
Phylogenetic Reconstruction with Insertions and Deletions

Alexandr Andoni∗,
Mark Braverman†,

Avinatan Hassidim‡

April 7, 2010

Abstract

We study phylogenetic reconstruction of evolutionary trees, with three possible mutations:
substitutions, insertions and deletions. We give the first efficient algorithm for this problem
which uses sequences of poly logarithmic length. The paper introduces two new tools:

1. A new distance measure, and a new reconstruction guarantee which are tailored to deal
with insertions and deletions.

2. A robust local alignment and reconstruction algorithm, which can be used recursively.

The error analysis of the algorithm is based on defining a new random process on trees, and
applying percolation theory tools to analyze its behavior.

∗Princeton U./CCI. Supported in part by NSF CCF 0832797.
†Microsoft Research
‡MIT, Part of the work was performed while visiting Microsoft Research.

1



1 Introduction

The evolutionary history of a given set of species is usually modeled as a phylogenetic tree. The
leaves of the tree correspond to the species which exist today. The root of the tree is their clos-
est common ancestor, and each branching indicates a specification event, in which one species is
extinct, and several new species are formed. The goal of phylogenetic reconstruction is to infer
the tree structure from the information we have on the leaves, usually the DNA sequences of the
species which are extinct today. The problem of phylogenetic reconstruction received a lot of atten-
tion in the recent literature; see, e.g., [Mos03, Mos04a, DMR06, Roc08, BRZ95, EKPS00, Iof96,
BKMP05, MSW04, BCMR06, MHR08] and the excellent surveys [Roc07, SS03].

The basic model in the present work is the following common formalization: The tree is a
complete d-ary tree, where d is a constant. The genetic information is modeled as a bit string (the
CFN model of [Cav78, Far73, Ney71]), and we call each location in this bit string a site. The
genetic information of the root is assumed to be sampled uniformly at random from {0, 1}k for
some k representing the amount of the available genetic information. In every branching event,
the bit string of the father node v is copied to each one of the child nodes u1, . . . , ud, with the
exception that the copying process undergos a random mutation process. To define the mutation
process, we characterize each edge (v, uj) by three parameters: the substitution probability of the
edge ps(v, uj), the insertion probability pi(v, uj) and the deletion probability pd(v, uj). Given
these probabilities, when copying the genetic information xv to the child uj , every site undergoes
any of the following mutations, independently of any other site:

1. Substitution: the bit is flipped with probability ps(v, uj).

2. Deletion: the bit is deleted with probability pd(v, uj).

3. Insertion: a new site is added to the right of the current site with probability pi(v, uj). The
value of the bit in that site is a random bit.

The substitution probability of every edge (v, uj) is bounded from above and below: Pmin <
ps(v, uj) < Psubs, where Psubs,Pmin are global constants. The insertion and deletions proba-
bilities are only bounded from above: pi(v, uj), pd(v, uj) < Pid, where Pid is one over polyloga-
rithm of the number of leaves. We call Pid the indel probability, and say that a site has undergone
an indel if it has gone through an insertion or a deletion.

Denote the depth of the tree by log n, so there are nlog d leaves. We want to design an algorithm
for the following reconstruction problem. Consider an instance of the evolutionary process on a
tree. Then, given the unsorted list of the leaves and the parameters d,Psubs,Pid,Pmin, the algo-
rithm has to find the tree structure, putting every leaf in the correct place. The algorithm is required
to succeed for any choice of parameters pi(v, uj), pd(v, uj), ps(v, uj) with high probability over
the random coin flips of the evolutionary process (which determine the initial values of the root and
govern the mutations). We limit our attention to algorithms which are polynomial in n, but make

2



no further attempt to optimize the runtime.1

The traditional way in which computational biologists build evolutionary trees is a two stage
process. First they align all the sequences, and then they build the evolutionary tree on the aligned
data. The reason for using this approach is that it enables to build the tree assuming there are
no deletions. In practice, this method gives good results, although lately it was criticized in the
biological community (see e.g. [WSH08, LRN+09a, LG08]). One of the reasons for the success
of this method is that insertions and deletions occur less frequently than substitutions.

In the theoretical community, most of the work focused on the second stage of building the
tree, assuming that the genetic material is aligned correctly. Under this assumption, early results
(see, e.g., the work of Erdös et al. [ESSW99a, ESSW99b] showed how to use distance estimations
between all pairs of nodes in order to build the tree. However, as the correlation between the same
sites in two nodes which lie in different parts of the tree can be as small as n−O(1), these approaches
require a polynomial number of sites2.

In the last decade, several breakthrough results [Mos03, Mos04a, DMR06, Roc08] showed
that there exists a critical substitution probability Psubs

? = 1
2 −

1
2
√
d

, such that if Psubs < Psubs
?

the correct tree can be reconstructed with high probability even if k = O(log n). A key ingredient
in getting these results was to reconstruct the tree recursively, and powerful frameworks for such
reconstruction have been developed. However, the recursive constructions rely heavily on the
independence of the values of different sites, and therefore fail in the presence of indels.

1.1 Related Work

We focus our attention on reconstruction in the presence of all three mutations (substitutions, in-
sertions and deletions). In recent work, Daskalakis and Roch [DR10] proposed a new algorithm,
which reconstructs the tree with high probability in this case. However, their approach is based on
computing the pairwise distances pairs of leaves, and not on reconstructing the inner vertices of the
tree. This leads to the following dependences:

1. The number of sites required for successful reconstruction is polynomial in the number of
leaves.

2. The maximal indel probability is inverse proportional to the depth of the tree.

If the tree is not balanced, the latter assumption leads to a maximal indel probability which can be
1/nε.

A general recursive framework which reconstructs the internal vertices of the tree (as well as
the topology) was presented by Mossel [Mos98, Mos01, Mos03, Mos04b]. We briefly explain the
framework for the complete binary tree, i.e., d = 2. First, a constant h is chosen as a function of
Psubs,Pmin. Suppose that the depth of the tree is a multiple of h. For j = 0 to log n/h

1We note that, in exponential time, one can compute the maximum-likelihood estimate, reducing the problem to a
purely information-theoretic problem.

2An exciting result which shows that reconstruction is possible (under some conditions) even when k is subpolyno-
mial has been obtained by Roch [Roc08].

3



1. The algorithm begins with all the vertices of level j · h, for some integer j (initially j = 0 as
the algorithm gets the leaves as input).

2. The algorithms partitions the vertices of level j ·h, into clusters of size 2h, where the distance
(in tree metric) between every two vertex in the cluster is at most 2h. We say that each
cluster is composed of degree h siblings. Note that degree h siblings are “easy” to identify
by looking at the pairwise distances between all the nodes. Since they are “close”, these
distances will be reliable.

3. From each cluster, the algorithm builds the ancestor of the cluster (the h-great grandfather of
all the vertices in the cluster), which is a vertex with height j · h+ h.

4. Unless we reached the root, go to step 1, increasing j by 1.

One of the greatest challenges in the analysis is that the quality of reconstruction might degrade
over time. Initially, the algorithm knows the leaves perfectly. In level h, there are some errors, and
the amount of errors grows in the transition to level 2h. Mossel’s analysis shows that this process
stabilizes, and after some level the magnitude of noise on each bit is fixed.

Mossel’s recursive framework ties between phylogenetic reconstruction and reconstructing the
root of the tree, when the topology is known. This reconstruction problem when there are substitu-
tions, insertions and deletions was the subject of [ADHR10]. However, their results and techniques
are very far from ours. In particular, they

1. Do not preform phylogenetic reconstruction, but consider the case when the entire topology
is known.

2. Only consider the case of d-ary trees for large d (the hard case is binary trees).

The main technical difference between the papers is the reconstruction algorithm and the recon-
struction guarantee. The algorithm used by [ADHR10] is based on log n anchors, which are sub-
strings of length log n which appear in predetermined places. If there is any indel in the anchors,
[ADHR10] fail to reconstruct the entire node. This failure is also happens if two children suf-
fer an indel in nearby places, or if one child undergoes an insertion followed immediately by a
deletion. The reason their algorithm can get away with all these failures is that it does not do phy-
logenetic reconstruction, and thus it can afford to fail without any consequences. In phylogenetic
reconstruction failure in even one node (let alone failure in a constant fraction of the nodes) can
destroy distance estimates of correct nodes, and cause the entire reconstruction to fail. Ignoring
all the nodes where “interesting” things happen greatly simplifies their error analysis, which is
technically the most involved part in the present work.

In addition, since [ADHR10] did not perform reconstruction, they did not need to worry about
estimating distances between nodes, and therefore they have no analog of the hybrid distance we
present here.

Mossel’s recursive framework, was also used to build general trees [DMR06, MHR08]. In both
these papers, most of the work is in building the clusters correctly, and then (when a cluster is

4



formed) they apply Mossel’s reconstruction algorithm (which is based on recursive majority) to
determine the values of all the father nodes and continue with the reconstruction.

We also use a recursive approach to reconstruction. However, the reconstruction guarantee, the
distance estimations, and the reconstruction of a single node from every cluster are new. We show
how to use these tools to reconstruct complete trees, and then how to plug them into the work of
[MHR08] to reconstruct general trees.

There has been a large body of empirical work on performing alignment when there are in-
dels (see e.g. [TKF91, TKF92, Met03, MLH04, SR06, RE08] and the textbook [Fel04]). In a
breakthrough paper, Wong et al. [WSH08] showed that factoring away indels and then inferring
the phylogenetic tree assuming only substitutions does not work well, even in simple cases (e.g.
even for a small tree which consists of seven species of yeast). In follow up work, Loytynoja and
Goldman presented heuristics for reconstruction which are based on alternating between perform-
ing alignment (to identify indels and factor them out), and building an evolutionary tree, assuming
that there are only substitutions [LG08]. A better heuristic was presented by [LRN+09b].

1.2 Our Results

In this work we present phylogenetic reconstruction algorithms when there are insertions and dele-
tions, for the sequences of length poly log n. We handle insertion and deletion probabilities of
1/poly log n. The results are obtained for both binary and d-ary trees, and for complete and gen-
eral trees. We focus the presentation on phylogenetic reconstruction of complete d-ary trees (for
large but constant d), which is the simplest case. Then we present the extra tools required for the
binary trees and the general trees. The main theorem we prove is as follows:

Theorem 1.1 For every Pmin > 0 there exist a (small) constant ε, and (large) constantsC1, C2, C3

such that, if Pid < ε/ log2 n, the degree d > C1, the substitution probability is at most Psubs ≤
1
2−

C2
√

log d√
d

and the number of sites is k > C3 log2 n, then, given the sequences of the nlog d leaves
of the tree, one can reconstruct the structure of the tree with high probability.

When there are no insertions and deletions, the optimal value for Psubs is 1
2 −

1
2
√
d

, as was
shown by [DMR06, Mos03], for any d ≥ 2. As our analysis does not attain this threshold, we did
not try to optimize C1, C2, C3 and ε.

We note that, for indel probability Pid ≥ Ω(log log n/ log n), the reconstruction is impos-
sible if the length of the root sequence k is polylogarithmic in the number of leaves n. In such
a setting, some of the leaves will be empty (all sites are deleted). Our algorithm works for
Pid = O(1/ log2 n). We conjecture that the right bound for Pid is O(1/ log n).

We also show that our results extend to binary trees (see Section 8), and to general binary trees
(Section 9). For binary trees we prove:

Theorem 1.2 For every (small) constant δ there exist a (small) constant ε, and a (large) con-
stant C3 such that, if the indel probability Pid < ε/ log2 n, the maximal substitution probability
Psubs < ε, the minimum substitution probability Pmin > Psubs ·δ and the number of sites in the

5



root is k > C3 log2 n, then given the sequences of the n leaves of the tree, one can reconstruct the
structure of the tree with high probability.

We also give an algorithm for general binary trees. Before stating this result, we simplify
the mutation process (for reason which will be explained bellow). Every edge (u, v) has a length
l(u,v) ∈ [δ, 1]. The mutation process changes to be

1. Each bit gets flipped with probability le ·Psubs.

2. For every edge let s be a sample from a random geometric variable with expectation k · l(u,v) ·
Pid. We perform s insertions and s deletions in random places in the string.

Under these conditions we prove Theorem 1.3, for general binary trees:

Theorem 1.3 For every δ > 0 there exists a (small) constant ε, and a (large) constant C3 such
that, if Pid < ε/ log2 n, Psubs < ε and the number of sites in the root is k > C3 log2 n, then
given the sequences of the n leaves of the tree, one can reconstruct the structure of the tree with
high probability.

We now motivate the modification in our model. The changed model is equivalent to condi-
tioning on the fact that the length of the sequence does not change under mutation. This prevents
from obtaining empty leaves, and leaves us with a reversible evolutionary model (when discussing
general trees it is common to assume that there is no root). Without conditioning on the length,
depending on the topology, one may have empty leaves with high probability even if we enforce
(say) that the deletion probability is equal to the insertion probability.

Requiring that each edge has a well defined length was done to simplify the analysis. The
results would also hold if instead we were given a minimal indel probability.

2 Preliminaries

We introduce some standard notation. We use [d] denote the set {1, . . . , d}. When we say that an
event happens with high probability, we mean with probability at least 1− 1/nc, where we can set
up the parameters such that c is as big as we need.

Given a bit string x, we let x[i : j] denote the bits from location i to location j in x. We let
|x| denote the number of 1’s in x. Sometimes we wish to distinguish between a node v and the
sequence of bits it has; in this case, we usually denote the sequence by xv.

Given two strings x, y, we define Agr(x, y, γ) to be

Agr(x, y, γ) = N −min
edγ
| edγ(x)⊕ y|

where edγ(x) is obtained from x by performing up to γ indel operations and N is the length of x.
If Agr(x, y, γ) ≥ 0.75N , we define

ded(x, y, γ) = − log
(

2 Agr(x, y, γ)
N

− 1
)
.

6



If Agr(x, y, γ) < 0.75N , we say that ded(x, y, γ) is not well defined (the algorithm only uses short
distances).

When there are no insertions and deletions, the most common distance measure used is the
logarithm of twice the average correlation minus 1. Our distance reduces to the classical distance,
by allowing zero edit operations. In the substitution only case, this distance measure is (approxi-
mately) additive, when two vertices are close by [MHR08]. For example, if u1 is the father of u2

who is the father of u3, then

ded(u1, u2, 0) + ded(u2, u3, 0) ≈ ded(u1, u3, 0)

For each node v, we define d functions fvi : {1, . . .Kv} 7→ {1, . . .Kv(i)} ∪ {⊥}, where Kv is
the length of the sequence at node v, v(i) is the i’th child, and Kv(i) is the length of the i’th child.
We let fvi (j) denote the place in vi which the j’th site went to, or ⊥ if the site was deleted. Thus,
each fvi is strictly monotone. When v is clear from context, we omit it.

During the algorithm we will reconstruct the phylogenetic tree recursively, level by level. It
will be convenient to distinguish between the ideal tree, which is the tree generated by the random
process, and the reconstruction tree, which is the tree reconstructed by the algorithm. Variables
which refer to sequences of bits in the reconstructed tree will have a hat. There will also be a clear
correspondence between nodes in the ideal tree and the ones in the reconstructed tree. Thus, if xv
is the subsequence of bits in node v in the ideal tree, x̂v is the sequence of bits in the node which
corresponds to v in the reconstructed tree.

We will usually think of each xv or x̂v as composed of blocks, which are consecutive sequences
of lengthB, whereB = O(log n) is a large constant times log n. The algorithm is only going to use
the first O(log n) blocks. To simplify the notation, the paper is written so that the algorithm uses
B blocks, so it is enough to remember that B is a large constant times log n (the number of blocks
does not have to be equal to the length of each block in order for the algorithm to succeed). We will
also have bad blocks (which will also be called red blocks), and we will later prove that with high
probability every vertex has at most α red blocks, where α = O(log n), but this time with a small
constant. In the complete tree, we also prove that with high probability on the path from the leaf
to the root there are at most α indel operations. The use of the same bound for both these variables
is again done to enable the reader to remember fewer parameters. The reconstruction guarantee for
d-ary trees will introduce a new constant β, and it will reconstruct most of the vertex, such that
each bit is correct with probability 1 − β. We can use β = O(d−2/3) a small constant. As we
explain below, in the binary case this guarantee is not enough, and we present a new reconstruction
procedure which reconstructs each “good” bit correctly with probability at least 1− β and at most
1− β + γ.

3 Overview of Techniques

We begin by giving a high level overview of the algorithm for complete trees and large d, and
present the technical tools. We then explain why these tools are not enough for binary trees and for
general trees, and explain what new tools we need to introduce.

7



For complete d-ary trees, the algorithm follows the classic version of the recursive approach
presented by Mossel

For j = 0 to log n :

1. The algorithm begins with all the vertices of level j, for some integer j (initially j = 0 as the
algorithm gets the leaves as input).

2. Partition the nodes of level j into clusters of siblings. Each set of siblings will contain d
vertices.

3. From each cluster of d siblings, build the ancestor of the cluster (the father) which is a node
of height j + 1.

When there are only substitutions, the algorithm which was used by Mossel to reconstruct the
father of a cluster is recursive majority. When there are indels, we need to perform some alignment
procedure. This is hard, as every alignment procedure will introduce errors3. In the substitution
only case, the errors are random, and therefore they don’t accumulate, and the recursive guarantee
of the algorithm does not degrade. Here, errors introduced by the algorithm can not be treated as
completely random. Thus, it is important that we localize the errors, and try to base the decisions
of the algorithm on high probability events. This motivates doing the alignment in blocks of length
B = O(log n), where B is a large constant. The local alignment is thus:

1. Partition each child into blocks of length B.

2. pick a special child s.

3. Let Ab,s = x̂s[b ·B : b ·B+B] be the b’th block of the special child. For every other child t

(a) Find a consecutive substring Ab,t of x̂t of length B which “matches” block Ab,s of x̂s.
Look for such substrings only in blocks b− 1, b, b+ 1 of x̂t.

4. The b’th block of the father is the majority vote over all t of Ab,t.

We now present the recursive guarantee, which lies in the heart of the error analysis. Let x
be the original string, and x̂ be the reconstructed string. We require that there exists a function g,
which aligns between x̂ and x. The alignment is subject to some constraints. Divide x̂ into blocks
of length B, where the blocks can be either red or green, and each red block R has a number nR
associated with it. We require that g is constant over green blocks, and that it can change by at most
nR in each red block. That is, if j, j+1 are sites in a green block then g(j) = g(j+1), and if i, j are
sites in different red blocks then |g(i)− g(j)| <

∑
nR where the sum ranges on all the red blocks

between i and j. Let y be the string which is the aligned version of x̂, that is y[j] = x̂[j + g(j)]. If

3For example, we can not hope to distinguish between a pair of an insertion and a deletion, and a substitution. Note
that since the tree is larger, we expect that (somewhere in the tree) we will have a sequence of (say) O(log n/ log log n)
indels one after the other).

8



j is in a red block, we have no guarantee on y[j]⊕ x[j]. Let z[j] = x[j]⊕ y[j], and consider only
the places where j is in a green block. The vector z in those places is stochastically dominated
by a random variable which has 1 in each position with i.i.d. probability β, for some small β. In
particular, this means that if j is green

Pr(x̂[j + g(j)] = x[j]) ≥ 1− β

but the probability can actually be bigger than 1 − β, which actually complicates things, as we
discuss below. The guarantee is formally defined in Section 5.

Given this guarantee on the children, we can ask what happens to the father, in terms of the
number of red blocks, and the numbers which appear on them.

1. If there are indel operations going from the father to his children in block b, then block b of
the father will be red, and its number will be at most the number of indel operations4.

2. If block b of child s is red, so is block b of the father. Moreover, the number on the block is
copied from child b.

3. If any two children have red blocks in places b− 1, b or b+ 1 then block b of the father will
be red, and have the number zero.

Essentially, these conditions show us that if one of the blocks is red, and it is not the block of
the special child, then it will be corrected. We begin by showing that the algorithm respects the way
red block are propagating upwards in the tree. Then we use properties of the propagation process
to upper bound the errors introduced by the algorithm.

To do so, we argue that if all the tree is built correctly, then the number of red blocks will
never be too large: that is, the number of red blocks will never be more than α, where α is a small
multiple of log n. Ignoring the fact that neighboring blocks can effect one another, the standard
way to do this, is to apply Galton Watson analysis, and show that given that the father is red in
block b, the expected number of children for which block b is red is less than 1. Even without
the effect of neighboring blocks, this fails, as given that block b of the father is red, the expected
number children for which block b is red is more than 1. Thus, naive Galton Watson analysis would
not yield any bound on the number of red blocks.

The way to get around this problem, and to handle the effect of neighboring blocks, is to notice
that this process is defined bottom up (unlike many other processes on trees which are defined top
down). Thus, careful analysis reveals that the size of the red connected components is small, and
this enables to bound the effect of neighboring red blocks, and the maximal number of red blocks
in a single node of the tree. The analysis is the most involved part of the reconstruction, and is
presented in Section 4 (with Lemma 4.1 giving the formal result).

The next tool we introduce is a new distance measure, which is a hybrid between edit distance
and Hamming distance. It is clear why Hamming distance would be a bad choice, but to understand

4In the actual analysis we show that the father’s block will not always be red, but this is not important for now.

9



why edit distance fails we need to consider the use of the distance estimates in the reconstruction.
The goal of the distance estimates is to perform the clustering, and find siblings. Unfortunately,
since edges have different lengths (different mutation probabilities), the closest vertex to i might
not be his sibling j, but another vertex. This is true even when there are no indels operations, and
there is a classical way to get around this, which is called the Four Points Condition, or neighbor
joining. Essentially, it says that if we pick a distance measure which is additive, then if i, j are
siblings then for any other two vertices x, y we have

dist(i, j) + dist(x, y) < dist(i, x) + dist(j, y)

When there are no indels, the additive variant of Hamming distance being used is ded(x, y, 0), or
minus log of the average correlation between x and y. Edit distance does not satisfy the required
additivity conditions.

We present another challenge in estimating distances. The reconstruction guarantee says that
in the green blocks we are correct with probability at least 1− β, and not exactly 1− β (which is
the case when there are no indels). The guarantee we have results in an additive error of β, which
could be adversarial. To see why this guarantee is so weak, consider two far away nodes xu, and
xv, which are completely uncorrelated. If x̃u is a reconstruction of xu such that each bit is correct
with probability 1−β, and x̃v is a reconstruction of xv such that each bit is correct with probability
1− β, then x̃u and x̃v are uncorrelated for any value of β. However, if x̂u (x̂v) is a reconstruction
of xu which correct at every bit with probability at least 1− β, the situation can be very different.
Suppose that whenever xu[i] = xv[i] agree, then x̂u[i] = xu[i] and x̂v[i] = xv[i], but whenever
xu[i] 6= xv[i], then Pr(x̂u[i] = xu[i]) = 1 − β, and also Pr(x̂v[i] = xv[i]) = 1 − β. In this case,
x̂v and x̂u will have a correlation of 2β − β2. This can of course create trouble, especially if β is
large. To handle this in the d-ary case, we use d large enough such that β is smaller than Pmin. In
the binary case, this will require a different analysis.

The final property that we require is that the distance will be robust to edit distance errors
introduced by the reconstruction. The distance we end up using is ded, which allows for a few
“free” edit distance operations (to compensate for red blocks and local deletions5), but essentially
behaves like Hamming distance with respect to concentration and additivity when looking at the
logarithm. The properties of the distance are discussed in Section 7.

3.1 Binary trees

Similarly to the substitution only case, we reconstruct log d levels at a time, where log d is a suitably
chosen constant.

The main difference between d-ary trees (with large constant d) and reconstructing log d levels
at a time in a binary tree, is that the error on each bit in the green blocks can be large. In the d-ary
case, we took d to be such that the error was less than Pmin, and now it is greater than Psubs. This

5The hybrid distance can not compensate for indels which happened between two far away nodes, e.g. in the general
tree case. It is still sufficient for our needs since we do not use distance information between far nodes.

10



means that we can not afford an additive adversarial error of β in our distance approximation. We
note that in the substitution only case, the error on each bit was close to a half, and indeed it was
larger than the substitution probability. However, in the substitution only case the probability that
x̂ agreed with x was exactly 1− β, and thus this error averaged out.

To eliminate the adversarial influence, we replace the place wise recursive majority with a
threshold function. That is, we replace Step 4 in the algorithm sketch presented in Section 3 by
counting the number of ones. If there are more than 2d/3 ones we reconstruct the father as 1, if
there are less than 1/3 ones, we reconstruct the father as zero. Otherwise we flip a random coin to
determine the value at the father. Suppose the adversary has complete control over a small fraction
of the entrances to the threshold function, and no control over the rest of the entries. Then the
adversary can tilt the outcome, only if the random entries are distributed near d/3, or over 2d/3.
Since 1/3 has no finite binary representation, this event happens with low probability, which can be
bounded by Psubs

100 for d large enough6. The exact analysis of the process is somewhat involved,
and takes most of Section 8.5.

The rest of the work in doing the binary case is around the distance estimation, and the red and
green trees.

3.2 General binary trees

All the tools we designed for the complete trees were built in a modular way, so that they can
be used inside a scheme which reconstructs general binary trees when there are no indels. Still,
proving that all the tools fit in place requires a large amount of work, and the proof itself is left out
of this extended abstract. Instead, we sketch the main lemmas which needs to be changed.

We use the reconstruction scheme of Mihaescu, Hill and Rao [MHR08], which is a simplifica-
tion of [DMR06]. This scheme maintains a forest, and glues trees together, in a way which is very
similar to the cluster approach introduced by Mossel. When the trees become tall enough, the inner
vertices are being reconstructed, using the reconstruction scheme due to Mossel.

In order to obtain reconstruction of general trees we introduce a slight change in the indel
process. We no longer assume that each edge has a probability for insertion and a probability for
deletion (in this case we will have empty leaves even if we assume these probabilities are equal),
but rather that the number of insertions is equal to the number of deletions on each edge. This is
done to obtain a constant length of the genetic sequence, as well as reversibility.

The second change is to require that the number of indels is proportional to the substitution
probability. This assumption helps the analysis, as the hybrid distance we introduce effectively
measures the distance in substitutions, compensating for indels and mistakes incurred by the al-
gorithm. With this extra assumption, it also measures the distance in indel probabilities. This is
important in the general tree, since we may begin by reconstructing nodes which are close in substi-
tution probability, but far in the tree metric. When there are no indels, the substitution probability is
all that matters, and thus we can argue about the reconstructed node. If the indel probability is not

6Note that the event that about half the entries agree occurs with probability about 2 Psubs - it’s enough that there is
a substitution in one of the top two branches. The analysis can be made such that the probability of this event is Psubs

2.

11



correlated with the substitution probability, and the nodes that we use for the reconstruction are far
away in the tree, the reconstruction of Section 8 may no longer work. We note that this assumption
can be replaced with a minimal indel probability, but this requires a more tuned analysis of the
hybrid distance.

The first change which is required is to prove an analog of Lemma 4.1, which says that nodes
which are close in tree metric will not suffer too many indels. The analog of this Lemma is used to
show that the hybrid distance is well defined on nodes which are close in the tree metric. Since the
indel probability is closed to the substitution probability, these are the nodes we care about.

We then need to prove that the distance estimates are correct. This is done in a manner similar
to the proof of Lemma 8.2, and takes into account both the adversarial errors and the random errors.

Then we need to show that the global process does not generate too many red blocks. The proof
of this fact is based on the analysis of the process, which is based on local components and a union
bound. As the number of leaves is still n, the same union bound apply.

Finally, we need to change the reconstruction guarantee, to fit the case where the reconstruction
is made from an imbalanced tree. When there are no indels, this just results in using a weighted
majority. Here we need to be a bit more careful, giving the children the correct probability to be
the special child, and proving that threshold reconstruction still gives the correct guarantee.

The organization of the rest of the paper is as follows. Section 4 describes the coloring process
in more detail, and proves that with high probability the number of red blocks, and the sum of
numbers on red blocks is bounded. Section 5 introduces the algorithm and the reconstruction
guarantee, and Section 6 proves that the algorithm is dominated by the percolation process. Section
7 shows how to use the reconstruction guarantee to find siblings. Finally, sections 8,9 sketch the
proof for binary trees and for general trees.

4 Red and Green Trees

In this section we consider the ideal tree, and prove some properties on its structure. These prop-
erties will help us design the algorithm later. Let B2 denote the length of the sequence of the root.
Most of the properties we prove are defined on blocks, which are consecutive sequences of sites of
length B, which begin at kB and end at kB+B for some value k. The following lemma motivates
this

Lemma 4.1 With high probability, the maximum number of indels between the root and any leaf
is bounded by α = O(log n), and α� B.

We condition the rest of the analysis on the high probability event of Lemma 4.1, without
mentioning it explicitly. Given this event, we partition the sites of each node into B blocks, each
of length B, except maybe the last block (which can be a bit longer or shorter). In the rest of the
section, we ignore the length of the last block, implicitly assuming that it isB exactly7. Informally,

7Handling the length of the last block requires some tedious details, but is not fundamentally different. In fact, in
the i’th level of the tree, we could throw away the last block. This would mean that in the top level the root would have

12



the condition from Lemma 4.1 means that throughout the process indels never create shifts longer
than α, which is much less than the length of a single block.

We color all the blocks in the tree in two colors: red and green, and give each red block some
integer. Initially red nodes signify a misalignment between a parent node and a child node cause
by indels. We then apply the following recursive process, level by level, beginning with the leaves.

Initialization: Assume that there are k an indel operation going from the father to the i’th child,
which happen in the j’th block. Color block j red, and give it the number k

After coloring level ` − 1, we color level ` by the Algorithm 1. This procedure temporarily
expands the red blocks on level `− 1. These red blocks are only added to simplify the description
(one can think of Algorithm 1 as first copying the child nodes, and then coloring the father while
changing the temporary copies of the children). Algorithm 1 is carefully tailored to dominate
misalignments in our reconstruction algorithm. By analyzing it we obtain the bounds that we
need for the algorithm. For example, the temporary extension in the recursive coloring (line 9)
corresponds to the fact that during the algorithmic reconstruction, errors that appear in two different
children may “spill over” one block when we reconstruct the parent.

Algorithm 1: Recursively coloring a father y given the d child nodes

Initialization:1

for each vertex t, and each block k do2

if there are nk,t > 0 insertions and deletions going from t’s parent to t in block k then3

Color block k in t red, and give it the number nk,t > 0 ;4

Recursively coloring a father y given the d child nodes:5

Let s be a random child ;6

for every child t 6= s do7

for every maximal consecutive sequence of red blocks in the t’th child,8

i, i+ 1, . . . , i+ k do
temporarily color blocks i− 1, i+ k + 1 red in the child t, and give them the9

number 1.

for k = 1 to B do10

if the k’th block in s is red, and has number i then11

Color the k’th block in the father red, and add number i to it.12

else13

if exist t1 6= t2 in which the k’th block is red then14

Color the k’th block in the father red, and give it number 1.15

The following lemma is the heart of our error analysis, and it’s proof takes the rest of this
section

B − log n blocks, which would still not affect the distances by much as B is a large constant times log n.

13



Lemma 4.2 With high probability, in each node of the tree there are at most α blocks which are
not green, assuming α ≥ 1200 log d

log 1/(B2·Pid)
.

In the remainder of the paper, we will condition the rest of the analysis on the high probability
event of Lemma 4.2, without mentioning it explicitly.
Proof of Lemma 4.2
We distinguish between initial red blocks that were placed during the initiation phase (lines 2-4)
and acquired red blocks that were passed from child to parent (lines 6-15).

We first note that the probability that a node contains any initial red blocks at all is bounded by
ε1 where ε1 < B2 ·Pid is small. We say that a node is red if it contains any red blocks (initial or
acquired). We first claim that with high probability the largest connected component of red nodes
is small.

Claim 4.3 Except with probability n−3, the largest red connected component in the graph has
fewer than ε2 log n nodes with initial red blocks, where ε2 <

3 log d
log 1/ε1

is small.

Proof: For a node v in the graph, denote by Pi(v) the probability that the set Sv of initial red
descendants of v that are connected to it through a red path contains at least i nodes. We will prove
that

Pi(v) <
εi+1

3

i2
,

where ε3 = 40
√
ε1 is a small constant. We will show this by induction.

Base case: For Sv to be non-empty, one of the three cases has to hold: (1) v has an initial red
block; (2) v has at least two red children; (3) v has one red child that has been randomly selected.
This implies the following inequality:

P1(v) ≤ ε1 + d2P1(v)2 +
1
d
P1(v).

It is not hard to see that for a sufficiently small ε1, P1(v) < 1/(2d), and thus we get that P1(v) <
3ε1 < ε2

3.
Step: We want to show the bound for Pi(v), v > 1. As in the base case, there are three possibilities
that cover all the cases when |Sv| ≥ i: (1) v has an initial red block; (2) v has at least two red
children; (3) v has one red child that has been randomly selected. Denote the probabilities of
the three cases by Q1, Q2 and Q3. Given that there is an initial red block in v, the probability
that |Sv| ≥ i is bounded by the probability that it is ≥ i − 1 without this information. Thus
Q1 ≤ ε1 · Pi−1(v). We also have Q3 ≤ 1

dPi(v). Thus we have

Pi(v) ≤ ε1 · Pi−1(v) +Q2 +
1
d
Pi(v) <

1
3
εi+1

3

i2
+Q2 +

1
3
Pi(v).

To complete the proof, all we need to show is that Q2 < 1
3
εi+1
3
i2

. To estimate Q2 we cover it
using the following events. For each 0 < j < i and index 1 ≤ k < d let Qjk be the event that

14



the children v1, . . . , vk−1 of v have no initial red nodes in their subtrees, node vk has ≥ j initial
red nodes in their subtrees, and children vk+1, . . . , vd of v have ≥ i − j initial red nodes in their
subtrees. These events cover Q2. Moreover, the probability of Qjk is bounded by (d + 1)Pj(v) ·
Pi−j(v): the event that exactly one of the nodes vk+1, . . . , vd has initial red descendants is covered
by d · Pj(v) · Pi−j(v). The event that more than one does has probability bounded by Pi−j(v),
which we multiply by the probability Pj(v) that vk has ≥ j descendants. Thus, in total, we get

Q2 ≤ 2d2
i−1∑
j=1

Pj(v) · Pi−j(v) < 2d2ε3 ·
εi+1

3

i2
·
i−1∑
j=1

i2

j2(i− j)2
<

4d2ε3 ·
εi+1

3

i2
·
∞∑
j=1

4
j2

=
8π2

3
d2ε3 ·

εi+1
3

i2
<
εi+1

3

i2
,

as long as ε3 < 3/(d2 · 8π2). The claim follows immediately. �

From now on we will assume that the conclusion of Claim 4.3 holds. Next we want to prove
Lemma 4.2, namely that in each node the sum of all the red blocks is at mostα log n. We distinguish
two types of red blocks: natural blocks and extension blocks. A red block is natural if either it
is an initial red block, or the block is natural in one of the node’s children. In other words, for
each natural block in a node v there is a descendent of v connected to it via a red path where this
block is an original red block. All other blocks are called extension blocks. Extension blocks occur
because in the case when a node has two or more red children the process extends the red blocks
by 1 before taking intersections.

We will bound the number of each type of blocks separately. As a first step, we present the
process of red block creation above in an equivalent way as follows:

1. First of all, for each node in the tree we decide with probability ε1 whether it contains any
original red blocks at all; we also select for each node the random child that it copies;

2. we then sample the original blocks in the flagged “red” nodes conditioned on there being at
least one red block;

3. we deterministically propagate the choices throughout the tree according to the rules.

Note that by Claim 4.3 the first step creates red connected components of size < ε2 log n. The
propagation only happens on these connected components separately. Using this new presentation
of the process we first bound the numbers of the natural red blocks in each node.

Claim 4.4 Except with probability< n−3 the maximum number of natural red blocks in each node
is bounded by ε4 log n, where ε4 = 2ε2.

15



Proof: We will prove that this is true for each individual node in the graph except with probability
n−3−log d, thus implying the claim by union bound. Let v be a node and Sv be the nodes that contain
at least one original red block, are in v’s connected components and that are v’s descendants. By
Claim 4.3 we know that t = |Sv| < ε2 log n. Denote the nodes in Sv by v1, . . . , vt. Each node
contains at least one original red block. Denote the number of red blocks in vi, counted with
multiplicities, by Bi. Then the Bi’s are i.i.d. and for j > 1

Pr[Bi > j] < εj−1
1 .

since ε4 = 2ε2, and ε2 <
3 log d

log 1/ε1
, denoting A = ε4 log n, we have

Pr

 t∑
j=1

Bj > A

 =
∞∑

i=A+1

Pr

 t∑
j=1

Bj = i

 < ∞∑
i=A+1

(
i

t

)
εi−t1 <

∞∑
i=A+1

2iεi/21 < (4ε1)A/2 < n−3−log d.

�

Next, we bound the number of extension red blocks. Note that extension blocks always have
multiplicity 1. We again consider the original red blocks in each red connected component. Let
Sv be a set of nodes that contain original red blocks and all belong to the same red connected
component. We know that |Sv| < ε2 log n. We denote by Pk the set of blocks that are covered
more than k times by original red blocks in Sv (not counting multiplicities). For example, P1 is
just the set of blocks that appear as original red blocks in at least one of the nodes of Sv. We first
argue that

Claim 4.5 For each k,
Pr[Pk > (ε4 log n)/k] < n−3−log d.

Thus, by union bound, we can assume that this even doesn’t happen. The claim just follows
from counting the total number of original red blocks. The proof of Claim 4.4 implies that the
total number of original red blocks cannot exceed ε4 log n, and the claim follows. Next we make a
simple combinatorial observation.

Claim 4.6 For each extension block b, there is a block b′ that is i positions away from b such that
b′ ∈ P2i/2−3 (Pk is extended trivially to non-integer values by setting Pk := Pdke).

Proof: An extension block b can be traced to two children that are either in the original block or in
an extension block as well. We can continue tracing the extension blocks until we obtain a binary
tree with b at the root and an original red block at each leaf. Moreover, if the leaf is j levels from

16



b then the location of its original block is ≤ j-away from b. Denote the distances of all the leaf
blocks from b by d1, . . . , dt. We have

t∑
j=1

2−dj ≥ 1.

Denote by nk the number of leaf blocks exactly k-away from b (so that
∑
nk = t. Then we have∑

k

nk2−k ≥ 1.

Hence there must exist a k such that nk > 2k/2/4. Otherwise∑
k

nk2−k <
1
4

∑
k

2−k/2 =
1

4(1− 1/
√

2)
< 1.

Thus there is a location b′ that is k-blocks away from b and that appears in at least nk/2 > 2k/2−3

original blocks, thus belonging to P2k/2−3 . �

Putting Claims 4.5 and 4.6 together we see that:

Claim 4.7 Except with probability < n−3 the total number of extension blocks in each connected
component does not exceed 199ε4 log n.

Proof: Fix a connected component Sv. By Claim 4.6, each extension block is close to a point in
one of the Pk’s, and thus

#{extension blocks in Sv} ≤
∞∑
i=0

(2i+ 1) · |P2i/2−3 | ≤

by Claim 4.5

ε4 log n ·
∞∑
i=0

(2i+ 1) · 23−i/2 < 199ε4 log n.

�

Lemma 4.2 is obtained by putting Claims 4.4 and 4.7 together. The former bounds the number
of natural red blocks in every node, while the latter bounds the number of extension red blocks.

17



Algorithm 2: Reconstruction of a single node. Inputs: x̂1, . . . , x̂d

Let s denote a random child ;1

for each block k do2

Gk = {x̂s[kB : kB +B]} ;3

hs = 0 ;4

for each t 6= s do5

if exists a shift −4α < ht < 4α such that6

|x̂s[kB : kB +B]⊕ x̂t[kB + ht : kB +B + ht]| < B/4 then
Set Gk ← Gk ∪ {x̂t[kB + ht : kB +B + ht]} ;7

Set x̂[kB : kB +B] = MajorityB∈GkB8

5 The Algorithm

We explain the notation in the algorithm. α is the bound from Lemmas 4.1,4.2, which satisfies
α = O(log n), α � B. We will only care about the result of the majority, if at least d − 1
children participated in it, treating it as adversarial otherwise. Note that since the original process
is symmetric, the algorithm can easily be derandomized, picking s arbitrarily.

We present the reconstruction guarantee. Let x̂1, . . . , x̂K̂ be the reconstructed sequence. We
decompose it into consecutive blocks (subsequences) of length B, as we did in Section 4. Let 1 ≤
R1, . . . , Rr ≤ B denote the positions of the red blocks, where r ≤ α. Let ni denote the number
given to the i’th block if it’s red, ir ni = 0 if i is a green block. Let g : [K̂] 7→ [−r, . . . , r] ∪ {⊥}
with the following properties:

1. g(0) = 0, by definition 0 is green.

2. g is not defined over red blocks: If RiB ≤ j < RiB +B, then g(j) = ⊥.

3. g is constant over consecutive green blocks: If j, j− 1 are both green than g(j) = g(j− 1).

4. g can change by at most ni over the i’th block: If j is green but j − 1 is red, let k < j be the
last green site. Then

|g(j)− g(k)| ≤
∑
k<i<j

ni

where the sum ranges over all the red blocks between k and j.

5. g is an alignment of x̂ and x: Consider the string Y which is aligning x̂ according to g, that
is y[j] = x̂[j + g(j)], or y[j] = ⊥ if g(j) = ⊥. Letting z[j] = x[j]⊕ y[j], or 0 if y[j] = ⊥,
we have that z is stochastically dominated by a string which has 1 in each place with i.i.d
probability β.

18



Essentially, for a site j in a green block, g(j) will give the displacement between this site and
the matching site in the original string. g is not defined on sites in red blocks - it gives⊥. Note that
although g is defined as a function of the site, it is actually equal for all the sites in the same block.
The algorithm will not reconstruct g, but it will be used in the analysis.

Lemma 5.1 Suppose that in children i and j 6= s the k’th block is green. Then with high proba-
bility (that is with probability 1− 2−O(B)) there is exactly one shift ĥj for which

|x̂i[kB : kB +B]⊕ x̂j [ĥj + kB : kB + ĥj +B]| < (2 Psubs(1−Psubs) + 2β + ε)B < B/4

This shift satisfies −4α < ĥj < 4α. Moreover, denoting hj = ĥj − gj(kB) + gi(kB), for each
1 ≤ z ≤ B we have f−1

i (kB + z) = f−1
j (kB + z + hj), or the same site in the father is mapped

to the same site in the sons, up to the shift hj .

Proof Sketch: Sketch: The 4α bound comes from a maximal shift of 2α for each child. The
2α shift for each child is the sum of two terms: the maximal number of indel operations, and the
bound on the shift gi(kB).

To show that the distance behaves correctly, note that

x̂i[kB + gi(kB) : kB + gi(kB) +B]⊕ xi[kB : kB +B]

stochastically dominates a string which has 1 with i.i.d probability β. Since i, j are siblings, we
know that there exists a shift hj between them, such that

Pr(xi[kB + t] = xj [kB + t+ hj ]) = psipsj + (1− psi)(1− psj )

where psi < Psubs is the substitution probability going from the father to child i, and psj < Psubs

is the substitution probability going from the father to child j. The shift hj is just

hj = |{r < kB : fi(r) = ⊥}|−|{r < kB : fj(r) = ⊥}|−|{r < kB : f−1
i (r) = ∅}|+|{r < kB : f−1

j (r) = ∅}|

or the difference between insertion and deletion operations between child i and child j up to block
k. Note that we rely on the fact that there are no indel operations in blocks k − 1, k + 1 of the j’th
child. This is the case, as otherwise block k would have been colored red, since j 6= s. Also note
that the shift hj may not be equal to ĥj , as hj is the optimal shift in the ideal tree, and ĥj is effected
by the functions gi, gj .

Consider the reconstructed tree. The expected hamming distance of x̂i[kB : kB + B] from
x̂j [kB + gj(kB)− gi(kB) + hj : kB + gj(kB)− gi(kB) + hj +B] is at most(

psi(1− psj ) + (1− psi)psj + 2β
)
B

, and we find ĥj = hj + gj(kB)− gi(kB).

19



Using a Chernoff bound and the definition of stochastic dominance, one can get that with high
probability this distance is well concentrated. However, as for any h 6= hj , we have

Pr(xi[kB + t] = xj [kB + t+ h]) = 1/2

And therefore the expected distance between x̂i[kB : kB+B] and x̂j [kB+gj(kB)−gi(kB)+h :
kB+gj(kB)−gi(kB)+h+B] is at least (1/2−2β)B−2α, and again this distance is concentrated
with high probability. As α is small relative to B, and β is a small enough constant, we get that
with high probability the correct shift ĥj passes the bound, and every other shift does not pass
it. In this case, for each 1 ≤ z ≤ B we have f−1

i (kB + z) = f−1
j (kB + z + hj), where

hj = ĥj − gj(kB) + gi(kB). �
We condition on the high probability event of these lemmas for any two comparisons between

blocks made in the algorithm. This is a union bound over Õ(n) comparisons, but the success
probability of the lemma can be taken to be 1− 1/n2.

6 The algorithm is dominated by the process

In this section we utilize Lemma 5.1 to argue that assuming the d children meet the reconstruction
guarantee with some redness structure, the father also meets it, when the redness structure of the
father is determined by the coloring procedure 1. This ties between the algorithm and the red and
green tree generated by the insertion and deletions. Let ~R denote all the coin flips made by the
algorithm; that is, R is a sequence of length

∑logn−1
i=0 di of numbers in [d], which choose which

son was chosen in step 2 of Algorithm 1.

Lemma 6.1 Suppose all the children meet the reconstruction guarantee for some red and green
structure. Then the father x meets the guarantee as well, when the blocks of the father are colored
red according to the coloring procedure 1, and the random choice of child node is made according
to ~R.

Proof: Let gs denote the alignment function between x̂s and xs, and let fs denote the alignment
function between the father node v to the child s. The set of sites which were deleted when going
from v to s is Ds = {j : fs(j) = ⊥}, and the set of sites which were inserted is Ds = {j :
f−1
s (j) = ∅}. We now define

g(j) = gs(j) + |{i ∈ Ds : i < j}| − |{i ∈ Is : i < j}|

As the sum of the numbers given to red blocks in the father before site j is at least gs(j) +Ds+ Is,
the definition satisfies condition 4 in the definition of g. As g(j) 6= g(j − 1) only when there is a
red block in the father (either because gs(j) 6= gs(j − 1) or because there was an indel operation),
g satisfies condition 3.

We now show that the reconstruction guarantee holds, given the alignment. Let k be a block
which is green in s. Let Gk be the set of children for which k is green. If |Gk| < d− 1, we make

20



no claim about the result of the place-wise majority, as the coloring procedure 1 colors the k’th
block red in the father. Otherwise applying lemma 5.1 between each one of the children in Gk and
s, gives a set of shifts Ĥk, such that for every j ∈ Sk and site z

f−1
s (kB + z) = f−1

j (kB + z + ĥj) + gs(kB)− gj(kB)

Denote hj = ĥj − gj(kB) and a = f−1
s (kB + z). Assume wlog that x[a] = 1. Let bj =

xj [kB + z + hj ] and b̂j = x̂j [kB + z + ĥj ] for j ∈ Gk, and let b be adversarial.

Pr (x̂[a+ g(a)] = 1) = Pr

∑
j∈Gk

b̂j + b > d/2

 ≥ Pr

∑
j∈Gk

b̂j > d/2

 (1)

≥ Pr

∑
j∈Gk

bj > d/2 + 2
√
d

Pr
(
|j : b̂j 6= bj | <

√
d
)

(2)

However,
∑

j∈G bj is just a sum of indicator variables, with expectation

E
∑
j∈G

bj ≥
∑
j∈G

(1− psj ) ≥
d− 1

2
+ (d− 1)2

√
log d
d

where psj is the substitution probability going from the father to the j’th child, and Psubs is the
bound on the substitution probability. Thus, we have Pr(

∑
j∈G bj < d/2 + 2

√
d) < 1/2d2/3. As

for the second term,

Pr(|j : b̂j 6= bj | >
√
d) = 2−O(d1/6) < 1/2d2/3

using β = 1/d2/3 and d large enough. Putting this together gives that Pr(x̂[j] = 1) > 1− β, and
a similar analysis can be made when x[j] = 0.

Note that the event
∑

j∈G bj > d/2 + 2
√
d
⋂
|j : b̂j 6= bj | <

√
d only depends on the i.i.d

random variables which correspond to the substitutions, and on the sum of the random variables
aj = b̂j ⊕ bj , which are dominated by i.i.d random variables. Thus, if we let y[j] = x̂[j + g(j)]⊕
x[j], we have that y is stochastically dominated by a string which has 1 in each position with i.i.d
probability β, as required. �

7 Finding Siblings

In this section we finish the induction on levels, by showing that if all the nodes of level `−1 match
the reconstruction guarantee, then one can partition them to dlogn−` sets of size d, such that every
set will contain d siblings, or all the children of some node. We begin by defining a new distance,
which is motivated by our reconstruction guarantee

ded(x, y, γ) = min
edγ

(dcor(edγ(x), y))

21



Where edγ(x) is obtained from x by performing up to γ indel operations.

Claim 7.1 There is an efficient algorithm which computes ded(x, y, γ).

The algorithm is based on dynamic programming.
Note that ded is not a metric, since it does not respect the triangle inequality in general. It is

easy to see that the distance is monotone in γ, that is ded(x, y, γ1) ≤ ded(x, y, γ2) for γ1 ≤ γ2.
Moreover, when ded(x, z, γ1 + γ2) is defined, the distance respects a limited form of triangle
inequality

Claim 7.2
ded(x, y, γ1) + ded(y, z, γ2) ≥ ded(x, z, γ1 + γ2)

The main tool that we want to use is neighbor joining (see e.g. [DMR06]). To use it, we need
the following lemma. Let i, j be two nodes which are siblings, and v, w be arbitrary, such that all
the pairwise distances are well defined. Then

Lemma 7.3 With high probability,

ded(x̂i, x̂j , 4α) + ded(x̂v, x̂w, 4α) < ded(x̂i, x̂v, 4α) + ded(x̂j , x̂w, 4α)

Note that if i, j are siblings then Agr(x̂i, x̂j , 4α) > 0.75B2. Moreover, if they are not siblings
there will be another vertex which will violate this equality (say the sibling of i).
Proof: We sketch the proof of this lemma. According to the triangle inequality, for any two vertices
s, t

ded(x̂s, x̂t, 4α) ≤ ded(x̂s, xs, α) + ded(xs, xt, 2α) + ded(xt, x̂t, α)

and similarly

ded(x̂s, x̂t, 4α) ≥ ded(xs, xt, 6α)− ded(x̂s, xs, α)− ded(xt, x̂t, α)

The following claim is based on the reconstruction guarantee of x̂v

Claim 7.4 With high probability, Agr(x̂s, xs, α) < 2βB2 + αB

Proof: According to the reconstruction guarantee, implementing the alignment defined by the
function gs requires less than α edit operations. Given the alignment defined by g, the hamming
distance between the cells in the green blocks of x̂s and their counterparts in xs is at most 2βB2,
with exponentially good probability in B2. Since there are at most α bad blocks, this can increase
the distance by at most αB. �

Let Rst denote the path on the tree from s to t, and let

pst =
∏
e∈Rst

(1− 2pe)

where pe is the substitution probability of edge e, and we have pe ≤Psubs. Then if Agr(xs, xt, 2α) >
0.75B2

22



Claim 7.5 For any constant ε > 0, With probability 2−Ω(ε2B), we have Agr(xs, xt, 2α) < (1 +
ε)2pst+1

2 B2.

Proof: Let z be the common ancestor of s, t. According to Lemma 4.1, with high probability there
were at most α indel operations on the path from z to s, and on the path from z to t. Conditioning
on this event, both vertices can be aligned according to z. In this case, what we get is a simple
hamming distance, which has exponentially good concentration. �

We take ε = β, which adds an error of the magnitude generated by Claim 7.4. We also need a
lower bound on the distance, under the same condition Agr(xs, xt, 2α) > 0.75B2

Claim 7.6 For any constant ε > 0, with probability 2−Ω(ε2B), we have Agr(xs, xt, 6α) > (1 −
ε)pst−1

2 B2.

Proof: Fix an alignment of s, t. The probability that the distance is less than (1 − ε)pstB2 is at
most 2−Ω(ε2B2), where the probability is taken over the substitutions, insertions and deletions of
the random process which generated the tree. As there are at most(

B

6α

)
≤ B6α = 26α logB < 2B logB

different alignment, it is possible to take a union bound for constant ε. �

Again we take ε = β.
Finally, Lemma 7.3 is proven by noticing that when β, α/B are small enough compared to the

minimal substitution probability, and all the distances are small, we have that with high probability

ded(x̂i, x̂j , 4α) + ded(x̂v, x̂w, 4α) (3)

≤ log
(

2 Agr(x̂i, x̂j , 4α)
B2

− 1
)

+ log
(

2 Agr(x̂v, x̂u, 4α)
B2

− 1
)

(4)

≤ log(1 + β)pij(1 + 4β)(1 + 2α/B)(1 + β)pvw(1 + 4β)(1 + 2α/B)(5)

≤ log(1− β)piv(1− 4β)(1− 2α/B)(1− β)pjw(1− 4β)(1− 2α/B)(6)

≤ ded(x̂i, x̂v, 4α) + ded(x̂j , x̂w, 4α) (7)

where we substituted ε = β, and used that

(1−Pmin) >
(1 + β)(1 + 4β)(1 + 2α/B)(1 + β)(1 + 4β)(1 + 2α/B)

(1− 4β)(1− 2α/B)(1− β)(1− 4β)(1− 2α/B)

which holds as we choose α, β such that Pmin > 20β + 8α/B. �

Given Lemma 7.3, it is straightforward to see the correctness of Algorithm 3. If a set S contains
all the children of a single vertex, they will pass all tests. Otherwise, if S contains i, j which are

23



Algorithm 3: Partition L, the nodes of level `, into sets of siblings

for every8 set S ⊂ L, with |S| = d do1

for every i, j ∈ S, and v, w ∈ L \ S do2

if ded(x̂i, x̂j , 4α) + ded(x̂v, x̂w, 4α) > ded(x̂i, x̂v, 4α) + ded(x̂j , x̂w, 4α) then3

S is not a set of siblings. Continue to the next set ;4

Add S to the partition5

not siblings, and v is a sibling of i, then according to Lemma 7.3, for every w, the test will fail, as
ded(x̂i, x̂j , 4α) + ded(x̂v, x̂w, 4α) < ded(x̂i, x̂v, 4α) + ded(x̂j , x̂w, 4α).

Note that in the current description we use the lemma nO(d2) times. One can show that given
the high probability event of Lemma 4.1, and the reconstruction guarantee, the failure probability
of Lemma 7.3 can be made 2−O(log2 n), so this is not a problem. Also, it is easy to find more
efficient algorithms which find siblings.

8 Binary Trees

8.1 Intuition and the reconstruction algorithm

In this section we explain the differences between the d-ary case and the binary one. For d a power
of 2, let Th(x1, . . . xd) be defined as

Th(x1, . . . xd) =


1,

∑
xi ≥ 2d/3

0,
∑
xi ≤ d/3

uniform ∈ {0, 1}, d/3 <
∑
xi < 2d/3

The algorithm for reconstructing a complete binary tree is given in Figures 4, and 5. The
algorithm is very similar to the one used for d-ary trees, with two differences:

1. The reconstruction procedure still requires d nodes. Thus, we reconstruct log d levels at a
time, by taking degree log d cousins instead of just siblings.

2. When reconstructing a single node (Figure 5) we use the threshold function Th instead of
using majority.

Intuitively, Algorithm 4 picks groups of d degree-log d siblings at a time, in a manner very
similar to the degree-d case above. The main change is in Algorithm 4 — the reconstruction
procedure for obtaining the sequence of a grandparent from its d degree-log d grandchildren. As

8The selection of the next cluster of degree log d cousins can be done much more efficiently – in time O(n2). We
omit the details to keep the presentation simpler.

9Again, the selection of the next cluster of degree log d cousins can be done much more efficiently – in time O(n2).

24



Algorithm 4: Reconstruction of a full binary tree with height n log d. Let L` will be the set
of vertices of level ` log d.

Let L0 be the set of all vertices;1

for level` = log d, 2 log d, . . . n log d do2

Initialize L` = ∅ for every9 set S ⊂ L`−1, with |S| = d do3

for every i, j ∈ S, and v, w ∈ L \ S do4

if ded(x̂i, x̂j , 4α) + ded(x̂v, x̂w, 4α) > ded(x̂i, x̂v, 4α) + ded(x̂j , x̂w, 4α) then5

S is not a set of degree log d cousins. Continue to the next set ;6

L` ← L` ∪ {Reconstruct Binary Node(S)};7

Algorithm 5: Reconstruction of a single node in a binary tree. Inputs: S = {x̂1, . . . , x̂d}
Let s denote a random descendent in S ;1

for each block k do2

Gk = {x̂s[kB : kB +B]} ;3

hs = 0 ;4

for each t 6= s do5

if exists a shift −4α < ht < 4α such that6

|x̂s[kB : kB +B]⊕ x̂t[kB + ht : kB +B + ht]| < 1
4B then

Set Gk ← Gk ∪ {x̂t[kB + ht : kB +B + ht]} ;7

Set x̂[kB : kB +B] = ThB∈GkB8

before, we select a random grandchild and try to align the rest of the grandchildren to it. The
major difference is in the application of the threshold function instead of a simple majority. If
the k-th block is red in one of the grandchildren, we assume that this block is controlled by the
adversary. As before we want to be able to tolerate the corruption of one of the grandchildren with
high probability.

As explained before, the distance estimation algorithm may tolerate fairly high random recon-
struction errors, since they are easily accounted for. Thus we have no problem tolerating a random
reconstruction error β that is fairly high, say β > Psubs. In fact β cannot be smaller than Psubs,
since if a mutation occurs on the edge to one of the immediate children of the grandparent we
cannot expect to recover from the error. On the other hand, the distance estimation and neighbor
joining algorithms are very sensitive to adversarial reconstruction errors. Here adversarial recon-
struction errors are thought to occur after all the probabilistic choices have been made. We denote
the adversarial error rate by γ. We want γ to be very small. In particular here we will show how to
make γ < Psubs

3.
Assuming only one (or a small constant number) of the grandchildren is controlled by the

25



adversary, we want him to have very low control over the probability that the reconstruction is
correct. Thus we want his expected influence to be bounded by γ. It is here that the second
important modification plays a role. Instead of taking the majority over the leaves (i.e. threshold-
(1/2)), we use a threshold-(1/3) function Th. Suppose we had used the threshold-(1/2) function.
Assuming there is a mutation next to the root of the depth-log d tree (a probability-Psubs event)
the number of leaves that disagree with the root is roughly d/2. Hence an adversary that controls
even one leaf has a high chance of influencing the majority. Unlike 1/2, the number 1/3 does not
have a finite binary representation. Hence if the number of leaves that disagree with the root is
close to d/3 it means that many mutations must have occured (a low probability event!). Hence an
adversary controlling just a small number of leaves is very unlikely to affect the outcome of Th,
which is the cruicial property we need.

8.2 Correctness proof outline

The structure of the correctness proof is similar to the d-ary case. However, in the binary case the
reconstruction guarantee is different. Let g : [K̂] 7→ [−r, . . . , r] ∪ {⊥} be the alignment function
between the reconstructed node x̂ and the original node x. The behavior of g with respect to the
red blocks is the same, but the behavior with respect to green blocks is different (property 5 of g
in Section 5). Consider the string y which is aligning x̂ according to g, that is y[j] = x̂[j + g(j)],
or y[j] = ⊥ if g(j) = ⊥. Let z[j] = x[j] ⊕ y[j], or ⊥ if y[j] = ⊥. As in the d-ary case, we
require that the part of z which does not contain ⊥ is stochastically dominated by a string which
has 1 in each place with i.i.d probability β. However, here we also require that the part of z which
does not involve the symbol ⊥ stochastically dominates a string which has 1 in each place with
i.i.d probability β − γ.

Formally, if the length of z is `, there exists two random variables zup, zdown ∈ {0, 1,⊥}` such
that the joint distribution zdown, z, zup satisfies the following properties:

1. The symbol ⊥ occurs in the same places: if z[j] = ⊥, also zdown[j] = zup[j] = ⊥, and if
z[j] 6= ⊥, also zdown[j] 6= ⊥ and zup[j] 6= ⊥

2. If z[j] = 0 then zdown[j] = 0, and similarly if z[j] = 1 then zup[j] = 1.

3. The marginal distribution on zdown × zup where z[j] 6= ⊥ is i.i.d such that zup[j] = 1 with
probability β; zup[j] = 1 whenever zdown[j] = 1, and P[zup[j] = 1|zdown[j] = 1] = γ.

Throughout the construction we will maintain the invariant that β is small. More specifically,
we will have

β < Psubs
2/3.

We will show that γ can be maintained very small. Specifically, we will show how to maintain

γ < Psubs
3.

26



It should be noted that for a sufficiently small constant Psubs a bound γ < Psubs
c can be realized

with any constant c > 1.
Given this guarantee, there are three differences between the binary case and the d-ary case,

which will be described in the following sections.

8.3 Red and green trees

Recall that the red and green trees were introduced to control the (red) locations that have been
affected by indels making matching them to their cousins by a shift of magnitude α potentially
impossible. Since the reconstruction is done in batches of d nodes, we need to modify the algo-
rithm that controls errors (Algorithm 1) slightly to obtain Algorithm 6. In Algorithm 1 indels that
occurred going from t’s parent to t in block k caused block k in t to become red. In Algorithm 6 we
charge indels that occur between a node t and its depth-log d grandchildren to t. We do this since
the number of indels occuring between t and two of its descendants t1 and t2 are no longer inde-
pendent. For example, if an indel occurs between t and its immediate child, with high probability
the same indel will occur between t and half of its descendants.

Algorithm 6: Recursively coloring a depth-log d grandfather y given the d grandchild nodes

Initialization:1

for each vertex t, and each block k do2

if the maximum number of insertions and deletions going from t to any of its depth-log d3

grandchildren in block k is nk,t > 0 then
Color block k in t red, and give it the number nk,t > 0 ;4

Recursively coloring a grandfather y given the d grandchild nodes:5

Let s be a random grandchild ;6

for every child t 6= s do7

for every maximal consecutive sequence of red blocks in the t’th grandchild,8

i, i+ 1, . . . , i+ k do
temporarily color blocks i− 1, i+ k + 1 red in the grandchild t, and give them the9

number 1.

for k = 1 to B do10

if the k’th block in s is red, and has number i then11

Color the k’th block in the grandfather red, and add number i to it.12

else13

if exist t1 6= t2 in which the k’th block is red then14

Color the k’th block in the grandfather red, and give it number 1.15

The analysis of Algorithm 6 is very similar to the analysis of Algorithm 1. The only difference

27



is that in the initialization the nk,t are generally larger in Algorithm 6. However, is easy to see that
the process in Algorithm 6 is dominated by the process in Algorithm 1 with Pid replaced with
2d ·Pid. Thus we get the following analogue of Lemma 4.2:

Lemma 8.1 With high probability, in each node of the tree there are at most α blocks which are
not green, assuming α ≥ 1200 log d

log 1/(2B2·d·Pid)
.

8.4 Distance estimation

Given this guarantee, we need to prove an analog of Lemma 7.3. That is, when i, j are siblings and
the distances are well defined then

Lemma 8.2 With high probability,

ded(x̂i, x̂j , 4α) + ded(x̂v, x̂w, 4α) < ded(x̂i, x̂v, 4α) + ded(x̂j , x̂w, 4α)

Proof:(Sketch) The lemma has two main parts:

1. Showing that the edit distance operations and the red blocks do not change the distance by
much. This is done using the triangle inequality (Claim 7.2)

2. Showing that the distance guarantee on the good blocks is good enough.

The first part is very similar to the proof of Lemma 7.3. As for the second part, by choosing
ε = γ in claims 7.5, 7.6, we get that the equation 3 changes to

ded(x̂i, x̂j , 4α) + ded(x̂v, x̂w, 4α) ≤ log
(

2 Agr(x̂i, x̂j , 4α)
B2

− 1
)

+ log
(

2 Agr(x̂v, x̂u, 4α)
B2

− 1
)

≤ log(1− βi)(1− βj)pij(1 + 2α/B)(1 + 2γ)(1− βv)(1− βw)pvw(1 + 2γ)(1 + 2α/B)(1 + γ)
≤ log(1− βi)(1− βv)piv(1− 2α/B)(1− 2γ)(1− βj)(1− βw)pjw(1− 2α/B)(1− 2γ)(1− γ)
≤ ded(x̂i, x̂v, 4α) + ded(x̂j , x̂w, 4α)

and this holds given that

1−Pmin ≥
(1− γ)(1− 2γ)2(1− 2α/B)2

(1 + γ)(1 + 2γ)2(1 + 2α/B)2

which is again true if Pmin > 4α/B + 10γ. �

28



8.5 Meeting the recursive guarantee

Finally, we need to show that if the grandchildren meet the reconstruction guarantee, so does the
grandfather. In the d-ary case, this was done in Lemma 6.1. In the binary case, the behavior of
red blocks is similar, but we need an estimate on the adversary’s influence, which replaces (1) in
the proof of the lemma. It is here that the main difference between the d-ary and the binary case
occurs. The reconstruction process as taking grandchildren nodes with z1, . . . , zd ∈ {0, 1,⊥}`
representing their reconstruction errors and uses Algorithm 5 to generate the grandparent node
with z representing its reconstruction errors. By the recursive guarantee, it is useful to think of the
zi’s as representing two types of errors: a fairly large random noise βi < Psubs

2/3 as represented
by ziup, and a small adversarial error may be subtracted with probability≤ γ. The βi’s may depend
on the edge lengths and may vary among the zi’s. On the other hand, we assume that the same
γ � βi is fixed throughout the entire reconstruction. Since the stochastic domination is i.i.d on all
the locations j = 1, .., `, it is enough to show that the recursive guarantee is preserved location-
wise. From now on, we fix a location j. We need to prove the following recursive guarantee:

• If zi[j] = ⊥ for at most one i ∈ {1, .., d}, then there is a β < Psubs
2/3 such that z[j]

stochastically dominates zdown[j] and is dominated by zup[j] where Pr[zup[j] = 1] = β and
Pr[zup = 1|zdown[j] = 0] = γ.

Thus the adversary is given full control over one of the d grandchildren (the one where zi[j] =
⊥), and is given control over each of the other grandchildren with probability < γ, our goal is
to show that if we apply the procedure from Algorithm 5 the probability of the adversary gaining
control over the root value z[j] is tiny (< γ).

Consider the process where each zi[j] = zidown[j] is sampled independently to be 1 with prob-
ability βi, and then the mutations m1[j], . . . ,md[j] in the phylogenic tree on location j between
z1, . . . , zd and z are sampled (possibly with the adversary’s interference). The reconstruction
works correctly with probability

p0 := Pr

[
d∑
i=1

zi[j]⊕mi[j] ≤ d

3

]
+

1
2

Pr

[
d

3
<

d∑
i=1

zi[j]⊕mi[j] <
2d
3

]
.

The first term accounts for the case when the total number of disagreements between z[j] and its
(reconstructed) descendants is at most d/3, and the second term accounts for the case when this
number is between d/3 and 2d/3. For simplicity assume that 1/

√
Psubs is a power of 2. Set

d := 1/
√

Psubs.

We have d2γ2 < γ/4, and hence the probability that the adversary gains control over two of the
zi[j]’s is bounded by γ/4.

It is not hard to see that assuming that at most one zi[j] = ⊥,

29



Claim 8.3
Pr[#{i’s such that zi[j] 6= 0} ≥ 20] < γ/4.

Thus all but fewer than 20 grandchild nodes are reconstructed correctly. This estimate includes
potential interventions by the adversary who may control 2 of the zi[j]’s. The number of edges
between z and the grandchildren is 2d− 2� 1/Psubs, and thus with high probability the number
of mutations on these nodes is very small:

Claim 8.4
Pr[# of mutations in the subtree ≥ 7] < γ/4.

There are 30 edges in the first four layers of the tree. Hence the probability of having a mutation in
one of these edges is bounded by

30 ·Psubs < Psubs
2/3 /2,

for a sufficiently small constant Psubs. If there are no mutations in the first four levels, and assum-
ing the conclusion of Claim 8.4, we have

d∑
i=1

mi[j] ≤ 2−5d · 7 =
7d
32
.

Putting this together with Claim 8.3, we see that except with probability < Psubs
2/3 /2 + γ/2 <

Psubs
2/3,

d∑
i=1

zi[j]⊕mi[j] ≤
d∑
i=1

mi[j] +
d∑
i=1

zi[j] <
7d
32

+ 20 <
d

3

for a small constant Psubs. Thus the event of the grandparent value being reconstructed incorrectly
is dominated by a probability β < Psubs

2/3.
The most important part is estimating the probability γ′ that the adversary can manipulate the

reconstruction output, and showing that it is bounded by γ. Since the adversary controls at most
two inputs, the probability that he will be able to change the output is bounded by

Pr

[
d∑
i=1

zi[j]⊕mi[j] ∈ (d/3− 2, d/3 + 2) ∪ (2d/3− 2, 2d/3 + 2)

]
.

We will show that assuming the conclusions of Claims 8.3 and 8.4

d∑
i=1

zi[j]⊕mi[j] /∈ (d/3− 2, d/3 + 2) ∪ (2d/3− 2, 2d/3 + 2), (8)

and thus γ′ < γ/2 < γ.

30



Define the following subset of the unit interval:

S := {x ∈ [0, 1] | x =
7∑
i=1

ηi2−ti , where ηi = ±1 and ti > 0 is an integer}.

Thus S is the set of numbers that have a representation using a signed sum of at most 7 inverse
powers of 2. It is not hard to see that there is a constant τ > 0 such that |x − 1/3| > τ and
|x− 2/3| > τ for all x ∈ S. We select Psubs sufficiently small, so that d = 1/

√
Psubs > 23/τ .

Observe that assuming the conclusion of Claim 8.4 we have

d∑
i=1

mi[j] = x · d,

where x ∈ S, and assuming Claim 8.3 we have∣∣∣∣∣
d∑
i=1

zi[j]⊕mi[j]− d/3

∣∣∣∣∣ ≥
∣∣∣∣∣
d∑
i=1

mi[j]− d/3

∣∣∣∣∣+
d∑
i=1

zi[j] > τ · d− 20 > 3,

and hence
d∑
i=1

zi[j]⊕mi[j] /∈ (d/3− 2, d/3 + 2).

A similar argument with 2d/3 instead of d/3 concludes the proof of (8).
It should be noted that the use of the d/3 threshold instead of the more “natural” d/2 threshold

for the majority vote is crucial in our analysis. With probability as high as Psubs one of the edges
adjacent to the root contains a mutation, and hence about one half of the mi[j]’s are 1. Hence and
adversary controlling even a single leaf may influence the value of the majority. On the other hand,
since 1/3 does not have a “nice” binary representation, a sequence of mutations such that about
one third of the mi[j]’s are 1 is unlikely. In the proof we used the fact that 1/3 is removed from the
set S. At the same time 1/2 is contained in the set S, making τ = 0.

9 reconstructing general binary trees

In this section, we show how our results generalize to binary trees with arbitrary topologies, in
particular, to trees without a restriction on the depth. To obtain this result, we rely on the algorithm
of [MHR08], that performs phylogeny reconstruction in the standard CFN model (where there are
no insertions and deletions). In particular, we show that we can use the algorithm from [MHR08] in
an essentially black-box fashion, replacing their distance estimation with our distance estimation,
ded, and applying the trace reconstruction procedure from previous sections.

We first state the guarantees that are achieved by [MHR08]. To this end we need the notion
of an (M, ε)-approximator: a quantity D̂ is a (M, ε)-approximator of D if: |D̂ − D| ≤ ε when

31



D < M and D̂ > M − ε when D ≥ M . Also, for two random variables x, y ∈ {+1,−1}k, the
MHR-distance is

dPr(x, y) = − log

(
1− 2

k

k∑
i=1

Pr[xi 6= yi]

)
.

Theorem 9.1 ([MHR08], see Theorem 4.5) Consider an arbitrary tree T on n leafs, with a re-
versible CFN model on k sites. Suppose the substitution probability of each edge is 12ε ≤ pe ≤
λ− 6ε, for some ε > 0, where λ ≤ λ0 for λ0 being the phase transition of the CFN model.

Furthermore, suppose the empirical distance estimates are (M, ε/4)-approximators of the dPr

distance, for M = cMλ+ cMε, for some absolute constant cM > 1.
Then, as long as the number of sites is k ≥ Ω(log n), there is an algorithm reconstructing the

tree T from the observed sites on the leafs, with high probability. The algorithm runs in polynomial
time.

We give a brief overview of the [MHR08] algorithm. Their algorithm constructs the tree it-
eratively, maintaining a forest induced from T . At each step, the algorithm joins two trees of the
forest into a single tree. To connect the trees, they use (empirical evaluations of the) distance dPr

on the reconstructed traces of the nodes. The traces are reconstructed via now-classical recursive
majority procedure of [Mos98, Mos01, Mos03, Mos04b].

We apply the above theorem, by replacing the trace reconstruction procedure by our trace
reconstruction procedure developed in Section 8. Furthermore, we use distance ded to compute the
empirical estimates of the distances. The proof of correctness of our algorithm follows from the
claim below, with the notation from Theorem 9.1 above:

Claim 9.2 Consider a tree T with the mutation process from the Introduction. Let t = Psubs /Pmin.
Let TCFN be a tree with same topology T , under CFN model, with k′ = Ω(k) sites, with edge sub-
stitution probabilities matching those of edges of T . Then, the distance measure ded(·, ·, 4cM tα)
on T is a (M, ε/4)-approximator to the dPr distances on TCFN , for ε = Pmin /10.

Before we prove this claim, we need an analog of Lemma 4.1, which says that if two blocks
are close by in the tree then there were not too many indel operations on the path between them. It
is enough to use the same bound α given there.
Proof: Let C be a component in T that is a path between two nodes in T with at most 2cM · t
edges. We are interested in the distance between the endpoints of C. Note that need only to prove
the claim for pairs of nodes at most 2cM · t apart, since otherwise the distance is too large and we
do not need to estimate it.

Expand the component C to a new one, C̄, by adding all vertices at hop-distance at most
d = 1/

√
Psubs fromC (see Section 8). Now, fix the indel structure inside C̄. With high probability

over the indel structure, we can extract a set of k1 ≥ k − O(log n) sites that are common to all
nodes of C̄ (since each edge has O(1) indels in expectation).

When we apply our binary trace reconstruction algorithm from Section 8, the reconstructed
sequences inside C are a function of (reconstructed) traces of nodes in C̄ only. Since, by the

32



guarantees from Section 8, each reconstructed trace loses at most a fraction γ to the adversary,
we can conclude that, in total, we have k′ ≥ k1 − O(2γ · k) ≥ k − O(log n) − O(2γ · k) sites,
which appear in all the nodes inside C and on which one applies standard CFN model inside the
component C. Also, we have that O(kγ) = O(kPsubs

3) ≤ k · (1 − ε/2) by the results from
Section 8, and hence fewer than k′ε sites are controlled by the adversary.

By Lemma 8.1, and by standard concentration bounds, we have that ded(·, ·, 4cM tα) on the
component C approximates dPr-distance (on the k′ extracted sites) well. This finishes the proof of
the claim. �

Now our result on the binary phylogeny reconstruction follows immediately from plugging-in
Claim 9.2 into the above Theorem 9.1.

In addition, one can see that the number of red blocks is still bounded. The same local con-
ditions which were used to obtain the bound in Section 4 still hold here. In addition, one can
verify that each node is only reconstructed once, and that the adversary has no control over nodes
were used to reconstruct it. This shows that the process in which red blocks propagate upwards is
essentially still the same random process.

10 Acknowledgments

We are grateful to Constantinos Daskalakis and Sébastien Roch for many helpful discussions.

References

[ADHR10] Alex Andoni, Constantinos Daskalakis, Avinatan Hassidim, and Sébastien Roch.
Trace reconstruction on a tree. In ICS, 2010.

[BCMR06] Christian Borgs, Jennifer T. Chayes, Elchanan Mossel, and Sébastien Roch. The
Kesten-Stigum reconstruction bound is tight for roughly symmetric binary channels.
In FOCS, pages 518–530, 2006.

[BKMP05] N. Berger, C. Kenyon, E. Mossel, and Y. Peres. Glauber dynamics on trees and
hyperbolic graphs. Probab. Theory Rel., 131(3):311–340, 2005. Extended abstract
by Kenyon, Mossel and Peres appeared in proceedings of 42nd IEEE Symposium on
Foundations of Computer Science (FOCS) 2001, 568–578.

[BRZ95] P. M. Bleher, J. Ruiz, and V. A. Zagrebnov. On the purity of the limiting Gibbs state
for the Ising model on the Bethe lattice. J. Statist. Phys., 79(1-2):473–482, 1995.

[Cav78] J. A. Cavender. Taxonomy with confidence. Math. Biosci., 40(3-4), 1978.

[DMR06] Constantinos Daskalakis, Elchanan Mossel, and Sébastien Roch. Optimal phyloge-
netic reconstruction. In STOC’06: Proceedings of the 38th Annual ACM Symposium
on Theory of Computing, pages 159–168, New York, 2006. ACM.

33



[DR10] Constantinos Daskalakis and Sébastien Roch. Alignment-free phylogenetic recon-
struction. In RECOMB, 2010.

[EKPS00] W. S. Evans, C. Kenyon, Y. Peres, and L. J. Schulman. Broadcasting on trees and the
Ising model. Ann. Appl. Probab., 10(2):410–433, 2000.

[ESSW99a] P. L. Erdös, M. A. Steel, L. A. Székely, and T. A. Warnow. A few logs suffice to build
(almost) all trees (part 1). Random Struct. Algor., 14(2):153–184, 1999.

[ESSW99b] P. L. Erdös, M. A. Steel, L. A. Székely, and T. A. Warnow. A few logs suffice to build
(almost) all trees (part 2). Theor. Comput. Sci., 221:77–118, 1999.

[Far73] J. S. Farris. A probability model for inferring evolutionary trees. Syst. Zool.,
22(4):250–256, 1973.

[Fel04] J. Felsenstein. Inferring Phylogenies. Sinauer, New York, New York, 2004.

[Iof96] D. Ioffe. On the extremality of the disordered state for the Ising model on the Bethe
lattice. Lett. Math. Phys., 37(2):137–143, 1996.

[LG08] Ari Loytynoja and Nick Goldman. Phylogeny-Aware Gap Placement Prevents Errors
in Sequence Alignment and Evolutionary Analysis. Science, 320(5883):1632–1635,
2008.

[LRN+09a] K. Liu, S. Raghavan, S. Nelesen, C.R. Linder, and T. Warnow. Rapid and accurate
large-scale coestimation of sequence alignments and phylogenetic trees. Science,
324(5934):1561, 2009.

[LRN+09b] Kevin Liu, Sindhu Raghavan, Serita Nelesen, C. Randal Linder, and Tandy Warnow.
Rapid and Accurate Large-Scale Coestimation of Sequence Alignments and Phyloge-
netic Trees. Science, 324(5934):1561–1564, 2009.

[Met03] Dirk Metzler. Statistical alignment based on fragment insertion and deletion models.
Bioinformatics, 19(4):490–499, 2003.

[MHR08] Radu Mihaescu, Cameron Hill, and Satish Rao. Fast phylogeny reconstruction
through learning of ancestral sequences. CoRR, abs/0812.1587, 2008.

[MLH04] I. Miklos, G. A. Lunter, and I. Holmes. A ”Long Indel” Model For Evolutionary
Sequence Alignment. Mol Biol Evol, 21(3):529–540, 2004.

[Mos98] E. Mossel. Recursive reconstruction on periodic trees. Random Struct. Algor.,
13(1):81–97, 1998.

[Mos01] E. Mossel. Reconstruction on trees: beating the second eigenvalue. Ann. Appl.
Probab., 11(1):285–300, 2001.

34



[Mos03] E. Mossel. On the impossibility of reconstructing ancestral data and phylogenies. J.
Comput. Biol., 10(5):669–678, 2003.

[Mos04a] E. Mossel. Phase transitions in phylogeny. Trans. Amer. Math. Soc., 356(6):2379–
2404, 2004.

[Mos04b] E. Mossel. Survey: Information flow on trees. In J. Nestril and P. Winkler, editors,
Graphs, morphisms and statistical physics, pages 155–170. Amer. Math. Soc., 2004.

[MSW04] F. Martinelli, A. Sinclair, and D. Weitz. Glauber dynamics on trees: boundary condi-
tions and mixing time. Comm. Math. Phys., 250(2):301–334, 2004.

[Ney71] J. Neyman. Molecular studies of evolution: a source of novel statistical problems.
In S. S. Gupta and J. Yackel, editors, Statistical desicion theory and related topics,
pages 1–27. Academic Press, New York, 1971.

[RE08] Elena Rivas and Sean R. Eddy. Probabilistic phylogenetic inference with insertions
and deletions. PLoS Comput Biol, 4(9):e1000172, 09 2008.

[Roc07] S. Roch. Markov Models on Trees: Reconstruction and Applications. PhD thesis, UC
Berkeley, 2007.

[Roc08] Sébastien Roch. Sequence-length requirement for distance-based phylogeny recon-
struction: Breaking the polynomial barrier. In FOCS, pages 729–738, 2008.

[SR06] Marc A. Suchard and Benjamin D. Redelings. BAli-Phy: simultaneous Bayesian
inference of alignment and phylogeny. Bioinformatics, 22(16):2047–2048, 2006.

[SS03] C. Semple and M. Steel. Phylogenetics, volume 22 of Mathematics and its Applica-
tions series. Oxford University Press, 2003.

[TKF91] Jeffrey L. Thorne, Hirohisa Kishino, and Joseph Felsenstein. An evolutionary model
for maximum likelihood alignment of dna sequences. Journal of Molecular Evolu-
tion, 33(2):114–124, 1991.

[TKF92] Jeffrey L. Thorne, Hirohisa Kishino, and Joseph Felsenstein. Inching toward reality:
An improved likelihood model of sequence evolution. Journal of Molecular Evolu-
tion, 34(1):3–16, 1992.

[WSH08] Karen M. Wong, Marc A. Suchard, and John P. Huelsenbeck. Alignment Uncertainty
and Genomic Analysis. Science, 319(5862):473–476, 2008.

35


