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Abstract

We show how to efficiently simulate the sending of a message M to a receiver who has partial information
about the message, so that the expected number of bits communicated in the simulation is close to the amount
of additional information that the message reveals to the receiver. This is a generalization and strengthening of
the Slepian-Wolf theorem, which shows how to carry out such a simulation with low amortized communication
in the case that M is a deterministic function of X . A caveat is that our simulation is interactive.

As a consequence, we obtain new relationships between the randomized amortized communication com-
plexity of a function, and its information complexity. We prove that for any given distribution on inputs, the
internal information cost (namely the information revealed to the parties) involved in computing any relation
or function using a two party interactive protocol is exactly equal to the amortized communication complex-
ity of computing independent copies of the same relation or function. Here by amortized communication
complexity we mean the average per copy communication in the best protocol for computing multiple copies,
with a bound on the error in each copy. This significantly simplifies the relationships between the various
measures of complexity for average case communication protocols, and proves that if a function’s information
cost is smaller than its communication complexity, then multiple copies of the function can be computed more
efficiently in parallel than sequentially.

Finally, we show that the only way to prove a strong direct sum theorem for randomized communication
complexity is by solving a particular variant of the pointer jumping problem that we define. If this problem
has a cheap communication protocol, then a strong direct sum theorem must hold. On the other hand, if it
does not, then the problem itself gives a counterexample for the direct sum question. In the process we show
that a strong direct sum theorem for communication complexity holds if and only if efficient compression of
communication protocols is possible.
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1 Introduction

Suppose a sender wants to transmit a message M that is correlated with an input X to a receiver that has some
information Y aboutX. What is the best way to carry out the communication in order to minimize the expected
number of bits transmitted? A natural lower bound for this problem is the mutual information between the
message and X, given Y : I(M ;X|Y ), i.e. the amount of new information M reveals to the receiver about X.
In this work, we give an interactive protocol that has the same effect as sending M , yet the expected number of
bits communicated is asymptotically close to optimal — it is the same as the amount of new information that
the receiving party learns from M , up to a sublinear additive term1.

Our result is a generalization of classical data compression, where Y is empty (or constant), and M is
a deterministic function of X. In this case, the information learnt by the receiver is equal to the entropy
H(M), and the compression result above corresponds to classical results on data compression first considered
by Shannon [Sha48] — M can be encoded so that the expected number of bits required to transmit M is
H(M) + 1 (see for example the text [CT91]).

Related work in information theory usually focuses on the easier problem of communicating n independent
copies M1, . . . ,Mn, where each Mi has an associated dependent Xi, Yi. Here n is viewed as a growing parameter,
and the average communication is measured. Indeed, any solution simulating a single message can be applied
to simulate the transmission of n messages, but there is no clear way to use an asymptotically good solution to
compress a single message. By the asymptotic equipartition property of the entropy function, taking independent
copies essentially forces most of the probability mass of the distributions to be concentrated on sets of the “right”
size, which simplifies this kind of problem significantly. The Slepian-Wolf theorem [SW73] addresses the case
when M is determined by X. The theorem states that there is a way to encode many independent copies
M1, . . . ,Mn using roughly I(M ;X|Y ) on average, as n tends to infinity. The theorem and its proof do not
immediately give any result for communicating a single message. Other work has focused on the problem
of generating two correlated random variables with minimal communication [Cuf08], and understanding the
minimal amount of information needed to break the dependence between X,Y [Wyn75], neither of which seem
useful to the problem we are interested in here.

Motivated by questions in computer science, prior works have considered the problem of encoding a single
message where M is not necessarily determined by X [JRS03, HJMR07], but these works do not handle the
case above, where the receiver has some partial information about the sender’s message.

2 Consequences in Communication Complexity

Given a function f(x, y), and a distribution µ on inputs to f , there are several ways to measure the complexity
of a communication protocol that computes f .

• The communication complexity Dµ
ρ , namely the maximum number of bits communicated by a protocol

that computes f correctly except with probability ρ.

• The amortized communication complexity, limn→∞Dµ,n
ρ /n, where here Dµ,n

ρ denotes the communication
involved in the best protocol that computes f on n independent pairs of inputs drawn from µ, getting the
answer correct except with probability ρ in each coordinate.

Let π(X,Y ) denote the public randomness and messages exchanged when the protocol π is run with inputs
X,Y drawn from µ. Another set of measures arises when one considers exactly how much information is revealed
by a protocol that computes f .

1Observe that if X,Y,M are arbitrary random variables, and the two parties are tasked with sampling M efficiently (as opposed
to one party transmitting and the other receiving), it is impossible to succeed in communication comparable to the information
revealed by M . For example, if M = f(X,Y ), where f is a boolean function with high communication complexity on average for
X,Y , M reveals only one bit of information about the inputs, yet cannot be cheaply sampled.
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• The minimum amount of information that must be learnt about the inputs by an observer who watches
an execution of any protocol (I(XY ;π(X,Y ))) that compute f except with probability of failure ρ, called
the external information cost in [BBCR10].

• The minimum amount of new information that the parties learn about each others input by executing
any protocol (I(X;π(X,Y )|y) + I(Y ;π(X,Y )|X)) that computes f except with probability of failure ρ,
called the internal information cost in [BBCR10]. In this paper we denote this quantity ICi

µ(f, ρ).

• The amortized versions of the above measures, namely the average external/internal information cost of a
protocol that computes f on n independent inputs correctly except with probability ρ in each coordinate.

Determining the exact relationship between the amortized communication complexity and the communica-
tion complexity of the function is usually referred to as the direct sum problem, which has been the focus of
much work [CSWY01, Sha03, JRS03, HJMR07, BBCR10, Kla10]. For randomized and average case complexity,
we know that n copies must take approximately (at least)

√
n times the communication of one copy, as shown

by the authors with Barak and Chen [BBCR10]. For worst case (deterministic) communication complexity,
Feder, Kushilevitz, Naor, and Nisan [FKNN91] showed that if a single copy of a function f requires C bits of
communications, then n copies require Ω(

√
Cn) bits. In the rest of the discussion in this paper, we focus on

the average case and randomized communication complexity.
The proof of the results above for randomized communication complexity have a lot to do with the informa-

tion theory based measures for the complexity of communication protocols. Chakrabarti, Shi, Wirth and Yao
[CSWY01] were the first to define the external information cost, and prove that if the inputs are independent
in µ, then the external information cost of f is at most the amortized communication complexity of f . This
sparked an effort to relate the amortized communication complexity to the communication complexity. If one
could compress any protocol so that the communication in it is bounded by the external information cost, then,
at least for product distributions µ, one would show that the two measures of communication complexity are
the same.

For the case of general distributions µ, it was shown in [BYJKS04, BBCR10] that the amortized commu-
nication complexity can only be larger than the internal information cost. In fact, the internal and external
information costs are the same when µ is a product distribution, so the internal information cost appears to
be the appropriate measure for this purpose. [BBCR10] gave a way to compress protocols up to the geometric
mean of the internal information and the communication in the protocol, which gave the direct sum result
discussed above.

The main challenge that remains is to find a more efficient way to compress protocols whose internal
information cost is small. Indeed, as we discuss below, in this work we show that this is essentially the only

way to make progress on the direct sum question, in the sense that if some protocol cannot be compressed well,
then this protocol can be used to define a function whose amortized communication complexity is significantly
smaller than its communication complexity.

2.1 Our Results

Our main technical result is a way to compress one round protocols according to the internal information cost,
which corresponds to the problem of efficiently communicating information when the receiver has some partial
information, discussed in the introduction. In fact, we design a protocol that solves a harder problem, that we
describe next. We give a way for two parties to efficiently sample from a distribution P that only one of them
knows, by taking advantage of a distributionQ known only to the other. We obtain a protocol whose communica-
tion complexity can be bounded in terms of the informational divergence D (P ||Q) =

∑

x P (x) log(P (x)/Q(x)).

Theorem 2.1. Suppose that player A is given a distribution P and player B is given a distribution Q over a

universe U . There is a public coin protocol that uses an expected

D (P ||Q) + log(1/ε) +O
(

√

D (P ||Q) + 1
)
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Figure 1: The relationships between different measures of complexity for communication problems, with the
new results highlighted. The present work collapses the upper-right triangle in the diagram, showing that
amortized communication complexity is equal to the internal information cost of any functionality. We further
show three equivalent characterizations that would lead to a collapse in the lower-left triangle: strong direct
sum theorems, near-optimal protocol compression and solving the Correlated Pointer Jumping efficiently.

bits of communication such that at the end of the protocol:

• Player A outputs an element a distributed according to P ;

• Player B outputs b such that for each x ∈ U , P[b = x| a = x] > 1− ε.

As a corollary, we obtain the formulation discussed earlier. For any distribution X,Y and message M that is
independent of Y once X is fixed, we can have the sender set P to be the distribution of M conditioned on her
input x, and the receiver set Q to be the distribution of M conditioned on her input y. The expected divergence
D (P ||Q) turns out to be equal to the mutual information I(M ;X|Y ). Indeed, applying Theorem 2.1 to each
round of communication in a multiround protocol, gives the following corollary, where setting r = 1 gives the
formulation discussed in the introduction. The proof appears in Section 6.1.

Corollary 2.2. Let X,Y be inputs to an r round communication protocol π whose internal information cost

is I. Then for every ε > 0, there exists a protocol τ such that at the end of the protocol, each party outputs a

transcript for π. Furthermore, there is an event G with P[G] > 1− rε such that conditioned on G, the expected

communication of τ is I + O(
√
rI + 1) + r log(1/ε), and both parties output the same transcript distributed

exactly according to π(X,Y ).

This compression scheme significantly clarifies the relationship between the various measures of complexity
discussed in the introduction. In particular, it allows us to prove that the internal information cost of computing
a function f according to a fixed distribution is exactly equal to the amortized communication complexity of
computing many copies of f .

Theorem 2.3. For any f , µ, and ρ,

IC
i
µ(f, ρ) = lim

n→∞

Dµ,n
ρ (f)

n
.

This result seems surprising to us, since it characterizes the information cost in terms of a quantity that at
first seems to have no direct connection to information theory. It proves that if a function’s information cost is
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smaller than its communication complexity, then multiple copies of the function can be computed more efficiently
in parallel than sequentially. The consequences to the various measures discussed earlier are summarized in
Figure 1.

In Section 6.3, we define a communication problem we call Correlated Pointer Jumping – CPJ(C, I) –
that is parametrized by two parameters C and I such that C ≫ I. CPJ(C, I) is designed in a way that the
randomized communication complexity cost I < CC(CPJ(C, I)) < C. We show that determining the worst
case randomized communication complexity CC(CPJ(C, I)) for I = C/n is equivalent (up to poly-logarithmic
factors) to determining the best parameter k(n) for which a direct sum theorem CC(fn) = Ω(k(n) · CC(f))
holds. For simplicity, we formulate only part of the result here.

Theorem 2.4. If CC(CPJ(C,C/n)) = Õ(C/n) for all C, then a near optimal direct sum theorem holds:

CC(fn) = Ω̃(n · CC(f)) for all f .
On the other hand, if CC(CPJ(C,C/n)) = Ω((C loga C)/n) for all a > 0, then direct sum is violated by

CPJ(C,C/n):
CC(CPJ(C,C/n)n) = O(C logC) = o(n · CC(CPJ(C,C/n))/ loga C),

for all a.

Finally, letting fn denote the function that computes n copies of f on n different inputs, our protocol
compression yields the following direct sum theorem:

Corollary 2.5 (Direct Sum for Bounded Rounds). Let C be the communication complexity of the best pro-

tocol for computing f with error ρ on inputs drawn from µ. Then any r round protocol computing fn on the

distribution µn with error ρ− ε must involve at least Ω(n(C − r log(1/ε) −O(
√
C · r))) communication.

2.2 Techniques

The key technical contribution of our work is a sampling protocol that proves Theorem 2.1. The sampling
method we show is different from the “Correlated Sampling” technique used in work on parallel repetition
[Hol07, Rao08] and in the previous paper on compression [BBCR10]. In those contexts it was guaranteed that
the input distributions P,Q are close in statistical distance. In this case, the sampling can be done without
any communication. In our case, all interesting inputs P,Q are very far from each other in statistical distance,
and not only that, but the ratios of the probabilities P (x)/Q(x) may vary greatly with the choice of x. It
is impossible to solve this problem without communication, and we believe it is very hard to do it without
interaction.

Indeed, our sampling method involves interaction between the parties, and for good reasons. In the case
that the sample is x for which P (x)/Q(x) is very large, one would expect that a lot of communication is needed
to sample x, since the second party would be surprised with this sample, while if P (x)/Q(x) is small, then one
would expect that a small amount of communication is sufficient. Our protocol operates in rounds, gradually
increasing the number of bits that are communicated until the sample is correctly determined.

To illustrate our construction, consider the baby case of the problem where the issue of high variance in
P (x)/Q(x) does not affect us. Recall that the informational divergence D (P ||Q) is equal to

∑

x P (x) log P (x)
Q(x) .

Suppose Q is the uniform distribution on some subset SQ of the universe U , and P is the uniform distribution
on some subset SP ⊂ SQ. Then the informational divergence D (P ||Q) is exactly log(|SQ|/|SP |).

In this case, the players use an infinite public random tape that samples an infinite sequence of elements
a1, a2, . . . uniformly at random from the universe U . Player A then picks the first element that lies in SP

to be his sample. If this element is ai, player A sends k = ⌈ i/|U| ⌉ to player B. In expectation k is only
a constant, so the expected number of bits for this step is only a constant. Next the players use the public
randomness to sample a sequence of uniformly random boolean functions on the universe. A then sends the
value of approximately log(1/ε) of these functions evaluated on his sample. B looks at her window of |U|
elements and checks to see whether any of them agree with the evaluations sent by A and are in her set SQ.
If more than one agrees with A she asks A to send more evaluations of random functions. They continue this

4



process until there is a unique element in the k’th interval that agrees with the evaluations and is in the set SQ.
For the analysis, note that the fraction of elements in the window that are in SQ but not in SP can be bounded
in terms of the divergence between P and Q. The general case is a little more involved, since P (x)/Q(x) may
vary with x.

3 Preliminaries

Notation. We reserve capital letters for random variables and distributions, calligraphic letters for sets, and
small letters for elements of sets. Throughout this paper, we often use the notation |b to denote conditioning
on the event B = b. Thus A|b is shorthand for A|B = b.

We use the standard notion of statistical/total variation distance between two distributions.

Definition 3.1. Let D and F be two random variables taking values in a set S. Their statistical distance is

|D − F | def= max
T ⊆S

(|Pr[D ∈ T ]− Pr[F ∈ T ]|) = 1

2

∑

s∈S

|Pr[D = s]− Pr[F = s]|

If |D − F | ≤ ε we shall say that D is ε-close to F . We shall also use the notation D
ε≈ F to mean D is ε-close

to F .

3.1 Information Theory

Definition 3.2 (Entropy). The entropy of a random variable X is H(X)
def
=
∑

x Pr[X = x] log(1/Pr[X = x]).
The conditional entropy H(X|Y ) is defined to be Ey∈

R
Y [H(X|Y = y)].

Fact 3.3. H(AB) = H(A) +H(B|A).
Definition 3.4 (Mutual Information). The mutual information between two random variables A,B, denoted
I(A;B) is defined to be the quantity H(A)−H(A|B) = H(B)−H(B|A). The conditional mutual information

I(A;B|C) is H(A|C)−H(A|BC).

In analogy with the fact that H(AB) = H(A) +H(B|A),
Proposition 3.5. Let C1, C2,D,B be random variables. Then

I(C1C2;B|D) = I(C1;B|D) + I(C2;B|C1D).

The previous proposition immediately implies the following:

Proposition 3.6 (Super-Additivity of Mutual Information). Let C1, C2,D,B be random variables such that

for every fixing of D, C1 and C2 are independent. Then

I(C1;B|D) + I(C2;B|D) ≤ I(C1C2;B|D).

We also use the notion of divergence, which is a different way to measure the distance between two distri-
butions:

Definition 3.7 (Divergence). The informational divergence between two distributions isD (A||B)
def
=
∑

xA(x) log(A(x)/B

For example, if B is the uniform distribution on {0, 1}n then D (A||B) = n−H(A).

Proposition 3.8. Let A,B,C be random variables in the same probability space. For every a in the support

of A and c in the support of C, let Ba denote B|A = a and Bac denote B|A = a,C = c. Then I(A;B|C) =

Ea,c∈
R
A,C [D (Bac||Bc)]

Lemma 3.9.

D (P1 × P2||Q1 ×Q2) = D (P1||Q1) +D (P2||Q2) .
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3.2 Communication Complexity

Let X ,Y denote the set of possible inputs to the two players, who we name Px, Py. In this paper2, we view a
private coins protocol for computing a function f : X × Y → ZK as a rooted tree with the following structure:

• Each non-leaf node is owned by Px or by Py.

• Each non-leaf node owned by a particular player has a set of children that are owned by the other player.
Each of these children is labeled by a binary string, in such a way that this coding is prefix free: no child
has a label that is a prefix of another child.

• Every node is associated with a function mapping X to distributions on children of the node and a function
mapping Y to distributions on children of the node.

• The leaves of the protocol are labeled by output values.

On input x, y, the protocol π is executed as in Figure 2.

Generic Communication Protocol

1. Set v to be the root of the protocol tree.

2. If v is a leaf, the protocol ends and outputs the value in the label of v. Otherwise, the player owning
v samples a child of v according to the distribution associated with her input for v and sends the label
to indicate which child was sampled.

3. Set v to be the newly sampled node and return to the previous step.

Figure 2: A communication protocol.

A public coin protocol is a distribution on private coins protocols, run by first using shared randomness to
sample an index r and then running the corresponding private coin protocol πr. Every private coin protocol
is thus a public coin protocol. The protocol is called deterministic if all distributions labeling the nodes have
support size 1.

Definition 3.10. The communication complexity of a public coin protocol π, denoted CC(π), is the maximum
number of bits that can be transmitted in any run of the protocol.

Definition 3.11. The number of rounds of a public coin protocol is the maximum depth of the protocol tree
πr over all choices of the public randomness.

Given a protocol π, π(x, y) denotes the concatenation of the public randomness with all the messages that
are sent during the execution of π. We call this the transcript of the protocol. We shall use the notation π(x, y)j
to refer to the j’th transmitted message in the protocol. We write π(x, y)≤j to denote the concatenation of the
public randomness in the protocol with the first j message bits that were transmitted in the protocol. Given a
transcript, or a prefix of the transcript, v, we write CC(v) to denote the number of message bits in v (i.e. the
length of the communication).

Definition 3.12 (Communication Complexity notation). For a function f : X × Y → ZK , a distribution µ
supported on X × Y, and a parameter ρ > 0, Dµ

ρ (f) denotes the communication complexity of the cheapest
deterministic protocol for computing f on inputs sampled according to µ with error ρ. Rρ(f) denotes the cost
of the best randomized public coin protocol for computing f with error at most ρ on every input.

2The definitions we present here are equivalent to the classical definitions and are more convenient for our proofs.
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We shall use the following theorem due to Yao:

Theorem 3.13 (Yao’s Min-Max). Rρ(f) = maxµD
µ
ρ (f).

Recall that the internal information cost ICi
µ(π) of a protocol π is defined to be I(π(X,Y );X|Y ) +

I(π(X,Y );Y |X).

Lemma 3.14. Let R be the public randomness used in the protocol π. Then ICi
µ(π) = ER

[

ICi
µ(πR)

]

Proof.

IC
i
µ(π) = I(π(X,Y );X|Y ) + I(π(X,Y );Y |X)

= I(R;X|Y ) + I(R;Y |X) + I(π(X,Y );X|Y R) + I(π(X,Y );Y |XR)

= I(π(X,Y );X|Y R) + I(π(X,Y );Y |XR)

= E
R

[

IC
i
µ(πR)

]

The following theorem was proved in [BYJKS04]. Here we cite a version appearing in [BBCR10]:

Theorem 3.15. For every µ, f, ρ there exists a protocol τ computing f on inputs drawn from µ with probability

of error at most ρ and communication at most D
µn

ρ (fn) such that ICi
µ(τ) ≤ Dµn

ρ (fn)
n .

For our results on amortized communication complexity, we need the following definition: we shall consider
the problem of computing n copies of f , with error ρ in each coordinate of the computation, i.e. the computation
must produce the correct result in any single coordinate with probability at least 1 − ρ. We denote the
communication complexity of this problem by Dµ,n

ρ (f) ≤ D
µn

ρ (fn). Formally,

Definition 3.16. Let µ be a distribution on X×Y and let 0 < ρ < 1. We denote by Dµ,n
ρ (f) the distributional

complexity of computing f on each of n independent pairs of inputs drawn from µ, with probability of failure
at most µ on each of the inputs.

The result above is actually much stronger, the same proof that appears in [BBCR10] shows the following
theorem:

Theorem 3.17. For every µ, f, ρ there exists a protocol τ computing f on inputs drawn from µ with probability

of error at most ρ and communication at most D
µ,n
ρ (fn) such that ICi

µ(τ) ≤ Dµ,n
ρ (f)
n .

4 Proof of Theorem 2.1

Here we prove the following theorem

Theorem 4.1. Suppose that player A is given a distribution P and player B is given a distribution Q over a

universe U . There is a protocol that uses an expected

D (P ||Q) + log 1/ε +O(D (P ||Q)1/2 + 1)

bits of communication such that at the end of the protocol:

• player A outputs an element a distributed according to P ;

• for each x, P[b = a| a = x] > 1− ε.

Note that the second condition implies in particular that player B outputs an element b such that b = a with
probability > 1− ε. The protocol requires no prior knowledge or assumptions on D (P ||Q).
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Proof. We prove the theorem by exhibiting such a protocol. The protocol runs as follows. Both parties
interpret the shared random tape as a sequence of uniformly selected elements {ai}∞i=1 = {(xi, pi)}∞i=1 from the
set A := U × [0, 1]. Denote the subset

P := {(x, p) : P (x) < p}
of A as the set of points under the histogram of the distribution P . Similarly, define

Q := {(x, p) : Q(x) < p}.

For a constant C ≥ 1 we will define the C-multiple of Q as

C · Q := {(x, p) ∈ A : (x, p/C) ∈ Q}.

We will also use a different part of the shared random tape to obtain a sequence of random hash functions
hi : U → {0, 1} so that for any x 6= y ∈ U , P[hi(x) = hi(y)] = 1/2.

Figure 3: An illustration on the execution of the protocol. The elements ai are selected uniformly from
A = U × [0, 1]. The first ai to fall in P is a6, and thus player A outputs x6. Player A sends hashes of a6, which
do not match the hashes of a5, the only ai in Q. Player B responds ‘failure’, and considers surviving elements
in 2Q, which are a6 and a9. After a few more hashes from A, a6 is selected by B with high probability.

We are now ready to present the protocol:

1. Player A selects the first index i such that ai ∈ P, and outputs xi;

2. Player A sends Player B the binary encoding of k := ⌈i/|U|⌉;

3. Player A sends the values of hj(x) for j = 1, .., s0, where s0 := 2 + ⌈log 1/ε⌉;

4. Repeat, until Player B produces an output, beginning with iteration t = 0:

(a) set C := 2t
2

;
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(b) if there is an ar = (y, q) with r ∈ {(k − 1) · |U|+ 1, . . . , k · |U|} in C · Q such that hj(y) = hj(x) for
j = 1, .., st, Player B responds ‘success’ and outputs y; if there is more than one such a, player B
selects the first one;

(c) otherwise, Player B responds ‘failure’ and Player A sends 2t+3 more hash values hst+1(x), . . . , hst+t+1(x)
and sets st+1 := st + 2t+ 3 = 1 + ⌈log 1/ε⌉ + (t+ 2)2, t := t+ 1.

It is easy to see that the output of Player A is distributed according to the distribution P . We will show that for
any choice of i and the pair (xi, pi) by A, Player B outputs the same xi with probability > 1− ε. In addition,

we will show that the expected amount of communication is D (P ||Q)+ log 1/ε+O(D (P ||Q)1/2+1). Hence, in
particular, if D (P ||Q) is finite, the protocol terminates with probability 1. We start with the following claim.

Claim 4.2. For each n, P[k > n] < e−n.

Proof. For each n, we have

P[k > n] = P[ai /∈ P for i = 1, . . . , n · |U|] = (1− 1/|U|)|U|·n < e−n.

Thus the expected length of the first two messages from Player A is log 1/ε + O(1) bits. It remains to
analyze Step 4 of the protocol. We say that an element a = (x, p) survives iteration t if a ∈ 2t

2 · Q and it
satisfies hj(x) = hj(xi) for all j = 1, . . . , st for this t.

Note that the “correct” element ai survives iteration t if and only if 2t
2 ≥ P (xi)/Q(xi).

Claim 4.3. Let Eai be the event that the element selected by player A is ai, which is the i-th element on

the tape. Denote k := ⌈i/|U|⌉. Conditioned on Eai , the probability that a different element aj with j ∈
{(k − 1) · |U|+ 1, . . . , k · |U|} survives iteration t is bounded by ε/2t+1.

Proof. Without loss of generality we can assume that |U| ≥ 2, since for a singleton universe our sampling
protocol will succeed trivially. This implies that for any C > 0 and for a uniformly selected a ∈ A,

P[a ∈ C · Q| a /∈ P] ≤ P[a ∈ C · Q]/P[a /∈ P] ≤ 2 ·P[a ∈ C · Q] ≤ 2C/|U|.

Denote K := k · |U|. Conditioning on Eai , the elements aK−|U|+1, . . . , ai−1 are distributed uniformly on A \ P,
and ai+1, . . . , aK are distributed uniformly on A. For any such j = K − |U|+ 1, . . . , i− 1, and for any C > 0,

P[aj ∈ C · Q] ≤ 2C/|U|.

For such a j, surviving round t means aj belonging to 2t
2 ·Q and agreeing with ai on st = 1+⌈log 1/ε⌉+(t+1)2

random hashes h1, . . . , hst . The probability of this event is thus bounded by

P[aj survives round t] ≤ P[aj ∈ 2t
2 · Q] · 2−st ≤ 2 · 2t2

|U| · 2−st ≤

2t
2−st−1/|U| ≤ 2−2t−1ε/|U| ≤ ε/(|U| · 2t+1).

By taking a union bound over all j = K − |U|+ 1, . . . ,K, j 6= i, we obtain the ε/2t+1 bound.

Thus for any Eai , the probability of Player B to output anything other than xi conditioned on Eai is <
∑∞

t=0 ε/2
t+1 = ε.

It remains to observe that Step 4 of the protocol is guaranteed to terminate when t2 ≥ log P (xi)/Q(xi)

since ai belongs to
P (xi)
Q(xi)

· Q. Denote T :=
⌈

√

log P (xi)/Q(xi)
⌉

. Thus the amount of communication in Step 4

is bounded by

ST − S0 + T = (T + 1)2 − 1 + T = T 2 + 3T < log P (xi)/Q(xi) + 2 + 5
√

logP (xi)/Q(xi),

9



and the expected amount of communication is bounded by

Exi∼P

[

logP (xi)/Q(xi) + 2 + 5
√

log P (xi)/Q(xi)
]

=

D (P ||Q) + 2 + 5 ·Exi∼P

√

log P (xi)/Q(xi) ≤

D (P ||Q) + 2 + 5 ·
√

Exi∼P logP (xi)/Q(xi) = D (P ||Q) +O(D (P ||Q)1/2 + 1),

where the inequality is by the concavity of
√

. This completes the proof.

Remark 4.4. The sampling in the proof of Theorem 4.1 may take significantly more than one round. In fact,
the expected number of rounds is Θ(

√

D (P ||Q)). One should not hope to get rid of the dependence of the
number of rounds in the simulation on the divergence since D (P ||Q) is not known to the players ahead of time,
and the only way to “discover” it (and thus to estimate the amount of communication necessary to perform the
sampling task) is through interactive communication. By increasing the expected communication by a constant
multiplicative factor, it is possible to decrease the expected number of rounds to O(logD (P ||Q)).

For technical reasons we will need the following easy extension of Theorem 4.1:

Lemma 4.5. In the setup of Theorem 4.1 there is an event E such that P[E] > 1− ε, and conditioned on E:

• both parties output the same value distributed exactly according to P ;

• the expected communication is still bounded by D (P ||Q) + log 1/ε+O(D (P ||Q)1/2 + 1).

Proof. Let E′ be the event when both parties output the same value (i.e. when the protocol succeeds). Since
the probability of success is > 1−ε conditioned on the value being output by Player A, there is an event E ⊂ E′

such that P[Player A outputs x|E] = P (x) for all x and P[E] > 1− ε.
It remains to see that the communication guarantee holds. This is trivially true since assuming the protocol

succeeds the estimate on the communication amount depends exclusively on the element x sampled, and the
analysis in the proof of Theorem 4.1 carries conditioned on E.

5 Correlated Pointer Jumping

Here we define the correlated pointer jumping problem, that is at the heart of several of our results. The input
in this problem is a rooted tree such that

• Each non-leaf node is owned by Px or by Py.

• Each non-leaf node owned by a particular player has a set of children that are owned by the other player.
Each of these children is labeled by a binary string, in such a way that this coding is prefix free: no child
has a label that is a prefix of another child.

• Each node v is associated with two distributions on its children: child(v)x known to Px and child(v)y
known to Py.

• The leaves of the tree are labeled by output values.

The number of rounds in the instance is the depth of the tree.
The goal of the problem is for the players to sample the leaf according to the distribution that is obtained

by sampling each child according to the distribution specified by the owner of the parent. We give a way to
measure the correlation between the knowledge of the two parties in the problem. Given an instance F of the
correlated pointer jumping problem and a vertex from the tree, we write Fv to denote the correlated pointer
jumping problem associated with the tree rooted at v.

10



Definition 5.1 (Divergence Cost). The divergence cost of a correlated pointer jumping instance whose root is
v, denoted D (F ), is recursively defined as follows:

D (F ) =











0 if the tree has depth 0

D (child(v)x||child(v)y) +Ew∈
R
child(v)x [D (Fw)] if v is owned by Px

D (child(v)y||child(v)x) +Ew∈
R
child(v)y [D (Fw)] if v is owned by Py

We can use our sampling lemma to solve the correlated pointer jumping problem.

Theorem 5.2. Let F be an r-round correlated pointer jumping instance. Then there is a protocol to sample

a leaf such that there is an event E, with P[E] > 1 − rε, and conditioned on E, the sampled leaf has the

correct distribution and conditioned on E, the expected communication of the protocol is D (F ) + r log(1/ε) +
O(
√

rD (F ) + r).

Proof. We prove the theorem by induction on the depth r. For r = 0 the statement is true, since the sampling
is trivial. Suppose the statement is true for depth (r − 1) instances. Suppose, without loss of generality, that
the root v of F is owned by Px. Then for each w ∈ child(v) there is a protocol to sample a leaf from Fw and an
event Ew with P[Ew] > 1−(r−1)ε such that conditioned on Ew, the expected communication of the protocol is
D (Fw)+(r−1) log(1/ε)+C ·(

√

(r − 1)(D (Fw)+(r−1)) for a constant C. Denote Drt := D (child(v)x||child(v)y)
and Dch := Ew∈

R
child(v)x [D (Fw)]. Then by definition, D (F ) = Drt +Dch.

By the sampling theorem, and specifically by Lemma 4.5, there is a protocol for sending the first message
and an event E′ such that the expected communication conditioned on E′ is

Drt + log(1/ε) + C · (
√

Drt + 1),

and P[E′] > 1 − ε. Let E be the event that E′ holds, child w is sampled and Ew holds. Then clearly
P[E] > 1− rε, and conditioned of E holding the communication of the protocol is

Drt + log(1/ε) + C · (
√

Drt + 1)+

E
w∈

R
child(v)x

[

D (Fw) + (r − 1) log(1/ε) + C · (
√

(r − 1)D (Fw) + (r − 1))
]

≤

D (F ) + r log(1/ε) + C · r + C · (
√

Drt +
√

(r − 1)Dch) ≤
D (F ) + r log(1/ε) + C · r + C · (

√

r ·D (F ))

The first inequality is by the concavity of
√

, and the second one holds by the Cauchy Schwartz inequality
since D (F ) = Drt +Dch. This completes the proof of the inductive step.

A key fact is that both the internal and external information cost of a protocol can be used to bound the
expected divergence cost of an associated distribution on correlated pointer jumping instances. Since, in this
work, we only require the connection to internal information cost, we shall restrict our attention to it.

Given a public coin protocol with inputs X,Y and public randomness R, for every fixing of x, y, r, we obtain
an instance of correlated pointer jumping. The tree is the same as the protocol tree with public randomness
r. If a node v at depth d is owned by Px, let M be the random variable denoting the child of v that is picked.
Then define child(v)x so that it has the same distribution as M | X = x, π(X,Y )≤d = rv, and child(v)y so it
has the same distribution as M | Y = y, π(X,Y )≤d = rv. We denote this instance of correlated sampling by
Fπ(x, y, r). Let µ denote the distribution on X,Y . Next we relate the average divergence cost of this instance
to the internal information cost of π:

Lemma 5.3. EX,Y,R [D (Fπ(x, y, r))] = ICi
µ(π)

11



Proof. We shall prove that for every r, EX,Y,R [D (Fπ(x, y, r))] = ICi
µ(πr). The proof can then be completed by

Lemma 3.14.
So without loss of generality, assume that π is a private coin protocol, and write F (x, y) to denote the

corresponding divergence cost. We shall prove this by induction on the depth of the protocol tree of π. If the
depth is 0, then both quantities are 0. For the inductive step, without loss of generality, assume that Px owns
the root node of the protocol. Let M denote the child of the root that is sampled during the protocol, and let
F (x, y)m denote the divergence cost of the subtrees rooted at m. Then

E
X,Y

[D (F (x, y))] = E
X,Y

[D (child(v)X ||child(v)Y )] + E
X,Y

[

E
M∈

R
child(v)X

[D (F (X,Y )M )]

]

(1)

Since for every x, y, M |xy has the same distribution as M |x, Proposition 3.8 gives that the first term
in Equation 1 is exactly equal to I(X;M |Y ) = I(X;M |Y ) + I(Y ;M |X). We can rewrite the second term

EM [EX,Y [D (F (X,Y )M )]]. For each fixing of M = m, we can use the inductive hypothesis to show that the
inner expectation is equal to I(X;π(X,Y )|Y m) + I(Y ;π(X,Y )|Xm). Together, these two bounds imply that

E
X,Y

[D (F (x, y))]

= I(X;M |Y ) + I(Y ;M |X) + I(X;π(X,Y )|Y M) + I(Y ;π(X,Y )|XM)

= IC
i
µ(π)

6 Applications

In this section, we use Theorem 5.2 to prove a few results about compression and direct sums.

6.1 Compression and Direct sum for bounded-round protocols

We start by proving our result about compressing bounded round protocols:

Proof of Corollary 2.2. The proof follows by applying our sampling procedure to the correlated pointer jumping
instance Fπ(x, y, r). For each fixing of x, y, r, define the event Gx,y,r to be the event E from Theorem 5.2. Then
we have that P[G] > 1−rε. Conditioned on G, we sample from exactly the right distribution, and the expected
communication of the protocol is

E
X,Y,R

[

D (Fπ(X,Y,R)) + r log(1/ε) +O(
√

rD (Fπ(X,Y,R)) + r)
]

≤ E
X,Y,R

[D (Fπ(X,Y,R))] + r log(1/ε) +O

(

√

E
X,Y,R

[rD (Fπ(X,Y,R))] + r

)

,

where the inequality follows from the concavity of the square root function. By Lemma 5.3, this proves that

the expected communication conditioned on G is ICi
µ(π) + r log(1/ε) +O

(

√

rICi
µ(π) + r

)

.

6.2 Information = amortized communication

In this section we will show that Theorem 5.2 reveals a tight connection between the amount of information
that has to be revealed by a protocol computing a function f and the amortized communication complexity of
computing many copies of f . Recall that ICi

µ(f, ρ) denotes the smallest possible internal information cost of

12



any protocol computing f with probability of failure at most ρ when the inputs are drawn from the distribution
µ. Observe that ICi

µ(f, ρ) is an infimum over all possible protocols and may not be achievable by any individual
protocol. It is also clear that ICi

µ(f, ρ) may only increase as ρ decreases.
We first make the following simple observation.

Claim 6.1. For each f , ρ and µ,
lim
α→ρ

IC
i
µ(f, α) = IC

i
µ(f, ρ)

Proof. The idea is that if we have any protocol with internal information cost I, error δ and input length ℓ,
for every ε we can decrease the error to (1 − ε)δ at the cost of increasing the information by at most ε · ℓ just
by using public randomness to run the original protocol with probability 1− ε, and with probability ε, run the
trivial protocol where the players simply exchange their inputs. Thus as α tends to ρ, the information cost of
the best protocols must tend to each other.

Next we define the amortized communication complexity of f . We define it to be the cost of computing n
copies of f with error ρ in each coordinate, divided by n. Note that computing n copies of f with error ρ in
each coordinate is in general an easier task than computing n copies of f with probability of success 1 − ρ for
all copies. We use the notation Dµ,n

ρ (f) to denote the communication complexity for this task, when the inputs
for each coordinate are sampled according to µ. Dµ,n

ρ (f) was formally defined in Definition 3.16.
It is trivial to see in this case that Dµ,n

ρ (f) ≤ n · Dµ
ρ (f). The amortized communication complexity of f

with respect to µ is the limit
AC(fµ

ρ ) := lim
n→∞

Dµ,n
ρ (f)/n,

when the limit exists. We prove an exact equality between amortized communication complexity and the
information cost:

Theorem 6.2.

AC(fµ
ρ ) = IC

i
µ(f, ρ).

Proof. There are two directions in the proof:

AC(fµ
ρ ) ≥ ICi

µ(f, ρ). This is a direct consequence of Theorem 3.17.

AC(fµ
ρ ) ≤ ICi

µ(f, ρ). Let δ > 0. We will show that Dµ,n
ρ (f)/n < ICi

µ(f, ρ) + δ for all sufficiently large n.

By Claim 6.1 there is an α < ρ such that ICi
µ(f, α) < ICi

µ(f, ρ) + δ/4. Thus there is a protocol π that
computes f with error < α with respect to µ and that has an internal information cost bounded by I :=
ICi

µ(f, ρ) + δ/2. Denote by C the communication complexity of π. C can be very large compared to I. For
every n, the protocol πn that is comprised of n independent copies of π that are executed in parallel, computes
n copies of f as per Definition 3.16 with error bounded by α.

The internal information cost of πn is n · I, and by Theorem 5.2 we can simulate πn with a total error
ε < ρ− α using

Cn := n · I + C · log 1/ε +O(
√
C · I · n+ C)

bits of communication. The total additional error is ε and hence the new protocol makes at most an error
α + ε < ρ on each copy of f . Hence Dµ,n

ρ (f) ≤ Cn. By letting n be large enough (with respect to C and 1/ε)
we see that we can make Dµ,n

ρ (f) ≤ Cn < n · I + nδ/2, thus completing the proof.

6.3 A complete problem for direct sum

Let fn denote the function mapping n inputs to n outputs according to f . We will show that the promise version
of the correlated pointer jumping problem is complete for direct sum. In other words, if near-optimal protocols
for correlated pointer jumping exist, then direct sum holds for all promise problems. On the other hand, if there
are no near-optimal protocols for correlated pointer jumping, then direct sum fails to hold, with the problem
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itself as the counterexample. Thus any proof of direct sum for randomized communication complexity must
give (or at least demonstrate existence) of near-optimal protocols for the problem.

We define the CPJ(C, I) promise problem as follows.

Definition 6.3. The CPJ(C, I) is a promise problem, where the players are provided with a binary instance3

F of a C-round pointer jumping problem, i.e. player Px is provided with the distributions child(v)x and Py is
provided with the distributions child(v)y for each v, with the following additional guarantees:

• the divergence cost D (F ) ≤ I;

• let µF be the correct distribution on the leafs of F ; each leaf z of F are labeled with ℓ(z) ∈ {0, 1} so that
there is a value g = g(F ) such that Pz∈

R
µF

[ℓ(z) = g(F )] > 1− ε, for some small ε. The goal of the players
is to output g(F ) with probability > 1− 2ε.

Note that players who know how to sample from F can easily solve the CPJ problem. It follows from
[BBCR10] that:

Theorem 6.4. If CPJ(C, I) has a randomized protocol that uses T (C, I) := CC(CPJ(C, I)) communication, so

that T (C,C/n) < C/k(n), then for each f ,

CC(fn) = Ω(k(n) · CC(f)).

In [BBCR10] a bound of T (C, I) = Õ(
√
C · I) is shown, which implies CC(fn) = Ω̃(

√
n · CC(f)) for any f .

Using Theorem 5.2 we are able to prove the converse direction.

Theorem 6.5. For any C > I > 0, set n := ⌊C/I⌋, then

CC(CPJ(C, I)n) = O(C log(nC/ε)).

Thus, if there are parameters C and n such that CPJ(C,C/n) cannot be solved using I = C/n communica-
tion, i.e. T (C,C/n) > C/k(n) ≫ C/n, then CPJ(C,C/n) is a counterexample to direct sum, i.e.

CC(CPJ(C, I)n) = O(C log nC/ε) = Õ(C) = Õ(k(n)CC(CPJ(C,C/n))) = o(n · CC(CPJ(C,C/n))).

Proof. (of Theorem 6.5)We solve CPJ(C, I)n by takingm := n log n copies of the CPJ(C, I) problem representing
log n copies of each of the n instances. The players will compute all the copies in parallel with error < 2ε, and
then take a majority of the log n copies for each instance. For a sufficiently large n this guarantees the correct
answer for all n instances except with probability < ε. Thus our goal is to simulate m copies of CPJ(C, I). We
view CPJ(C, I)m as a degree-2m, C-round correlated pointer jumping problem in the natural way. Each node
represents a vector V = (v1, . . . , vm) of m nodes in the m copies of CPJ(C, I). The children of V are the 2m

possible combinations of children of {v1, . . . , vm}. The distribution on the children is the product distribution
induced by the distributions in v1, . . . , vm. We claim that

D
(

CPJ(C, I)nv1 ,...,vm
)

=
m
∑

i=1

D (CPJ(C, I)vi ) . (2)

This follows easily by induction on the tree, since the distribution on each node is a product distribution, and
for each independent pairs (P1, Q1), . . . , (Pm, Qm) we have

D (P1 × P2 × . . . × Pm||Q1 ×Q2 × . . .×Qm) = D (P1||Q1) + . . .+D (Pm||Qm) ,

by Lemma 3.9. By applying (2) to the root of the tree we see that D (CPJ(C, I)m) ≤ m · I ≤ C log n. Thus
Theorem 5.2 implies that CPJ(C, I)n can be solved with an additional error of ε/2 using an expected

C log n+ C logC/ε+ o(C log n)

bits of communication.
3Each vertex has degree 2.
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