (Anguelov, Srinivasan]é&ollhrun, Rodgers,
and Davis, 2005). By using dimensionality reduction, thengulated mesh is pa-
rameterized using a small number of variables, avoidingptitential explosion in
the number of parameters. Using multiple cameras one camatety recover both
the shape and pose (Balan, Sigal, Black, Davis, and Hausseh07). However,
the computational cost of such models is high, and may onpraetical with offline
processing. Good results on 3D monocular hand tracking akseebeen reported,
based on a mesh-based surface model with approximatelyt@i@AQular facets (de
la Gorce et al, 2008).

However, even deformable mesh body models cannot accoutidse fitting
clothing. Dresses and robes are extreme examples, but @vsa fitting shirts and
pants can be difficult to handle, since the relationship betwthe surface geometry
observed in the image and the underlying skeleton is verypé®mIn most current
tracking algorithms, clothing is assumed to be tight fittaogthat the observed ge-
ometry is similar to the underlying body. To handle the reésglerrors due to these
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assumptions, the observation models (and the likelihoadtfons) must be robust
to the kinds of appearance variations caused by clothingneSmave attempted to
explicitly model the effects of clothing and its interactiwith the body to account
for this, but these models are complex and computationabylg (Balan and Black,
2008; Rosenhahn, Kersting, Powel, and Seidel, 2006). Engins a challenging
research direction.

2.3 Image Formation

Given the pose and geometry of the body, the formation of @yerof the person
depends on several other factors. These include propeftibe camera (e.g., the
lens, aperture and shutter speed), the rest of the scenesggdiand perhaps other
people), surface reflectance properties of clothing an#dvacnd objects, the il-
lumination of the scene, etc. In practice much of this infation is unavailable or
tedious to acquire. The exception to this is the geometiiibragion of the cam-
era. Standard methods exist (e.g., Forsyth and Ponce (2@®&)h can estimate
camera parameters based on images of calibration tdryéits. fixed cameras this
need only be done once. If the camera moves then certain agmeaimeters can
be included in the state, and estimated during trackingitheecase, the camera
parameters define a perspective projectR(iX ), which maps a 3D poirX € R® to

a point on the 2D image plane.

3 Image M easurements

Given the skeleton, body geometry and image formation madedmains to for-
mulate the likelihood distributiop(z|s) in (1).> Conceptually, the observations are
the image pixels, and the likelihood function is derivediirones generative model
that maps the human pose to the observed image. As suggedtéglie 2, this
involves modeling the surface shape and reflectance piegpgttie sources of illu-
mination in the scene, and a photo-realistic renderinggs®or each pixel. While
this can be done for some complex objects such as the humahn(tiarta Gorce,
Paragos, and Fleet, 2008), this is extremely difficult fotlbd people and natural
scenes in general. Many of the necessary parameters aleogtstcucture, clothing,
reflectance and lighting are unknown, difficult to measurr@ot of direct interest.
Instead, approximations are used that explain the avaitith while being (to vary-
ing degrees) independent of many of these unknown parasn@mward that end it
is common to extract a collection of image measurement$), as@dge locations,

1 Standard calibration code and tools are available as p&pehCV (The Open Computer Vision
Library), available fromht t p: / / sour cef or ge. net/ proj ect s/ opencvlibrary/.

2 In this section we drop the time subscript for clarity.
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which are then treated as the observations. This sectieflyoimitroduces the most
common measurements and likelihood functions that are oféed in practice.

3.1 2D Points

One of the simplest ways to constrain 3D pose is with a seténh@zations that are
projections of known points on the body. These 3D points triighjoint centers or
points on the surface of the body geometry. For instance giasy to show that one
can recover 3D pose up to reflection ambiguities from the 2Bgenpositions to
which the joint centers project (Taylor, 2000).

If one can identify such points (e.g., by manual initialiaator ensuring that
subjects wear textured clothing that produce distincties), then the observation
z comprises a set of 2D image Iocatior{smi}i'\il, where measurement; corre-
sponds to locatioif; on partj(i). If we assume that the 2D image observations are
corrupted by additive noise then the likelihood function b& written as

M
P{mi}Es 1) = [ pr (mi —P(Ky (1] 9)) )

whereP(X) is the 2D camera projection of the 3D pot andK;(¢|s) is the 3D
position in the global coordinate frame of the padimin partj given the current state
s. The functionp;(d) is the probability density function of mean-zero additizése
on pointi. This is often chosen to be Gaussian with a standard deniafic;, i.e.,

@2 ja?
(@) = e o ) @

However, if it is believed that some of the points may be uabdt, for instance if
they are not tracked reliably from the image sequence, thisnniecessary to use
a likelihood density wittheavy tails such as a Student’s t-distribution. The greater
probability density in the tails reflects our belief that m@@ment outliers exist,
and reduces the influence of such outliers in the likelihaottfion.

One way to find the image locations to which the joint centecgegt is to de-
tect and track a 2D articulated model (Felzenszwalb andedldgther, 2005; Rehg
and Kanade, 1995; Sigal and Black, 2006); unfortunately phoblem is almost as
challenging as the 3D pose estimation problem itself. Aeo#pproach is to find
image patches that are projections of points on the bodysilplgsioint centers),
and can be reliably tracked over time, e.g., by the KLT tra¢kemasi and Kanade,
1991) or the WSL tracker (Jepson, Fleet, and El-Maraghi, R@8&ch a likelihood
is easy to implement and has been used effectively (Urt&daat, Hertzmann, and
Fua, 2005; Urtasun, Fleet, and Fua, 2006a). Neverthelegsirang 2D point tracks
frequently requires hand initialization and tuning of trecking algorithm. Further,
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(a) Image (b) Background (c) Log Probablllty of BG (d) Mask (é@d& Mask
1(x,y) B(x.y) logps(l(x,y)) M(x,y)

Fig. 3 Background subtraction. Original image is illustrated in (a); the corresponding back-
ground image of the scen8(x,y), in (b); (c) shows the log probability of each pixkix,y)
belonging to the background (with light color correspondiachigh probability); (d) illustrates
the foreground mask (silhouette image) obtained by threshottimgrobabilities in (c); in (e) a
cleaned up version of the foreground mask in (d) obtained by simphphological operations.

patch trackers often fail when parts are occluded or movektirequiring reini-
tialization or other modifications to maintain a reliablé aktracks.

3.2 Background Subtraction

If the camera is in a fixed location and the scene is relatigadyic, then it is rea-
sonable to assume that a background imBgey) of the scene can be acquired
(see Figure 3 (b)). This can then be subtracted from an obdemvagel (x,y) and
thresholded to determine a mask that indicates which poaigspond to the fore-
ground person (e.g., Horprasert, Harwood, and Davis (199@}i, Mikic, Trivedi,
and Cucchiara (2003)). That Mi,(x,y) =1 if ||| (x,y) —B(x,y)|| > € andM(x,y) =0
otherwise (e.g. Figure 3 (d)). The mask can be used to fotmalikelihood by pe-
nalizing discrepancies between the observed nmgky) and a maskvi(x,y|s)
predicted from the image projection of the body geometry.ifstance Deutscher
and Reid (2005) used

M(x,y) —M(X,YIS)I) (5)

1
M|s) = — eXp| —
o419 = [ g o0~ 58

whereo controls how strongly disagreements are penalized. Sughklénbod is at-
tractive for its simplicity but there will be significant fifulty in setting the thresh-
old € to an appropriate value; there may be no universally satsfavalue.

One can also consider a probabilistic version of backgrauidraction which
avoids the need for a threshold (see Figure 3 (¢)). Insté@lassumed that back-
ground pixels are corrupted with mean-zero, additive Ganssoise. This yields
the likelihood function

p(1|9) = [ pe(l (x,y))L M09 (6)

(xy)
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Fig. 4 Background likelihood. The behavior of the background subtraction likelihood déscti
by Equation (5) is illustrated. A true pose, consistent with theepof the subject illustrated in
Figure 3, is taken and the probability of that pose as a funatibvarying a single degree of
freedom in the state are illustrated in (a) and (c); in (a) thieehody is shifted up and down (along
the Z-axis), in (d) along the optical axis of the camera. In (i) &) poses corresponding to the
strongest peak in the likelihood of (a) and (c) respectivelyilarstrated. While ideally one would
prefer the likelihood to have a single global maxima at the tralees(designated by the vertical
line in (a) and (c)), in practice, the likelihoods tend to luésy, multi-modal and may not have a
peak in the desired location. In particular in (c), due to tieensitivity of monocular likelihoods
to depth, noise in the obtained foreground mask and inaccgracithe geometric model of the
body lead to severe problems. Also note that, in both figures, tise mothe likelihood indicates
that simple search methods are likely to get stuck in local optima.

where pg(l(x,y)) is the probability that pixel (x,y) is consistent with the back-
ground. For instance, a hand specified Gaussian model casede@umore complex
models such as mixtures of Gaussians can be learned in adeadaring tracking

(Stauffer and Grimson, 1999). Such a likelihood will be meffective than one
based on thresholding.

Nevertheless, background models will have difficulty cgpivith body parts that
appear similar to the background; in such regions, like ¢haest part of the torso in
Figure 3, the model will be penalized incorrectly. Problests arise when limbs
occlude the torso or other parts of the body, since then omeataesolve them from
the silhouette. Finally, background models often fail whkemillumination changes
(unless an adaptive model is used), when cameras move, or sdemes contain
moving objects in the background.

3.3 Appearance Models

In order to properly handle uncertainty, e.g., when soméeregf the foreground
appears similar to the background, it is useful to expliaitiodel the foreground
appearance. Accordingly, the likelihood becomes

p(1[8) = [ Pa(l (x )09 pe 1 x y) | )01 @
(xy)
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(a) Image (b) Log Probability of BG  (c) Log Probability of FG  (d) Log FG/BG Ratio

1(x.y) log ps(1 (x,Y)) log pe (1(x.y)s) log EE LY

Fig. 5 Modeling appearance. The appearance likelihood described by Equation (8) is rkist.
The observed image is shown in (a); the log probability of a giedbnging to the background in
(b); the probability of the pixel belonging to a foregrounddeb(modeled by a mixture of Gaus-
sians) for a given body part in (c); the final log ratio of the fimeund to background probability
is illustrated in (d). Notice that unlike the background likeod, the appearance likelihood is able
to attribute parts of the image to individual segments of theybod

wherepe (1(X,y)|s) is the probability of pixel (x,y) belonging to the foreground.
Notice that if a uniform foreground model is assumed, pe(;) O 1, then (7) simply
becomes the probabilistic background subtraction modg8)of

An accurate foreground modpt (1 (x,y)|s) is often much harder to develop than
a background model, because appearance varies dependsugface orientation
with respect to the light sources and the camera, and dueniple® non-rigid de-
formation of the body and clothing over time. It thereforguees offline learning
based on a reasonable training ensemble of images (e.¢sasd@nd MacCormick
(2001); Ramanan, Forsyth, and Zisserman (2007)) or it carptated online (e.g.,
Wren, Azarbayejani, Darrell, and Pentland (1997)). Simpledround models are
often learned from the image pixels to which the body prajeatin one or more
frames. For example one could learn the mean RGB color andstlwevariance
for the body, or for each part of the body if they differ in appence. One can also
model the statistics of simple filter outputs (e.qg., gratiféters).

One important consideration about likelihoods is compoa expense, as eval-
uating every pixel in the image can be burdensome. Fortlyn#tés can usually be
avoided as a likelihood function typically needs only becsfed up to a multi-
plicative constant. By dividing the likelihood by the backgnd model for each
pixel terms cancel out leaving

Pe(1(xy)s)

Pts) 0 . ps((xY)

(xy) s.t. M(xy|s)

(8)

where the product is only over the foreground pixels, alfapé significant savings
in computation. This technique can be more generally ussgeed up other types
of likelihood functions.
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Fig. 6 Appearance likelihood. The behavior of the appearance likelihood described by Eauat
(8) is illustrated. Similarly to Figure 4 a true pose, consisteitit the pose of the subject illustrated
in Figure 3, is taken and the probability of that pose as a fandtf varying a single degree of free-
dom in the state are illustrated in (a) and (c); as before irh@gntire body is shifted up and down
(along the Z-axis), in (d) along the optical axis of the camkrgb) and (d) poses corresponding to
the strongest peak in the likelihood of (a) and (c) respectiagdyillustrated. Notice that due to the
strong separation between foreground and background innizige sequence, appearance likeli-
hood performs similarly to the background likelihood modeuéttated in Figure 4); in sequences
where foreground and background contain similar colors appea likelihoods tend to produce
superior performance.

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

3.4 Edges and Gradient Based Features

Unfortunately foreground and background appearance radusle several prob-
lems. In general they have difficulty handling large charigesppearance such as
those caused by varying illumination and clothing. Addiadly, near boundaries
they can become inaccurate since most foreground modelsta@pture the shad-
ing variations that occur near edges, and the pixels nedrdtiedary are a mixture
of foreground and background colors due to limited camesalugion. For this rea-
son, and to be relatively invariant to lighting and smalbesrin surface geometry, it
has been common to use edge-based likelihoods (e.g., WactdeéNagel (1999)).
These models assume that the projected edges of the pemad sbrrespond to
some local structure in image intensity.

Perhaps the simplest approach to the use of edge informitithre Chamfer
distance (Barrow, Tenenbaum, Bolles, and Wolf, 1977). ertlausdorff distance
(Huttenlocher, Klanderman, and Rucklidge, 1993). Edge$ilst extracted from the
observed image using standard edge detection methodyifrarsd Ponce, 2003)
and a distance map is computed whe(e) is the squared Euclidean distance from
pixel x to the nearest edge pixel. The outline of the subject in ttaggris computed
and the boundary is sampled at a set of poi{rﬁs}i“il. In the case of Chamfer
matching the likelihood function is

1 M
p(d]s) = exp(—M_de)) . ©

Chamfer matching is fast, as the distance map need only bputedhonce and is
evaluated only at edge points. Additionally, it is robustt@anges in illumination
and other appearance changes of the subject. However itecdifficult to obtain
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a clean set of edges as texture and clutter in the scene cdagerspurious edges.
Gavrila and Davis (1996) successfully used a variant of Gaamatching for pose
tracking. To minimize the impact of spurious edges theyqrened an outlier rejec-
tion step on the points;.

Chamfer matching is also robust to inaccuracies in the gegroéthe subject.
If the edges of the subject can be predicted with a high degf@ecuracy, then
predictive models of edge structure can be used. Kollnighagel (1997) built hand
specified models which predicted large gradient magnitndes outer edges of the
target. Later, this work was extended to predict gradieigntations and applied
to human pose tracking by Wachter and Nagel (1999). Sinyjliieéstares and Fleet
(2001) learned a probabilistic model of local edge struectinich was used by Poon
and Fleet (2002) to track people. Such models can be eféstiwever sufficiently
accurate shape models can be difficult to build.

3.5 Discussion

There is no consensus as to which form of likelihood is bestvéVer, some cues
are clearly more powerful than others. For instance, if 2ihgscare practical in a
given application then they should certainly be used asdhewn extremely strong
cue. Similarly, some form of background model is invaluadobel should be used
whenever it is available.

Another effective technique is to use multiple measuremert correctly com-
bine measurements, the joint probability of the two obséua p(z(V,z(? |s)
needs to be specified. This is often done by assuming thetemmaliindependence
of the observations

pzV,2?|s) = p(zV |s5)pz? |s). (10)

This assumption, often referred tor@@ve Bayesis unlikely to hold as errors in one
observation source are often correlated with errors inrethi¢owever, it is reason-
able when, for instance, the two observations are from rdiffecameras or when
one set of observations is explaining edges and the oth&plairing pixels not at
the boundary. The behavior of the background likelihoo@\musly illustrated in
Figure 4) as a function of image measurements combined froitiple views is
illustrated in Figure 7.

4 Motion Models

Prior information about human pose and motion is essertgiatdsolving ambi-
guity, for combining noisy measurements, and for copinghwitissing observa-
tions. A prior model biases pose estimation toward plaasfimses, when pose
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Fig. 7 Number of views. Effect of combining measurements from a number of image views on the
(background) likelihood. With a single view the likelihooghgbits a wide noisy mode relatively
far from the true value of the translation considered (denbyettie vertical line); with more views
contributing image measurements the ambiguity can be resohedljging a stronger peak closer
to the desired value.

might otherwise be under-constrained. In principle one ldidike to have priors
that are weak enough to admit all (or most) allowable motifiithe human body,
but strong enough to constrain ambiguities and alleviagdi@hges imposed by the
high-dimensional inference. The balance between thesetwipeting goals is of-
ten elusive. This section discusses common forms of motiotkets and introduces
some emerging research directions.

4.1 Joint Limits

The kinematic structure of the human body permits a limitulge of motion in
each joint. For example, knees cannot hyperextend and the ¢cannot tilt or twist
arbitrarily. A central role of prior models is to ensure thatovered poses satisfy
such biomechanical limits. While joint limits can be encobtigdhresholds imposed
on each rotational DOF, the true nature of joint limits in thenan body is more
complex. In particular, the joint limits are dynamic and eélegant on other joints
(Herda, Urtasun, and Fua, 2005). Unfortunately, joint finfiy themselves do not
encode enough prior knowledge to facilitate tractable abdist inference.

4.2 Smoothness and Linear Dynamical Models

Perhaps the simplest commonly used prior model is a lowrdvtirkov model,
based on an assumption that human motion is smooth (e.ght&eand Nagel
(1999); Sidenbladh, Black, and Fleet (2000); Poon and F28£12)). A typical first-
order model specifies that the pose at one time is equal toréwiops pose up to
additive noise:

S+1 = S+0N (11)
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where theprocess noisg is usually taken to be Gaussign~ .4°(0, ). The result-
ing prior is then easily shown to be

P(s+1]s) = G(st1; s, 2) (12)

whereG(x; m,C) is the Gaussian density function with memrand covarianc€,
evaluated ax. Second-order models express; in terms of ofs ands_ 1, allowing
one to use velocity in the motion model. For example, a commdamped second-
order model is

S+1 = StK(§—S-1)+N (13)

wherek is a damping constant which is typically between zero and one

Equations (11) and (13) are instances of linear models,ghergl form of which
iS§.11 = ZﬁzlAns{,nHJr n, i.e., anN-th order linear dynamical model. In many
cases, as in (11) and (13), itis common to set the paramdttrs ransition model
by hand, e.g., setting,, assuming a fixed diagonal covariance mafpor letting
the diagonal elements of the covariance matrix in (12) bpgntipnal to||s —s_1||?
(Deutscher and Reid, 2005). One can also learn dynamicaklsidbm motion
capture data (e.g., North and Blake (1997)). This wouldvabboe, for example, to
capture the coupling between different joints. Nevertbgléearning good parame-
ters is challenging due to the high-dimensionality of tteesspace, for which the
transition matricesh, € RN*N| can easily suffer from over-fitting.

Smoothness priors are relatively weak, and as such alloweagilly of motions.
While useful, this is detrimental when the model is too weakdequately constrain
tracking in monocular videos. In constrained settings,@ldservations from 3 or
more cameras are available and occlusions are few, suchlsrealee been shown
to achieve satisfactory performance (Deutscher and Re@h)2

Itis also clear that human motion is not always smooth, thevélating smooth-
ness assumptions. Motion at ground contact, for examplesually discontinuous.
One way to accommodate this is to assume a heavy-tailed nnbgebcess noise
that allows occasional, large deviations from the smootllehaOne might also
consider the use of switching linear dynamical models, tigimduce piece-wise
linear motions (Pavolvic, Rehg, Cham, and Murphy, 1999).

4.3 Activity Specific Models

Assuming that one knows or can infer the type of motion benagkied, or the
identity of the person performing the motion, one can applgrgier prior models
that are specific to the activity or subject (Lee and Elgamm@07). The most
common approach is to learn models off-line (prior to tragkifrom motion capture
data. Typically one is looking for some low-dimensional graeterization of the
pose and motions.

To introduce the idea, consider a dataget {1} consisting ofk kinematic
posesw), i € (1,...,K) obtained, for example, using a motion capture system.
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Fig. 8 Illustration of the latent space motion prior model. Results of learning a Gaussian Pro-
cess Dynamical Model that encodes both the non-linear lowtbineal latent pose space and the
dynamics in that space. On the left a few walking motions are stewipedded in the 3D latent
space. Each point on a trajectory is an individual pose. For fstkeopoints the corresponding
mean pose in the full pose space is shown. On the right the distiibatier plausible poses in the
latent space is shown. This figure is re-printed from (Wanget-nd Hertzmann, 2006).

Since humans often exhibit characteristic patterns of engtihese poses will of-
ten lie on or near a low-dimensional manifold in the origin@h-dimensional pose
space. Using such data for training, methods like Principdenponent Analysis
(PCA) can be used to approximate poses by the linear connuinafta mean pose
py = & 5K, w0 and a set of learned principal directions of variation. Ehesn-
ciple directions are computed using the singular value mhposition (SVD) of a
matrix Swhosei-th row is /() — uy. Using SVD, matrixSis decomposed into two
orthonormal matricel) andV (U = [ug, Uy, ..., U] consisting of the eigenvectors,
(a.k.a.,eigen-posdsand a diagonal matri containing ordered eigenvalues such
thatS=UAVT.

Given this learned model, a pose can be approximated by

q
Y~y + .Ziuici (14)

wherec; is the set of scalar coefficients and« m controls the amount of vari-
ance accounted for by the model. As such, the inference beepdse can be re-
placed by the inference over the coefficiests [c1,Ca, ...,Cq]. Sinceq is typically
small (e.g. 2- 5) with respect to the dimensionality of the pose space thissfor-
mation facilitates faster pose estimation. However, the lesv-dimensional state
space representation also requires a new model of dynaha@tsas to operate on
the coefficients. The models of dynamics in the linear lagpatce such as the one
obtained using the eigen-decomposition are typically noomplex then those in
the original pose space and are often nonlinear. One aliegrta simplifying the
motion models is to learn the eigen-decomposition for ertajectories of motion
rather then the individual poses (Sidenbladh, Black, ardt-P000; Urtasun, Fleet,
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Fig. 9 Tracking with the GPDM. 56 frames of a walking motion that ends with almost total
occlusion (just the head is visible) in a cluttered and movindgemund. Note how the prior en-
courages realistic motion as occlusion becomes a problem. Thrgfgre-printed from (Urtasun,
Fleet, and Fua, 2006a).

and Fua, 2006b). Regardless, linear models such us the soelsl here are typi-
cally insufficient to capture intricacies of real human Eosemotion.

More recent methods have shown that non-linear embeddimgmare effec-
tive (Sminchisescu and Jepson, 2004). Gaussian Procestsd Mariable Models
(GPLVMs) have became a popular choice since they have besmsb generalize
from small amounts of training data (Urtasun, Fleet, Hesmm and Fua, 2005).
Furthermore, one can learn a low-dimensional embeddirgtitzonly models the
manifold for a given class of motions, but also captures theachics in that learned
manifold (Li, Tian, and Sclaroff, 2007; Urtasun, Fleet, &, 2006a). This allows
the inference to proceed entirely in the low-dimensionakgpalleviating complex-
ities imposed by the high-dimensional pose space all tegeftn example of a 3D
latent space for walking motions is illustrated in Figurerl aesults of tracking
with that model is shown in Figure 9.

Alternatively, methods that use motion capture directlyirtplicitly specify
stronger priors have also been proposed. These types of pniake the assump-
tion that the observed motion should be akin to the motionbéed in the database
of exemplar motions. Simply said, given a pose at tiraech approaches find an ex-
emplar motion from the database that contains a closelynigl§ey pose, and uses
that motion to look up the next pose in the sequence. Pridtsi®form can also be
formulated probabilistically (e.g. Sidenbladh, Blackdaigal (2002)).

All of these methods have proven effective for monoculaepogerence in spe-
cific scenarios for relatively simple motions. However, dogheir action specific
nature, learning models that successfully generalize emesent multiple motions
and transitions between those motions has been limited.

4.4 Physics-based Motion Models

Recently, there has been preliminary success in using g@¥sised motion mod-
els as priors. Physics-based models have the potential &s lgeeneric as simple
smoothness priors but more informative. Further, they neglie to recover sub-
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tleties of more realistic motion which would be difficult, it impossible, with
existing motion models. The use of physics-based prior nisadéhuman tracking
dates back to the early 1990's with pioneering work by Mesasiad Terzopoulos
(1993) and Wren and Pentland (1998). However, it is only rézémat success with
monocular imagery has been shown.

The fundamental motivation for physics-based motion modethe possibility
that motions are best described by the forces which genketiagen, rather than a
sequence of kinematic poses. These forces include notloalinternal (e.g., mus-
cle generated) forces used to propel limbs, but also eXtésrees such as gravity,
ground reaction forces, friction and so on. Many of thesedsican be derived from
first principles and provide important constraints on motiglodeling the remain-
ing forces, either deterministically or stochasticallfhen the central difficulty of
physics-based motion models. This class of models remagmsraising but rela-
tively unexplored area for future research.

The primary difficulty with physics-based models is the afslity of complex
dynamical systems. Sensitivity to initial conditions,atiatinuities of motion and
other non-linearities have made robust, realistic cordfdlumanoid robots an elu-
sive goal of robotics research. To address this in the cowofexacking Brubaker,
Fleet, and Hertzmann (2007) used a simplified, physical iib@e is stable and
easy to control. While this model was restricted to simplekimal motions, the
work was extended by Brubaker and Fleet (2008) to a more ecoompblysical model,
capable of a wider range of motions. An alternative stratagployed by Vondrak,
Sigal, and Jenkins (2008) used a motion capture databas&li®tpe dynamics. Us-
ing inverse dynamics, they solved for the forces necessamjiric motions found
in the database.

5 Inference

In a probablistic framework our goal is to compute some agpration to the dis-
tribution p(s11 | z11). Often this is formulated as online inference, where théidis
bution is computed one frame at a time as the observatioing aexploiting the
well-known recursive form of the posterior (assuming ctiodal independence of
the observations):

p(sit|z1x) O p(z|s) (st |S1t-1) P(S1t-1]Z1t-1) - (15)

The motion modelp(s|s11—1), is often a first order Markov model which simplifies
to p(s|s—1). While this is not strictly necessary for the inference mdthpresented
here, it is important because the motion model then depemlgion the last state as
opposed to the entire trajectory.

The classic, and perhaps simplest, approach to this proisléme Kalman filter
(e.g., Wachter and Nagel (1999)). However, the Kalman fFgtenot suitable for
human pose tracking where the dynamics are non-linear andkilihood func-
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tions are non-Gaussian. As a consequence, Sequential \anl techniques are
amongst the most commonly used to perform this inferenapu&dial Monte Carlo
methods were first applied to visual tracking with the CONCEANION algorithm
of Isard and Blake (1998) but were applied earlier for timeéeseanalysis by Gor-
don, Salmond, and Smith (1993) and Kong, Liu, and Wong (198d) a more
detailed discussion of Sequential Monte Carlo methods,efer the reader to the
review article by Doucet, Godsill, and Andrieu (2000).

In this section, we present a very simple algorithm, pagtfdtering, in which
stochastic simulation of the motion model is combined wigighting by the likeli-
hood to produce weighted samples which approximate thepost\We also present
two variants which attempt to work around the deficienciethefbasic particle fil-
ter.

5.1 Particle Filter

A particle filter represents a distribution with a weighted sf sample states, de-
noted{(s&':i,w(l':)t)|i =1,...,N}. When the samples afairly weighted then sample
statistics approximate expectation under the targetiligton, i.e.,

N ) .
;w(l'% f(s)2) ~ E[f(s12)] (16)

wherew{l'i = (z?‘zlw(l'g) lW(1I:>t is the normalized weight. The sample statistics
approach that of the target distribution as the number opéesyN, increases.

In a simple particle filter, given a fairly weighted sample 8em timet, the
samples at time + 1 are obtained withmportance samplingFirst samples are

drawn from a proposal distributicq(sﬂzl | s(li:i,zlﬂl). Then the weights are updated

) P(Zt41 | 3521) P(Sfﬁl | 3<1|1)

+1 — Wi(l.i:t (i (M
Q(§+1 ‘ St Z1141)
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to be fairly weighted samples at tinhe- 1. The proposal distribution must be non-
zero everywhere the posterior is non-zero, but it is otheewargely unconstrained.
The simplest and most common proposal distribution is matiodel,p(s+1|S11),
which simplifies the weight update to bné'%ﬂ = w(l':i p(zt+1|§(21).

This simple procedure, while theoretically correct, is knato be degenerate.
Ast increases, the normalized weight of one particle appraativehile the others
approach 0. Weights near zero require a significant amouwgraputation but con-
tribute very little to the posterior approximation, effieety reducing the posterior
approximation to a point estimate.
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Algorithm 1 Particle Filtering.

Initialize the particle se{(s(l'),w(1'>)|i =1,...,N}
fort=1,2,... do
Compute the normalized weigmél';Aand the effective number of samples; s as in (18)
if Netf < Ntnresnthen
fori=1,...,Ndo _
Randomly choose an indgx (1,...,N) with probability p(j) = “(1'3
Sets); = i)} andwi; = 1
end for ) ) ) )
Replace the old particle se(sg':{,w(l':{)\i =1,...,N} with {(éﬂ, ”&':{)H =1,...,N}
end if
fori=1,...,Ndo _
Sampleﬁ(ﬁl from the proposal distributioq(st+1|s(1':{,zl;Hl)
Construct the new state trajectcsr(li_)t 1= (s(l'iysfﬁl)

Update the Weightw(liji+1 according to equation (17)
end for
end for

To mitigate this problem, a resampling step is introduce@netparticles with
small weights are discarded. Before the propagation stagenaset of samples

{8]i=1,...,N} is created by drawing an indgxsuch thatp(j) = W\"), and then
setting:':,(l':)t = s(ljt) . The weights for this new set of particles are tlvélﬁ = 1/N for
alli. This resampling procedure can be done at every frame, ata@fligquency, or
only when heuristically necessary. While it may seem gooatihis at every frame,
as done by Isard and Blake (1998), it can cause problemsifisp#y, resampling
introduces bias in finite sample sets, as the samples arengerlindependent and
can even exacerbate particle depletion over time.

Resampling when necessary balances the need to avoid daggmethout in-
troducing undue bias. One of the most commonly used hagiitian estimate of
theeffective sample size

e = (L an2)
eff = Zi( 1:t) (18)

which takes values from 1 tN. Intuitively, this can be thought of as the average
number of independent samples that would survive a resagiptep. Notice that
after resamplingNe¢¢ is equal toN. With this heuristic, resampling is then per-
formed wherNe 1 < Nihresh Otherwise itis skipped. The particle filtering algorithm,
with this heuristic resampling strategy, is outlined in &lghm 1.

5.2 Annealed Particle Filter
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Algorithm 2 Annealed Particle Filtering.

Initialize the weighted particle sé(s&i‘),_,w(lii)\i =1,...,N}L
fort=1,2,... do '
fori=1,...,Ndo .
Sample@@l from the proposal distributioq(s[+1|s(l'i,L,lel)
Construct the new state trajectdﬁ{ 110= (s(li:{‘L., 51(21)
\NO(S(liLrl_o‘Zl:t-l)

Assign the weightsi. = s T
9 9M¥iz+10 Q(51(+)1.0‘5(1:1.L-211+1>

end for
for¢=1,...,Ldo
fori=1,...,Ndo
. . -1
Compute the normalized Weigmé'_,)(;ufl = (z'j\‘zlw(l{t)+u71> Wg:)t+17/71
Randomly choose an indgxe (1,...,N) with probability p(j) = W(111>+1‘£71
Sampleq(zM from the diffusion distributiom(s[+u|s(1';t>+1‘({71)
Construct the new state trajectﬂﬂj = (s(li:)t,q(zl_()

Compute the annealed weighm%hu = \/\/g(s(l'_,)c+u\zl;t+1)
end for '
end for
end for

Unfortunately, resampling does not solve all the problefrthe basic particle
filter described above. Specifically, entire modes of thegyas can still be missed,
particularly if they are far from the modes of the proposatmithution or if modes
are extremely peaked. One solution to this problem is toemse the number of
particles,N. While this will solve the problem in theory, the number of gdes
theoretically needed is generally computationaly untendhurther, many samples
will end up representing uninteresting parts of the spaceléttiese issues remain
challenges, several techniques have been proposed ineanpatto improve the
efficiency of particles filters. One approach, inspired byugated annealling and
continuation methods, is Annealed Particle Filtering (APPeutscher and Reid,
2005).

The APF algorithm is outlined in Algorithm 2. At each timmethe APF goes
throughL levels of annealing. For each partidleannealing leve¥, begins by

choosing a sample from the previous annealing Ia&@lﬂkl, with probability
p(j) = vAv(i:)HMfl. The state at time+ 1 of samplej is then diffused to create a new
hypothes@ﬂil , according to

To(SevelStarae 1) = A (SerelSire1,0') (19)

and weights the new hypothesis by

Wi(Stas1elzaea1) = (P(zer | See) P(Sasls) ™ (20)
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Fig. 10 Annealed Particle Filter (APF) tracking from multi-view observations. This figure is
re-printed from (Deutscher and Reid, 2005).

In the abovex € (0,1) is called the annealing rate and is used to control the s¢ale o
covariance?, in the diffusion process. Th# is the temperature parameter, derived
based on the annealing rate, and the survival diagnostics of the particle set (for
details see Deutscher and Reid (2005)) to ensure that a figzetioh of samples
survive from one stage of annealing to the next.

The sequencéy,..., B is a gradually increasing sequence between zero and
1, ending withB. = 1. Whenp, is small, the difference in height between peaks
and troughs of the posterior are attenuated. As a resultlésss likely that one
mode, by chance, will dominate and attract all the partjc¢hereby neglecting other,
potentially important modes. In this way the APF allows jgéet to broadly explore
the posterior in the early stages. This means that the [emtare better able to
find different potential peaks, which then attract the gt more strongly as the
likelihood becomes more strongly peaked Basncreases). It is worth noting that,
with L = 1, the APF reduces to the standard particle filter discuss#tkiprevious
section.

While often effective in finding significant modes of the pote the APF does
not produce fairly weighted samples from the posterior. Ashsit does not ac-
curately represent the posterior and the sample statisfti€s6) are not represen-
tative of expectations under the posterior. Recent rebdaas shown that by re-
stricting the form of the diffusion and properly weightirfgetsamples, one can ob-
tain fairly weighted samples (Gall, Potthoff, Schnorr, Balsahn, and Seidel, 2007;
Neal, 2001).
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Algorithm 3 Markov Chain Monte Carlo Filtering.

Initialize { (s}, wi)li = 1,...,N}
fort=12...do
fori=1,...,Ndo .
Sampléq@l from the proposal distributioq(§+1|s(l':{,zl;Hl)
Construct the new state trajectcfé'?wl = (511,5[(21)
Update the Weight\xis/(l':{+1 according to equation (17) Wiﬂﬂl = 3(21
end for »
Compute the normalized weightd) , = (Z?‘zlwﬂ)ﬂ) Wi,y
fori=1,...,Ndo _
Randomly choose an indgx (1,...,N) with probability p(j) = W(1]1)+1-
Set the target distribution to be?(q) 0 p(z;1|q)p(q[3.))
Set the initial state of the Markov Chaindg = §t“+)1
forr=1,...,Rdo
Sampleq, from the MCMC transition densityf (qr|qr—1), €.9., using Hybrid Monte
Carlo as described in Algorithm 4
end f(o)r (i) (i)
I ~(I I
Setsyy,y = (511,9r) andwiy ; =1
end for
end for

5.3 Markov Chain Monte Carlo Filtering

Another way to improve the efficiency of particle filters isthwvthe help of Markov
Chain Monte Carlo (MCMC) methods to explore the posterioMarkov Chair?

is a sequence of random variablgs,qi1,02,... with the property that for all

i, p(qilgo,---,qi—1) = p(qi|gi—1)- In MCMC, the goal is to construct a Markov
Chain chain such that, asincreasesp(q;) approaches the desired target distri-
bution £2(q). In the context of particle filtering at timg the random variables,

g, are hypothetical states and the target distributiong?(q), is the posterior
p(sit|z11). The key to MCMC is the definition of a suitable transition sién
p(qi|gi—1) = T(qi|gi—1). To this end there are several properties that must be satis-
fied, one of which is

2@ = [Tl 2 @da. 21)

This means that the chain has the target distributifm) as its stationary distribu-
tion. For a good review of the various types of Markov transitiensities used, and
a more thorough introduction to MCMC in general, see (Ne293).

A general MCMC-filtering algorithm is given in Algorithm 3t begins by pro-
pogating samples through time and updating their weightsraing to a conven-
tional particle filter. These particles are then are chosémprobability proportional
to their weights, as the initial stateshhindependant Markov chains. The target dis-

3 A full review of MCMC methods is well beyond the scope of this ptex and only a brief
introduction will be presented here.
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Algorithm 4 Hybrid Monte Carlo Sampling.

Given a starting statgy € R™ and a target distribution?(q), defineE(q) = —log 2(q).
Draw a momentum vectqrp € R™ from a Gaussian distribution with mean 0 and unit variance.
for¢/=1,...,Ldo
JE(dr-1)
q

Pros=Pr1— 34 =4

Q¢ =0dr-1+4pr-os

Pe=Pr-o5— 34 %;u)
end for
Compute the acceptance probability= min(1,e ¢) wherec is computed according to (22)
Setu to be a uniformly sampled random number between zero and one
if u<athen

return qp
else

return qo
end if

tribution for each chain is the posteripfs |,z11). The final states of each chain are
then taken to be fair samples from the posterior.

Choo and Fleet (2001) used an MCMC method known as Hybrid &Qairlo.
The Hybrid Monte Carlo algorithm (Algorithm 4) is an MCMC teuque, based
on ideas developed for molecular dynamics, which uses thdigmt of the pos-
terior to efficiently find high probability states. A singleep begins by sampling
a vectorpp € R™ from a Gaussian distribution with mean zero and unit vaganc
Heremis the dimension of the state vectpy. The randomly drawn vector, known

as the momentem, is then used to perform a simulation of theesyof differ-

ential equation% = —"E—gq) and% = p wherert is an artificial time variable and

E(q) = —log Z2(q). The simulation begins &tjp, po) and proceeds using a leapfrog
step which is explicitly given in Algorithm 4. Therk,is the number of steps to sim-
ulate for andA is a diagonal matrix whos entries specify the size of steplte tn
each dimension of the state vectprAt the end of the simulation, the ending state
of the physical simulation_ is accepted with probabilitg = min(1,e~¢) where

6= (E(aL) + 3 IPoll2) ~ (E(do) + 3 I 7). 22

The specific form of the simulation procedure and the acceptéest at the end
are designed such tha?(q) is the stationary distribution of the transition distribu-
tion. The parameters of the algorithmand the diagonals of are set by hand. As a
rule of thumbA andL should be set so that roughly 75% of transitions are accepted
An important caveat is that the valuesloAndA cannot be set based grand must
remain constant throughout a simulation. For more infoiomabn Hybrid Monte
Carlo see (Neal, 1993).
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Fig. 11 lIllustration of the simple discriminative model. The model introduced by Agarwal and
Triggs (2006) is illustrated. From left to right the figure shso{d) silhouette image, (2) contour of
the silhouette image, (3) shape context feature descriptordoirs.on a contour, (4) a set of shape
context descriptors in the high (60-dimensional) space, (5)Gadl@ensional vector quantized
histogram of shape descriptors that is used to obtain (6) the da¥e @erson through linear

regression. This figure is re-printed from (Agarwal and Tri@§)6).

6 Initialization and Failure Recovery

The final issue we must address concerns initialization l@ddcovery from track-
ing failures. Because of the large number of unknown statibi@s one cannot
assume that the filter can effectively search the entire Space without a good
prior model (or initial guess). Fortunately, over the last/fyears, progress on the
development of discriminative methods for detecting pe@pid pose inference has
been encouraging.

6.1 Introduction to Discriminative Methods for Pose Estimanh

Discriminative approaches aim to recover pose directlynfeoset of measurements,
usually through some form of regression applied to a set afsmements from a
single frame. Discriminative techniques are typicallyrieal from a set of train-
ing exemplarsZ = {(s),z") ~ p(s,z)|i = 1...N}), which are assumed to be fair
samples from the joint distribution over states and measen¢s. The goal is to
learn to predict an output for a given input. The inpats, RM, are generic image
measurement$,and outputs € RN, as above, represent the 3D poses of the body.
The simplest discriminative method is Nearest-Neighbadl)Mokup (Howe,
2007; Mori and Malik, 2002), where, given a set of featuresesbed in an image,
the exemplar from the training database with the closestifesis found, i.ek* =
argmincd(z,z¥). The poses'k’) for that exemplar is returned. The main challenge
is to define a useful similarity measutté, -), and a fast indexing scheme. One such
approach was proposed by Shakhnarovich, Viola, and D&2@&0i3). Unfortunately,

4 For instance, histograms-of-oriented-gradients, vector @exhshape contexts, HMAX, spa-
tial pyramids, vocabulary trees and so on. See Kanaujia, Snsiestii, and Metaxas (2007a) for
details.



Video-Based People Tracking 25

Fig. 12 Discriminative Output. Pose estimation results obtained using the discriminative method
introduced by Kanaujia, Sminchisescu, and Metaxas. This figure-printed from (Kanaujia,
Sminchisescu, and Metaxas, 2007a).

this simple approach has three drawbacks: (1) large tigsets are required, (2) all
the training data must be stored and used for inference Jrithfoduces unimodal
predications and hence ambiguities (or multi-modalityiniage-to-pose mappings
cannot be accounted for (e.g., see Sminchisescu, Kanhiljad Metaxas (2005)).

To address (1) and (2) a variety of global (e.g., Agarwal anggs (2006)) and
local (e.g., Rosales and Sclaroff (2002)) parametric nsootlave been proposed.
These models learn a functional mapping from image featir&® pose. While
these methods have been demonstrated successfully dotegsttomains, and with
moderately large training sets, they do not provide oneémy mappings, and
therefore do not cope with multi-modality.

Multi-modal mappings have been formulated in a probabilsgtting, where one
explicitly models multi-modal conditional distributions(s|z, @), where® are pa-
rameters of the mapping, learned by maximizing the likadthof the training data
2. One example is the conditional Mixture of Experts (cMoE)deldntroduced by
Sminchisescu, Kanaujia, Li, and Metaxas (2005), whichgdke form

K
PSIZO) = 3 02 @)ex(sI20). (23)
=0

whereK is the number of expertgg are positive gating functions which depend on
the input features, ang are experts that predict the pose (e.g., kernel regressors)
This model under various incarnations has been shown to wffeictively with
large datasets (Bo, Sminchisescu, Kanaujia, and Metak@8) 2nd with partially
labeled data(Kanaujia, Sminchisescu, and Metaxas, 2007a).

The MoE model, however, still requires moderate to large amsof training
data to learn parameters of the gates and experts. Reametlypds that utilize an
intermediate low dimensional embedding have been showa mlticularly effec-

5 Since joint samples span a very high dimensional sg&lée", obtaining a dense sampling of the
joint space for the purposes of training is impractical. Hema®rporating samples from marginal
distributionsp(s) andp(z) is of great practical benefit.
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tive in dealing with little training data in this setting ¢e. Navaratnam, Fitzgibbon,
and Cipolla (2007); Kanaujia, Sminchisescu, and Metax@87R)). Alternatively,
non-parametric approaches for handling large amountsaofitig data efficiently
that can deal with multi-modal probabilistic predictionavh also been recently
proposed by Urtasun and Darrell (2008). Similar in spirithte simple NN method
above, their model uses the local neighborhood of the queapproximate a mix-
ture of Gaussian Process (GP) regressors.

6.2 Discriminative Methods as Proposals for Inference

While discriminative methods are promising alternativegeaerative inference, it
is not clear that they will be capable of solving the posenastion problem in a
general sense. The inability to generalize to novel motides! with significant
occlusions and a variety of other realistic phenomena seesuggest that some
generative component is required.

Fortunately, discriminative models can be incorporatatiiwithe generative set-
ting in an elegant way. For example, multimodal conditiogiatributions that are
the basis of most recent discriminative methods (e.g., Bun&hisescu, Kanaujia,
and Metaxas (2008); Navaratnam, Fitzgibbon, and Cipol®T2, Sminchisescu,
Kanauijia, Li, and Metaxas (2005); Urtasun and Darrell (9D08&n serve directly as
proposal distributions (i.eg(s 1|11, Z1t+1)) to improve the sampling efficiency of
the Sequential Monte Carlo methods discussed above. Sagtimimary work on
combining discriminative and generative methods in thi$ @her ways has shown
promise. It has been shown that discriminative componeragige for effective
initialization and the recovery from transient failureadahat generative compo-
nents provide effective means to generalize and betterdig@observations (Sigal,
Balan, and Black, 2007; Sminchisescu, Kanaujia, Li, andaas, 2005; Sminchis-
escu, Kanajujia, and Metaxas, 2006).

7 Conclusions

This chapter introduced the basic elements of modern appesato pose tracking.
Using the probabilistic formulation introduced in this pker one should be able
to build a state-of-the-art framework for tracking relativ simple motions of sin-
gle isolated subjects in a compliant (possibly instruménémvironment. The more
general problem of tracking arbitrary motion in monocufaage sequences of un-
constrained environments remains a challenging and aateee of research. While
many advances have been made, and the progress is promisiggstem to date
can robustly deal with all the complexities of recovering fftuman pose and motion
in an entirely general setting.
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While the need to track human motion from images is motivated tariety of
applications, currently there have been relatively fevteays that utilize the image-
based recovery of the articulated body pose for highet-kagks or consumer ap-
plications. This to a large extent can be attributed to threplexity of obtaining an
articulated pose in the first place. Nevertheless, a few pesynising applications
in biomechanics (Corazza, Muendermann, Chaudhari, Dem&tbelli, and An-
driacchi, 2006) and human computer interfaces (Demirdi@nand Darrell, 2005;
Ren, Shakhnarovich, Hodgins, Pfister, and Viola, 2005; E@a&rambone, Essa,
and Brostow, 2003) have been developed. The articulatesllparsalso proved use-
ful as a front end for action recognition applications (NiXa, Gong, and Huang,
2008). We believe that as the technologies for image-basmm/ery of articulated
pose grows over the next years, so will the applicationstitiite that technology.
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