
Parity Problems in Planar Graphs

Mark Braverman∗

Dept. of Comp. Sci.
University of Toronto

Raghav Kulkarni
Dept. of Comp. Sci.
University of Chicago

Sambuddha Roy†

India Research Lab
IBM India Pvt. Ltd.

Abstract

We consider the problem of counting the number of
spanning trees in planar graphs. We prove tight bounds
on the complexity of the problem, both in general and
especially in the modular setting. We exhibit the prob-
lem to be complete for Logspace when the modulus is 2k,
for constant k. On the other hand, we show that for
any other modulus and in the non-modular case, our
problem is as hard in the planar case as for the case
of arbitrary graphs. This completely settles the ques-
tion regarding the complexity of modular computation
of the number of spanning trees in planar graphs. The
techniques used rely heavily on algebraic-topology.

In the spirit of counting problems modulo 2k, we also
exhibit a highly parallel ⊕L algorithm for finding the
value of a Permanent modulo 2k. Previously, the best
known result in this direction was Valiant’s result that
this problem lies in P.

1 Introduction and Previous Work

Enumeration and counting problems are of
paramount importance in both mathematics and
computer science. In addition to being interesting on
their own right, they give us fundamental insights as
to the complexity of the decision problem underlying
the counting problem, and at times the sophisticated
methods employed to perform the counting lead to
beautiful mathematics. Modular counting involves
counting objects with a certain property modulo some
number. Modular counting plays a significant role in
complexity theory – a few instances are afforded by
Toda’s Theorem [19], and also by Valiant’s result [20]
stating that if the Permanent modulo 3 were tractable,
then the class of unambiguous polynomial time (UP)
would collapse to P – this last being unlikely since

∗partially supported by an NSERC postgraduate scholarship
†India Research Lab, IBM India Pvt. Ltd., supported in part

by NSF Grant CCF-0514155, while at Rutgers University

it would contradict widely believed cryptographic
assumptions.

The upshot is that most enumeration problems are
intractable, although some examples are known where
the counting problem can be resolved in polynomial
time. A few instances of the latter case occurring are
as follows: counting the number of spanning trees in an
arbitrary undirected graph [9] , counting the number of
perfect matchings in planar undirected graphs [13, 18],
counting the number of simultaneous source to sink
paths in a directed acyclic graph with n sources and
n sinks [8]. Valiant in his holographic algorithms
paradigm borrows the result about counting perfect
matchings in planar graphs in a nontrivial way to give
instances of several other problems where the counting
version lies in polynomial time.

It has been observed that many of the counting
problems which lie in polynomial time reduce to a com-
putation of the determinant of a suitably defined ma-
trix. Determinant computation effectively captures the
complexity of the parallel class GapL, and it contains
the class of nondeterministic Logspace, NL (which in
turn contains L). It is also closely related to the class
#L, which is the natural counting class that relates to
L in the same way as #P relates to P.

Let us take this opportunity to describe known re-
sults about a close relative of the Determinant, namely,
the Permanent. The permanent problem was shown
to be #P-hard by Valiant in his seminal paper [20].
Valiant also showed how the Permanent modulo (small)
powers of 2 is solvable in P – but with no further
bounds on the parallel complexity of this last problem.

We will consider two (modular) counting problems
in this paper, one of which reduces to a determinant
computation in arbitrary graphs, and one that reduces
to a permanent computation.

First, let us give an instance of a situation where
a counting problem reduces to the computation of the
determinant of a suitably defined matrix. The classical
Matrix Tree Theorem [9] by Kirchoff (1847) states that
the number of spanning trees in a graph can be found

1

by computing the determinant of (the minor of) a ma-
trix, namely the Laplacian of the graph. The Lapla-
cian matrix of a graph is easily derived from the adja-
cency matrix of a graph, and appears ubiquitously in
expanders, connectivity computations [16], etc. We can
show that computation of the number of spanning trees
in a graph has the same complexity as that of the deter-
minant. Given this, we may thereby ask as to whether
this complexity reduces for specific graph classes, say
for instance, the class of planar graphs. Does the com-
plexity of modular counting reduce thereby? Some-
what surprisingly, the answer depends on the modulus.

Secondly, let us consider the problem of counting the
number of perfect matchings in a bipartite graph. It is
easy to see that the permanent of its adjacency matrix
exactly captures the (square of the) number of perfect
matchings in the graph, and thus, counting the number
of perfect matchings in a bipartite graph is also #P-
hard [20]. Valiant proved that finding the permanent
of a matrix modulo small powers of 2 can be done in P.
We extend this result by showing that the permanent
modulo constant powers of two can be computed in
⊕L, thus settling the complexity of the problem.

To summarize, this paper considers the following
two problems:

• computing the number of spanning trees in planar
graphs modulo 2k;

• computing the permanent of an integer matrix
modulo 2k;

In the mid-70s, H. Shank [17] formulated the the-
ory of so-called left-right cycles in planar graphs (this
concept will be defined later in the paper). There is
a connection between left-right cycles in planar graphs
and the Laplacians of planar graphs (and thereby to
modular counting of spanning trees) that is implicit
in [9]. To the best of our knowledge, this connection
has not been made explicit before this paper. For in-
stance, Eppstein [6] gives combinatorial and algebraic
characterizations for graphs with an even number of
spanning trees – but the connection to left-right cycles
is not observed therein.

We start by giving our own proof for the basic con-
nection between left-right cycles and parity of the num-
ber of spanning trees in planar graphs in Section 2, as
an illustration of the basic technique we build upon in
Section 3. Henceforth, we make modular counting our
principal focus, and having resolved the complexity of
finding out the parity of the number of spanning trees
in planar graphs in L, we move on to higher powers of
2, and to other prime moduli. We prove that we can
find out the number of spanning trees in planar graphs
modulo 2k (for constant k) in L. On the other hand,

we are able to prove tight lower bounds for the same
computation modulo primes other than 2. This is a sit-
uation common in computer science, and especially in
planar graphs where duality may make circumstances
simpler for modulus 2 compared to other moduli.

It should be mentioned that the Permanent prob-
lem enjoys a special status with regard to its easiness
modulo 2k. Let #SAT denote the problem of counting
the number of satisfying assignments of a formula. It
is known that #SAT mod 2 is ⊕P-hard; note that ⊕P
is a relatively large class – the whole of the polynomial
hierarchy (PH) randomly reduces to ⊕P [19]!

Main results and structure of the paper

We start by giving the basic definitions and present-
ing our basic techniques for modular counting of span-
ning trees in planar graphs in Section 2. In Section 3,
we expand on these techniques using tools from alge-
braic topology to prove our main result that counting
spanning trees in planar graphs modulo 2k (for con-
stant k) can be done in L.
Theorem 15 Given an integer k and a planar graph
G, the number of spanning trees τ(G) mod 2k can be
computed in space O(k2 log n).

After this, we look at other moduli and prove tight
hardness results for prime moduli p > 2 in Section 4.
Theorem 18 For prime p > 2, finding out whether
τ(G) ≡ 0 mod p for a planar graph G is complete for
ModpL.

Denote the number of spanning trees in a graph by
τ . The main results about the complexity of computing
τ are summarized in the table below.

Problem General G Planar G

τ(G) DET DET
τ(G) modulo
prime p > 2 ModpL ModpL
τ(G) modulo

2k ⊕L L

In Section 5, we consider another counting problem
modulo 2k, we prove that
Theorem 23 Finding out the PERMANENT of a ma-
trix modulo 2k (for constant k) is complete for ⊕L.

Another way of stating the above is that we can
find the last k bits of the permanent of a matrix (for
constant k) in ⊕L.

We finish with some conclusions and open problems
in Section 6.

Technical Contributions

Given that counting the number of spanning trees
in a planar graph modulo 2 is in L, it is perhaps natu-

2

ral to conjecture the same modulo 2k – for instance, it
is known that computing the determinant of a matrix
modulo 2k is no harder than computing it modulo 2 [2].
The question of modular counting of the spanning trees
in planar graphs appears to be of surprising difficulty
– and seems to require the use of algebraic topological
techniques. An interesting feature is that to compute
the number of spanning trees in a planar graph mod-
ulo 2k, one has to take recourse, in the current proof,
to higher genus realms! The proof uses a variety of
techniques from algebraic topology, such as universal
covers and homology groups. We believe techniques
developed here may be applicable to a variety of other
problems on small genus graphs, and maybe even – as
in this case – on planar graphs.

We also show how another modular counting prob-
lem, namely the number of matchings in arbitrary bi-
partite graphs modulo 2k (which is essentially the per-
manent of a suitable matrix modulo 2k) is complete for
⊕L, using LUP -decompositions. While the proof out-
lined in [2] for a similar question about the determinant
seems to involve some ad hoc techniques, our proof for
permanent modulo 2k gives a more uniform approach
to such problems – in particular we get a new, arguably
more transparent proof for the result that determinants
of matrices modulo 2k are computable in ⊕L.

2 Definitions and Basic Techniques

For definitions of Logspace and related complexity
classes, we refer the reader to [2].

In the following, we will use linear algebra over finite
fields, mostly Zp for prime p. For definitions of rank,
kernel, dimension, we refer the reader to any linear
algebra text; see [12]. For definitions of planar graphs
and their duals, spanning trees, refer to any standard
graph theory text see [9, 4].

Given a continuous closed curve C in the plane, and
a point P not lying on C, we can define a winding
number of C with respect to P : it is informally the
number of times the curve C winds around the point
P . This number is called the winding number of C with
respect to P . For a formal definition, refer to any text
in algebraic topology, say [7, 10].

We denote the (geometric) dual of a planar graph G
by G∗. We denote the number of spanning trees in a
graph G by τ(G). The adjacency matrix of the graph
will be denoted by A(G), and the Laplacian matrix of
a graph G (denoted by L(G)) is defined as the matrix
L(G) = D(G)−A(G), where D(G) is a diagonal matrix
consisting of the degree of vertex vi of the graph G in
its iith entry. In this paper we will be dealing mostly
with connected graphs G.

For instance, the Laplacian matrix of the complete
graph on three vertices, K3 is

 2 −1 −1
−1 2 −1
−1 −1 2

NOTE : We will allow multiple edges in the graphs
we consider in this paper, so for instance, the Laplacian
matrix may have off-diagonal entries that are not −1.

The Laplacian of a graph has several other remark-
able properties, for instance the Kirchoff’s Matrix Tree
Theorem:

Theorem 1. Given the Laplacian matrix L(G) of a
graph G, the number of spanning trees τ(G) in G equals
the determinant of any minor of L(G).

We now proceed with the definition of left-right cy-
cles [9].

Definition 1. Let us consider a special kind of walk
in a planar graph G. View each vertex of G as a small
disk, and each edge as a thin strip. Since each edge is
a thin strip, it has two distinct sides and we can visual-
ize traveling along the side of an edge. Select a starting
point on the graph where the side of a strip meets the
boundary of a disk. Let us form triples (v, e, s) where v
is a vertex, e is an edge, and s is a side of the edge. We
call such a (v, e, s) triple a flag. From there, walk along
the side of the edge crossing to the opposite side of the
edge when you reach the point on the edge halfway be-
tween its endpoints. On reaching the neighboring ver-
tex, walk around the boundary of the disk representing
the vertex, leaving the vertex along the side of the edge
lying in the same face as the side of the edge you have
just arrived on. Extend the walk by using the same
rules of negotiating edges and vertices. A left-right
walk is the alternating sequence of vertices and edges
encountered during such a walk, together with the start-
ing flag.

A closed left-right walk is a left-right walk that
starts and ends at the same flag. A left-right cycle
is an equivalence class of closed left-right walks under
rotation and reversal. Thus, in a left-right cycle, the
cyclic order of the vertices and edges is important and
which sides of the edges are used is important, but the
direction and the starting vertex are not.

Let c(G) denote the number of left-right cycles in a
graph G.

See Figure 1(a) for an illustration. One fact worth
noting is that the underlying sequence of the vertices
and edges in a left-right walk is a walk in the usual
sense, but distinct left-right walks may have the same
underlying walk if they start at flags on opposite sides
of the same edge. Also, it can be seen that the number

3

Figure 1. A left-right cycle and consistent colorings

of left-right cycles is independent of the embedding of
the planar graph G. Having defined left-right cycles for
planar graphs, we see that we can extend the definition
to any graph embedded on a surface.

Throughout this paper, when we consider equations
such as Lx = 0 over Z2, for L being the Laplacian of
a graph G, we will view a solution vector x as a 0 − 1
weighting or labeling of the vertices of G.

From Theorem 17.3.5 and Lemma 14.15.3 of [9], it
follows that:

Theorem 2. Given a planar graph G, the number of
left-right cycles in G is exactly equal to the co-rank of
the Laplacian L of G (over Z2). In fact, each left-
right cycle C corresponds to an element in {0, 1}|V (G)|

which is a basis element of the kernel of the Laplacian
as follows:

• Considering a specific left-right cycle C, we have
to give labels to every vertex v of G: Given C as a
closed curve in the plane, which winds around the
vertices of G, find the winding number of C with
respect to a vertex v. The parity of this winding
number is the label we give to vertex v.

By the above, we thereby get a vector x ∈ {0, 1}|V (G)|,
and this is a basis element of the kernel of L.

Defining a vector of labels x thus, corresponding to
a left-right cycle C, we say that C realizes x. Given
a vector x, and a collection of left-right cycles C =
C1, C2, · · · , Cr, we say that C realizes x if there exist
x1, x2, · · · , xr such that x = Σr

1xi and Ci realizes xi.
We give our own proof of the above theorem, which

we is extended in Section 3 to obtain new results. The
proof will follow from two claims.

Claim 3. For every left-right cycle, C, the labeling
given to the vertices v of G via the winding numbers as
in the statement of the theorem is a solution to Lx = 0
over Z2 (where L is the Laplacian matrix of G). Hence

it follows that every collection of left-right cycles C gives
a solution to Lx = 0.

Proof. Denote the set of vertices that get label 1 via
the winding numbers by A and the set of vertices that
get label 0 by B. We need to show that for every
v ∈ A, the number of neighbors w of v that belong to
B is even; also that for every v ∈ B, the number of
neighbors w of v that belong to A is even – this being
a restatement of Lx = 0 mod 2.

Consider the vertex v and let the edges incident on
v be e1, e2, · · · , ed where d is the degree of v in G. Let
these edges also be ordered according to the planar
layout of G in the neighborhood of v. Now consider
the left-right cycle C, and we observe that any time
the curve C crosses an edge ei only once, the two end-
points of the edge ei (one of them being v) get different
winding numbers (mod 2) and since v belongs to A (by
assumption) the other endpoint belongs to B. So we
are left to argue that the number of edges ei which C
crosses only once is even.

This last is now obvious once we note that whenever
the curve C approaches v via some edge ei it has to
leave via some other edge ej (j may equal i). Hence,
the total number of (ei, C) incidences is even. These
incidences can be counted differently as the number of
edges ei which are crossed singly by C and twice the
number of edges ej which are crossed twice by C (no
edge is crossed more than twice by any left-right cycle).
So the number of interest, the number of edges ei that
are crossed singly by C is even.

The other direction of the proof reads

Claim 4. For every solution x of Lx = 0, there is a
collection of left-right cycles C that realizes it.

Proof. Given that x is a solution to Lx = 0, we know
that for each vertex v in G which get label 1, the num-
ber of neighbors of v which get label 0 is even; likewise,

4

for every vertex v which gets label 0, the number of
neighbors of v which get label 1 is even. Let us de-
fine x(v) as the label that vertex v receives under the
labeling x.

Given an edge e of the graph G endowed with the
labeling x, call e monochromatic under labeling x if
the two endpoints of e receive the same value under
the labeling x, otherwise call e bichromatic.

Also if two vertices get labels 0 and 1 in a labeling
x, we will refer to them as having opposite labels.

Let us take some embedding of the graph G on the
plane, and draw all the left-right cycles. Each edge of
G is crossed twice by this collection (maybe even by
one left-right cycle).

The left-right cycles decompose the plane into re-
gions. Each vertex of G belongs to some region; some
regions do not contain any vertices and are enclosed
entirely in some face of G. We call the regions that con-
tain vertices vertex regions and the other regions face
regions. There are as many vertex regions as there are
vertices, and as many face regions as there are faces.
We color the vertex region of a vertex v in black if
x(v) = 1 and in white otherwise. We color the infi-
nite (face) region white. We color two adjacent faces
the same color if any of the edges that separate them
is monochromatic, and different colors if any of these
edges is bichromatic. If this coloring procedure is pos-
sible without any inconsistencies, we would consider
each segment and consider the XOR of the colors of
the two regions adjacent to it (one vertex region and
one face region). We would include such a segment in
the collection of left-right cycles that we are trying to
construct from x, only if the XOR is 1. For brevity, we
call this collection of segments S.

We have to prove two things:

1. The coloring in the procedure does not lead to any
inconsistencies.

2. Given a consistent coloring, we can extract out
a collection of left-right cycles by the latter part
of the procedure. In other words, S forms a dis-
joint collection of left-right cycles. Furthermore,
the vertices v for which the winding number of S
around v is odd, are exactly the ones for which
x(v) = 1.

A consistent coloring is illustrated in Figure 1(c).
First, we prove the second item: what we need to

prove is that if a segment s1 of a left-right cycle C
is included in S, then the segment s2 on C following
s1 is also in S. This would ensure that the whole of
C is in S. This is easily done by considering cases.
We only consider the case of a bichromatic edge; the
monochromatic case is similar. Suppose edge e = (a, b)

is such that a gets label 1, b gets label 0. Then by the
procedure, the vertex regions corresponding to a and b
get colors black and white respectively. Suppose that,
s1 and s2 are segments of some left-right cycle which
crosses e as in Figure 1(b). Then clearly the face region
bordering s1 has to be colored white (or else s1 would
not belong to S). But then the procedure outlined
above implies that the face region bordering s2 has to
be colored black, so that s2 also belongs to S. It is
not hard to see that by the construction x(v) = 1 iff S
has an odd winding number around v: S will cross a
monochromatic edge either 0 or 2 times, and any other
edge exactly once.

Now we prove the first item. If we are unable to
color the face regions consistently, it implies that there
is a simple closed walk γ along which the inconsistency
occurs. In other words, γ crosses an odd number of
bichromatic edges, and thus the color of the face is
supposed to change an odd number of times along the
closed curve γ.

Suppose such a γ existed. Let I be the set of
vertices which are inside the region enclosed by γ.
Consider the bichromatic edges that are crossed by
γ, it is supposed to be odd. But the number of
such bichromatic edges can also be summed up as:
Σv∈I#{vertices of opposite labels neighboring v} and
this is 0 mod 2 since we assumed that x is a solution
to Lx = 0 and thus every v has an even number of
neighbors of opposite color. This implies that a con-
tradiction cannot occur.

This completes the proof of Theorem 2. As a corol-
lary, Theorem 2 yields:

Corollary 5. [9] Given a planar graph G, the number
of spanning trees is odd iff there is exactly one left-right
cycle in G.

We also record the following:

Corollary 6. Given a planar graph G, if matrix B is
a minor of the Laplacian L(G) of G, then the co-rank
of B is exactly equal to the number of left-right cycles
in G minus 1.

3 Computing the number of spanning
trees modulo 2k

In this section we generalize the construction to
compute for a given planar graph G, the value of τ(G)
modulo 2k for a constant k in L. We first show how to
determine whether τ(G) is divisible by 2k. The strat-
egy is to reduce the problem to the problem of comput-
ing the parity of τ(G′) for a graph G′ embedded into a
constant genus surface.

5

3.1 Background: surfaces and homology
groups

We make use of some basic facts about genus g
surfaces S and their first homology group modulo 2,
H1(S)2. A comprehensive study of the surfaces and
their properties can be found in any introductory topol-
ogy text, such as [7, 15, 10]. We concentrate on genus g
orientable surfaces. For any g, such a surface Sg is just
a sphere with g “handles”. In particular, the sphere is
a genus 0 surface and the torus is a genus 1 surface.

One way to view a genus g surface is by looking at
it as a polygon with 4g edges that are glued to each
other is a certain way. This gluing is usually defined
by putting letters on the edges so that each letter ap-
pears twice. The surface is obtained by gluing the cor-
responding letters with an appropriate direction. The
converse is also partially true: if we take a polygon and
glue its edges in pairs in any fashion, there are very few
possible outcomes.

Theorem 7. (Theorem 77.5 in [15]) Let X be the
quotient space obtained from a polygonal region in the
plane by pasting its edges together in pairs. Then X
is homeomorphic either to the sphere S2, to the n-fold
torus Tn, or to the m-fold projective plane Pm.

It can be seen that if the edges that are pasted to
each other are always facing in opposite directions on
the polygon then the surface is orientable, and the re-
sulting surface cannot be a projective plane, and will
have to be a genus g orientable surface. We will use
this fact later in the section. For our purpose, one
can present a genus g surface Sg as a gluing of finitely
many triangles. A closed curve γ on Sg is just a closed
polygon on the surface, or a collection of several such
polygons. Since our analysis is carried modulo 2, we
are not concerned with the direction of the curves in γ,
because a “positive direction” (+1) is the same as the
“opposite direction” (−1).

For a genus g surface Sg, its homology group H1(S)2
is isomorphic to Z

2g
2 . Informally, for any curve, or col-

lection of curves γ in Sg there is a corresponding ele-
ment h(γ) = (x1, x2, . . . , x2g) ∈ H1(S)2 ∼= Z

2g
2 . The

xi’s can be thought of as the mod 2 “winding” num-
bers of γ around the 2g different curves β1, . . . , β2g in
Sg. We say that a curve γ is simple if the set of points
covered by γ more than once is discrete. We will use
the following properties of the homology group:

Theorem 8. 1. For two collections of curves γ1 and
γ2, if γ = γ1 ∪ γ2 then h(γ) = h(γ1) + h(γ2);

2. for a simple γ, h(γ) = 0 if and only if there is a
subregion A of S such that γ is the boundary of A,
that is, the points covered by γ are exactly ∂A.

Theorem 8 provides us with an algorithmic tool for
checking whether a given simple collection of curves γ
has homology 0. This is done by checking whether the
graph of faces which are obtained by the subdivision
of γ on Sg is 2-colorable in black and white. In such a
coloring, the black faces exactly correspond to the set
A from Theorem 8.

3.2 The surface Sg and its universal cover

As mentioned earlier, one standard description
of the surface Sg is by a 4g-gon with gluing
performed on its edges in the following order
a1b1a

−1
1 b−1

1 a2b2a
−1
2 b−1

2 . . . agbga
−1
g b−1

g . That is, the
first edge is glued with the reverse third edge, the sec-
ond edge is glued with the reverse fourth edge etc. Pre-
sentations of S1 (the torus) and S2 can be seen on Fig.
2. Note that the edges a1, b1, . . . , ag, bg correspond to
2g curves on the surface. These curves are called the
generators of Sg. If these curves are removed, we get
the original 4g-gon.

For any surface Sg there is a map p : R
2 → Sg called

the universal cover of Sg. Every point x in Sg has in-
finitely many preimages x̃ under p. These preimages
are called lifts. For any such x̃, p is a local homeomor-
phism between a neighborhood of x̃ and a neighbor-
hood of x. Furthermore, for any two preimages x̃1 and
x̃2 of x, there is a unique deck transformation t such
that t(x̃1) = x̃2 and p ◦ t = p. The universal cover of
Sg can be viewed as an infinite lamination of R

2 with
4g-gons such that every two neighbors share exactly
one of the edges. This is illustrated on Fig. 2 (right).

Finally, we define the following operation that turns
a genus g surface into a genus 2g − 1 surface.
Definition 2. For a genus g surface T , and for a func-
tion f : {a1, b1, . . . , ag, bg} → {0, 1}, the doubling of T
by f , T#fT , or T f in short, is defined as follows. If
f ≡ 0 then T f := T . Otherwise, consider the first gen-
erator on which f is not 0. Without loss of generality
suppose that f(ai) = 1 for some i. Consider two copies
of the 4g-gon of T . Denote them by T1 and T2. We
glue ai in T1 to a−1

i in T2, thus obtaining a 8g − 2-gon
T ′. We then proceed by gluing the rest of the edges of
T ′ as follows. For an edge xj in T1, if f(xj) = 0, then
xj is glued to x−1

j in T1. If f(xj) = 1, then it is glued
to x−1

j in T2. The gluing is done similarly for xj in T2.

It is not hard to see that T f is well defined. By
Theorem 7, Tf is a surface, and since it is orientable (we
always glue opposite facing edges), Tf must be a genus
k surface for some k. We can use Euler’s Characteristic
to compute k. We know that

2 − 2k = χ(T f) = F − E + V = 2 − 4g + 2 = 4 − 4g.

6

Figure 2. Examples of genus 1 and genus 2 tori (left) and of the universal cover of the torus (right)

Thus k = 2g − 1. A sample construction of T f is illus-
trated on Fig. 3.

3.3 Solving linear equations on a surface

We are now ready to present the main technical
lemma of the section.

Lemma 9. For any g and k and a graph G embedded
in a genus g surface T ∼= Sg, there is a machine that
uses O(log n + g + k log(k + g)) space and either

1. finds vectors v1, . . . , vj spanning kerL(G), with
j ≤ k; or

2. outputs “dim kerL(G) > k”.

We present the algorithm that establishes Lemma 9.
Let X = {x1, x2, . . . , x2g} be generator curves on

T . For each of the 22g functions f : X → {0, 1} we
consider the surface T f . If f 	= 0, then there is a
natural 2n-vertex graph Gf in T f obtained by taking
the union of the two copies of G such that the edges
are connected according to the new gluing in T f . The
algorithm proceeds as follows:

1. For all possible f : X → {0, 1}, compute all the
left-right curves in Gf embedded into T f ;

2. let A(f) be the collection of the left-right curves
in Gf ;

3. if |A(f)| > 4g + 2k, return “dimkerL(G) > k”;
4. otherwise, try all the possible 2|A(f)| combinations

of curves in A(f);
5. for each combination a of elements in A(f) check

whether there is a 2-coloring of the vertices of Gf

such that vertices separated by a curve are col-
ored in different colors; denote the set of vertices
colored 1 by ba; ba can naturally be viewed as a
vector in {0, 1}V (Gf);

6. let B(f) be a collection of all such vectors; note
that |B(f)| ≤ 2|A(f)|;

7. if f = 0, let C(f) = B(f), otherwise there is a
natural way to view vectors in B(f) as vectors in
{0, 1}V (G)+V (G), as V (Gf) consists of two copies
of V (G); let

C(f) = {v : (v, v) ∈ B(f)};

8.
⋃

f C(f) spans kerL(G), a basis v1, . . . , vj can be
found in space O(log n + k log(k + g) + g) using
Gaussian elimination.

All steps except step 8 take O(log n+k+g) space, be-
cause there are 22g possible f ’s and we exit if |A(f)| >
4g+2k. It remains to see that the algorithm is correct.
Proofs may be found in [1].

Claim 10. If for some f , |A(f)| > 4g + 2k, then
dim kerL(G) > k.

It is not hard to see that every element in any C(f),
and thus all the elements the algorithm outputs are
in kerL(G). It is trickier to see that any element of
kerL(G) can be obtained this way. An infinite ana-
logue of the proof of Claim 4 is used on the universal
cover of Sg.

Claim 11. For any x ∈ kerL(G) there is an f such
that x ∈ C(f), and thus is obtained by the algorithm.

3.4 Solving divisibility by 2k

We can now apply results from Section 3.3 to solve
divisibility of τ(G) modulo 2k for a planar G, as well
as some other related algebraic problems. In the case
of divisibility by 2, the fact that we can compute the
basis for the kernel of the Laplacian matrix L(G) was
sufficient. Here we will need more.

7

Figure 3. An example of T f where g = 2; the resulting surface is isomorphic to S3

Lemma 12. For any k, let A be the adjacency matrix
of an even-regular planar graph G (that is, a graph
for which G = L(G) mod 2), and let A′ be the matrix
obtained from A by removing k rows. Then there is a
Turing Machine that uses space O(log n + k log k) and
either

1. finds a basis v1, v2, . . . , vs for kerA′ with s ≤ 2k;
or

2. outputs “dim kerA′ > 2k”.

Proof. Suppose that A′ is obtained from A by removing
rows corresponding to vertices v1, v2, . . . , vk. Let G′

be the graph G with the vertices v1, . . . , vk removed.
Consider the graph G̃ on 2n − k vertices depicted on
Fig. 4. It is obtained from two copies of G′ with one
copy of the vertices v1, . . . , vk attached to both copies
of G′ as in G. Denote its adjacency matrix by Ã. Then

Ã =

|
A′ | 0

|
∗ ∗ | ∗ | }k rows

|
0 | A′

|

.

The first n and the last n entries of any element of ker Ã
form a vector in kerA′, hence dim ker Ã ≤ 2·dim kerA′.
On the other hand, for every w ∈ kerA′ there is a cor-
responding vector in ker Ã. It is obtained by assigning
the vertices in the two copies of G′ and the vertices
v1, . . . , vk in G̃ according to their corresponding val-
ues in w. Hence the projection of ker Ã on the first n
entries contains kerA′ as a subspace.

Next, we observe that G̃ can be easily embedded into
a genus k surface. This is done by putting two identical
copies of G′ on two parallel planes, and for each face of
G′ that contains a vi (or several vi’s) attaching a “tube”
between the faces in the two copies and putting vi in

the middle between the two planes. The embedding is
illustrated on Fig 4.

By Lemma 9, in space O(log n + k log k), we can
either find a basis of ker Ã or decide that dim ker Ã >
4k, in which case dim kerA′ > 2k. From a basis for
ker Ã with at most 4k elements we can compute a basis
for kerA′ in space O(log n + k).

The following lemma generalizes Lemma 12. We
omit the proof here. It can be found in [1].

Lemma 13. For any k, let A be the adjacency matrix
of a planar even-regular graph G. Let A′ be obtained
from A by

1. removing a set S of rows, with |S| ≤ k;
2. removing a set T of columns, with |T | ≤ k;
3. adding a set B of columns, |B| ≤ k.

Then there is a Turing Machine that uses space
O(log n + k log k) in case |B| = 0 and O(k log n) oth-
erwise, and either

1. outputs the basis for kerA′; or
2. outputs “dim kerA′ > 2k”.

Finally, we are ready to prove the main theorem of
the section.

Theorem 14. Given a planar graph G and a number
k, in space O(k2 log n) we can output either

1. An � ≤ k such that 2� is the highest power of 2
dividing τ(G); or

2. “2k+1|τ(G)” (the power is too big to determine).

Proof. Let A = L(G), and let A0 be its minor. We
know that τ(G) = DET(A0), hence we need to evalu-
ate the biggest power of 2 that divides DET(A0). We
do this by iteratively applying Lemma 13 at most k
times, thus obtaining an algorithm that runs in space
O(k2 log n).

8

v
1

v2 v
k

V1 V2

V
k..........

G’

G’

G’

G’

Figure 4. The graph G̃ in the proof of Lemma 12 and its embedding into a genus k surface

On the i-th iteration we have a matrix Ai that differs
from A0 in at most i rows such that the highest power
of 2 dividing DET(Ai) is equal to the highest power
of 2 dividing DET(A0) minus i. Thus we will need at
most k iterations before concluding that 2k+1 divides
DET(A0).

On iteration i we apply Lemma 13 to AT
i thus ob-

taining a linear combination of rows of Ai that adds
up to a row that only has even entries. Suppose that
the rows that yield this sum have indexes i1, i2, . . . , im.
Denote the rows of Ai by v1, v2, . . . , vn−1. Let A′

i be ob-
tained from Ai by replacing vi1 with vi1 +vi2 +. . .+vim ,
then DET(A′

i) = DET(Ai), and the i1-th row of A′
i has

all-even entries. Let Ai+1 be obtained from A′
i by di-

viding the i1-th row by 2. Then Ai+1 differs from A0

in at most i + 1 rows, and DET(Ai+1) = 1
2 ·DET(Ai).

This process continues until we either reach Ak+1

and return “2k+1|τ(G)”, or until we reach A� such that
kerA� = {0}, so that DET(A�) is odd, and we can
return 2� as the highest power of 2 dividing DET(A0) =
τ(G).

3.5 Computing τ(G) mod 2k

In the previous section we have shown how to com-
pute the highest power of 2 (up to k) that divides
τ(G) for a planar or low-genus G in L. For example
given a graph G, with k = 3 we could decide in which
set τ(G) mod 8 belongs: {1, 3, 5, 7}, {2, 6}, {4}, {0}.
We had no way, however, of determining whether
τ(G) mod 8 is 2 or 6, for example. The goal of this
section is to compute the actual value of τ(G) mod 2k.
The constructions are stated for a planar G, but work
as well for graphs embedded into a low-genus (≤ k)
surface.
Theorem 15. Given an integer k and a planar graph
G, τ(G) mod 2k can be computed in space O(k2 log n).

The remainder of the section consists of the proof
outline of Theorem 15. As a first step, we claim that
it suffices to deal with graphs whose degree is bounded
by 3.
Lemma 16. Given a planar graph G, one can compute
a planar graph G′ in space O(log n) so that τ(G′) ≡
τ(G) mod 2k, and the degrees of vertices in G′ are
bounded by 3.

Proof. Details can be found in [1].

From now on, we will assume that G has degrees
bounded by 3. The strategy of the proof is as fol-
lows. First, we assume that τ(G) is odd. We can find
a sequence of planar graphs Gn−1, Gn−2, . . . , G1 com-
putable from G in space O(log n) such that the follow-
ing conditions hold. The construction can be found in
[1].

1. for each i, Gi has i + 1 vertices;
2. for each i, Gi and Gi+1 differ from each other by

one vertex and a constant (≤ 10) number of edges;
3. G differs from Gn−1 by a constant (≤ 3) number

of edges;
4. for each i, τ(Gi) is odd (recall that we assume here

that τ(G) is odd).

Then we claim that computing τ(H1)/τ(H2) mod 2k

for “similar” graphs H1 and H2 with odd τ(H1), τ(H2)
can be done in space O(k2 log n). τ(G1) is trivial to
compute (as it only has two nodes) and the compu-
tations of τ(Gi+1)/τ(Gi) mod 2k will be performed in
parallel. Finally, we will have

τ(G) =
τ(G)

τ(Gn−1)
· τ(Gn−1)
τ(Gn−2)

· . . . τ(G2)
τ(G1)

×

τ(G1) mod 2k.

Thus, to conclude the construction we will need the
following lemma.

9

Lemma 17. For two planar graphs G1 and G2 on n
vertices that differ in ≤ c edges for some constant c,
and such that τ(G1) and τ(G2) are odd, we can com-
pute τ(G1)/τ(G2) mod 2k in space O(k2 log n).

Proof. The proof can be found in [1].

So far we have seen how to compute τ(G) mod 2k in
space O(k2 log n) in the case τ(G) is odd. To complete
the proof of Theorem 15 one needs to show how to
deal with all other cases, which follow from the odd
case. Details can be found in [1].

4 Hardness of the Laplacian rank mod-
ulo primes p > 2

In this section we show how 2 is special when it
comes to divisibility properties of τ(G) even for planar
G. It is not hard to show that computing τ(G) mod 2
for arbitrary G is ⊕L-complete. We have seen that this
is not the case for planar G (unless L = ⊕L). On the
other hand, we have the following:

Theorem 18. For prime p > 2, finding out whether
τ(G) ≡ 0 mod p for a planar graph G is complete for
ModpL.

The general idea for proving this is the following:
We will show the following chain of reductions from

the computation of rank of a general symmetric matrix
to the computing the rank of the Laplacian of a planar
graph:

RANKAdjacency ≤ RANKLaplacian

≤ RANKPlanarLaplacian

where all the RANKs are being considered over Zp.
The reductions will be such that if we start with an
adjacency matrix whose co-rank is 0, we will get a
Laplacian matrix with co-rank 1. If we start with an
adjacency matrix with co-rank at least 1, then we will
get the Laplacian matrix with co-rank at least 2, all co-
ranks being considered modulo the prime p. Then the
planarizing gadgets will transform arbitrary Laplacian
into a planar Laplacian while preserving the co-rank
modulo p. Overall, the singularity testing of a matrix
modulo p will be reduced to testing whether co-rank
of a planar Laplacian is 1 or more, i.e. whether a pla-
nar τ(G) is divisible by p or not. The idea hence is:
given an arbitrary graph Laplacian L(G), first trans-
form it into a graph Laplacian with every vertex de-
gree 0 mod p. In this transformation, we would want
to “preserve” the rank; i.e. given the rank of the new
Laplacian, we should be able to retrieve the rank of
the original graph Laplacian, and vice versa. But now

that the transformed graph (call this H) has all de-
grees 0 mod p, its Laplacian matrix is essentially its
adjacency matrix too!

Next, we replace the crossovers in this graph H to
get a planar graph H ′ which has the following proper-
ties:

• H ′ preserves co-rank of H . That is if x is a vec-
tor such that Hx = 0 (over Zp), then there cor-
responds a vector y of suitable length such that
H ′y = 0. Vice versa, for every y, there corre-
sponds an x so that the transformation preserves
co-ranks.

• every vertex in H ′ has degree 0 mod p.

So, the (planar) graph H ′ again has its adjacency
matrix (essentially) the same as its Laplacian (over Zp).
Hence, this would prove that finding the rank of planar
Laplacian matrices (over Zp), or even distinguishing
whether its corank is 1 or > 1, is hard for ModpL.
RANKAdjacency ≤ RANKLaplacian: Note
SINGULARITY and RANKAdjacency for matrices
over Zp are complete for ModpL, see [2].

We begin with a

Lemma 19. SINGULARITY modp reduces to com-
putation of rank of arbitrary graph Laplacians (over
Zp).

Proof. Consider an arbitrary matrix A. We convert
that into a Laplacian matrix L by describing a minor
of L first (call this minor L′):

0 0 0 0 0 A

0 0 0 0
. . . 0

0 0 0 A 0 0
0 0 At 0 0 0

0
. . . 0 0 0 0

At 0 0 0 0 0

where there are p A’s and p At’s on the diagonal (At

being the transpose of A).
Let L be now obtained from the above matrix L′

by adding one row and one column, so that sum of
entries in every row and column is 0. Clearly, L is the
Laplacian matrix of some graph G. Since we have p
copies of A and p copies of At, the (1, 1) entry of L
is 0 mod p, which means that for the graph G, every
vertex degree is 0 mod p (all the other diagonal entries
of L are zero since A has 0 on its diagonal). Note
that if A has full rank (i.e. co-rank 0), then L has co-
rank 1. If dim kerA ≥ 1, then then dim kerL′ ≥ p, so
dim kerL ≥ (p− 1). So if we could determine the rank
of L, we could find out if A is singular or not (over Zp).

10

For the future, we record the following direct corol-
lary of the Matrix Tree Theorem:

Claim 20. Given a graph G with Laplacian matrix L,
τ(G) is not divisible by p if and only if the co-rank of
L is 1.

RANKLaplacian ≤ RANKPlanarLaplacian: Now we
transform a non planar graph G with every vertex de-
gree 0 mod p into a planar graph H with every vertex
degree 0 mod p while preserving the co-rank. Since the
vertex degrees concerned are all 0 mod p, the Lapla-
cians are the same as the adjacency matrices.

Let A, B be the adjacency matrices of G, H respec-
tively. Since in the following we are working over Zp,
we will not mention Zp for brevity’s sake unless other-
wise necessary.

The construction consists of two stages:

1. Stage 1: Making all the intersections in the graph
simple, so that each edge would intersect at most
one other edge.

2. Stage 2: Replacing simple intersections with pla-
nar gadgets.

The details of the gadgets which effect the corre-
sponding transformations are omitted for considera-
tions of space. They can be found is [1].

Altogether, at the end of the two stages, we trans-
form G into a planar graph H which has the same co-
rank as G, and has every vertex degree 0 mod p. Hence
Theorem 18 is proved.

The modular results yield the following corollary for
the hardness of computing τ(G) for a planar G.

Corollary 21. The problem of computing the value
of τ(G) for a planar G is complete for DET under a
Logspace Turing reduction.

Proof. In fact the reduction can be made into a
Logtime-uniform TC0 Turing reduction. Given an in-
teger matrix A we need to reduce the computation of
DET(A) to a series of computations of τ(Gi) for some
planar Gi’s. Let (p1, p2, . . . , pk) = (3, 5, . . .) be an enu-
meration of the first k = nO(1) primes, starting with 3.
We may assume that A is symmetric, since computing
the determinant of symmetric matrices is complete for
DET.

By Theorem 18, computing DET(A) modulo pi is
reduced to verifying whether τ(Gij) = 0 modulo pi for
at most pi planar graphs Gij . This obviously reduces
to computing the actual value of τ(Gij). Finally, the
calculations of τ(Gij) mod pi and the reconstruction
of DET(A) from its residues modulo p1, . . . , pk can be
done in Logtime-uniform TC0 according to [11], which
completes the proof.

As the last item in this section, we prove the follow-
ing contrapuntal result for p = 2.
Theorem 22. Finding out whether τ(G) for a planar
graph G given along with its planar embedding is odd
is L-complete under AC0[2] reductions.

Proof. Since we have already shown that the problem
is contained in L, we need to show hardness for L.

The proof idea is simple: we reduce SCP – Single
Cycle Permutation (cf. [3]) to the above problem. The
problem SCP is the following: Given a permutation
presented pointwise, determine whether the permuta-
tion consists of a single cycle. Equivalently, we are
given the edges of a 2-regular graph H listed as vertex
pairs (a, b) and we are to determine if it consists of a
single cycle. The intuition is as follows: a planar graph
G has an odd number of spanning trees iff it has exactly
one left-right cycle. Given graph H , we will output a
graph G such that G is planar with an explicit embed-
ding, and H is essentially the graph derived from the
left-right cycles in G.

The main challenge of the proof is to get a G that is
given with an explicit planar embedding. The graph H
itself, for example, is 2-regular and thus planar, but we
do not have and explicit embedding of H into the plane.
Note that [3] prove SCP to be complete for L under
NC1 reductions, but we can easily verify that their
proof in fact gives completeness under AC0 reductions.

Place n points corresponding to the n vertices of H
on a circle. Consider all the edges between the n points
joined as according to H . The edges of the circle are
absent unless they are specified as being in H . We can
always arrange the points so that no three edges inter-
sect at the same point. These edges divide the plane
up into regions, which are bounded by segments. Call
two regions crossing if they intersect only in a point,
and do not share a segment. Let us color the regions in
two colors, black and white. Let the regions adjacent
to the vertices of H be colored black. Complete the
coloring such that two regions which share an edge get
opposite colors. This is always possible. Now we create
the graph G. Place a vertex vr inside each black re-
gion r. We say that vr corresponds to region r and vice
versa. We place an edge between v1 corresponding to
black region r1 and v2 corresponding to black region r2

iff the two regions r1 and r2 are crossing in the layout
(because they have the same color, they clearly can-
not share a segment). Performing this procedure for
all vertices vr, we get our graph G. See Figure 5. It
is clear from construction that G has the cycles of H
as its left-right cycles. So G has an odd number of
spanning trees iff H has exactly one cycle.

Note in the above, that if we had placed a vertex
in the unbounded region, which is colored white and

11

Figure 5. Graph G from graph H

produced a graph G′ by connecting up vertices in the
white regions (like we did above for the black regions),
we would have created the planar dual of the graph G
(which has the same number of spanning trees as G).

The reduction above can be implemented in AC0[2],
because all we need to color the regions in black and
white is a parity gate. To make sure that we get one
representative vr for each black region r we begin with
a collection of Θ(n3) points P , such that any potential
region contains at least one point. We create an equiv-
alence relation on P so that p, q ∈ P are in the same
class iff they are on the same region. Every bounded
region is convex, and hence p ∼ q iff there is no line be-
tween two vertexes of H intersecting the segment pq.
Thus the relation can be computed in AC0, and we
can obtain a unique representative vr for every black
region r.

5 The Permanent modulo powers of 2

Given a matrix A, it is clear that the permanent of
A (denoted PERM(A)) is of the same parity as that
of the determinant (denoted DET(A)). For definitions
of the permanents and determinants of matrices, see
for instance, [14]. Valiant proves in his seminal pa-
per [20], that finding out the value of the PERM of a
matrix modulo 2k (for constant k) is in P, however the
method he uses is akin to Gaussian elimination, and is
inherently sequential. Here, we prove

Theorem 23. Finding out the PERM of a matrix
modulo 2k (for constant k) is complete for ⊕L.

Hardness for ⊕L follows from the fact that for k = 1, it
corresponds to singularity of the DET (over Z2). Hence
we have to prove containment in ⊕L.

The structure of the proof will be as follows: we
first show how the question 4|PERM(A) can be re-
solved in ⊕L. We use this, along with facts about
LUP-decompositions (cf. [5]) to show how we can

find out PERM(A) mod 4 in ⊕L. After we have ac-
complished this, we can easily see how to find out
PERM(A) mod 2k (for constant k) in ⊕L. As a first
step, we prove that finding out whether 4|PERM(A)
can be done in ⊕L.

Given a n × n matrix A, we first check if DET(A)
is even. Having passed this check, we proceed to find
a solution x ∈ {0, 1}n for AT x = 0 (over Z2), and this
can be done in ⊕L. Let xt = (x1, x2, · · · , xn). This
means that the sum of the rows of A corresponding
to the xi’s which are 1 is 0 mod 2. Without loss of
generality we may assume x1 = 1. If ri denotes the ith

row of A, then replace the 1st row of A by the sum of
rows Σixi · ri to get a new matrix A′. The first row of
A′ consists only of even entries.

Let Ai denote the matrix A with the 1st row replaced
by the ith row of A (for instance, A1 = A). We can
write that PERM(A′) = ΣiPERM(Ai) · xi.

Note that each matrix Ai (for i > 1) has two rows
equal, and hence PERM(Ai) is even.

For each i > 1 and for each (j, k), build matrix Bijk

as follows: from matrix Ai, delete the 1st and ith rows
(these rows actually being equal), and delete the jth

and kth columns. Find out PERM(Bijk) mod 2. Then
we can use linearity of the permanent function to figure
out the value of PERM(Ai) mod 4.

Matrix A′ is of a slightly different form: it has
its first row which consists wholly of even entries.
Let Ci denote the matrix obtained from A′ by delet-
ing the first row and column i. We can find out
PERM(Ci) mod 2, and then use linearity of the perma-
nent to find out the value of PERM(A′) mod 4. Finally,
we have PERM(A) = PERM(A1) = PERM(A′) −
Σi>1PERM(Ai) · xi, which allows us to compute
PERM(A).

Note that the above algorithm for divisibility of the
permanent by 4 actually gives us the modulus when
PERM(A) is even. Therefore, we have to devise an
algorithm only for the case when PERM(A) is odd –
we reduce this case to the case of the Permanent being
even. We prove

Lemma 24. We can find out the exact value of
PERM(A) mod 4 in ⊕L.

Proof. Since we have dealt with the situation that
if PERM(A) is even, we can find out its value mod
4, here we need to deal with the situation where
PERM(A) is not even.

So, suppose PERM(A) is odd. We want to get hold
of a suitable cofactor of A (call this cofactor Ai,j) such
that PERM(Ai,j) is odd too. Clearly, if PERM(A) is
odd, then some minor Ai,j of A also has odd determi-
nant (hence odd permanent).

12

We observe first that given A, we can always find a
matrix C (depending on i, j) such that PERM(C) =
PERM(A) + PERM(Ai,j). This is easy to do: just
increase the (i, j)th entry of matrix A by 1 to get matrix
C. Expanding the matrix C by its ith row and using
the fact that the permanent function is linear, we get
that PERM(C) is equal to sum of the permanents of
two matrices, one of which has the same ith row as that
of A (and is equal to A), and the other has its ith row
consisting wholly of 0’s except for the jth entry which
is a 1. Expanding the second matrix by its ith row, we
find that its permanent is exactly PERM(Ai,j). This
proves the equation above.

Given the above, we give a sequential algorithm for
finding PERM(A) mod 4, and then we comment on
how to parallelize it suitably. Suppose we start with the
matrix A with odd Permanent. We can find (by check-
ing all minors of dimension n − 1) a minor Ai,j such
that PERM(Ai,j) is also odd. By the above, we can
find a matrix C such that PERM(C) equals the sum
of the odd permanents, PERM(A) and PERM(Ai,j).
Since PERM(C) is even, we can find out its value mod-
ulo 4. Thereby we can find out whether PERM(A) ≡
+PERM(Ai,j) or ≡ −PERM(Ai,j) mod 4. Now we can
continue with Ai,j in order to get a new matrix A2

(formed by removing two rows and two columns from
A) such that PERM(Ai,j) + PERM(A2) is even. We
continue this process until we reach a matrix of con-
stant dimensions, for which we can evaluate the per-
manent directly. Thus, we have a sequential process
for finding out the Permanent of a matrix modulo 4.

Let us now turn to an efficient parallelization of the
above sequential algorithm. Any matrix that is non-
singular (over the relevant field where the entries of the
matrix live) admits a decomposition of the form LUP,
where L is a lower triangular matrix, U an upper trian-
gular matrix, and P a permutation matrix. It is well
known that a matrix has a LU-decomposition over a
field , cf. [5], if and only if all its principal minors are
nonzero in the field. Over Z2, this translates to all the
principal minors being odd. In the above sequential
process, we note that if we started with a matrix which
has a LU-decomposition, then it is easy (in Logspace)
to find out its permanent modulo 4. This is because
given a matrix A′ (which has odd permanent) in the
procedure, we will not have to do any work in order to
find a minor of A′ which also has odd permanent – the
principal minor of A′ would already do the job.

Now all that is left to do is the following: given an
invertible matrix M , find a permutation matrix P such
that MP has a LU decomposition. In other words, we
want to find a permutation matrix P such that all the
principal minors of MP are odd; and the procedure for

finding this P should be in ⊕L.
For this, we closely follow the reduction given in

[5] from the above problem to the Determinant. We
show thereby that over Z2, the reduction can be im-
plemented in ⊕L. Eberly [5] reduces the problem of
finding a suitable permutation matrix P to rank com-
putations thus: suppose a matrix A = M t is nonsin-
gular over Z2 (i.e. has DET ≡ 1 mod 2), let Ai be the
n× i matrix formed from the first i columns of A, and
let Si ⊆ {1, 2, · · · , n} be the set of the lexicographically
first maximal independent subset of the rows of Ai for
1 ≤ i ≤ n (i.e Si consists of the indices of the rows of
Ai which constitute the lexicographically first maximal
independent subset).

For this purpose, let the n rows of Ai be
ri
1, r

i
2, · · · , ri

n. Consider the matrices Ak
i which have

rows ri
1, r

i
2, · · · , ri

k (for instance, A1
i consists of just the

single row ri
1, An

i = Ai). Find out the ranks of these
matrices (over Z2) for 1 ≤ k ≤ n. These can be found
in parallel in ⊕L.

Given these ranks, the lexicographically first maxi-
mal independent subset of the rows is obtained as fol-
lows:

1. The base case: Include row ri
1 in the independent

subset if and only if rank(A1
i) = 1;

2. Include row ri
j in the independent subset if and

only if rank(Aj
i) =rank(Aj−1

i)+1 (clearly, since in
the matrices Ak

i , we are increasing by a row at a
time, the difference of two adjacent ranks can be
at most 1).

It is easy to see that this set of j’s constitutes the
lexicographically first maximal independent subset of
the rows of Ai. Thereby, we find Si for each 1 ≤ i ≤ n
in ⊕L.

Now |Si| = i for 1 ≤ i ≤ n and Si ⊂ Si+1 for
1 ≤ i < n (since each Si is the lexicographically first
maximal independent subset of the rows of Ai). Set j1
to be the unique element of S1, and set ji to be the
unique element of Si − Si−1 for 2 ≤ i ≤ n. Then the
desired permutation (matrix) P is such that the ith row
of PT A is the ji

th row of A, and can be easily computed
in L. Here all the principal minors of P tA = P tM t are
odd. Thus we get the required permutation matrix P,
which we wanted, such that, MP has all the principal
minors odd.

This completes the proof that finding
PERM(A) mod 4 is in ⊕L.

Now it is easy to see how we can find out
PERM(A) mod 8 (say) in ⊕L: we would first check
whether A has an even permanent, if it does, then
we find the decomposition as in the algorithm outlined

13

above for finding out whether 4|PERM(A), finding out
all the values of the submatrices modulo 4 (this gives
us the value of PERM(A) mod 8). If A has an odd
permanent, we reduce it to the even case as above,
by finding a suitable P (as in the LUP-decomposition:
note however that we do not need to find the L, U fac-
tors), and solving the implicit system of equations mod
8. This procedure clearly generalizes to any power 2k

for constant k. This completes the proof of Theorem
23.

Note that the same method as above gives us an-
other proof that DET(A) mod 2k is in ⊕L.

6 Conclusion and Open Problems

We have shown that the Laplacian matrix for a pla-
nar graph encodes useful information for computing the
number of spanning trees, modulo small powers of 2,
but does not reduce the complexity of the same compu-
tation for odd prime moduli. One may ask, how about
the adjacency matrix? Does planarity help in comput-
ing say, the rank of the adjacency matrix of a graph
over Z2? We can also show that this is not the case; in
fact, computing the rank of the adjacency matrix of a
cubic planar graph (over Z2) is hard for ⊕L.

As we mentioned earlier, our proof that comput-
ing τ(G) mod 2k for planar G seems to take recourse
to graphs of higher genera. We also have a distinct
proof for the special case of k = 2; one that does not
go through higher genus surfaces. This last is purely
graph theoretic; unfortunately, it does not seem to ex-
tend to higher values of k. Is there a proof of The-
orem 15 that is purely graph theoretic and does not
involve higher genus surfaces when we are restricting
ourselves to planar graphs?

As mentioned in the Introduction, the PERM func-
tion is but an incarnation of the number of perfect
matchings in bipartite graphs. Taking our cue from
here, we may also ask – can we count the number of
perfect matchings in arbitrary graphs modulo 2k (for
constant k) in ⊕L? Note that for non-bipartite graphs
this problem doesn’t translate to computing a perma-
nent. We can still show that this counting question lies
in P. It is easy to see that we can indeed count them
modulo 2 in ⊕L. The complexity of the permanent
modulo non-constant powers of 2 also remains open.

Acknowledgments. We would like to thank Dror
Bar-Natan for his advice on Algebraic Topology and for
referring us to Theorem 7. We are grateful to Eric Al-
lender for encouragement to work on this problem and
thorough perusal of some of the proofs. We would like
to thank Stephen Cook for his advice on the reduction
in [3] being in AC0.

References

[1] M. Braverman, R. Kulkarni, and S. Roy. Par-
ity problems in planar graphs. Technical report,
Electronic Colloquium on Computational Complexity,
2007. Available at http://www.eccc.uni-trier.de/eccc.

[2] G. Buntrock, C. Damm, U. Hertrampf, and C. Meinel.
Structure and importance of logspace-MOD-classes. In
Symposium on Theoretical Aspects of Computer Sci-
ence, pages 360–371, 1991.

[3] S. A. Cook and P. McKenzie. Problems complete
for deterministic logarithmic space. J. Algorithms,
8(3):385–394, 1987.

[4] R. Diestel. Graph Theory. Springer Verlag, Heidel-
berg, 3 edition, 2005.

[5] W. Eberly. Efficient parallel independent subsets and
matrix factorizations, 1991.

[6] D. Eppstein. On the parity of graph spanning tree
numbers. Technical Report 96-14, Univ. of California,
Irvine, Dept. of Information and Computer Science,
Irvine, CA, 92697-3425, USA, 1996.

[7] W. Fulton. Algebraic Topology: A First Course. Num-
ber 153 in Graduate Texts in Mathematics. Springer-
Verlag, New York, NY, 1995.

[8] I. M. Gessel and X. G. Viennot. Determinants, paths,
and plane partitions.

[9] C. Godsil and G. Royle. Algebraic Graph Theory.
Springer Verlag, New York, 1st. edition, 2001.

[10] A. Hatcher. Algebraic Topology. Cambridge University
Press, 1st. edition, 2002.

[11] W. Hesse, E. Allender, and D. A. M. Barrington. Uni-
form constant-depth threshold circuits for division and
iterated multiplication. Journal of Computer and Sys-
tem Sciences, 65:695–716, 2002.

[12] K. Hoffman and R. Kunze. Linear Algebra. Prentice
Hall, USA, 2 edition, 1971.

[13] P. W. Kasteleyn. Graph theory and crystal physics.
Graph Theory and Theoretical Physics, pages 44–110,
1967.

[14] H. Minc. Permanents. Encyclopaedia of Mathemat-
ics and its Applications. Cambridge University Press,
Cambridge, UK, New Ed edition, 1984.

[15] J. R. Munkres. Topology. Prentice Hall; 2nd edition,
USA, 1999.

[16] O. Reingold. Undirected st-connectivity in log-space.
In Proceedings 37th Symposium on Foundations of
Computer Science, pages 376–385. IEEE Computer
Society Press, 2005.

[17] H. Shank. The theory of left-right paths. Combina-
torial Mathematics III, Proceedings of 3rd Australian
Conference, St. Lucia; Lecture Notes in Mathematics,
452:42–54, 1975.

[18] H. N. V. Temperley and M. E. Fisher. Dimer problem
in statistical mechanics - an exact result. Philosophical
Magazine, 6:1061–1063, 1961.

[19] S. Toda. PP is as hard as the polynomial hierarchy.
SIAM J. Comput., 20(5):865–877, 1991.

[20] L. G. Valiant. The complexity of computing the per-
manent. Theor. Comput. Sci., 8:189–201, 1979.

14

