
Phylogenetic Reconstruction with Insertions and Deletions

Alexandr Andoni∗,
Mark Braverman†,

Avinatan Hassidim‡

November 5, 2009

Abstract

We study phylogenetic reconstruction of complete d-ary trees, with three possible mu-
tations: substitutions, insertions and deletions. We give the first efficient algorithm for this
problem which uses sequences of poly logarithmic length. The paper introduces two new
tools:

1. A new distance measure, and a new reconstruction guarantee which are tailored to deal
with insertions and deletions.

2. A robust local alignment and reconstruction algorithm, which can be used recursively.

The error analysis of the algorithm is based on defining a new process on trees, and applying
percolation theory to analyze its behavior.

∗CCI
†Microsoft Research
‡MIT, Part of the work was performed while visiting Microsoft Research.

1



1 Introduction

The evolutionary history of a given set of species is usually modeled as a phylogenetic tree. The
leaves of the tree correspond to the species which exist today. The root of the tree is their closest
common ancestor, and each branching indicates a specification event, in which one species is ex-
tinct, and several new species are formed. The goal of phylogenetic reconstruction is to infer the
tree structure from the information we have on the leaves, which is usually in the form of some
genetic information. The problem of phylogenetic reconstruction received a lot of attention in the
recent literature; see, e.g., [Mos03, Mos04, DMR06, Roc08, BRZ95, EKPS00, Iof96, BKMP05,
MSW04, BCMR06] and the excellent surveys [Roc07, SS03].

In the present work, we work with the following common formalization of the phylogenetic
tree reconstruction problem. The tree is the complete d-ary tree, where d is a constant. The
genetic information is modeled as a bit string (the CFN model of [Cav78, Far73, Ney71]), and
we call each location in this bit string a site. The genetic information of the root is assumed to be
sampled uniformly at random from {0, 1}k for some k representing the amounth of the available
genetic information. In every branching event, the bit string of the father node v is copied to
each one of the daughter nodes u1, . . . , ud, with the exception that the copying process undergos
a random mutation process. To define the mutation process, we characterize each edge (v, uj)
by three parameters: the substitution probability of the edge ps((v, uj)), the insertion probability
pi((v, uj)) and the deletion probability pd((v, uj)). Given these probabilities, when copying the
genetic information xv to the daughter uj , every site undergoes any of the following mutations,
independently of any other site:

1. Substitution: The bit is flipped with probability ps((v, uj)).

2. Deletion: The bit is deleted with probability pd((v, uj))

3. Insertion: A new site is added to the right of the current site with probability pi((v, uj)). The
value of the bit in that site is a random bit.

We assume that exist global constant pid, ps, pmin, such that for every edge (v, uj) we have
pi((v, uj)), pd((v, uj)) < pid, and pmin < ps((v, uj)) < ps. We call pid the indel probability, and
say that a site has gone an indel if it has gone through an insertion or a deletion.

Denote the depth of the tree by log n, so there are nlog d leaves. We want to design an algorithm
for the following reconstruction problem. Consider an instance of the evolutionary process on a
tree. Then, given the unsorted list of the leaves and the parameters d, ps, pid, pmin, the algorithm
has to find the tree structure, putting every leaf in the correct place. The algorithm is required
to succeed for any choice of parameters pi((v, uj)), pd((v, uj)), ps((v, uj)) with high probability
over the random coin flips of the evolution process (which determine the initial values of the root
and govern the mutations). We limit our attention to algorithms which are polynomial in n.

Traditionally, the hardest part of the phylogenetic problem was the presence of indel mutations.
Hence, the classical approach to the phylogenetic tree reconstruction problem is to factor away the
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indels by performing some multiple sequence alignment, and then running a phylogenetic recon-
struction algorithm, assuming that the only mutations are substitutions. Most of the work focused
on the second part, assuming that there are no indels. Under this assumption, early results (see, e.g.,
the work of Erdös et al. [ESSW99a, ESSW99b]) showed how to use distance estimations between
all pairs of nodes in order to build the tree. However, as the correlation between the same sites
in two nodes which lie in different parts of the tree can be as small as n−O(1), these approaches
require a polynomial number of sites1.

In the last decade, several breakthrough results [Mos03, Mos04, DMR06, Roc08] showed that
there exists a critical substitution probability p?s = 1

2 −
1√
d

, such that if ps < p?s the correct tree
can be reconstructed with high probability even if k = O(log n). A key ingredient in getting
these results was to use the values of the bits (and not just the distances), and to use recursive
constructions. These constructions rely heavily on the independence of the values of different
sites, and therefore do not work when there are indels.

There has been a lot of empirical work on performing the two processes together [TKF91,
TKF92, Met03, MLH04, SR06, RE08, LG08, LRN+09]. One common heuristic is to alternate
between building a phylogenetic tree (assuming no indels) based on some initial alignment, and
then generating an alignment based on the current tree. However, lately there has been growing
concern in the biological literature with the errors introduced by these procedures [LG08, WSH08].

In recent work, Daskalakis and Roch [DR09] proposed a new algorithm, which reconstructs
the tree with high probability when there are indels. However, their approach was based on the
pairwise distances, and requires a polynomial number of sites.

In present work, we give an algorithm for phylogenetic tree reconstruction problem, which
support non-trivial indel mutation probability, and requires only a polylogarithmic number of sites
k.

1.1 Our Results

The main result of this paper is the following:

Theorem 1.1 For every pmin > 0 there exist a (small) constant ε, and (large) constantsC1, C2, C3

such that, if pid < ε/ log2 n, the degree d > C1, the substitution probability is at most ps ≤
1
2 −

C2
√

log d√
d

and the number of sites is k > C3 log2 n, then, given the sequences of the nlog d

leaves of the tree, one can reconstruct the structure of the tree with high probability.

We note that we did not attempt to optimize C1, C2, C3 and ε.

Remark 1.2 Our result also extends to the binary tree case, i.e., when d = 2. In this case, we only
handle pmin = ps = ε for some small constant. We defer the details to the full version of the paper.

1A surprising example in which reconstruction is possible (under some conditions) even when k is subpolynomial
has been obtained by Roch [Roc08].
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We now briefly discuss the parameters, and compare to best possible parameters one would
hope to achieve. If k is polylogarithmic in n, we must have pid = O(log log n/ log n) even when
there are no substitutions: otherwise, some of the leaves will be empty (all sites are deleted), and the
correct reconstruction is impossible. Our algorithm works for pid = O(1/ log2 n). We conjecture
that the right bound is O(1/ log n). In the d-ary case, our bound on ps is close to optimal, as even
when there are no indel operations, one cannot have ps > 1/2 − 1/

√
d. Finally, if the number of

sites is larger than C3 log2 n, our algorithm only uses the first C3 log2 n sites.

2 Preliminaries

We introduce some standard notation. We use [d] denote the set {1, . . . , d}. When we say that an
event happens with high probability, we mean with probability at least 1− 1/nc, where we can set
up the parameters such that c is as big as we need.

Given a bit string x, we let x[i : j] denote the bits from location i to location j in x. Sometimes
we wish to distinguish between a node v and the sequence of bits it has; in this case, we usually
denote the sequence by xv.

For each node v, we define d functions fvi : {1, . . .Kv} 7→ {1, . . .Kv(i)} ∪ {⊥}, where Kv

is the length of the sequence at node v, v(i) is the i’th daughter, and Kv(i) is the length of the
i’th daughter. We let fvi (j) denote the place in vi which the j’th site went to, or ⊥ if the site was
deleted. Thus, each fvi is strictly monotone. When v is clear from context, we omit it.

During the algorithm we will reconstruct the phylogenetic tree recursively, level by level. It will
be comfortable to distinguish between the ideal tree, which is the tree generated by the random
process, and the reconstruction tree, which is the tree reconstructed by the algorithm. Variables
which refer to sequences of bits in the reconstructed tree will have a hat. There will also be a clear
correspondence between nodes in the ideal tree and the ones in the reconstructed tree. Thus, if xv
is the subsequence of bits in node v in the ideal tree, x̂v is the sequence of bits in the node which
corresponds to v in the reconstructed tree.

We will usually think of each xv or x̂v as composed of blocks, which are consecutive sequences
of length B, where B = O(log n) is a large constant times log n. The algorithm is only going to
use the first O(log n) blocks. To simplify the notation, the paper is written such that the algorithm
uses B blocks, so it is enough to remember that B is a large constant times logn (the number of
blocks does not have to be equal to the length of each block in order for the algorithm to succeed).
We will also have bad blocks (which will also be called red blocks), and we will later prove that
with high probability every vertex has at most α red blocks, where α = O(log n), but this time
with a small constant. We also prove that with high probability on the path from the leaf to the
root there are at most α indel operations. The use of the same bound for both these variables is
again done to enable the reader to remember less parameters. Finally, the reconstruction guarantee
is going to be that with probability 1 − β two sites are equal, where we can use β = O(d−2/3) a
small constant.

4



3 Intuitive Explanation

The reconstruction of the tree is done level by level, beginning with the leaves. At each level, we
prove that there exists a correspondence between the set of the vertices that we reconstructed for
this level v̂1, . . . , v̂m to the vertices of that level in the ideal tree v1, . . . vm. Denoting the bit string
which corresponds to v̂i by x̂i, and the bit string which corresponds to vi by xi, this correspondence
has the property that the x̂i resembles xi in two important manners:

1. The distance between xi and xj is similar to the distance between x̂i and x̂j . The distance
we use here is not hamming nor edit, but some mixture of the two.

2. there exists an alignment which matches x̂i to xi. Under this alignment, x̂i and xi have
“small” hamming distance (we actually need to something a bit stronger – see below).

For the leaves this correspondence exists trivially. We now assume that the correspondence
exists for level ` − 1, and show how to build a set of vertices which will correspond to the set of
vertices of level `. First, the first property of the correspondence enables us to partition the vertices
of level ` − 1 into sets of size d, such that each such set constitutes of d siblings. Denoting by
v̂1, . . . , v̂d the nodes which correspond to the daughters of a single node v, we want to build a
node v̂ such that x̂ will correspond to x, the bit string of node v. We do this by performing a local
alignment between x̂1, . . . , x̂d, and then take the majority vote for each site. Finally, we prove that
in this case x̂ resembles x (satisfying both guarantees).

This high level approach has many complications. The first is that we may have a degradation
of the quality of the reconstruction, in which the guarantee we can get for level ` is weaker than
the one we get for level ` − 1. This problem can also occur in the case where there are no indels.
In that case, the reconstruction algorithm is just a place-wise majority, and since the errors are
completely random and independent, one can see that (due to simple error correction bounds),
there is a limiting error, and the guarantee doesn’t degrade.

We cannot hope for such an easy solution. Any local reconstruction procedure might miss some
of the edit distance errors (for example it might not find the exact location of a deletion). This will
introduce errors into the process which are not randomized, but are generated by our algorithm.
Such errors can accumulate, and may also be magnified by the recursive structure of the algorithm.

A second challenge that we face is the large size of the tree, compared to the sequence length.
This means that the success probability of our reconstruction procedure must be exponential in
the number of sites. A reconstruction procedure (for the case where the tree is given) appeared in
[ADR10]. However, that procedure had a very high failure probability (at least 1/poly log n).

To deal with these challenges, we use a very conservative reconstruction guarantee. We allow
x̂ to correspond to x, if one can align them with a few edit distance operations – i.e. there exists
a string y such that y is obtained from the reconstructed sequence x̂ by up to α = O(log n) indel
operations, and y is close to x in hamming distance. The similarity between y and x is defined as
follows:
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1. There are up to α = O(log n) blocks of length B = O(log n) in y on which we have no
guarantee. We will call these areas the red blocks.

2. In the rest of y, we have that if z = x ⊕ y, then z is stochastically dominated by a string
which has 1 in every place with i.i.d probability β, where β is a small constant2.

We explain this seemingly weird guarantee. Suppose the first site of v was deleted, when going
to all of his children. In this case, even if we have the children perfectly, we cannot expect to recon-
struct the first bit of x, and we will have a deletion error. Hence we need to alow some slackness
in the alignment. Note that there is a probability of O(1/poly(n)) that the first log n/ log logn
sites will be deleted in all the children. Therefore we must allow at least log n/ log logn indel
operations going from x̂ to y (we did not try to optimize log log n factors).

Since we cannot identify exactly the location of each indel operation, we settle on estimating
it up to B locations. But this means that if there were many indels in the same block, we will
perform the place-wise majority between sites which came from different locations in the father.
In this case, we cannot say much about the result of the majority vote. Hence, we allow for bad
blocks, in which there is no guarantee. Again we use α to bound the number of such blocks.

Finally, the reconstruction guarantee gives us that z = x ⊕ y is only stochastically dominated
by a random string, and not that it is equal to a random string. This happens because sometimes
we take a majority vote with a site which is adversarial. In this case, the adversary can choose
to tilt the majority vote in any direction she wants. This may not sound like a problem, but it
complicates all distance estimations made by the algorithm, since even if two strings x1, x2 are
completely uncorrelated (they come from different areas in the same node or from different nodes),
the adversary can create correlation between x̂1 and x̂2.

Before describing the reconstruction algorithm and its analysis, we note that when β is small
enough, and there are not too many bad areas, we can estimate the distance between two nodes
u, v by looking at the hamming distance between x̂u and x̂v, when up to 4α indel operations are
allowed for free. This is a good approximate of the distance ??????

, as getting from x̂v to yv requires α operations, and yv is pretty close to xv - up to αB bad
areas (remember that α is a small constant times log n), and a change of the estimate of up to 2βB2

in any direction due to the stochastic dominance.
The reconstruction procedure itself is simple - we pick a random child s, and divide it into

B blocks of length B. To determine the k’th block of the father, we align all the other children
according to the k’th block of s and take a majority vote3. The challenge is to analyze the mistakes

2Let X ,Y be two random variables in {0, 1}m. We say that Y stochastically dominates X , if there is a joint random
variable (X̃, Ỹ ) such that the marginals satisfy X ∼ X̃ and Y ∼ Ỹ and moreover P[X̃ ≤ Ỹ ] = 1.

3To be a bit more formal, for the k’th block of s we look for blocks in the vicinity of kB of the other children which
are close to the k’th block of s. Since we know that at most α indel operations happened on the path between the root
and any vertex 4.1, and since we have the reconstruction guarantee for level ` − 1 we know that it is very improbable
that the first block of the first son and the 7th block of the second son originated from the same sites in the father. This is
important - we do not want to look at far away places, as we do not want far away areas which are adversarial to interfere
with our local procedure on correct parts.
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introduced by this procedure. Since the reconstruction errors in the father depend on the location
of the reconstruction errors in the daughter nodes, we use a percolation type argument to show
that with high probability, no node in the tree will have more than α mistakes, thus meeting the
reconstruction guarantee.

The percolation argument is applied to a d-ary tree of depth log n, in which every node has B
blocks, which can be either red or green. A red block also has a number on it. The connection
between the colors of the blocks and the numbers and the reconstruction guarantee is as follows:

1. Each red block corresponds to an adversarial area, see part 1 in the description of the recon-
struction guarantee.

2. The indel operations which are used to get y from x̂ can only occur in red blocks. Moreover,
if a red block has number nr, there can be at most nr indel operations there.

To know how many red blocks each node has, and what are the number written on them, we
employ a coloring procedure, which starts from the leaves. The procedure is designed to dominate
the error generation process of the reconstruction algorithm, while being simple enough to allow
to prove strong concentration results. An informal (and not exact) description of the procedure is

1. For each indel operation which happened in a block - color it red, and increase its number by
1.

2. elongate each consecutive sequence of red blocks, by adding one block to the left, and one
block to the right4.

3. The father picks a random child and copies its redness structure (including the numbers).

4. If at any block, two or more children are red, we color this block red in the father.

We briefly explain why this process dominates the reconstruction algorithm, in the sense that
each block which is green according to this process is reconstructed correctly (up to the hamming
error β), and why the alignment can be made. The proof is by induction on the levels, and within
each level, for every node, by induction on the block. The random child which is picked in Step 3
corresponds to the child which we align according to. If the majority is computed with too much
adversarial influence, we cannot be sure that it’s correct. To compensate for this, Step 4 colors the
father block red if the block is red in at least two children. Finally, suppose that an indel operation
occurred in the site j of child t for t 6= s, where j lies in the beginning of block k. In this case,
the corresponding site in the father, f−1

t (j) may be either in the k’th block or in the k − 1 block.
Worse still, we might have fs(f−1

t (j)) either in the k’th block or in the k − 1 block. Therefore,
we need to color both blocks red in son t. To be on the safe side, we elongate each sequence of red
blocks.

4Actually for technical reasons we elongate almost every sequence.
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The organization of the rest of the paper is as follows. Section 4 describes the coloring process
in more detail, and proves that with high probability the number of red blocks, and the sum of
numbers on red blocks is bounded. Section 5 introduces the algorithm and the reconstruction
guarantee, and Section 6 proves that the algorithm is dominated by the percolation process. Finally,
Section 7 shows how to use the reconstruction guarantee to find siblings.

4 Red and Green Trees

In this section we consider the ideal tree, and prove some properties on its structure. These prop-
erties will help us design the algorithm later. Let B2 denote the length of the sequence of the root.
Most of the properties we prove are defined on blocks, which are consecutive sequences of sites of
length B, which begin at kB and end at kB+B for some value k. The following lemma motivates
this

Lemma 4.1 With high probability, the maximum number of indels between the root any leaf is
bounded by α = O(log n), and α� B.

We condition the rest of the analysis on the high probability event of Lemma 4.1, without
mentioning it explicitly. Given this event, we partition the sites of each node into B blocks, each
of length B, except maybe the last block (which can be a bit longer or shorter). In the rest of the
paper, we ignore the length of the last block, implicitly assuming that it is B exactly5. Informally,
the condition from Lemma 4.1 means that throughout the process indels never create shifts longer
than α, which is much less than the length of a single block.

We color all the blocks in the tree in two colors: red and green, and give each red block some
integer. Initially red nodes signify a misalignment between a parent node and a child node cause
by indels. We then apply the following recursive process, level by level, beginning with the leaves.

Initialization: Assume that there are k an indel operation going from the father to the i’th child,
which happen in the j’th block. Color block j red, and give it the number k

After coloring level ` − 1, we color level ` by the procedure 1. This procedure temporarily
expands the red blocks on level `− 1. These red blocks are only added to simplify the description
(one can think of procedure 1 as first copying the daughter nodes, and then coloring the father while
changing the temporary copies of the daughters). Procedure 1 is carefully tailored to dominate
misalignments in our reconstruction algorithm. By analyzing it we obtain the bounds that we
need for the algorithm. For example, the temporary extension in the recursive coloring (line 9)
corresponds to the fact that during the algorithmic reconstruction, errors that appear in two different
children may “spill over” one block when we reconstruct the parent.

The following lemma is the heart of our error analysis, and it’s proof takes the rest of this
section

5Handling the length of the last block requires some tedious details, but is not fundamentally different. In fact, in
the i’th level of the tree, we could throw away the last block. This would mean that in the top level the root would have
B − logn blocks, which would still not affect the distances by much as B is a large constant times logn.

8



Algorithm 1: Recursively coloring a father y given the d daughter nodes

Initialization:1

for each vertex t, and each block k do2

if there are nk,t > 0 insertions and deletions going from t’s parent to t in block k then3

Color block k in t red, and give it the number nk,t > 0 ;4

Recursively coloring a father y given the d daughter nodes:5

Let s be a random child ;6

for every child t 6= s do7

for every maximal consecutive sequence of red blocks in the t’th child,8

i, i+ 1, . . . , i+ k do
temporarily color blocks i− 1, i+ k + 1 red in the child t, and give them the9

number 1.

for k = 1 to B do10

if the k’th block in s is red, and has number i then11

Color the k’th block in the father red, and add number i to it.12

else13

if exist t1 6= t2 in which the k’th block is red then14

Color the k’th block in the father red, and give it number 1.15

Lemma 4.2 With high probability, in each node of the tree there are at most α blocks which are
not green, assuming α ≥ 1200 log d

log 1/(B·pid) .

In the remainder of the paper, we will condition the rest of the analysis on the high probability
event of Lemma 4.2, without mentioning it explicitly.

Proof of Lemma 4.2
We distinguish between initial red blocks that were placed during the initiation phase (lines 2-4)
and acquired red blocks that were passed from child to parent (lines 6-15).

We first note that the probability that a node contains any initial red blocks at all is bounded by
ε1 where ε1 < B · pid is small. We say that a node is red if it contains any red blocks (initial or
acquired). We first claim that with high probability the largest connected component of red nodes
is small.

Claim 4.3 Except with probability n−3, the largest red connected component in the graph has
fewer than ε2 log n nodes with initial red blocks, where ε2 <

3 log d
log 1/ε1

is small.

Proof: For a node v in the graph, denote by Pi(v) the probability that the set Sv of initial red
descendants of v that are connected to it through a red path contains at least i nodes. We will prove
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that

Pi(v) <
εi+1
3

i2
,

where ε3 = 40
√
ε1 is a small constant. We will show this by induction.

Base case: For Sv to be non-empty, one of the three cases has to hold: (1) v has an initial red
block; (2) v has at least two red children; (3) v has one red child that has been randomly selected.
This implies the following inequality:

P1(v) ≤ ε1 + d2P1(v)2 +
1
d
P1(v).

It is not hard to see that for a sufficiently small ε1, P1(v) < 1/(2d), and thus we get that P1(v) <
3ε1 < ε23.
Step: We want to show the bound for Pi(v), v > 1. As in the base case, there are three possibilities
that cover all the cases when |Sv| ≥ i: (1) v has an initial red block; (2) v has at least two red
children; (3) v has one red child that has been randomly selected. Denote the probabilities of
the three cases by Q1, Q2 and Q3. Given that there is an initial red block in v, the probability
that |Sv| ≥ i is bounded by the probability that it is ≥ i − 1 without this information. Thus
Q1 ≤ ε1 · Pi−1(v). We also have Q3 ≤ 1

dPi(v). Thus we have

Pi(v) ≤ ε1 · Pi−1(v) +Q2 +
1
d
Pi(v) <

1
3
εi+1
3

i2
+Q2 +

1
3
Pi(v).

To complete the proof, all we need to show is that Q2 < 1
3
εi+1
3
i2

. To estimate Q2 we cover it
using the following events. For each 0 < j < i and index 1 ≤ k < d let Qjk be the event that
the children v1, . . . , vk−1 of v have no initial red nodes in their subtrees, node vk has ≥ j initial
red nodes in their subtrees, and children vk+1, . . . , vd of v have ≥ i − j initial red nodes in their
subtrees. These events cover Q2. Moreover, the probability of Qjk is bounded by (d + 1)Pj(v) ·
Pi−j(v): the event that exactly one of the nodes vk+1, . . . , vd has initial red descendants is covered
by d · Pj(v) · Pi−j(v). The event that more than one does has probability bounded by Pi−j(v),
which we multiply by the probability Pj(v) that vk has ≥ j descendants. Thus, in total, we get

Q2 ≤ 2d2
i−1∑
j=1

Pj(v) · Pi−j(v) < 2d2ε3 ·
εi+1
3

i2
·
i−1∑
j=1

i2

j2(i− j)2
<

4d2ε3 ·
εi+1
3

i2
·
∞∑
j=1

4
j2

=
8π2

3
d2ε3 ·

εi+1
3

i2
<
εi+1
3

i2
,

as long as ε3 < 3/(d2 · 8π2). The claim follows immediately. �

From now on we will assume that the conclusion of Claim 4.3 holds. Next we want to prove
Lemma 4.2, namely that in each node the sum of all the red blocks is at mostα log n. We distinguish
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two types of red blocks: natural blocks and extension blocks. A red block is natural if either it
is an initial red block, or the block is natural in one of the node’s children. In other words, for
each natural block in a node v there is a descendent of v connected to it via a red path where this
block is an original red block. All other blocks are called extension blocks. Extension blocks occur
because in the case when a node has two or more red children the process extends the red blocks
by 1 before taking intersections.

We will bound the number of each type of blocks separately. As a first step, we present the
process of red block creation above in an equivalent way as follows:

1. First of all, for each node in the tree we decide with probability ε1 whether it contains any
original red blocks at all; we also select for each node the random child that it copies;

2. we then sample the original blocks in the flagged “red” nodes conditioned on there being at
least one red block;

3. we deterministically propagate the choices throughout the tree according to the rules.

Note that by Claim 4.3 the first step creates red connected components of size < ε2 log n. The
propagation only happens on these connected components separately. Using this new presentation
of the process we first bound the numbers of the natural red blocks in each node.

Claim 4.4 Except with probability< n−3 the maximum number of natural red blocks in each node
is bounded by ε4 log n, where ε4 = 2ε2.

Proof: We will prove that this is true for each individual node in the graph except with probability
n−3−log d, thus implying the claim by union bound. Let v be a node and Sv be the nodes that contain
at least one original red block, are in v’s connected components and that are v’s descendants. By
Claim 4.3 we know that t = |Sv| < ε2 log n. Denote the nodes in Sv by v1, . . . , vt. Each node
contains at least one original red block. Denote the number of red blocks in vi, counted with
multiplicities, by Bi. Then the Bi’s are i.i.d. and for j > 1

P [Bi > j] < εj−1
1 .

since ε4 = 2ε2, and ε2 < 3 log d
log 1/ε1

, denoting A = ε4 log n, we have

P

 t∑
j=1

Bj > A

 =
∞∑

i=A+1

P

 t∑
j=1

Bj = i

 < ∞∑
i=A+1

(
i

t

)
εi−t1 <

∞∑
i=A+1

2iεi/21 < (4ε1)A/2 < n−3−log d.

�
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Next, we bound the number of extension red blocks. Note that extension blocks always have
multiplicity 1. We again consider the original red blocks in each red connected component. Let
Sv be a set of nodes that contain original red blocks and all belong to the same red connected
component. We know that |Sv| < ε2 log n. We denote by Pk the set of blocks that are covered
more than k times by original red blocks in Sv (not counting multiplicities). For example, P1 is
just the set of blocks that appear as original red blocks in at least one of the nodes of Sv. We first
argue that

Claim 4.5 For each k,
P[Pk > (ε4 log n)/k] < n−3−log d.

Thus, by union bound, we can assume that this even doesn’t happen. The claim just follows
from counting the total number of original red blocks. The proof of Claim 4.4 implies that the
total number of original red blocks cannot exceed ε4 log n, and the claim follows. Next we make a
simple combinatorial observation.

Claim 4.6 For each extension block b, there is a block b′ that is i positions away from b such that
b′ ∈ P2i/2−3 (Pk is extended trivially to non-integer values by setting Pk := Pdke).

Proof: An extension block b can be traced to two children that are either in the original block or in
an extension block as well. We can continue tracing the extension blocks until we obtain a binary
tree with b at the root and an original red block at each leaf. Moreover, if the leaf is j levels from
b then the location of its original block is ≤ j-away from b. Denote the distances of all the leaf
blocks from b by d1, . . . , dt. We have

t∑
j=1

2−dj ≥ 1.

Denote by nk the number of leaf blocks exactly k-away from b (so that
∑
nk = t. Then we have∑

k

nk2−k ≥ 1.

Hence there must exist a k such that nk > 2k/2/4. Otherwise∑
k

nk2−k <
1
4

∑
k

2−k/2 =
1

4(1− 1/
√

2)
< 1.

Thus there is a location b′ that is k-blocks away from b and that appears in at least nk/2 > 2k/2−3

original blocks, thus belonging to P2k/2−3 . �

Putting Claims 4.5 and 4.6 together we see that:

12



Algorithm 2: Reconstruction of a single node. Inputs: x̂1, . . . , x̂d

Let s denote a random child ;1

for each block k do2

Gk = {x̂s[kB : kB +B]} ;3

hs = 0 ;4

for each t 6= s do5

if exists a shift −4α < ht < 4α such that6

dham(x̂s[kB : kB +B], x̂t[kB + ht : kB +B + ht]) < (2ps(1− ps) + 2β + ε)B
then

Set Gk ← Gk ∪ {x̂t[kB + ht : kB +B + ht]} ;7

Set x̂[kB : kB +B] = MajorityB∈GkB8

Claim 4.7 Except with probability < n−3 the total number of extension blocks in each connected
component does not exceed 199ε4 log n.

Proof: Fix a connected component Sv. By Claim 4.6, each extension block is close to a point in
one of the Pk’s, and thus

#{extension blocks in Sv} ≤
∞∑
i=0

(2i+ 1) · |P2i/2−3 | ≤

by Claim 4.5

ε4 log n ·
∞∑
i=0

(2i+ 1) · 23−i/2 < 199ε4 log n.

�

Lemma 4.2 is obtained by putting Claims 4.4 and 4.7 together. The former bounds the number
of natural red blocks in every node, while the latter bounds the number of extension red blocks.

5 The Algorithm

We let dham(x, y) denote the hamming distance of x and y.
We explain the notation in the algorithm. α is the bound from Lemmas 4.1,4.2, which satisfies

α = O(log n), α � B. We will only care about the result of the majority, if at least d − 1
children participated in it, treating it as adversarial otherwise. Note that since the original process
is symmetric, the algorithm can easily be derandomized, picking s arbitrarily.

We present the reconstruction guarantee. Let x̂1, . . . , x̂K̂ be the reconstructed sequence. We
decompose it into consecutive blocks (subsequences) of length B, as we did in Section 4. Let 1 ≤

13



R1, . . . , Rr ≤ B denote the positions of the red blocks, where r ≤ α. Let ni denote the number
given to the i’th block if it’s red, ir ni = 0 if i is a green block. Let g : [K̂] 7→ [−r, . . . , r] ∪ {⊥}
with the following properties:

1. g(0) = 0, by definition 0 is green.

2. g is not defined over red blocks: If RiB ≤ j < RiB +B, then g(j) = ⊥.

3. g is constant over consecutive green blocks: If j, j− 1 are both green than g(j) = g(j− 1).

4. g can change by at most ni over the i’th block: If j is green but j − 1 is red, let k < j be the
last green site. Then

|g(j)− g(k)| ≤
∑

i,k<Bi<j

ni

where the sum ranges over all the red blocks between k and j.

5. g is an alignment of x̂ and x: Consider the string Y which is aligning x̂ according to g, that
is y[j] = x̂[j + g(j)], or y[j] = ⊥ if g(j) = ⊥. Letting z[j] = x[j]⊕ y[j], or 0 if y[j] = ⊥,
we have that z is stochastically dominated by a string which has 1 in each place with i.i.d
probability β.

Essentially, for a site j in a green block, g(j) will give the displacement between this site and
the matching site in the original string. g is not defined on sites in red blocks - it gives⊥. Note that
although g is defined as a function of the site, it is actually equal for all the sites in the same block.
The algorithm will not reconstruct g, but it will be used in the analysis.

Lemma 5.1 Suppose that in children i and j 6= s the k’th block is green. Then with high proba-
bility (that is with probability 1− 2−O(B)) there is exactly one shift ĥj for which

dham(x̂i[kB : kB +B], x̂j [ĥj + kB : kB + ĥj +B]) < (2ps(1− ps) + 2β + ε)B

This shift satisfies −4α < ĥj < 4α. Moreover, denoting hj = ĥj − gj(kB) + gi(kB), for each
1 ≤ z ≤ B we have f−1

i (kB + z) = f−1
j (kB + z + hj), or the same site in the father is mapped

to the same site in the sons, up to the shift hj .

Proof Sketch: Sketch: The 4α bound comes from a maximal shift of 2α for each child. The
2α shift for each child is the sum of two terms: the maximal number of indel operations, and the
bound on the shift gi(kB).

To show that the distance behaves correctly, note that

x̂i[kB + gi(kB) : kB + gi(kB) +B]⊕ xi[kB : kB +B]
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stochastically dominates a string which has 1 with i.i.d probability β. Since i, j are siblings, we
know that there exists a shift hj between them, such that

Pr(xi[kB + t] = xj [kB + t+ hj ]) = psipsj + (1− psi)(1− psj )

where psi < ps is the substitution probability going from the father to child i, and psj < ps is the
substitution probability going from the father to child j. The shift hj is just

hj = |{r < kB : fi(r) = ⊥}|−|{r < kB : fj(r) = ⊥}|−|{r < kB : f−1
i (r) = ∅}|+|{r < kB : f−1

j (r) = ∅}|

or the difference between insertion and deletion operations between child i and child j up to block
k. Note that we rely on the fact that there are no indel operations in blocks k − 1, k + 1 of the j’th
child. This is the case, as otherwise block k would have been colored red, since j 6= s. Also note
that the shift hj may not be equal to ĥj , as hj is the optimal shift in the ideal tree, and ĥj is effected
by the functions gi, gj .

Consider the reconstructed tree. The expected hamming distance of x̂i[kB : kB + B] from
x̂j [kB + gj(kB)− gi(kB) + hj : kB + gj(kB)− gi(kB) + hj +B] is at most(

psi(1− psj ) + (1− psi)psj + 2β
)
B

, and we find ĥj = hj + gj(kB)− gi(kB).
Using a Chernoff bound and the definition of stochastic dominance, one can get that with high

probability this distance is well concentrated. However, as for any h 6= hj , we have

Pr(xi[kB + t] = xj [kB + t+ h]) = 1/2

And therefore the expected distance between x̂i[kB : kB+B] and x̂j [kB+gj(kB)−gi(kB)+h :
kB+gj(kB)−gi(kB)+h+B] is at least (1/2−2β)B−2α, and again this distance is concentrated
with high probability. As α is small relative to B, and β is a small enough constant, we get that
with high probability the correct shift ĥj passes the bound, and every other shift does not pass
it. In this case, for each 1 ≤ z ≤ B we have f−1

i (kB + z) = f−1
j (kB + z + hj), where

hj = ĥj − gj(kB) + gi(kB). �
We condition on the high probability event of these lemmas for any two comparisons between

blocks made in the algorithm. This is a union bound over Õ(n) comparisons, but the success
probability of the lemma can be taken to be 1− 1/n2.

6 The algorithm is dominated by the process

In this section we utilize Lemma 5.1 to argue that assuming the d children meet the reconstruction
guarantee with some redness structure, the father also meets it, when the redness structure of the
father is determined by the coloring procedure 1. This ties between the algorithm and the red and
green tree generated by the insertion and deletions. Let ~R denote all the coin flips made by the
algorithm; that is, R is a sequence of length

∑logn−1
i=0 di of numbers in [d], which choose which

son was chosen in step 1 of Algorithm 1.
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Lemma 6.1 Suppose all the children meet the reconstruction guarantee for some red and green
structure. Then the father x meets the guarantee as well, when the blocks of the father are col-
ored red according to the coloring procedure 1, and the random choice of daughter node is made
according to ~R.

Proof: Let gs denote the alignment function between x̂s and xs, and let fs denote the alignment
function between the father node v to the daughter s. The set of sites which were deleted when
going from v to s is Ds = {j : fs(j) = ⊥}, and the set of sites which were inserted is Ds = {j :
f−1
s (j) = ∅}. We now define

g(j) = gs(j) + |{i ∈ Ds : i < j}| − |{i ∈ Is : i < j}|

As the sum of the numbers given to red blocks in the father before site j is at least gs(j)+Ds+ Is,
the definition satisfies condition 4 in the definition of g. As g(j) 6= g(j − 1) only when there is a
red block in the father (either because gs(j) 6= gs(j − 1) or because there was an indel operation),
g satisfies condition 3.

We now show that the reconstruction guarantee holds, given the alignment. Let k be a block
which is green in s. Let Gk be the set of daughters for which k is green. If |Gk| < d− 1, we make
no claim about the result of the place-wise majority, as the coloring procedure 1 colors the k’th
block red in the father. Otherwise applying lemma 5.1 between each one of the children in Gk and
s, gives a set of shifts Ĥk, such that for every j ∈ Sk and site z

f−1
s (kB + z) = f−1

j (kB + z + ĥj) + gs(kB)− gj(kB)

Denote hj = ĥj − gj(kB) and a = f−1
s (kB + z). Assume wlog that x[a] = 1. Let bj =

xj [kB + z + hj ] and b̂j = x̂j [kB + z + ĥj ] for j ∈ Gk, and let b be adversarial.

Pr (x̂[a+ g(a)] = 1) = Pr

∑
j∈Gk

b̂j + b > d/2

 ≥ Pr

∑
j∈Gk

b̂j > d/2

 (1)

≥ Pr

∑
j∈Gk

bj > d/2 + 2
√
d

Pr
(
|j : b̂j 6= bj | <

√
d
)

(2)

However,
∑

j∈G bj is just a sum of indicator variables, with expectancy

E
∑
j∈G

bj ≥
∑
j

∈ G(1− psj ) ≥
d− 1

2
+ (d− 1)2

√
log d
d

where psj is the substitution probability going from the father to the j’th child, and ps is the bound
on the substitution probability. Thus, we have Pr(

∑
j∈G bj < d/2 + 2

√
d) < 1/2d2/3. As for the

second term,
Pr(|j : b̂j 6= bj | >

√
d) = 2−O(d1/6) < 1/2d2/3
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using β = 1/d2/3 and d large enough. Putting this together gives that Pr(x̂[j] = 1) > 1− β, and
a similar analysis can be made when x[j] = 0.

Note that the event
∑

j∈G bj > d/2 + 2
√
d
⋂
|j : b̂j 6= bj | <

√
d only depends on the i.i.d

random variables which correspond to the substitutions, and on the sum of the random variables
aj = b̂j ⊕ bj , which are dominated by i.i.d random variables. Thus, if we let y[j] = x̂[j + g(j)]⊕
x[j], we have that y is stochastically dominated by a string which has 1 in each position with i.i.d
probability β, as required. �

7 Finding Siblings

In this section we finish the induction on levels, by showing that if all the nodes of level `−1 match
the reconstruction guarantee, then one can partition them to dlogn−` sets of size d, such that every
set will contain d siblings, or all the daughters of some node. We begin by defining a new distance,
which is motivated by our reconstruction guarantee

ded(x, y, γ) = min
edγ

(dham(edγ(x), y))

Where edγ(x) is obtained from x by performing up to γ indel operations. Note that ded is not a
metric, since it does not respect the triangle inequality. To use it, we require the following claim

Claim 7.1 There is an efficient algorithm which computes ded(x, y, γ).

The algorithm is based on dynamic programming.
It is easy to see that the distance is monotone in γ, that is ded(x, y, γ1) ≤ ded(x, y, γ2) for

γ1 ≤ γ2. Moreover, the distance respects some form of triangle inequality

Claim 7.2
ded(x, y, γ1) + ded(y, z, γ2) ≥ ded(x, z, γ1 + γ2)

The main tool that we want to use is cherry picking (see e.g. [DMR06]). To use it,we need the
following lemma. Let i, j be two nodes which are siblings, and v, w be arbitrary. Then

Lemma 7.3 With high probability,

ded(x̂i, x̂j , 4α) + ded(x̂v, x̂w, 4α) < ded(x̂i, x̂v, 4α) + ded(x̂j , x̂w, 4α)

We sketch the proof of this lemma. According to the triangle inequality, for any two vertices
r, t

ded(x̂r, x̂t, 4α) ≤ ded(x̂r, xr, α) + ded(xr, xt, 2α) + ded(xt, x̂t, α)

and similarly

ded(x̂r, x̂t, 4α) ≥ ded(xr, xt, 6α)− ded(x̂r, xr, α)− ded(xt, x̂t, α)

The following claim is based on the reconstruction guarantee of x̂v
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Claim 7.4 With high probability, ded(x̂r, xr, α) < 2βB2 + αB

Proof: According to the reconstruction guarantee, implementing the alignment defined by the
function gs requires less than α edit operations. Given the alignment defined by g, the hamming
distance between the cells in the green blocks of x̂r and their counterparts in xr is at most 2βB2,
with exponentially good probability in B2. Since there are at most α bad blocks, this can increase
the distance by at most αB. �

Let Rrt denote the path on the tree from r to t, and let

prt =
1
2
−
∏
e∈Rrt

(
1
2
− pe

)
where pe is the substitution probability of edge e, and we have pe ≤ ps. Then

Claim 7.5 With probability 2−O(εB), we have ded(xr, xt, 2α) < (1 + ε)prtB2.

Proof: Let z be the common ancestor of r, t. According to Lemma 4.1, with high probability there
were at most α indel operations on the path from z to r, and on the path from z to t. Conditioning
on this event, both vertices can be aligned according to z. In this case, what we get is a simple
hamming distance, which has exponentially good concentration. �

We take ε = β, which adds an error of the magnitude generated by Claim 7.4. We also need a
lower bound on the distance

Claim 7.6 For any constant ε > 0, with probability 2−O(εB), we have ded(xr, xt, 6α) > (1 −
ε)prtB2.

Proof: Fix an alignment of r, t. The probability that the distance is less than (1 − ε)prtB2 is at
most 2−O(εB2), where the probability is taken over the substitutions, insertions and deletions of the
random process which generated the tree. As there are at most(

B

6α

)
≤ B6α = 26α logB < 2B logB

different alignment, it is possible to take a union bound for constant ε. �

Again we take ε = β.
Finally, Lemma 7.3 is proven by noticing that when β, α/B are small enough compared to the

minimal substitution probability, we have that with high probability

ded(x̂i, x̂j , 4α) + ded(x̂v, x̂w, 4α) ≤ (1 + β)pijB2 + 4βB2 + 2αB + (1 + β)pvwB2 + 4βB2 + 2αB
= (pij + pvw)B2 + 10βB2 + 4αB < (piv + pjw)B2 − 10βB2 − 4αB
≤ ded(x̂i, x̂v, 4α) + ded(x̂j , x̂w, 4α)
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Algorithm 3: Partition L, the nodes of level `, into sets of siblings

for every set S ⊂ L, with |S| = d do1

for every i, j ∈ S, and v, w ∈ L \ S do2

if ded(x̂i, x̂j , 4α) + ded(x̂v, x̂w, 4α) > ded(x̂i, x̂v, 4α) + ded(x̂j , x̂w, 4α) then3

S is not a set of siblings. Continue to the next set ;4

Add S to the partition5

where we substituted ε = β.
Given Lemma 7.3, it is straightforward to see the correctness of Algorithm 3. If a set S contains

all the daughters of a single vertex, they will pass all tests. Otherwise, if S contains i, j which are
not siblings, and v is a sibling of i, then according to Lemma 7.3, for every w, the test will fail, as
ded(x̂i, x̂j , 4α) + ded(x̂v, x̂w, 4α) < ded(x̂i, x̂v, 4α) + ded(x̂j , x̂w, 4α).

Note that in the current description we use the lemma nO(d2) times. One can show that given
the high probability event of Lemma 4.1, and the reconstruction guarantee, the failure probability
of Lemma 7.3 can be made 2−O(log2 n), so this is not a problem. Also, it is easy to find more
efficient algorithms which find siblings.
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