
Computational Complexity of Euclidean Sets: Hyperbolic

Julia Sets are Poly-Time Computable

by

Mark Braverman

A thesis submitted in conformity with the requirements
for the degree of Master of Science

Graduate Department of Computer Science
University of Toronto

Copyright c© 2004 by Mark Braverman

Abstract

Computational Complexity of Euclidean Sets: Hyperbolic Julia Sets are Poly-Time

Computable

Mark Braverman

Master of Science

Graduate Department of Computer Science

University of Toronto

2004

We investigate different definitions of the computability and complexity of sets in Rk,

and establish new connections between these definitions. This allows us to connect the

computability of real functions and real sets in a new way. We show that equivalence

of some of the definitions corresponds to equivalence between famous complexity classes.

The model we use is mostly consistent with [Wei00].

We apply the concepts developed to show that hyperbolic Julia sets are polynomial

time computable. This result is a significant generalization of the result in [RW03], where

polynomial time computability has been shown for a restricted type of hyperbolic Julia

sets.

ii

Acknowledgements

First of all, I would like to thank my graduate supervisor, Stephen Cook. Our weekly

meetings not only allowed me to complete this thesis, but also gave me a much broader

and deeper understanding of the entire field of theoretical computer science. Working

with him has made my learning process a pleasant one.

I would like to thank Michael Yampolsky from the Department of Mathematics. His

guidance has allowed me to study the complex dynamical background required to deal

with Julia sets. Without his support parts of this thesis would have never been written.

I would like to thank my fellow graduate students. It was a pleasure to talk to them

both about research and other topics. I have learned a lot from them. The theory

students seminar was particularly useful.

I would like to thank my parents, Elena and Leonid, for all their support and for

encouraging me in the pursuit of my studies.

I would like to thank my girlfriend, Anna Malts, for her support and for helping me

in editing this thesis.

Last but not least, I would like to thank the University of Toronto and NSERC for

supporing me financially during my studies.

iii

Contents

1 Introduction 1

1.1 The Thesis Structure . 3

2 Computability of Real Sets 4

2.1 Computability and Complexity of Real Functions 4

2.1.1 Computable Real Numbers . 5

2.1.2 Computability and Complexity of Real Functions 8

2.2 Computability of Real Sets . 12

2.2.1 Global Computability of Compact Sets 13

2.2.2 Local Computability of Compact Sets 17

2.2.3 Ko Computability of Compact Sets 23

2.2.4 Computability of Compact Sets: Summary 28

2.2.5 Examples of Computable Sets . 28

2.2.6 A Comparison With the BCSS Approach 31

2.3 Connecting Computable Functions with Computable Sets 32

2.3.1 The Continuous Functions Case 32

2.3.2 The Non-Continuous Functions Case 34

3 Computational Complexity of Real Sets 35

3.1 Defining the Complexity of Sets . 35

3.1.1 The Global Complexity . 35

iv

3.1.2 The Local Complexity . 37

3.1.3 The Intuition Behind the Local Complexity 38

3.2 Comparing the Local Complexity Definitions 39

3.2.1 Distance P-Computability vs Poly-Time Computability 39

3.2.2 Poly-Time Computability vs Ko P-Computability 45

3.2.3 Comparing Local and Global Poly-Time Computability 49

4 Complexity of Hyperbolic Julia Sets 52

4.1 Introduction . 52

4.2 Julia Sets and Hyperbolic Julia Sets . 54

4.3 The Poincaré Metric . 56

4.4 Hyperbolic Julia Sets are Ko P-Computable 58

4.4.1 Nonuniform constants information 59

4.4.2 The Main Construction . 60

4.4.3 The Algorithm . 70

4.5 Jp is Poly-Time Computable . 71

4.5.1 Estimating the Distance from Jp 72

4.5.2 The Algorithm . 73

4.5.3 Analysis of Algorithm 2 . 75

4.5.4 Improving Algorithm 2 . 77

4.6 Uniformizing the Construction . 78

4.7 Can the Results be Improved? . 80

5 Directions of Future Work 82

5.1 Extending the Definition of Computable Functions 82

5.2 Computability and Complexity of Julia Sets of Other Types 84

5.3 Noncomputable Julia Sets . 84

5.4 Computability and Complexity of Mandelbrot’s Set 85

v

5.5 Computability in Other Dynamical Systems 86

5.6 Church’s Thesis . 86

Bibliography 88

vi

Chapter 1

Introduction

The questions of computability and complexity in the standard discrete setting have

been extensively studied during the past 70 years in the framework of the computability

and computational complexity theory. The main objects to be computed in this setting

are languages L ⊂ {0, 1}∗ and functions f : {0, 1}∗ → {0, 1}∗. Every basic object we

operate with in this setting is just a finite string w ∈ {0, 1}∗ which is presented as a

finite sequence of bits. The standard model of computation in this setting is the Turing

Machine, which is computationally equivalent to the ordinary RAM computer.

In this work we investigate questions concerning the computability and complexity of

subsets of the Euclidean space Rk. Some work has to be done to formalize computability

in this setting because the basic objects are now points in the uncountable set Rk, which

cannot be encoded as finite strings and stored on an ordinary computer. Different models

for this setting has been proposed and studied. Works on the subject include [BCSS],

[BW99], [CK95], [Ko91], [PR89], [TW98], [Tur36] and [Wei00]. Most of these focus on

the computability of real functions, functionals (functions on functions) and operators,

with set computability being a by-product of the more general discussion.

In contrast, we mainly focus on the computability and complexity of sets with func-

tion computability as a background. We present five different definitions of real sets

1

Chapter 1. Introduction 2

computability and show that they are all equivalent. These definitions are consistent

with [Wei00], [BW99] and one of the definitions in [CK95]. Intuitively, these definitions

are concerned with the possibility of “drawing” the set with an arbitrarily high precision

provided as a parameter. It should be noted that our approach is very different from the

Blum, Cucker, Shub and Smale approach presented in [BCSS]. We believe that the def-

inition we chose better achieves the goal of understanding the true hardness of drawing

a set.

It is natural to define the computational complexity T (n) of a set as the time needed

to generate a 2−n-precise image of it. Here, however, the five definitions are no longer

equivalent, because their concept of “generating a 2−n-precise image” is different. More-

over, it can be shown that some of them are unconditionally nonequivalent, while others

are equivalent if and only if P = NP , which is unlikely.

The main real set complexity definition we choose is the one that measures the cost

of “zooming” into the set on a fixed-resolution display. This notion is easily made math-

ematically precise. The same definition has been discussed in [Wei00] and was used

in [RW03] when discussing the complexity of some Julia sets. We establish some new

connections between this and other set complexity definitions.

We then study the complexity of hyperbolic Julia sets. Julia sets are an example of a

very simple iterated process on the complex plane C which yields very complicated fractal

sets in the limit. These sets are not only extremely interesting mathematical objects, but

also have amazing graphical images, which makes drawing them an even more exciting

problem. [Mil00] is a good source of further information on Julia sets.

Hyperbolic Julia sets are a particularly nice type of Julia sets with a relatively well

understood structure. We show that all hyperbolic Julia sets are poly-time computable

under the definition mentioned above. This result is a direct generalization of [RW03],

where poly-time computability has been shown for a set of hyperbolic Julia sets of degree

2. We then argue that the same result cannot be extended far beyond the hyperbolic

Chapter 1. Introduction 3

case.

We conclude with some open problems and ideas for future research.

1.1 The Thesis Structure

In section 2.1 we begin with some standard definitions of the computability and com-

plexity of real functions. In section 2.2 we present five definitions of set computability.

We show that they are all equivalent, give some examples of computable sets and pro-

vide a brief comparison with the BCSS approach from [BCSS]. We conclude the chapter

with section 2.3, where we provide a new connection between the computability of a real

function and the computability of its graph as a set.

In chapter 3 we extend our discussion from computability to the computational com-

plexity of real sets. As mentioned above the definitions are no longer equivalent in the

complexity setting. In section 3.1 we present the set complexity and poly-time com-

putability definitions, and in section 3.2 we establish the relation between the different

definitions of poly-time computability (which are no longer equivalent).

In chapter 4 we prove that hyperbolic Julia sets are poly-time computable under the

definition established in chapter 3. Sections 4.1–4.3 provide the general background on

some complex dynamics. We refer the interested reader to [Mil00] for more information.

Sections 4.4–4.6 build up towards a uniform poly-time algorithm for computing hyper-

bolic Julia sets. In section 4.7 we argue that the result cannot be extended much beyond

the hyperbolic case.

In chapter 5 we discuss some open problems and directions for future work. We offer

some ideas for future research in general real computability theory (section 5.1), com-

putability in complex dynamics (sections 5.2–5.4) and general computability of physi-

cal/dynamical systems (sections 5.5–5.6).

Chapter 2

Computability of Real Sets

2.1 Computability and Complexity of Real Functions

The questions of computability and complexity of real functions is of tremendous impor-

tance both from the theoretical and practical point of view. The majority of scientific

computations rely on our ability to perform computations over the reals both correctly

and efficiently. The computations can vary from performing simple arithmetical oper-

ations to solving systems of complex partial differential equations. These problems are

usually addressed by the field of numerical analysis. Similarly to the traditional com-

plexity theory in the case of discrete algorithms, one would like to have a framework

which addresses the complexity of the computational problems in the continuous world.

Addressing these issues is the primary goal of the real function computability and com-

plexity field.

Numerous scientific papers and several books have been written on the subject, see

[BCSS], [Ko91], [PR89], [TW98] and [Wei00], for example. In contrast to the discrete

case, where the vast majority of researchers accepts the Turing Machine as the model

of computation, there is no such consensus in the continuous case. For example, the

definitions for computability of real functions in [BCSS] and [Ko91] are far from being

4

Chapter 2. Computability of Real Sets 5

equivalent.

In the model of [BCSS] we allow the machines to store real numbers with infinite

precision and to perform basic arithmetic operations on them in one unit of time, but

also require the output to be the precise value of the function f . In the model of [Ko91],

on the other hand, we can only perform bit operations as an ordinary Turing Machine,

but our goal is also much more modest: given a good rational approximation of the

input x, to compute a good rational approximation of f(x). The latter model is much

better for describing the real-life scientific computation processes. These computations

are usually performed using rational numbers of some precision (e.g. 32 or 64 bits), and

output an approximate answer with some estimate of the computational error. This will

be the model of our choice in the present work. This model is essentially equivalent to

the models discussed in [PR89] and [Wei00].

2.1.1 Computable Real Numbers

There are countably many Turing Machines and uncountably many real numbers. Thus

we cannot expect to be able to represent any real number x using some TM M. This

makes the notion of the computability for real numbers interesting: a real number is

computable if and only if it can be approximated arbitrarily well by a TM. We present

here one of the common equivalent definitions for the computability of real numbers, see

[Ko91], [Ko98] and [Wei00] for more details.

We are using dyadic approximations to represent numbers. The set of the dyadic

numbers is defined as follows.

Definition 2.1.1 The set of the dyadic numbers D is defined by

D =
{ p

2r
: p ∈ Z, and r ∈ N

}

Note that dyadic numbers always have a finite binary presentation. All the results in

this work would be the same with the set Q of rationals instead of D, but the proofs and

Chapter 2. Computability of Real Sets 6

the presentation are generally nicer with D.

We can now define a computable real number.

Definition 2.1.2 A real number x ∈ R is computable if and only if there exists a Turing

Machine Mx(n), such that on an input n Mx(n) outputs a dyadic number d ∈ D such

that |x − d| < 2−n.

The definition above is very robust, and is equivalent to other definitions for com-

putable numbers. To illustrate this we prove that the definition is equivalent to another

definition, which is essentially the definition originally given by Turing in [Tur36].

Theorem 2.1.3 For a real number x the following are equivalent.

1. x is computable as per definition 2.1.2,

2. there exists a Turing Machine M2
x that outputs the binary expansion of x,

3. for any d there exists a Turing Machine Md
x that outputs the expansion of x in base

d (in particular, one can take d = 10).

Proof: We will only prove (1) ⇔ (2), the proof that (1) ⇔ (3) is very similar.

(1) ⇒ (2) There are two cases:

Case 1: x has a finite binary presentation. In this case M2
x just prints the finite

binary presentation of x and then gets into an infinite loop of printing zeros.

Case 2: x doesn’t have a finite binary presentation. For simplicity we can as-

sume that x ∈ [0, 1] (the integer part of x does not affect its computability properties).

We need to give an algorithm of outputting the i-th binary digit of x. Suppose we have

already found the first i − 1 digits of x. Denote them by 0.d1d2 . . . di−1. We need to

determine di. Denote q = 0.d1d2 . . . di−11. x does not have a finite binary presentation,

hence x 6= q. So there is an n such that |x−q| > 2 ·2−n, and by using Mx to query x with

increasingly high precision we can eventually determine (after reaching the precision of

2−n) whether x > q or x < q. If x < q output bi = 0 and if x > q output bi = 1.

Chapter 2. Computability of Real Sets 7

Note that if we run this algorithm with x = q, it will never terminate, hence the

condition x 6= q is essential here.

(2) ⇒ (1) Denote the first n binary digits M2
x outputs by qn = 0.d1d2 . . . dn. Then

q ∈ D and |x − q| < 2−n, hence qn is a good output for Mx(n).

It follows from definition 2.1.2 that there can only be countably many computable real

numbers, since there are only countably many Turing Machines. There are uncountably

many real numbers, and hence “most” real numbers are not computable. In particular,

the Lebesgue measure of the set of computable numbers is zero.

On the other hand, many “commonly used” real numbers are computable. All the

rational numbers are obviously computable. All the algebraic numbers are computable,

since we can apply the Newton-Raphson method to obtain an arbitrarily good approx-

imations of the roots of a given polynomial. Many commonly used transcendental real

numbers are also computable. For example e is computable, since e can be written as

e =
∑∞

n=0
1
n!

, and we can obtain arbitrarily good dyadic approximations of e using this

series (which we, in fact, do). π is also computable, one (not the most efficient) way to

compute π is using the series π = 4 tan−1(1) = 4
∑∞

n=0
(−1)n

2n+1
.

To obtain an example of an uncomputable number, consider a non-recursive predicate

A : N → {0, 1}. Then according to part (2) of theorem 2.1.3, the number xA =
∑∞

n=1
A(n)
2n ,

cannot be computable, since the binary presentation of xA is xA = 0.A(1)A(2)A(3)

One can define the time complexity of real numbers along the lines of definition 2.1.2.

Here, and later in this work, the notation M(n) stands for a Turing Machine M with n

given as a parameter on the input tape. In a slight abuse of notation, we interchange the

Turing Machine M with the function M(n) computed by it.

Definition 2.1.4 A real number x ∈ R is said to be computable in time T (n) if and only

if there exists a Turing Machine Mx(n), such that on an input n Mx(n) runs in time

T (n) outputs a dyadic number d ∈ D such that |x − d| < 2−n. In particular, x is said to

be polynomial time computable if it is computable in time p(n) for some polynomial n.

Chapter 2. Computability of Real Sets 8

It is also obvious how to define the space complexity of a number x.

It should be noted that the time complexity version of theorem 2.1.3 does not hold in

general. In other words, there is a number x which is polynomial time computable under

the definition (1) of theorem 2.1.3, but not under definition (2) of the same theorem.

2.1.2 Computability and Complexity of Real Functions

The basic idea behind any function computability definition is that given an input x,

we want to output the value f(x) of the function f on the input x. In the case of real

functions, the space of the parameters (Rk) is uncountable, hence we cannot represent

the inputs by finite binary strings. Instead, we will be using the notion of an oracle

machine to define the computability of real functions (see [Ko91] for example).

Definition 2.1.5 Let φ : {0, 1}∗ → {0, 1}∗ be an arbitrary function. An oracle Turing

Machine Mφ with oracle φ is a Turing Machine, which in addition to the ordinary working

tape is equipped with a query tape and two states: the query state and the answer state.

When the machine enters the query state it replaces the string s currently on the query

tape by φ(s), moves the head to the first cell of the query tape and puts the machine in

the answer state.

For time complexity purposes the operation of querying φ requires one time unit.

The definition extends very naturally to a machine Mφ1φ2...φk with k oracles. We use

oracles to represent real numbers. Formally,

Definition 2.1.6 We say that the oracle φ : N → D represents the real number x if for

every n ∈ N, |x − φ(n)| < 2−n. In other words, φ provides an arbitrarily good dyadic

approximation of x.

Note that for a computable number x it is possible to substitute the oracle φ(n) for

x by a machine M(n) computing x.

Chapter 2. Computability of Real Sets 9

We give the definition for computability of real functions based on the definition from

[Ko91] (see also [Ko98]).

Definition 2.1.7 A function f : S → R, where S ⊂ R is computable if there exists an

oracle Turing Machine Mφ(n) such that whenever φ represents a number x ∈ S, Mφ(n)

outputs a dyadic yn ∈ D such that |f(x) − yn| < 2−n.

The definition extends naturally to f : S → R, where S ⊂ Rk for an arbitrary k. In

this case we require the existence of an oracle machine Mφ1φ2...φk(n) such that whenever

φi represents xi for i = 1, 2, . . . , k and (x1, x2, . . . , xk) ∈ S, Mφ1φ2...φk(n) outputs a dyadic

yn ∈ D such that |f(x1, x2, . . . , xk) − yn| < 2−n.

As in the case of computable numbers, there are only countably many computable

functions, and hence “most” functions are not computable. In particular the constant

function f(x) = a for all x ∈ R is computable if and only if the real number a is com-

putable, hence even this simple kind of functions is not computable for all but countably

many a’s.

On the other hand, just as in the case of numbers most “common” functions are

computable on a suitable domain. Examples of computable functions are: polynomials

and rational functions on an appropriate domain, trigonometric, exponential functions

etc. For example, the function ex is computable on R using the Maclaurin series expansion

ex =
∑∞

n=0
xn

n!
, which converges on the whole R. It is also easy to see that a composition

of two computable functions is computable.

One of the most important properties of computable functions is that they are con-

tinuous (cf. [Ko98], Prop. 2.5; [Wei00], Thm. 4.3.1). We will prove this fact here to

illustrate the concept of computability for functions.

Theorem 2.1.8 Let f : S → R be a computable function on S ⊂ Rk, then f is continu-

ous on S.

Chapter 2. Computability of Real Sets 10

Proof: We will prove the theorem for k = 1. The proof for a general k works exactly

in the same way.

Denote the machine computing f on S by Mφ(n). Let x ∈ S be any number in S.

Suppose ε > 0 is given. We would like to find a δ > 0 such that |f(x) − f(y)| < ε

whenever |x − y| < δ. Let n be such that 2 · 2−n < ε.

Suppose that the binary presentation of x is l + 0.d1d2 . . . for some l ∈ Z. Let φ be

an oracle for x which on input m outputs a dyadic number l + 0.d1d2 . . . dmdm+1 ∈ D so

that |x − d| < 2−m, as required by the definition of an oracle. Then the machine Mφ on

input n will output a number yn such that |f(x) − yn| < 2−n. Suppose that the largest

number with which M queries φ is r. Denote z = l + 0.d1d2 . . . drdr+1. Then for any

w such that |w − z| < 2−r the answers of φ for x are also valid answers for w (because

Mφ(n) queries x only with precision up to 2−r). Hence Mφ(n) must also work for any

such w. So |f(w) − yn| < 2−n for any such w ∈ S.

Set δ = 2−(r+1). If |x − y| < δ for some y ∈ S, then |y − z| ≤ |y − x| + |x − z| <

δ + 2−(r+1) = 2−(r+1) + 2−(r+1) = 2−r, hence |f(y) − yn| < 2−n, and |f(x) − f(y)| ≤

|f(x) − yn| + |f(y) − yn| < 2−n + 2−n = 2 · 2−n < ε, which completes the proof.

Theorem 2.1.8 implies that some very simple discontinuous functions are not com-

putable. For example, the step function

χ[0,∞)(x) =

0 if x < 0

1 if x ≥ 0
(2.1)

is not computable on R. The intuitive reason is, that on input x = 0 querying x with

arbitrarily high precision will not help us to determine the value of the function. On

the other hand χ[0,∞) is easily seen to be computable on R\{0}. We will return to this

example later in this work.

We define the complexity of a real function f along the lines of definition 2.1.7.

Definition 2.1.9 A function f : S → R, where S ⊂ R is computable in time T (n) if

there exists an oracle Turing Machine Mφ(n) such that whenever φ represents a number

Chapter 2. Computability of Real Sets 11

x ∈ S, Mφ(n) terminates after no more than T (n) steps and outputs a dyadic yn ∈ D

such that |f(x) − yn| < 2−n.

We say that f is computable in polynomial time if there is a polynomial p(n) such

that f is computable in time p(n).

Definition 2.1.9 extends naturally to domains of higher dimension and to the space

complexity of a function.

Note that the step function (2.1) is not computable in poly-time on R\{0} since it

could take arbitrarily long to determine whether the input x is positive or negative. On

the other hand, this function is computable in constant time on R\(−ε, ε) for every ε > 0,

since we only have to query the input with fixed precision ε to determine the exact value

of the function.

Most “common” functions mentioned above are poly-time computable. On the other

hand, basic operations on poly-time computable functions might not yield a poly-time

computable function. The properties of basic operations on poly-time computable func-

tions and their complexity have been studied in numerous papers. Many results in this

direction are presented in [Ko91] and [Ko98]. We will present only two of them to give

the reader a general idea on the type of these results.

The first result deals with the complexity of the maximization of a poly-time com-

putable function. The result says that performing maximization in poly-time is as hard

as solving NP-complete problems. ([Ko98], Cor. 3.8; see also [Fri84]).

Theorem 2.1.10 The following are equivalent:

1. P=NP

2. For each poly-time computable f : [0, 1]2 → R, the function g(x) = max{f(x, y) :

0 ≤ y ≤ 1} is poly-time computable.

3. For each poly-time computable f : [0, 1] → R, the function h(x) = max{f(y) : 0 ≤

y ≤ x} is poly-time computable.

Chapter 2. Computability of Real Sets 12

4. For each poly-time computable f : [0, 1] → R that is infinitely differentiable (i.e.

f ∈ C∞[0, 1]), the function k(x) = max{f(y) : 0 ≤ y ≤ x} is poly-time computable.

The second result deals with the complexity of the integrals of poly-time computable

functions. It says that the complexity of an integral of a poly-time computable function

is equivalent to the complexity of #P. ([Ko98], Cor. 3.22; see also [Fri84] and [Ko86]).

Theorem 2.1.11 The following are equivalent:

1. FP= #P.

2. For each poly-time computable f : [0, 1] → R, the function g(x) =
∫ x

0
f(t)dt is

poly-time computable.

We will be using the notions of real functions computability introduced above in our

discussion on the computability of real sets in the next section.

2.2 Computability of Real Sets

In this section we will present several equivalent definition of the computability of real

sets. We will mainly concentrate on questions of computability of compact subsets of Rk.

A subset of Rk is compact if and only if it is closed and bounded. We denote the set of all

compact subsets of Rk by K∗
k, we omit the k and just write K∗ whenever the dimension

is obvious from the context.

The computability of compact sets has been discussed in [CK95], [BW99], [RW03]

and especially in [Wei00]. The definitions presented here are equivalent to the corre-

sponding definitions in these works. We will present different definitions, arising from

the mathematical and the computer graphics perspective, and then show that all of them

are equivalent.

We classify the definitions into two main groups: global computability is concerned

with “computing” the entire set at once, while local computability addresses the possibility

Chapter 2. Computability of Real Sets 13

of “computing” small local portions of the set. We will show that all these definitions

are equivalent, but the distinction will come useful when discussing the complexity of the

sets.

2.2.1 Global Computability of Compact Sets

For the rest of the section we fix C to be a compact subset of Rk. For the global

computability purposes we want to know whether a Turing Machine can “compute” the

entire set C with an arbitrarily good precision. The main question is what do we mean

by computing the entire set C.

For the first definition we use the computer graphics intuition. Suppose that the

dimension is k = 2. To compute, or to “draw”, C we would like to output an image

which is a union Un of some simple objects, say filled circles which will be the picture of

C. Here n is the precision parameter, controlling the “quality” of the picture. There are

two requirements from Un:

1. Un covers C, i.e. C ⊂ Un, and

2. Un does not contain points which are far from C, in other words for every u ∈ Un

there is a c ∈ C such that |u − c| < 2−n.

Another way to formalize the second condition is using the following notation.

Definition 2.2.1 We fix the following notations:

• For a point x ∈ Rk we denote by B(x, r) the open ball of radius r around x:

B(x, r) = {y : |x − y| < r}.

• For a point x ∈ Rk we denote by B(x, r) the closed ball of radius r around x:

B(x, r) = {y : |x − y| ≤ r}.

• For a set S ⊂ Rk we denote by B(S, r) the open r-neighborhood of S: B(S, r) =

{y : ∃x ∈ S such that |x − y| < r} =
⋃

x∈S B(x, r).

Chapter 2. Computability of Real Sets 14

With these notations the second condition above becomes Un ⊂ B(C, 2−n).

To formalize the definition of the computable real sets we need to decide what kind

of circles do we allow to use in constructing Un. We want the Turing Machine computing

C to output Un. A Turing Machine can only operate with finite binary strings, hence it

is reasonable to make Un a finite union of filled circles with dyadic centers and dyadic

radii. We denote this class of sets by Ck:

Ck =

{

l
⋃

i=1

B(xi, ri) ⊂ Rk : l ∈ N, xi ∈ Dk, ri ∈ D

}

(2.2)

we omit the k and just write C when the dimension is clear from the context. There is

a very natural encoding of sets from C using binary strings. Un which is the “picture”

of C discussed above is from C2. We can now summarize the discussion in the following

short definition.

Definition 2.2.2 A compact set C ⊂ Rk is said to be globally computable if there

exists a Turing Machine M(n) which on input n outputs an encoding of a set Un ∈ Ck

such that C ⊂ Un ⊂ B(C, 2−n). In this case we say that M(n) globally computes C.

Note that for k = 2 this definition corresponds to the intuitive discussion in the begin-

ning of the section. It is easy to see that the definition would be completely equivalent

if we used the rationals Q instead of the dyadic numbers D in the definition of Ck in

(2.2). Figure 2.1 illustrates definition 2.2.2 in dimension 2. The disks on the figure give

a picture of the set C.

To illustrate the concept of global set computability we prove the following simple

lemma.

Lemma 2.2.3 For any c ∈ R, the singleton C = {c} is computable if and only if the

number c is computable as per definition 2.1.2.

Proof: C is computable ⇒ c is computable. Let M(n) be a machine computing the

set C. We would like to use it to approximate the number c with an arbitrarily good

precision.

Chapter 2. Computability of Real Sets 15

Figure 2.1: An illustration of definition 2.2.2: the disks give a picture of the set C.

On an input n we first run M(n) and obtain a set Un satisfying definition 2.2.2 for C.

Let x1 ∈ D be the center of the first ball in Un. Then x1 ∈ Un ⊂ B(C, 2−n) = B(c, 2−n).

Hence |x1 − c| < 2−n, and we can output x1 as a 2−n dyadic approximation of c. This

shows that the number c is computable.

c is computable ⇒ C is computable. Let M(n) be a machine computing the number

c. We would like to use it to compute the set C with precision 2−n as per definition 2.2.2.

On an input n we first run M(n+1) to obtain y = yn+1 ∈ D such that |c−y| < 2−(n+1).

We output Un = B(y, 2−(n+1)) ∈ C.

We need to show that Un satisfies the conditions of definition 2.2.2. |c− y| < 2−(n+1),

and hence c ∈ B(y, 2−(n+1)) = Un. On the other hand, y ∈ B(c, 2−(n+1)) and hence

Un = B(y, 2−(n+1)) ⊂ B(c, 2−(n+1) + 2−(n+1)) = B(c, 2−n) = B(C, 2−n), which completes

the proof.

The second global definition for computability we give is very similar to the first one

but is motivated differently. In the case of real numbers in definition 2.1.2 on input n we

were outputting a dyadic 2−n-approximation of x in the Euclidean metric, which is the

natural metric on R. In the case of real sets, on input n we would like to output a set Vn

Chapter 2. Computability of Real Sets 16

from C, which is a 2−n-approximation of C in the Hausdorff metric, which is the natural

metric on K∗ – the set of the compact sets.

We start by introducing the definition of the Hausdorff metric.

Definition 2.2.4 Let S, T ∈ K∗
k be two compact subsets of Rk. Then the Hausdorff

distance dH between S and T is defined by

dH(S, T) = inf {r : S ⊂ B(T, r) and T ⊂ B(S, r)} (2.3)

In particular, note that if S = {s} and T = {t} are singletons, then dH(S, T) = |s− t|

– the ordinary Euclidean distance between s and t.

Figure 2.2: An illustration of the Hausdorff metric

On figure 2.2 we see an illustration of the Hausdorff metric. On the left picture the

set A is contained in a small neighborhood of the set B and vice versa and the sets are

close to each other in the Hausdorff metric. On the right picture, we need to take a large

neighborhood of A to cover B, and the sets are far in the Hausdorff metric.

We can now say that a set C is Hausdorff approximable, if we can approximate C

arbitrarily well by set from C is the metric dH . Formally,

Chapter 2. Computability of Real Sets 17

Definition 2.2.5 We say that a compact set C ⊂ Rk is Hausdorff approximable,

if there exists a Turing Machine M(n) which on input n outputs an encoding of a set

Vn ∈ Ck such that dH(C, Vn) < 2−n.

We would like to prove that the two definitions are, in fact, equivalent.

Theorem 2.2.6 Definitions 2.2.2 and 2.2.5 are equivalent. That is, a compact set C is

globally computable if and only if it is Hausdorff approximable.

Proof: C is globally computable ⇒ C is Hausdorff approximable. This direction is

trivial. Suppose that M(n) globally computes C, and denote the output of M(n) by

Un ∈ C. C ⊂ Un ⊂ B(C, 2−n), and hence by definition 2.2.4, dH(C,Un) < 2−n and Un is

a 2−n-approximation of C in the Hausdorff metric.

C is Hausdorff approximable ⇒ C is globally computable . Suppose that M(n)

Hausdorff approximates C. We run M(n+1) to obtain a 2−(n+1)-Hausdorff approximation

V = Vn+1 ∈ C of C. Write V =
⋃l

i=1 B(xi, ri). Then B(V, 2−(n+1)) =
⋃l

i=1 B(xi, ri +

2−(n+1)) ∈ C. Denote Un = B(V, 2−(n+1)). dH(C, V) < 2−(n+1), hence V ⊂ B(C, 2−(n+1))

and C ⊂ B(V, 2−(n+1)) = Un. We have Un = B(V, 2−(n+1)) ⊂ B(B(C, 2−(n+1)), 2−(n+1)) =

B(C, 2−n), hence C ⊂ Un ⊂ B(C, 2−n), and Un is a valid 2−n-approximation for globally

computing C, which completes the proof.

Both definitions 2.2.2 and 2.2.5 address the issue of the global computability of C, i.e.

computing the entire set C. In practice, however, we are often interested only in drawing

a small portion of C. The difference becomes especially substantial when discussing the

computational complexity of C. In the next section we will develop tools to address local

computability of C.

2.2.2 Local Computability of Compact Sets

The difference between local and global computability is similar to the difference between

deciding a language L and listing all the words of length n in L. Note that unlike the

Chapter 2. Computability of Real Sets 18

discrete case we cannot expect an oracle Turing Machine to decide whether x is in the

set C or not. If such a machine existed, it would have been computing the characteristic

function χC . The function χC is not continuous unless C = ∅ or C = Rk, and hence it

cannot be computable by theorem 2.1.8.

As in the global case, we will not require “sharp” answers, but rather allow some

“gray area”, for which the answer can be either way. More precisely, for a parameter n

we try to draw one pixel of the image of C on a 2−n-grid. We would like to draw a pixel

if its center is 2−n-close to C and not draw it if its center is 2 · 2−n-far from C. To obtain

a good global picture of C it is enough to consider all the pixels with centers on the 2−n

grid. Formally, we define:

Definition 2.2.7 We say that the compact set C ⊂ Rk is locally computable, if there

is a Turing Machine M(d, n), which computes a function from the family

f(d, n) =

1 if B(d, 2−n) ∩ C 6= ∅

0 if B(d, 2 · 2−n) ∩ C = ∅

0 or 1 otherwise

(2.4)

here d ∈ Dk is a dyadic point, and n is a natural number.

This definition is very similar to the definitions in [BW99], [Wei00] and [RW03].

Informally, we see that making one evaluation of f amounts to deciding whether to put

one pixel on the image of C or not. On figure 2.3 we see some sample values of the

function f .

Our first goal is to show the equivalence of the local and global computability.

Theorem 2.2.8 Definitions 2.2.2 and 2.2.7 are equivalent. That is, a set is globally

computable if and only if it is locally computable. If C is computable according to either

of these definitions, we just say that C is computable.

Proof: C is globally computable ⇒ C is locally computable.

Chapter 2. Computability of Real Sets 19

Figure 2.3: Sample values of f . The radius of the inner circle is 2−n.

To compute a function f from the family (2.4) on input (d, n) we first compute the

2−(n+1)-picture Un+1 ∈ Ck of C using the machine provided by the definition of the global

computability. We can then easily check, using simple operations on dyadic numbers

whether B(d, 2−n) ∩ Un+1 is empty or not. If it is empty, output 0, otherwise, output 1.

C ⊂ Un+1, so if B(d, 2−n) ∩ C 6= ∅, then B(d, 2−n) ∩ Un+1 6= ∅, and we will output 1

in this case.

On the other hand, Un+1 ⊂ B(C, 2−(n+1)). Assuming B(d, 2 · 2−n) ∩ C = ∅, we have

d(d, C) ≥ 2 · 2−n, and d(d, Un+1) ≥ 2 · 2−n − 2−(n+1) > 2−n. Hence B(d, 2−n) ∩ Un+1 = ∅,

and we will output 0 in this case.

C is locally computable ⇒ C is globally computable.

C is bounded, hence there is an M > 0 such that C ⊂ [−M,M]k. Denote by Gn the

2−n gridpoints in [−(M +1),M +1]k. Given and f(d, n) as in (2.4) computing C locally,

Chapter 2. Computability of Real Sets 20

we give the global picture Un as follows

Un =
⋃

{

B(d, 2−(n+2)) : d ∈ Gn+c and f(d, n + 2) = 1
}

. (2.5)

Here c is a small constant such that 2c−2 >
√

k. Obviously Un ∈ Ck. We need to see that

C ⊂ Un ⊂ B(C, 2−n).

For any x ∈ C, there is a gridpoint d ∈ Gn+c such that |d − x| < 2−(n+2). For this

point f(d, n + 2) outputs 1, and so x ⊂ B(d, 2−(n+2)) ⊂ Un. Hence C ⊂ Un.

On the other hand, for any y ∈ Un there is a d ∈ Gn+c such that y ∈ B(d, 2−(n+2))

and f(d, n + 2) = 1. So d(d, C) < 2 · 2−(n+2) = 2−(n+1) and d(y, C) ≤ |y − d| + d(d, C) <

2−(n+2) + 2−(n+1) < 2−n. Hence Un ⊂ B(C, 2−n), which completes the proof.

Formula (2.5) gives a simple algorithm for generating a picture of a locally computable

set: test the gridpoints, and output the balls centered at gridpoints where f is 1. On

figure 2.4 we see an example of such computation.

Figure 2.4: An illustration of the approximation of C obtained according to (2.5)

Another local computability definition has to do with the distance function dC from

the set C. The distance function dC is defined as follows:

dC(x) = inf
y∈C

|x − y| = min
y∈C

|x − y|,

Chapter 2. Computability of Real Sets 21

the last equality holds by the compactness of C. We have dC(x) = 0 for all x ∈ C. Note

that unlike the characteristic function χC , the distance function is always continuous, and

so it is reasonable to expect it to be computable. In fact, the function dC(x) is computable

if and only if the set C is locally computable, or just computable (cf. [BW99], [Wei00]).

On figure 2.5 we see the graph of the distance function for a one dimensional set C.

Figure 2.5: An example of the distance function dC

Theorem 2.2.9 A set C is computable if and only if its distance function dC is com-

putable.

Proof: We prove that C is globally computable ⇒ dC is computable ⇒ C is locally

computable. By theorem 2.2.8, this implies that dC is computable ⇔ C is computable.

C is globally computable ⇒ dC is computable.

We want to give an oracle Turing Machine Mφ which computes dC according to

definition 2.1.7. To compute Mφ(n) first use φ to query x within an error of 2−(n+2).

Denote the obtained dyadic approximation by d, we have |x − d| < 2−(n+2). Second, use

the machine which globally computes C to obtain a 2−(n+2)-approximation U = Un+2 ∈ C

Chapter 2. Computability of Real Sets 22

as in definition 2.2.2. d is a dyadic number, and U is presented in terms of balls with

dyadic centers and radii, so we can approximate the distance d(d, U) = dU(d) within

an error of 2−(n+1). The only operation we would have to do in this computation is

approximating a square root of a rational number (while computing distances), and this

can be efficiently done using Newton’s method. We obtain a dyadic number a such that

|a − dU(d)| < 2−(n+1). We claim that |a − dC(x)| < 2−n, and so a is a valid answer for

Mφ(n).

We have C ⊂ U ⊂ d(C, 2−(n+2)). Hence dC(d) − 2−(n+2) ≤ dU(d) ≤ dC(d), and

|dC(d) − dU(d)| < 2−(n+2). We also have |x − d| < 2−(n+2), and hence |dC(x) − dC(d)| <

2−(n+2). We summarize

|dC(x)−a| ≤ |dC(x)−dC(d)|+|dC(d)−dU(d)|+|dU(d)−a| < 2−(n+2)+2−(n+2)+2−(n+1) = 2−n.

Which completes the proof of this part.

dC is computable ⇒ C is locally computable.

This part is easier to prove. Assume that Mφ(n) computes the distance function dC .

We would like to compute f(d, n) from the family (2.4). On an input (d, n), first run

Mφ(n + 1) with φ being (the trivial) oracle for the dyadic number d. This gives us a

2−(n+1)-approximation a of dC(d). If a < 3·2−(n+1) (so d is close to C) output 1, otherwise

output 0. We claim that our output satisfies the conditions of (2.4) from the definition

of local computability.

Suppose that B(d, 2−n) ∩ C 6= ∅, then dC(d) < 2−n, and a < dC(d) + 2−(n+1) <

2−n + 2−(n+1) = 3 · 2−(n+1). Hence we output 1 in this case.

If, on the other hand, B(d, 2 · 2−n) ∩ C = ∅, then dC(d) ≥ 2 · 2−n, and a > dC(d) −

2−(n+1) ≥ 2 · 2−n − 2−(n+1) = 3 · 2−(n+1). So out output in this case is 0, which completes

the proof.

In the next section we will see yet another equivalent definition of set computability.

It is sometimes very useful when proving the computability of actual sets (the hyperbolic

Chapter 2. Computability of Real Sets 23

Julia sets, for example). The equivalence proof is more involved in this case than in the

proofs seen above.

2.2.3 Ko Computability of Compact Sets

The notion of set computability we will describe in this section has been introduced by A.

Chou and K. Ko in [CK95] under the name of strong P-recognizability (see also [Ko98]).

We will call it Ko computability to avoid confusion due to the fact that, as we will see

later, in the complexity setting this definition is weaker than the standard definition.

Ko computability is defined in terms of oracle machines. On an oracle φ representing

a real number x our goal is to output 1 if x is in C, and 0 if x is 2−n-far from C. Once

again, the area 0 < d(C, x) ≤ 2−n is a “gray area”, where either answer is acceptable.

Formally, we define:

Definition 2.2.10 We say that a set C is Ko computable, if there exists an oracle

Turing Machine Mφ(n), such that if φ represents a real number x, then on an input n

the output of Mφ(n) is

Mφ(n) =

1 if x ∈ C

0 if B(x, 2−n) ∩ C = ∅

0 or 1 otherwise

(2.6)

Note that Mφ(n) corresponds a 0 or a 1 to any real number x. What Mφ(n) computes

cannot be a function, because it is not continuous (unless C is trivial). Indeed, what

Mφ(n) computes is not a function, because the values of Mφ(n) in the “gray area” depend

not just on the value of the input x, but also on the particular oracle φ representing x.

For example, let C = {0}. Then the following algorithm for Mφ(n) Ko computes C:

1. Query d = φ(n + 1), so that |x − d| < 2−(n+1),

2. If |d| < 2−(n+1) output 1, otherwise output 0.

Chapter 2. Computability of Real Sets 24

It is easy to see that the output of the algorithm above satisfies (2.6). Consider it

running on the input x = 2−(n+1). If x is represented by an oracle such that φ(n +

1) < 2−(n+1), the algorithm returns 1, and if x is represented by an oracle such that

φ(n + 1) ≥ 2−(n+1), the algorithm returns 0. Hence we see that in this case Mφ(n) does

not compute a well defined function at x = 2−(n+1).

We would like to show that Ko computability is equivalent to the set computability

as per definition 2.2.7. To the best of our knowledge, this result has not appeared in the

literature.

Theorem 2.2.11 Definitions 2.2.7 and 2.2.10 are equivalent. That is, a compact set C

is Ko computable if and only if it is locally computable.

Proof:

C is locally computable ⇒ C is Ko computable.

This is the easy direction in the proof. Suppose we have a Turing Machine computing

an f(d, n) from the family (2.4). In order to Ko compute C, we first query d = φ(n + 2),

and then return f(d, n + 2). We need to show that (2.6) is satisfied.

If x ∈ C, then |x− d| < 2−(n+2) implies that x ∈ B(d, 2−(n+2))∩C, so B(d, 2−(n+2))∩

C 6= ∅, and by (2.4) f(d, n + 2) returns 1.

If B(x, 2−n)∩C = ∅, then |x− d| < 2−(n+2) implies that B(d, 2−n − 2−(n+2))∩C = ∅.

So B(d, 2 · 2−(n+2)) ∩ C ⊂ B(d, 2−n − 2−(n+2)) ∩ C = ∅, and by (2.4) f(d, n + 2) returns

0, which completes the proof.

C is Ko computable ⇒ C is locally computable.

This direction is much more involved, and will require some preparation. For con-

venience purposes assume that C ⊂
[

1
4
, 3

4

]

, and hence in (2.4) we only need to consider

d ∈ [0, 1]. The proof extends trivially to bigger intervals (C is bounded, because it is

compact). It is also easy to extend the proof to dimensions k > 1.

We construct an infinite tree T . In every vertex of T we write a dyadic number.

The numbers on level l are dyadics of the form m · 2−l. The root, which is on level 1 is

Chapter 2. Computability of Real Sets 25

labeled by 1
2

= 0.1 (all the numbers in this section are in binary notation). Each vertex

v on a level l has 3 children. If the label of v is m · 2−l then the labels of its children

are m · 2−l − 2−(l+1), m · 2−l and m · 2−l + 2−(l+1), or in other words (2m − 1) · 2−(l+1),

2m · 2−(l+1) and (2m + 1) · 2−(l+1). On figure 2.6 we see the first three levels of the tree

(cf [Wei00], section 7.2, signed digit representation).

Figure 2.6: The first three levels of the tree T

It is easy to see that numbers on every path p in the tree converge to a real number

xp ∈ [0, 1]. Conversely, for every x ∈ [0, 1] there is a path p such that xp = x (e.g. choose

p to be the prefixes of the binary expansion of x). Moreover, if we denote by p(n) the

label of the n-th node on p, then |x− p(n)| ≤ 2−n < 2−(n−1). Hence φ(n) = p(n + 1) is a

valid oracle for xp.

We will now describe how to compute f(d, n) as in (2.4). On an input (d, n) find two

nodes v1 and v2 on level n such that label(v1) ≤ d ≤ label(v2) and |label(v1) − d| < 2−n,

|label(v2) − d| < 2−n (if d is an integer multiple of 2−n, we can choose v1 = v2). Denote

Chapter 2. Computability of Real Sets 26

the paths from the root to v1 and v2 by p1 and p2, respectively. Denote the machine Ko

computing C by Mφ(n). We simulate the computation of Mφ(n) on the subtrees with

roots v1 and v2 as follows.

Consider the simulation with root v1 (the simulation with root v2 is done in the same

way). For every oracle query φ(m) with m < n, we return the value of p1(m + 1) (which

is a valid output for the oracle). Otherwise we consider all the possible descendants of

v1 on level m + 1, and create a separate computation for each of them (thus, we create

3m−n+1 computations). Consider one of the copies and denote the path leading to the

selected vertex on level m + 1 by p (p extends p1). If we are now asked about φ(r) for

some r < m + 1, we return the value of p(r + 1), and otherwise we again consider all

possible descendants of p(m + 1) on level r + 1, and split the computation into 3r−m

computations. We continue this process until all computations terminate.

If any one of the computations (either starting from v1 or from v2) returns 1, we

return 1. Otherwise return 0. We need to show two things:

1. The algorithm terminates.

2. It gives answers that satisfy (2.4).

We will be using König’s lemma.

König’s Lemma: If a every vertex in a tree has a finite degree, then the tree is

infinite if and only if it has an infinite branch.

Suppose that the computation does not terminate. We can view the entire computa-

tion as a tree where the nodes are the subcomputations described above and a computa-

tion C1 is the parent of the 3s computations it launches. If the entire computation does

not terminate, then there are two possibilities: either one of the computations C ′ does

not terminate without calling to subcomputations, or the tree of all the computations to

be performed is an infinite tree.

Chapter 2. Computability of Real Sets 27

In the first case denote the path in T leading to C ′ by p′. Then p′ corresponds to a

dyadic number d′, and also gives an oracle φ′ for d′. Note that C ′ is reached and executed

by simulating Mφ′

(n). Hence Mφ′

(n) does not terminate in this case, contradiction.

In the second case, by König’s lemma, there must be an infinite branch in the compu-

tations tree. Denote the branch by C1, C2, C3, That is, C1 calls C2, C2 calls C3 etc.

Note that each Ci works with a path pi of T and pi+1 strictly extends pi for each i, hence

the infinite sequence of Ci corresponds to an infinite path p in T . The path converges to

a real number x ∈ [0, 1], and p gives rise to an oracle φ for x. By the construction, the

sequence of C1, C2, C3, . . . simulates the computation of Mφ(n). Hence Mφ(n) does not

terminate, contradiction. This shows that the algorithm terminates.

We now have to show the correctness of the algorithm.

Case 1: B(d, 2−n) ∩ C 6= ∅. In this case, either v1 or v2 has a descending path p in

T which converges to an x ∈ C. Consider the oracle φ corresponding to this path. One

of the computation paths of the algorithm will be a simulation of Mφ(n), and hence will

have to output 1.

Case 2: B(d, 3 · 2−n) ∩ C = ∅. In this case all points corresponding to descendants

of v1 and v2 are at distance at most 2 · 2−n from d, and hence are at least 2−n-far from

C. Hence any computation corresponding to simulating Mφ along any of the paths must

output 0.

Note that we are only able to compute a function satisfying a condition weaker than

(2.4). Namely, we compute a function f such that

f(d, n) =

1 if B(d, 2−n) ∩ C 6= ∅

0 if B(d, 3 · 2−n) ∩ C = ∅

0 or 1 otherwise

It is very easy to use f to compute a function that satisfies (2.4). Take

g(d, n) = f(d − 2−(n+1), n + 1) ∨ f(d, n + 1) ∨ f(d + 2−(n+1), n + 1)

Chapter 2. Computability of Real Sets 28

If |d−c| < 2−n for some c ∈ C, then either |d−c+2−(n+1)| < 2−(n+1), or |d−c| < 2−(n+1),

or |d − c − 2−(n+1)| < 2−(n+1). So one of the f ’s will return 1. On the other hand, if

B(d, 2 · 2−n) ∩ C = ∅, then B(d − 2−(n+1), 3 · 2−(n+1)) ∩ C = ∅, B(d, 3 · 2−(n+1)) ∩ C = ∅

and B(d + 2−(n+1), 3 · 2−(n+1)) ∩ C = ∅. Hence g returns 0 in this case. This completes

the proof.

2.2.4 Computability of Compact Sets: Summary

We have presented five definitions of compact sets computability, and have shown that

they are all equivalent. We summarize the results in the following theorem:

Theorem 2.2.12 For a compact set C ⊂ Rk the following definitions are equivalent. If

any of them holds, we say that the set C is computable:

1. C is globally computable (definition 2.2.2),

2. C is Hausdorff approximable (definition 2.2.5),

3. C is locally computable (definition 2.2.7),

4. the distance function dC(x) is computable,

5. C is Ko computable (definition 2.2.10).

2.2.5 Examples of Computable Sets

Most “usual” sets are computable. Theorem 2.2.12 gives us tools to prove computability

of particular sets using the most convenient definition of set computability. Hausdorff

approximability and Ko computability are usually the easiest ones to demonstrate.

One of the richest families of computable sets is the family of sets arising from com-

putable real functions. In section 2.3 we will show that a graph of a computable function

is a computable set. In particular, the graphs of the “standard” functions such as polyno-

mials, rational functions (on a proper domain), trigonometric and exponential functions

Chapter 2. Computability of Real Sets 29

are all computable. This is not surprising since, in fact, we are able to generate good

images of these graphs.

This result can be extended to the filled graph of f , which is the area between the

graph and the parameters plane (the x axis in the two dimensional case).

Figure 2.7: If the function f is computable on some closed interval, then its graph (left)

and its filled graph (right) are computable.

By taking finite unions and intersections of these graphs and filled graphs we can

obtain quite complicated computable sets.

Another interesting family of computable sets are the self-similar fractal images. The

most famous set in this family is probably the Cantor set C. To define the Cantor set

let C0 = [0, 1] be the [0, 1] interval. Let C1 be the set obtained from C0 by removing its

middle third: C1 = C0\(1
3
, 2

3
) = [0, 1

3
] ∪ [2

3
, 1]. We then remove the middle thirds from

each of the two intervals of C1 to obtain C2 = [0, 1
9
]∪ [2

9
, 1

3
]∪ [2

3
, 7

9
]∪ [8

9
, 1]. Continue this

process to obtain a chain of closed sets C0 ⊃ C1 ⊃ C2 ⊃ Define C = ∩∞
i=0Ci. See

figure 2.8 for a graphical illustration of the construction.

The Cantor set has a fractal structure because each of its halves is similar to the

entire set C with a factor of 1
3
. C has an irrational Hausdorff dimension of log3 2, which

is smaller than 1 but bigger than 0.

Chapter 2. Computability of Real Sets 30

Figure 2.8: The construction of the Cantor set C.

We establish that C is computable by showing it is approximable in the Hausdorff

metric. Ci is a 3−i-good approximation of C in the Hausdorff metric, and it is very easy

to approximate Ci in the Hausdorff metric, since Ci is just a union of 2i simple intervals.

Thus C is easily computable.

Figure 2.9: The construction of Koch snowflake K.

Another famous computable fractal is the Koch snowflake K. The Koch snowflake

is obtained from an equilateral triangle by continuously replacing each side of length

Chapter 2. Computability of Real Sets 31

l by four sides of length l
3
, as seen on figure 2.9. K is a set of Hausdorff dimension

log3 4, which is less than 2 and more than 1. K is the union of three self-similar sets

(corresponding to the sides of the original equilateral triangle).

As in the case of the Cantor set, the i-th stage of the construction is a 2−Θ(i)-

approximation of K, and it is easy to compute the i-th stage which is a simple union of

line segments. This shows that K is Hausdorff approxiamble, and hence computable.

Another family of computable fractals, the hyperbolic Julia sets. Questions surround-

ing their computability will be discussed in chapter 4.

2.2.6 A Comparison With the BCSS Approach

The approach taken in the present work is very different from the real computation

approach developed by Blum, Cucker, Shub and Smale and presented in [BCSS].

In the BCSS approach storage of reals with an arbitrary precision is allowed. In

exchange, we are required to make sharp decisions similarly to the discrete case. That

is, to compute a set A we need to be able to answer the question of whether x ∈ A for

all x ∈ Rk.

Note that we cannot expect to make sharp decisions in our model. We cannot answer

this question even the simple set A = {0}, because no matter how good an approximation

of x we have, we can never be sure whether x = 0, or x is just very close to 0. The set

{0} is trivially computable in our model (where we only require approximations of the

set).

It is seen in [BCSS] that sets computable in the BCSS model can only have an

integer Hausdorff dimension. In particular the Cantor set and the Koch snowflake, having

Hausdorff dimensions of log3 2 and log3 4 respectively, are not computable in this model.

These sets are computable in our model, as seen in the previous section. Most Julia sets

are not computable in the BCSS model, even though all the hyperbolic Julia sets are

computable in our model as seen in chapter 4.

Chapter 2. Computability of Real Sets 32

The two models are incomparable. We have seen examples of computable sets which

are not computable in the BCSS modes. In the opposite direction, it is easy to see that

any singleton C = {c} is computable in the BCSS model, but it has been shown in lemma

2.2.3 that a singleton {c} is computable in our model if and only if c is a computable

number as per definition 2.1.2.

The fact that we are actually able to generate good images of the Cantor set, the

Koch snowflake and the hyperbolic Julia sets suggests that the definition we are using

is good for describing the hardness of “drawing” a set. The BCSS approach makes a

strong connection between real computation on the exact-arithmetic Turing Machines

and algebraic geometry, but it sometimes classifies easy-to-draw sets as hard because of

their high complexity from the algebraic point of view.

2.3 Connecting Computable Functions with Com-

putable Sets

In the discrete case there are tight connections between the computability of functions

and the decidability of sets. We would like to establish similar connections in the case of

real functions and real sets.

2.3.1 The Continuous Functions Case

In the discrete case we know that a function f : {0, 1}∗ → {0, 1} which is defined on all

inputs is computable if and only if its graph Gf = {(x, f(x)) : x ∈ {0, 1}∗} is decidable.

A similar connection holds in the case of real functions if the function f is continuous:

Theorem 2.3.1 Let S ⊂ Rk be a closed rectangle with computable coordinates. A con-

tinuous function f : S → R is computable if and only if its graph Gf = {(x, f(x)) : x ∈

S} ⊂ Rk+1 is a computable set.

Chapter 2. Computability of Real Sets 33

Proof: For simplicity assume that k = 1 and S = [0, 1]. The proof works in a similar

fashion in the more general case. Note that in this proof we make nontrivial use of the

fact that Ko computability is equivalent to the other types of computability.

f is computable ⇒ Gf is computable.

We show how to Ko compute Gf assuming f is computable. Denote by Mφ(n) the

machine which computes f . On an input (x, y) given by a pair of oracles (φ, ψ) we need

to determine whether (x, y) is on Gf , or is it 2−n-far from the graph.

We start by running Mφ(n + 1) to obtain a d such that |d − f(x)| < 2−(n+1). If

|d − y| < 2−(n+1), return 1, otherwise return 0.

Suppose (x, y) ∈ Gf , then y = f(x), so |d − y| = |d − f(x)| < 2−(n+1), and the

algorithm returns 1 in this case.

If (x, y) is 2−n-far from Gf , then in particular |f(x) − y| ≥ 2−n, hence |d − y| ≥

|f(x) − y| − |d − f(x)| > 2−n − 2−(n+1) = 2−(n+1), and the algorithm returns 0 in this

case.

Gf is computable ⇒ f is computable.

Gf is computable, in particular it is globally computable. Hence there is a machine

M(n) which outputs a Un ∈ C such that Gf ⊂ Un ⊂ B(Gf , 2
−n). We set k = 1, and

repeat the following operations, increasing k by one each time:

1. Query for d = φ(k) such that |d − x| < 2−k,

2. Compute Uk = M(k),

3. If the set Yk of y such that there is a z ∈ (d − 2−k, d + 2−k) with (z, y) ∈ Uk is

bounded within some interval (s − 2−n, s + 2−n), return s.

Note that all the operations performed are operations with dyadic numbers which

can be easily executed. We need to show that this algorithm terminates and outputs a

2−n-approximation of f(x) upon termination.

Chapter 2. Computability of Real Sets 34

Suppose that the algorithm terminates. Note that x ∈ (d − 2−k, d + 2−k) and

(x, f(x)) ∈ Gf ⊂ Un, hence f(x) is among the y’s taken into account when terminating,

and so f(x) ∈ (s − 2−n, s + 2−n). We obtain |s − f(x)| < 2−n, so s is a valid output.

To show that the algorithm terminates, we will show that the set of y’s discussed

above must shrink to a point. That is, for any ε > 0, there is a k such that the set Yk has

radius less than ε. f is computable, hence it is continuous at x, so there is a δ > 0 such

that |f(z) − f(x)| < ε/2 whenever |x − z| < δ. Choose k so that 2−k < min{δ/3, ε/2}.

We claim that for any y ∈ Yk, |f(x) − y| < ε.

Let y ∈ Yk. This means that there is a z ∈ (d−2−k, d+2−k) ⊂ (x−2 ·2−k, x+2 ·2−k)

such that (z, y) ∈ Uk ⊂ B(Gf , 2
−k). Hence there must be a w such that |(z, y) −

(w, f(w))| < 2−k. In particular, |z − w| < 2−k and |y − f(w)| < 2−k. Hence |w −

x| ≤ |z − x| + |w − z| < 2 · 2−k + 2−k = 3 · 2−k < δ. So |f(w) − f(x)| < ε/2, and

|f(x) − y| ≤ |f(x) − f(w)| + |f(w) − y| < ε/2 + 2−k < ε, which completes the proof.

2.3.2 The Non-Continuous Functions Case

The tight connection between computability of a function and its graph suggests a way

to extend the definition of computable functions beyond the continuous case.

The computability of the graph Gf of a function f could be possibly used as a criterion

in defining a richer class of computable functions. This leaves room for further research

in this direction. More will be discussed in section 5.1.

Chapter 3

Computational Complexity of Real

Sets

In chapter 2 we have seen five equivalent definitions for the computability of real sets.

For each of them it is not hard to associate the notions of time and space complexity.

We will first define the complexity notions associated with the different definitions, and

decide on the “right” notion of complexity describing the “true” complexity of a set. We

will then show that the local complexity notions are all different unless P = NP .

3.1 Defining the Complexity of Sets

3.1.1 The Global Complexity

The definition of global complexity follows naturally from the definition 2.2.2 of global

computability.

Definition 3.1.1 Let T : N → N be a time function. A compact set C ⊂ Rk is said to

be globally computable in time T (n) if there exists a Turing Machine M(n) running

in time T (n) which on input n outputs an encoding of a set Un ∈ Ck such that C ⊂ Un ⊂

B(C, 2−n).

35

Chapter 3. Computational Complexity of Real Sets 36

Computability in bounded space S(n) is defined in a similar way.

We would like to have a notion of “efficiently computable” sets, similarly to the notion

of poly-time languages in the discrete case.

Letting C be efficiently computable if we can make T (n) < p(n) for some polynomial

p seems too restrictive. Un is supposed to be a 2−n-approximate picture, hence it is

reasonable to expect it to contain many balls of size ∼ 2−n, and if C is a reasonably large

set it would take exponentially many such balls just to cover it. As a specific example

consider the segment [0, 1] × {0} ⊂ R2. It is easy to see that any ball in Un can have a

radius of at most 2−n, and hence covers at most a 2 · 2−n section of the segment. Hence

any Un contains at least 2n−1 balls – exponentially many. So T (n) for computing this

simple set would be exponential in n. This suggests that a globally efficiently computable

set should be computable in time polynomial in 2n rather than in n.

Definition 3.1.2 We say that a set C is globally poly-time computable if it is

globally computable in time 2O(n).

It is trivial to give definitions similar to 3.1.1 and 3.1.2 for Hausdorff approximability

instead of global computability.

Definition 3.1.3 Let T : N → N be a time function. A compact set C ⊂ Rk is said

to be Hausdorff approximable in time T (n) if there exists a Turing Machine M(n)

running in time T (n) which on input n outputs an encoding of a set Vn ∈ Ck such that

dH(C, Vn) < 2−n.

Definition 3.1.4 We say that a set C is poly-time Hausdorff approximable if it is

Hausdorff approximable in time 2O(n).

As in theorem 2.2.6, one can see that global poly-time computability is equivalent to

poly-time Hausdorff approximability.

Theorem 3.1.5 Definitions 3.1.2 and 3.1.4 are equivalent, that is, a set C is globally

poly-time computable if and only if it is poly-time Hausdorff approximable.

Chapter 3. Computational Complexity of Real Sets 37

3.1.2 The Local Complexity

We can now define the complexity analogues of the local computability definitions. We

will see that for many applications local complexity is the “right” measure on the com-

plexity of the set. We start by presenting the time-complexity analogues of definitions

2.2.7, 2.2.10 and the distance function computability.

Definition 3.1.6 Let T : N → N be a time function. We say that the compact set

C ⊂ Rk is locally computable in time T (n), if there is a Turing Machine M(d, n)

running in time at most T (n + |d|), which computes a function from the family given by

(2.4).

We say that C is locally poly-time computable, or just poly-time computable,

if it is computable in time p(n), for some polynomial p.

This is the definition introduced in [BW99] and [Wei00] and used in [RW03]. We

will see later some intuition which illustrates why this is the “right” definition which

measures the computational complexity of the set C.

Definition 3.1.7 Let T : N → N be a time function. We say that the compact set

C ⊂ Rk is Ko computable in time T (n), if there is an oracle Turing Machine Mφ(n)

running in time at most T (n), which computes a function from the family given by (2.6).

Here we charge one time unit for each query to the oracle, but our ability to query the

oracle is limited by the fact that it takes n time units to read the answer of φ(n).

We say that C is Ko poly-time computable, or just Ko P-computable, if it is

computable in time p(n), for some polynomial p.

Definition 3.1.7 for poly-time computability for sets was introduced by Chou and Ko in

[CK95] under the name of strong P-recognizability. We give it a different name here since,

in fact, this definition is weaker than the other definitions for poly-time computability of

sets presented here.

Chapter 3. Computational Complexity of Real Sets 38

The third poly-time computability notion corresponds to the computability of the

distance function dC .

Definition 3.1.8 We say that the compact set C ⊂ Rk is distance computable in

time T (n) if the function dC(x) is computable in time T (n) as per definition 2.1.9.

We say that C is distance poly-time computable or distance P-computable

if it is distance computable in time p(n) for some polynomial p(n). In other words, C is

distance poly-time computable if the function dC(x) is a poly-time computable function.

It is very easy to give the analogies of definitions 3.1.6, 3.1.7 and 3.1.8 for space

complexity instead of time complexity.

3.1.3 The Intuition Behind the Local Complexity

Our goal in discussing the real set computability and complexity is to determine which

sets can be computed and how fast they can be computed. Computing the set C in our

setting corresponds to generating a ‘good’ image of C. In dimension 2 a set is computable

if and only if we can display arbitrarily precise images C.

Computing one value of f(d, n) in (2.4) corresponds to deciding whether to draw one

pixel of size ∼ 2−n with center d in the image of C or not. As seen in the proof of theorem

2.2.8, it would take Θ(22n) calculations of f(•, n) to generate a 2−n-two-dimensional

approximation of C and display it. Suppose that the complexity of f is T (n), then it

would take O(22n · T (n)) time to generate such an image, and the product’s growth is

most likely dominated by the 22n term. Such an image would be of an exponential size,

and completely impractical to display.

Usually, when we display a strong zoom-in into the image, all we can display is a very

small portion of the set. Suppose we have a display with resolution 1000×1000 pixels. In

this case it is only meaningful to try to compute 106 pixels of the set and display them.

Hence the complexity of displaying such a portion with a zoom-in of 2n is O(106 · T (n)).

Chapter 3. Computational Complexity of Real Sets 39

This product’s growth is dominated by T (n). If T (n) grows slowly, say polynomially,

then it should be easy to draw such a zoom-in, while if T (n) grows fast, it isn’t easy.

This shows that the local complexity is the true complexity of generating zoom-ins

into the set, and the poly-time computable sets as per definition 3.1.6 are the easy-to-

draw and easy-to-zoom-in sets.

Having established the importance of the local set complexity one could ask whether

the analogue of theorem 2.2.12 holds here. In particular are definitions 3.1.6, 3.1.7 and

3.1.8 for poly-time sets equivalent? The answer is negative in general unless P = NP ,

as will be seen in the next section.

3.2 Comparing the Local Complexity Definitions

Our goal is to compare definitions 3.1.6, 3.1.7 and 3.1.8 for poly-time computable sets.

We will see that under the assumption that P 6= NP distance P-computability is

strictly stronger than poly-time computability, which is strictly stronger than Ko P-

computability.

We start by comparing distance P-computability to poly-time computability.

3.2.1 Distance P-Computability vs Poly-Time Computability

In this section we will prove that distance P-computability is stronger than poly-time

computability, and it is strictly stronger if P 6= NP . Formally, we prove the following

theorem.

Theorem 3.2.1 Let C ⊂ Rk be a compact set.

1. If C is distance P-computable, then C is poly-time computable,

2. for k = 1 the converse holds: if C is poly-time computable, then it is distance

P-computable,

Chapter 3. Computational Complexity of Real Sets 40

3. for k > 1 the converse is equivalent to P = NP : “if C is poly-time computable,

then it is distance P-computable in general” ⇔ “P = NP”, which is most unlikely.

Hence in this case distance P-computability is strictly stronger than poly-time com-

putability.

We see that there is a substantial difference between the case when k = 1 and the

case when k > 1. Intuitively, in the one-dimensional case for any x there are only two

“candidates” which could be the closest point to x in C. We can then apply a binary-

search-like technique to localize them in two small intervals and choose the closer one.

On the other hand, in higher dimensions, there are exponentially many directions and it

is NP-hard to choose the one which leads to the closest point to x in C.

Proof: Part 1: This follows immediately from the reduction in the proof of the “dC

is computable ⇒ C is locally computable” direction of theorem 2.2.9. The reduction is

trivially poly-time.

Part 2: Suppose that k = 1, that is C ⊂ R is a one-dimensional compact set, and

suppose it is poly-time computable, we want to show that its distance function dC(x) is

poly-time computable. By the assumption we have a Turing Machine M(d,n) running in

time polynomial in |d| + n and computing a function f(d, n) from the family (2.4). C is

compact, so for simplicity we can assume that C ⊂ [0, 1] and C 6= ∅. We have an oracle

φ for x, and we need to compute dC(x) within an error of 2−n in time polynomial in n.

We first run φ(n+1) to obtain a 2−(n+1)-approximation d of x with |d| ≤ n+2. Without

loss of generality we can assume that x ∈ (−0.5, 1.5) (the construction generalizes trivially

for other values of x). Denote the points in C which are closest to d by l < d and r > d.

If d ∈ C then l = r = d (such points must exist by the compactness of C). We have

dC(d) = min(r − d, d − l).

We will estimate dC(d) by computing a sequence of numbers a0, a1, . . . such that

|dC(d) − ai| < 2−i, and ai = ki

2n+2 for some integer ki. To compute a0 run M(d, 1). If

M(d, 1) = 0 set a0 = 1, otherwise set a0 = 0. It is easy to see from the definition

Chapter 3. Computational Complexity of Real Sets 41

of the function computed by M that if a0 = 0, then dC(d) < 1 and if a0 = 1, then

1/2 ≤ dC(d) ≤ 3/2, and in either case |dC(d) − a0| < 1.

Now we have ai and we would like to compute ai+1 satisfying the condition. Consider

Si = (d − ai − 2−i, d − ai + 2−i) ∪ (d + ai − 2−i, d + ai + 2−i). Then Si is either a union

of two intervals or a single interval of total length ≤ 4 · 2−i. Moreover, the point closest

to d in C is contained in Si. Cover Si with balls of radius 2−(i+2) and centers which are

integer multiples of 2−(i+2). This can be done with at most 18 balls. For each ball of

this form with center cj run M(cj, i + 2). Let ck be a cj with M(cj, i + 2) = 1 which is

closest to d. Take ai+1 = |d − ck|. Obviously ai+1 is of the right form. We claim that

|dC(d) − ai+1| < 2i+1.

Let p ∈ Si be the point in C which is closest to d (p = d if d ∈ C). Let cj be

the center we have considered which is closest to p. Then |cj − p| < 2−(i+2), hence

(recall that p ∈ C) M(cj, i + 2) = 1, so the ck chosen is at least as close to d as cj, so

ai+1 = |d − ck| ≤ |d − cj| ≤ |d − p| + |p − cj| < |d − p| + 2−(i+2) = dC(d) + 2−(i+2).

On the other hand, M(ck, i + 2) = 1, hence dC(ck) < 2−(i+1), and dC(d) ≤ |d − ck| +

dC(ck) < ai+1+2−(i+1). So −2−(i+2) < dC(d)−ai+1 < 2−(i+1), and |dC(d)−ai+1| < 2−(i+1).

Returning ai will give the desired answer. Note that we make 18n calls to the polyno-

mial machine M with parameter of length at most n + 2, and so the algorithm described

above is polynomial.

Part 3: We will prove this part for dimension k = 2. It is easy to see that the proof

generalizes to higher dimensions. There are two directions in the proof, we start with

the harder direction.

“if C is poly-time computable, then it is distance P-computable” ⇒ “P = NP”

We construct a poly-time computable set C such that distance P-computing C would

allow us to efficiently solve SAT .

We subdivide the square [0, 1]×[0, 1] into infinitely many squares as on figure 3.1. Note

that there are 2i squares with side length 2−i for i ≥ 1 to a total area of
∑∞

i=1 2i · (2−i)2 =

Chapter 3. Computational Complexity of Real Sets 42

∑∞
i=1 2−i = 1. We give the squares a natural numbering and it is easy to recover the

square bn from its index n. The side length of bn is roughly 1
n
.

Figure 3.1: The subdivision of the [0, 1] × [0, 1] square.

Consider some standard encoding e : φn 7→ n which encodes boolean formulas with

numbers so that the length of φn is within a linear factor of the length of n. We can now

describe the set C. For each n consider the square bn. Denote by 2−i the side length

of bn, and its center by cn. i is roughly log n. We include the circle with center cn and

radius 2−(i+2) = bn/4 in the set C. Also, if n is an encoding of some formula φ with k ≤ i

variables (the number of variables cannot exceed the length of the encoding) we include

additional points in the set as follows.

Consider the circle S with center at ci and radius 2−(i+2) − 2−(i+k+2) (S is inside the

circle we have drawn before, and is very close to it). Subdivide S into 2k equal parts

corresponding in a natural way to the truth assignments for φn. Denote the partition

by S = S1 ∪ S2 ∪ . . . ∪ S2k . For a truth assignment x for φn corresponding to some Sl

we include the middle third of Sl in C if and only if φn(x) = 1. In particular, if φn is

unsatisfiable, then there is no part of S included in C. On figure 3.2 we see an illustration

of the construction above for φn(x, y, z) = (x ⊕ y) ∧ z. To make the set closed we also

Chapter 3. Computational Complexity of Real Sets 43

add the point {(0, 0)} into the set.

Figure 3.2: The circles corresponding to f(x, y, z) = (x ⊕ y) ∧ z.

We first observe that C is poly-time computable. We do not present the formal proof

because it would be a very technical computation which does not add to the understand-

ing of the construction. Intuitively, if we try to draw a low resolution pixel, we don’t

need to distinguish between the inner and the outer circle, while if we try to draw a high

resolution pixel, we will only have to worry about at most one or two segments of the

inner circle corresponding to one or two truth assignments.

Given a dyadic point d and an integer n we would like to output 1 if B(d, 2−n)∩C 6= ∅

and 0 if B(d, 2 · 2−n) ∩ C = ∅. We first check the circles to which d is closest. If we

find more than 4 circles which are 2−n-close to d, we can output 1. Otherwise, if d is

outside all the circles, we can easily check whether to output 1 or 0 without worrying

at all about the inner circles. Suppose that d is inside some circle Sn of radius 2−(i+2)

corresponding to the formula φn with k variables. Denote its inner circle by S. If 2−n is

bigger than twice the distance 2−(i+k+2) between the circles, then we can compute f(d, n)

without worrying about the inner circle, and if 2−n is smaller than twice this distance,

Chapter 3. Computational Complexity of Real Sets 44

then the size of B(d, 2−n) is comparable to the size of the segments on the inner circles

corresponding to the truth assignments to φn, and to compute f(d, n) we would have to

check at most two such assignments.

Now suppose that C is distance P-computable. That is, the distance function dC(x)

is poly-time computable. We will show how to solve SAT in poly-time. Suppose we

are given a boolean formula φ. By the encoding e we have selected φ = φn for some

n such that log n = O(|φ|). We can then find the square bn with a dyadic center cn,

and side length 2−i, i = Θ(log n). Let k ≤ |φ| be the number of variables in φ. If φ is

satisfiable, the inner circle is not empty in C, and dC(cn) = 2−(i+2) − 2−(i+k+2), and if φ

is unsatisfiable then the inner circle is empty, and dC(cn) = 2−(i+2). So all we have to do

to decide the satisfiability of φ is to compute dC(cn) within a precision 2−(i+k+3). This

can be done in time polynomial in (i + k + 3), which is also polynomial in |φ|.

“P = NP” ⇒ “if C is poly-time computable, then it is distance P-computable”

Suppose we want to compute dC(x) with precision 2−n. We can query the oracle for

x for a dyadic d with n + 2 digits so that |d − x| < 2−(n+1). All we have to do now is to

compute dC(d) with precision 2−(n+1).

To do this we can use part 2. Consider the set C0 ⊂ R defined as

C0 = {±l : l = d(d, x) for some x ∈ C}.

Obviously dC(d) = dC0(0). All we have to do is to show that C0 is a poly-time computable

set. On an input (a, n) we need to output f(a, n) = 1 if B(a, 2−n)∩C0 6= ∅ and f(a, n) = 0

if B(a, 2 · 2−n) ∩ C0 = ∅. Let M(c, n) be the machine computing the set C. Consider

f(a, n) = ∃b ∈ Dk
n+k+4 : (a − 2−n < |d − b| < a + 2−n) ∧ (M(b, n + 1) = 1). (3.1)

Suppose B(a, 2−n) ∩ C0 6= ∅, then there is an x ∈ C with a − 2−n < |d − x| < a + 2−n,

and it is not hard to see that we can find a b as in (3.1).

On the other hand, if B(a, 2 · 2−n) ∩ C0 = ∅, then all points b as in (3.1) are at least

2−n-far from C, and hence M(b, n + 1) = 0 for such b’s.

Chapter 3. Computational Complexity of Real Sets 45

To finalize the proof we observe that f is in poly-time by the assumption that P =

NP .

Our next goal is to compare poly-time computability to Ko P-computability.

3.2.2 Poly-Time Computability vs Ko P-Computability

In this section we will show that poly-time computability implies Ko P-computability,

and the converse holds if and only if P = NP , we will also show a much weaker version of

the converse, showing that Ko P-computability implies exponential-time computability.

Unlike the results in the previous section, the results here hold for any dimension k ≥ 1.

Theorem 3.2.2 Let C ⊂ Rk be a compact set.

1. If C is poly-time computable, then C is Ko P-computable,

2. the converse is equivalent to P = NP : “if C is Ko P-computable, then it is poly-

time computable in general” ⇔ “P = NP”, which is most unlikely. Hence poly-time

computability is strictly stronger than Ko P-computability,

3. a weaker version of the converse holds: if C is Ko P-computable, then it is expo-

nential time computable. Moreover, if the machine which Ko P-computes C reads

at most p(n) bits of the input, then C is computable in time nO(1)2O(p(n)+n) =

2O(p(n)+n).

Proof: Part 1: This follows immediately from the proof of the “C is locally com-

putable ⇒ C is Ko computable” direction of theorem 2.2.11. The reduction is obviously

poly-time.

Part 2: “if C is Ko P-computable, then it is poly-time computable” ⇒ “P = NP”

We will prove this for dimension k = 1. The proof generalizes trivially to higher

dimensions.

Chapter 3. Computational Complexity of Real Sets 46

We construct a one dimensional Ko P-computable set such that if C is poly-time

computable then P = NP . We subdivide the interval [0, 1] into infinitely many closed

disjoint intervals K1, K2, . . . such that the length of Ki is Θ(1/i2). To be concrete, we

take Ki = [1/(i+1), 1/i], as seen on figure 3.3. Each interval corresponds to an encoding

of a propositional formula or to nothing.

Figure 3.3: The subdivision of the [0, 1] interval

If Ki corresponds to nothing we just include the middle fifth of Ki. Otherwise, if

Ki corresponds to a formula φ with r variables, we subdivide the middle fifth of Ki into

2r subintervals, where each subinterval corresponds to a truth assignment τ for φ. Note

that r < log i, because i is the encoding of φ. We include the interval if and only if

φτ = TRUE. We also include the point {0} in the set. Denote the obtained set by C.

Our first claim is that C is Ko P-computable. Given an oracle φ representing a

number x, a machine Mφ(n) which Ko computes C works as follows. If x < 2−n then

output 1, this would be correct, since 0 ∈ C. Otherwise we are sure that x > 2−n−1 and

so x ∈ Ki for i < 23n. Hence by querying O(n) bits of x we can find the two subintervals

of some Ki’s in which x might lye. From here it is a matter of decoding and making

two substitutions before we can output a valid answer for Mφ(n). Everything is done in

polynomial time, and hence C is Ko P-computable.

Now we show that if C is poly-time computable, then P = NP . Given a propositional

formula φ of length n = |φ| we look at its encoding i. The length of the encoding is Θ(n).

Hence the length of the interval Ki is 2−Θ(n). Thus, we can place one question of the

Chapter 3. Computational Complexity of Real Sets 47

form f(d, l), where d is close to the middle of Ki and

1. B(d, 2−l) covers the middle fifth of Ki,

2. B(d, 2 · 2−l) ⊂ Ki,

3. l = O(n).

f(d, l) returns 1 if and only if φ is satisfiable. By the assumption f runs in time

polynomial in l, and hence polynomial in n. So SAT ∈ P , and hence P = NP , which

completes the proof.

“P = NP” ⇒ “if C is Ko P-computable, then it is poly-time computable”

This part of the proof gives a nondeterministic poly-time algorithm to compute a Ko

P-computable set. The proof is carried out for dimension 1, but same arguments hold

for an arbitrary dimension k. Suppose that P = NP and that C is Ko P-computable,

we want to prove that C is poly-time computable. The proof can be viewed a special

modification of the “C is Ko computable ⇒ C is locally computable” direction proof in

theorem 2.2.11. Given the numbers d ∈ Dn and l we want to compute the value of f(d, l)

as in the definition of computability in time polynomial in n = |d| and l. Suppose that

the machine Mφ(n) Ko computing C as in definition 2.2.10 runs in polynomial time p(n).

Then M can only query x within a precision of 2−p(n), since it can only read p(n) bits of

the answer from the oracle φ. This claim is formalized as follows.

Lemma 3.2.3 If x is a dyadic number in Dp(n) and |y − x| ≤ 2−p(n)−1, then there is an

oracle ψ representing y and an oracle φ′ representing x such that Mφ′

(n) = Mψ(n).

Proof: Let ψ work as follows. On input r, ψ outputs ψ(r) such that |y−ψ(r)| < 2−r−1

and ψ(r) ∈ (x − 2−p(n)−1, x + 2−p(n)−1) with ψ(r) ∈ (x − 2−p(n)−1, x) if y < x and

ψ(r) ∈ [x, x + 2−p(n)−1) otherwise. Of course, the oracle ψ satisfies the requirement from

an oracle as per definition 2.1.6. On input r the oracle φ′ for x works as follows. It outputs

Chapter 3. Computational Complexity of Real Sets 48

φ′(r) such that |φ′(r)−x| < 2−r and that φ′(r) ∈ [x, x+2−p(n)−1) if ψ(r) ∈ [x, x+2−p(n)−1),

and φ′(r) ∈ (x − 2−p(n)−1, x) if ψ(r) ∈ (x − 2−p(n)−1, x).

Note that both φ′ and ψ are valid oracles for x and y respectively, and that they

always agree on the first p(n) + 1 digits, and so the p(n)-time bounded computation of

M with these two oracles gives the same answer. This completes the proof of the lemma.

Suppose that for some x ∈ Dp(n), [x − 2−p(n)−1, x + 2−p(n)−1] ∩ C 6= ∅, we define the

following two oracles for x:

1. φ′ outputs precisely x, denote this oracle φ+
x ,

2. φ′ outputs x with infinitely many 1’s at the end, denote this oracle φ−
x .

Suppose y ∈ [x− 2−p(n)−1, x + 2−p(n)−1]∩C then by the lemma there is an oracle ψ for y

and an oracle φ′ for x such that Mφ′

(n) = Mψ(n). A closer look at the proof shows that

we can choose φ′ = φ+
x or φ′ = φ−

x . By the definition of Ko P-computability, Mψ(n) = 1,

and hence either Mφ+
x (n) = 1 or Mφ−

x (n) = 1. Note that both Mφ+
x (n) and Mφ−

x (n)

can be simulated by a non-oracle machines M+(x, n) and M−(x, n) which just simulate

the oracle by writing the appropriate presentation of x. Both M+ and M− run in time

polynomial in n and |x|. We summarize as follows, for x ∈ Dp(n),

[x − 2−p(n)−1, x + 2−p(n)−1] ∩ C 6= ∅ ⇒ (M+(x, n) = 1) ∨ (M−(x, n) = 1), (3.2)

where M+ and M− run in time polynomial in n provided that p(n) is a polynomial.

In the opposite direction, it follows from the definition of Ko P-computability that

[x − 2−n, x + 2−n] ∩ C = ∅ ⇒ (M+(x, n) = 0) ∧ (M−(x, n) = 0). (3.3)

Given a pair (d, l) as in the definition of computability, we first choose n such that

n, p(n) > l + 2. We claim that the function

f(d, l) = ∃x ∈ Dp(n) ∩ B(d, 2−l + 2−p(n)) : (M+(x, n) = 1) ∨ (M−(x, n) = 1) (3.4)

Chapter 3. Computational Complexity of Real Sets 49

outputs the correct answer for computing C as required by the definition. First of all,

since we have assumed that P = NP and obviously f(d, l) ∈ NP , f(d, l) as defined

above is poly time computable.

We now need to prove that f outputs the correct answer.

(i) Suppose B(d, 2−l)∩C 6= ∅. Let y ∈ B(d, 2−l)∩C, then there is an x ∈ Dp(n) with

|y − x| ≤ 2−p(n)−1. We have

|x − d| ≤ |x − y| + |y − d| ≤ 2−p(n)−1 + 2−l < 2−l + 2−p(n),

hence x ∈ Dp(n) ∩ B(d, 2−l + 2−p(n)). We also have y ∈ [x − 2−p(n)−1, x + 2−p(n)−1] ∩ C,

and so by (3.2), (M+(x, n) = 1) ∨ (M−(x, n) = 1) holds, and f(d, l) = 1 in this case.

(ii) Suppose B(d, 2 · 2−l) ∩ C = ∅. Then for any x ∈ Dp(n) ∩ B(d, 2−l + 2−p(n)), if

y ∈ [x − 2−n, x + 2−n], then

|y − d| ≤ |x − d| + |x − y| ≤ 2−l + 2−p(n) + 2−n < 2−l + 2−l−1 + 2−l−1 = 2 · 2−l,

hence y /∈ S. We have obtained [x − 2−n, x + 2−n] ∩ C = ∅, and by (3.3), (M+(x, n) =

1)∨ (M−(x, n) = 1) does not hold for any x. So f(d, l) = 0 in this case, which completes

the proof.

Part 3: This part is obtained immediately by applying brute force to evaluate f(d, l)

according to (3.4), yielding an exponential algorithm for computing C.

3.2.3 Comparing Local and Global Poly-Time Computability

The comparison between the local notions of poly-time computability and the global

ones is not completely fair. The definitions of local P-computability requires some local

information to be computed with precision 2−n in time polynomial in n, while the global

poly-time computability allows exponential time to compute the entire set. In particular,

if we use exponentially many local computations to draw the entire set C (an this is

often the case), we can use exponentially much time for each local computation, because

Chapter 3. Computational Complexity of Real Sets 50

2O(n) × 2O(n) = 2O(n). This suggests that the notion of global poly-time computability

should be weaker than the notion of local poly-time computability.

In fact, the the class of locally poly-time computable sets is analogous to the com-

plexity class P , while the class of the globally poly-time computable sets is analogous to

E = DTIME(2O(n)) (not to be confused with EXP = DTIME(2nO(1)
)). It is known

that P ⊂ E and the inclusion is strict, so local poly-time computability is strictly weaker

than global poly-time computability.

Theorem 3.2.4 Local poly-time computability is strictly stronger than global poly-time

computability. That is, if a set is locally poly-time computable then it is globally poly-time

computable. On the other hand, there is a set A which is globally poly-time computable

but not locally poly-time computable.

Proof: The first statement follows immediately from the the construction in the “C

is locally computable ⇒ C is globally computable” direction of theorem 2.2.8.

For the second statement we use the partition of the [0, 1] interval from the proof

of theorem 3.2.2. Recall that we have Ki = [1/(i + 1), 1/i] for i = 1, 2, 3, Let

f : N → {0, 1} be a function in E\P (here the complexity of computing f(n) is measured

in the size log n of the input). Let

Af = {0} ∪
⋃

f(i)=1

Ki.

We claim that Af is globally but not locally poly-time computable.

To see that Af is globally poly-time computable, observe that to obtain a 2−n-image

of Af we only need to worry about K1, K2, . . . , K2n , hence by making 2n evaluations of f

on inputs of size at most n we can generate the image. All this takes 2O(n) time because

f ∈ E.

Assume that Af is locally poly-time computable. Then by running the machine

computing Af on a point close to the middle of Ki with precision parameter ∼ log i2 to

Chapter 3. Computational Complexity of Real Sets 51

obtain the value of f(i). So f(i) is computable in time poly(log(i2)) = poly(log i), and

f ∈ P . Contradiction.

Continuing the same analogy, the weaker property of Ko P-computability corresponds

to the class NP . It can be seen that the relation between Ko P-computability and the

global poly-time computability partially corresponds to the relation between the classes

NP and E. As of now, it is unknown whether NP ⊂ E.

Theorem 3.2.5 1. Ko P-computability implies global poly-time computability if and

only if NP ⊂ E,

2. Global poly-time computability does not imply Ko P-computability.

Proof: We will only give sketches of the proofs.

Part 1. Ko P-computability implies global poly-time computability ⇒ NP ⊂ E.

Note that SAT ∈ E (which is obviously true) does not imply that NP ⊂ E (which is

unknown). Instead, we observe that the construction in the proof of theorem 3.2.2 can

be applied with any L ∈ NP instead of SAT . We would obtain a set SL which is Ko

P-computable, and globally poly-time computing it would allow us to decide L in 2O(n)

time.

NP ⊂ E ⇒ Ko P-computability implies global poly-time computability.

Assume NP ⊂ E. By the constriction in the proof of theorem 3.2.2 we can use (3.4)

to locally compute a Ko P-computable set S in 2O(n) time. We then use 2O(n) applications

of the local computation to poly-time globally compute S.

Part 2. Consider the set Af from the proof of the previous theorem 3.2.4. It is

globally poly-time computable, but Ko P-computing it would involve evaluating f(n) in

polynomial time, which is impossible.

Chapter 4

Complexity of Hyperbolic Julia Sets

4.1 Introduction

Julia sets are some of the best known illustrations of a highly complicated chaotic system

generated by a very simple mathematical process. These sets have been deeply studied

in the framework of complex dynamics during the last century. Julia sets are not only an

intriguing mathematical object, but also a major source of amazing images. Many com-

puter programs have been written to generate these images. Algorithms for computing

Julia sets have been presented and discussed in [Sau87], [Pick98] and [Mil00] (Appendix

H), for example.

It appears, however, that none of the algorithms and their implementations cope well

with zooming in. With the computer using fixed-precision numbers, rounding errors

affect the computation badly when we try to zoom in. These programs also seem to work

poorly near some “hard” polynomials, for example, with p(z) = z2 + 1/4 + ε, 0 < ε ≪ 1.

We will return to this example in section 4.7.

We give the first polynomial bound on the complexity of an arbitrary hyperbolic

Julia set. The class of hyperbolic polynomials is very rich. For example, in the case

p(z) = z2 + c, p(z) is hyperbolic for all c’s outside and for all known c’s in the interior

52

Chapter 4. Complexity of Hyperbolic Julia Sets 53

of the Mandelbrot set (but not on the boundary). It is a major open problem whether

z2 + c is hyperbolic for every c in the interior of the Mandelbrot set (see [McMl94] for

more information).

c = 0.25

Figure 4.1: The Mandelbrot set with the point c = 1/4 highlighted.

Although the hyperbolic Julia sets were shown to be recursive in [Zh98], complexity

bounds were proved only in a restricted case in [RW03]. In accordance with the discussion

in section 3.1 we show that hyperbolic Julia sets are locally poly-time computable as per

definition 3.1.6. This result is a generalization of the result in [RW03], where it has been

shown that a special type of hyperbolic Julia sets of the form Jz2+c for |c| < 1/4 are

poly-time computable.

The algorithm that we present is not uniform in p(z). That is, the Turing Machine

computing Jp(z) depends on p(z). We will show in section 4.7, however, that no uniform

Turing Machine computing Jp(z) exists. Our algorithm can be modified to be uniform in

the hyperbolic p(z)’s, such a modification will remain polynomial in the precision of the

computation, but might be arbitrarily hard in the polynomial p(z). Explicitly, we obtain

a bound of K(p) · nM(n), where K(p) is a coefficient depending on the polynomial, 2−n

is the required precision and M(n) is the complexity of multiplying two n-bit numbers.

Chapter 4. Complexity of Hyperbolic Julia Sets 54

4.2 Julia Sets and Hyperbolic Julia Sets

We will give one of the equivalent definitions of the hyperbolic Julia set. More detailed

information, as well as proofs and further references can be found in [Mil00] and [McMl94].

[Mil00] gives a particularly good exposition of the hyperbolic Julia sets.

For the rest of the chapter we fix our polynomial to be p(z). Note that p(z) is a

polynomial with complex coefficients. Let pk(z) denote the k-th iteration of p(z), i.e.

p1(z) = p(z), p2(z) = p(p(z)) and in general pk+1(z) = p(pk(z)). By a convention,

p0(z) = z. We define the orbit of z as the sequence (z, p(z), p2(z), . . .).

A point z is called periodic if pk(z) = z for some k ≥ 1. The minimal such k is

called the period of z. A periodic point z with period k and its (finite in this case)

orbit (z, p(z), . . . , pk−1(z)) are said to be attracting if |(pk)′(z)| < 1 and repelling if

|(pk)′(z)| > 1. If we iterate a point in a small neighborhood of an attracting periodic

point, we will approach the attracting orbit, while if we iterate a point in a small neigh-

borhood of a repelling periodic point, we will escape the neighborhood.

In the simple case of k = 1, a periodic orbit of length one is just a fixed point z of

p so that p(z) = z. In this case z is an attracting fixed point if and only if |p′(z)| < 1. If

z is an attracting fixed point, then the orbit of any point x in some small neighborhood

of z will be approaching z exponentially fast.

We say that a point c is a critical point of p(z) if p′(c) = 0. We are now ready to

state one of the equivalent definitions of a hyperbolic polynomial.

Definition 4.2.1 A polynomial p(z) of degree ≥ 2 is said to be hyperbolic if every critical

point c of p(z) converges to an attracting periodic orbit of p(z) or to ∞, or is part of a

periodic orbit itself. In the latter case we say that the orbit of c is superattracting.

Here we include ∞ as a special case to simplify matters, but in fact, by considering

the Riemann sphere instead of the complex plane, we can regard ∞ as a superattracting

periodic point of p(z), since we have p(∞) = ∞ and p′(∞) = 0.

Chapter 4. Complexity of Hyperbolic Julia Sets 55

We can now give a simple definition of the Julia set in the hyperbolic case. See

[Mil00] for a proof that in the hyperbolic case this definition is equivalent to the general

definition of the Julia set.

Definition 4.2.2 The Julia set Jp of a hyperbolic polynomial p(z) is the set of all points

w, such that the orbit of w does not converge to an attracting periodic orbit of p(z) or to

∞. The complement of the Julia set is denoted Kp = J c
p and is called the Fatou set of

the polynomial p(z). These Julia sets are called hyperbolic Julia sets.

We summarize the most important facts about hyperbolic Julia sets we will be using

in the following lemma. See [Mil00] for details and proofs.

Lemma 4.2.3 For a hyperbolic polynomial p(z) the following facts hold:

1. The interior of Jp is empty.

2. Jp = p(Jp) = p−1(Jp).

3. p(z) has at most deg(p)− 1 attracting periodic orbits (regarding an orbit as a set).

The definition itself gives a very naive “algorithm” for computing Jp. Namely, set a

threshold T . To determine whether a point w is in Jp compute the first T elements of the

orbit of w, p(w), p2(w), . . . , pT (w). If the orbit gets close to one of the attracting orbits,

say that w /∈ Jp, otherwise say that w ∈ Jp. In fact, many of the computer programs

that draw Julia sets use this method. The problem, of course, is how to choose a good

T and how to define “close”. If T is not chosen properly, we might reject w’s which are

very close to Jp or accept w’s which are far away from Jp. We will have to develop more

theory in order to choose T which makes the method above work properly. The tool

which we will use to control the distance between w and Jp is one of the fundamental

tools in complex dynamics, called the Poincaré metric.

Chapter 4. Complexity of Hyperbolic Julia Sets 56

4.3 The Poincaré Metric

The Poincaré metric, known also as the hyperbolic metric, is a metric which naturally

arises on hyperbolic Riemann surfaces. It is beyond the scope of this work to discuss the

metric in full generality, so we will restrict our attention to subsets of the complex plane

C. See [Mil00] for a more comprehensive exposition. It is known that any connected

open subset S ⊂ C of the complex plane which omits at least 2 points is a hyperbolic

Riemann surface and has a unique (up to a multiplication by a constant) Poincaré metric

dS. We call these subsets of C hyperbolic sets.

To define the Poincaré metric, we first need to describe another fundamental math-

ematical concept – the notion of a covering map. While covering maps are defined in

many different topological settings, we will define it for our case: the hyperbolic subsets

of C. A map f : X → Y between two hyperbolic subsets of C is said to be a covering

map, if for each y ∈ Y there is a neighborhood N(y) of y such that for each connected

component N ′ of f−1(N(y)), the map f : N ′ → N(y) is a conformal (locally shape

preserving) isomorphism.

Figure 4.2: The map z 7→ z2 is a two-fold covering map on the punctured unit disk.

In general, covering maps allow us to analyze the structure of Y using the structure

of X. The following theorem illustrates the relevance of covering maps in our case.

Chapter 4. Complexity of Hyperbolic Julia Sets 57

Theorem 4.3.1 Let D = {z : |z| < 1} be the open unit disk and let S ⊂ C be a hyperbolic

set. Then there is a covering map q : D → S.

We first define the Poincaré metric on the unit disk, and then use the covering map

from theorem 4.3.1 to give the Poincaré metric on a general hyperbolic set S. The

property defining the Poincaré metric on the unit disk is its invariance under conformal

automorphisms of the disk D as seen in the following theorem.

Theorem 4.3.2 There exists one and, up to a multiplication by a positive constant,

only one Riemannian metric on the disk D which is invariant under every conformal

automorphism of D.

Explicitly, we can choose the metric to be given by pD(z) = 2/(1 − |z|2) so that the

length of an arc γ in the Poincaré metric is given by

lD(γ) =

∫

γ

2|dγ(z)|
1 − |z|2 .

Note that the metric tends to ∞ as z approaches the boundary of the disk.

We can now define the Poincaré metric on an arbitrary hyperbolic subset S of C as

the metric induced from the metric on D by the covering map. If we denote a covering

map by q : D → S, then we define the metric pS(z) = pD(w)/|q′(w)|, where w ∈ q−1(z).

It follows from the definition of pD that pS does not depend on the choice of q and w.

The map q preserves lengths of paths: for an arbitrary path γ in D,

lS(q(γ)) =

∫

γ

pS(q(z))|q′(z)||dγ(z)| =

∫

γ

(pD(z)/|q′(z)|) · |q′(z)||dγ(z)| =

∫

γ

pD(z)|dγ(z)| = lD(γ).

In fact, the Poincaré length is preserved not only by q, but by any covering map. This

fact is stated in the following theorem, known as Pick’s theorem, which will be applied

several times in our arguments below. See [Mil00] for a proof.

Chapter 4. Complexity of Hyperbolic Julia Sets 58

Theorem 4.3.3 (Theorem of Pick) Let S and T be two hyperbolic subsets of C. If

f : S → T is a holomorphic map, then exactly one of the following three statements is

valid:

1. f is a conformal isomorphism from S onto T , and maps S with its Poincaré metric

isometrically to T with its Poincaré metric.

2. f is a covering map but is not one-to-one. In this case, it is locally but not globally

a Poincaré isometry. Every smooth path P : [0, 1] → S of arclength l in S maps to

a smooth path f ◦ P of the same length l in T .

3. In all other cases, f is a strict contraction with respect to the Poincaré metrics on

the image and preimage.

We now have the basic complex-analytic background required for the construction,

and we are ready to prove that the hyperbolic Julia sets are poly-time computable. We

will first show that hyperbolic Julia sets are Ko P-computable. By theorem 3.2.2 this im-

plies that these sets are computable in exponential time. We then use a technique similar

to the technique used in [RW03] to obtain a poly-time algorithm from the exponential

one.

4.4 Hyperbolic Julia Sets are Ko P-Computable

As noted above, we will present an algorithm that uses some nonuniform information, i.e.

information which depends on the polynomial p(z) but not on the precision parameter

n. The polynomial p(z) itself is given to the algorithm as an oracle that outputs its

coefficients with any required precision. Denote the polynomial p(z) = cmzm+cm−1z
m−1+

. . . + c1z + c0. We can query each ci with precision 2−r with time cost r. As per the

definition of Ko P-computability, the input x to the algorithm is also given as an oracle.

We want to decide whether x ∈ Jp.

Chapter 4. Complexity of Hyperbolic Julia Sets 59

We will now list the nonuniform information used by the algorithm. This information

can be computed from the initial data (i.e. the coefficients of p(z)) as will be noted

later, see theorem 4.6.1. We still list it as nonuniform to spare overcomplicated technical

details from the reader.

4.4.1 Nonuniform constants information

The key nonuniform information we need is information about the attracting orbits of

p(z). It is known from lemma 4.2.3 that p(z) has at most m − 1 attracting orbits. We

assume that we are given the number o of the orbits, the periods l1, l2, . . . , lo of the orbits,

and a “good” approximation of the orbits.

Denote the orbits by

X = ((x11, x12, . . . , x1l1), (x21, x22, . . . , x2l2), . . . , (xo1, xo2, . . . , xolo)).

We want a dyadic approximation

A = ((a11, a12, . . . , a1l1), (a21, a22, . . . , a2l2), . . . , (ao1, ao2, . . . , aolo))

of X with |aij −xij| < εo, where εo is some fixed positive number which does not depend

on the required precision, and will be specified later.

For each attracting orbit oi we would like to have a measure on the convergence to

oi near its points. We formulate it as follows. For each xij we associate a radius rij > 0

and to each orbit we associate a number si < 1 such that

1. If |x − xij| < rij then x converges to the i-th orbit.

2. For each i, j, p(B(xij, rij)) ⊂ B(xi,j+1, si · ri,j+1), where j + 1 is taken mod li.

Intuitively, si gives a numerical measure on how fast the i-th orbit attracts points. Let

ra = min rij be a unified radius of convergence, so that if |x−xij| < ra, then x converges

to the i-th orbit.

We would also like to have a radius of “attraction” to ∞, namely R and R′ such that:

Chapter 4. Complexity of Hyperbolic Julia Sets 60

1. If x > R then the orbit of x diverges to ∞,

2. R′ > R, and

3. |p(x)| > R′ whenever |x| > R.

• Denote d̃l = min(R′ − R, mini,j(rij − si · rij)) and choose εo above to be d̃l/4.

As one might guess from the definition of the hyperbolic Julia sets, critical points play

a key role in the dynamics of the Julia set. We will need some information about the

critical points. Since the critical points are just the solutions of p′(z) = 0, there are m−1

critical points (counted with multiplicity). Denote the critical points Y = (y1, . . . , ym−1).

We do not need to know the critical points themselves, but rather some information about

their convergence to the attracting orbits. From the definition of p(z) being hyperbolic,

we know that each yi converges to one of the attracting orbits, and so for each yi there is

a neighborhood of yi which converges to the same orbit. We would like to have a unified

radius rc and a number q such that if |y − yi| < rc for some i, then there are j and k

such that

|pq(y) − xjk| < ra or |pq(y)| > R′.

There are two more useful bounds that we will be using. They are very easy to

compute from p(z). We will need two bounds on the derivative |p′(z)|:

• A lower bound d > 0 such that |p′(z)| > d whenever |z − yi| > rc

2
for all i.

• An upper bound D ≥ 1 such that |p′(p(y))| < D and |p′(y)| < D/2 whenever

|y| < R′.

4.4.2 The Main Construction

We are now ready to present the main construction. Define

Ũ = B(0, R′)\
(

o
⋃

i=1

li
⋃

j=1

B(xij, si · rij)

)

.

Chapter 4. Complexity of Hyperbolic Julia Sets 61

Ũ can be thought of as a large disk with holes punctured near the attracting orbits. Any

point outside Ũ converges either to an attracting orbit or to ∞, so Jp ⊂ Ũ . Denote

Ṽ = p−1(Ũ). It is not hard to see that Ṽ is contained in Ũ , and in fact is bounded away

from the boundary of Ũ :

Lemma 4.4.1

Ṽ ⊆ B(0, R)\
(

o
⋃

i=1

li
⋃

j=1

B(xij, rij)

)

⊂ Ũ , and d(Ũ c, Ṽ) ≥ d̃l.

Below is a graphical illustration of Ũ and Ṽ .

Figure 4.3: An illustration of Ũ and Ṽ . Ũ shown in light gray, Ṽ ⊂ Ũ is shown in dark

gray.

Denote U = p−q−1(Ũ), V = p−q−1(Ṽ). Then by the definition of rc and q, B(yi, rc) ∩

U = ∅ for any critical point yi. Lemma 4.2.3 implies that Jp = p−q−2(Jp) ⊂ p−q−2(Ũ) =

V .

Chapter 4. Complexity of Hyperbolic Julia Sets 62

As a corollary of lemma 4.4.1, we conclude that V ⊂ U , and furthermore we can

compute a lower bound dl on the distance between V and U c.

Lemma 4.4.2

d(U c, V) ≥ dl =
d̃l

Dq+1
.

Proof: The lemma follows immediately from lemma 4.4.1 and from the fact that D is

an upper bound on the derivative |p′(z)| on Ũ .

We will be repeatedly using the following simple lemma.

Lemma 4.4.3 Suppose S ⊂ T are two open subsets of C, which are hyperbolic viewed as

Riemann surfaces. Let pS and pT denote the Poincaré metrics of S and T , respectively.

Then

pT (z) < pS(z)

for each z ∈ S.

Proof: We apply the theorem of Pick (theorem 4.3.3). Let

ι : S →֒ T

be the inclusion map. Then, by Pick’s theorem, ι decreases all non-zero distances. Hence

pT (z) < pS(z) for all z ∈ S.

U and V are obviously hyperbolic sets, and hence the Poincaré metric is defined on

them. Denote the weight function of the Poincaré metric on U by pU and the weight

function of the Poincaré metric on V by pV . Denote the Poincaré metrics themselves by

dU and dV , respectively. We have the following simple lemma bounding the metric pU .

This lemma is a simple corollary of lemma 4.4.3

Lemma 4.4.4 pU(z) > 2
R′

for all z ∈ U , and pU(z) < 2
dl

for all z ∈ V .

Chapter 4. Complexity of Hyperbolic Julia Sets 63

Proof: We know that U ⊂ B(0, R′), hence pU > pB(0,R′) on V . But pB(0,R′) is given by

pB(0,R′)(z) =
2

R′ − |z|2

R′

≥ 2

R′
.

Hence pU(z) > pB(0,R′)(z) ≥ 2
R′

.

Let z be an arbitrary point in V . Then B(z, dl) ⊂ U by the definition of dl in claim

4.4.2 and so pU < pB(z,dl). But pB(z,dl) is given by

pB(z,dl)(x) =
2

dl − |x−z|2

dl

.

Hence pU(z) < pB(z,dl)(z) = 2
dl

, for all z ∈ V .

We will need the following lemma in our construction.

Lemma 4.4.5 pV (z) ≥ c · pU(z) > pU(z) for all z ∈ V , where c > 1 is some constant

explicitly computable from dl and R′.

It is not hard to prove lemma 4.4.5 by applying a compactness argument. We insist

on giving a constructive proof and computing the constant c. We will need the ability to

compute c when making the construction uniform (see section 4.6).

Proving lemma 4.4.5 is quite technically involved, and will require some preparation.

We start with an auxiliary construction. Let G be a two dimensional grid in C with step

length dl/4 in both directions (i.e. G = dl

4
· Z + dl

4
· Zi). We define a set W such that

V ⊂ W ⊂ U as follows.

W =
⋃

x∈G,B(x,dl/4)∩V 6=∅

B(x, dl/4).

In other words, we throw the ball B(x, dl/4) into W if and only if its intersection with

V is not empty. The definition of W has something in common with the definition of a

dl/4-picture of V .

It is easy to see that V ⊂ W ⊂ B(V, dl/2). It follows that

Lemma 4.4.6 B(W, dl/2) ⊂ U .

Chapter 4. Complexity of Hyperbolic Julia Sets 64

Proof: B(W, dl/2) ⊂ B(V, dl/2+dl/2) = B(V, dl) ⊂ U , where the last inclusion follows

from lemma 4.4.2.

One can prove the following lemma exactly as we have proved lemma 4.4.4, using W

instead of V and dl/2 instead of dl.

Lemma 4.4.7 pU(z) < 2
dl/2

= 4
dl

for all z ∈ W .

We now prove a bound on the Euclidean radius of W .

Lemma 4.4.8 For every x, y in the same connected component of W there is a path γ

connecting x to y of Euclidean length < 32R′2

dl

.

Proof: The set V is contained in B(0, R′), hence there are less than 2R′

dl/4
× 2R′

dl/4
= 64R′2

d2
l

balls of radius dl/4 in the definition of W . We can choose a path γ from x to y such

that γ visits each ball in the definition of W at most once. Moreover, we can make γ

a broken line such that at most a diam(B(z, dl/4)) = dl/2 portion of γ is charged to

each ball B(z, dl/4) in the definition of W . Hence the length of such a path γ would be

< 64R′

d2
l

· dl

2
= 32R′2

dl

.

Lemma 4.4.8 allows us to give a bound on the Poincaré dU -diameter of V .

Lemma 4.4.9 For x, y in the same connected component of V , dU(x, y) < MW = 128R′2

d2
l

.

Proof: Let x, y be in the same connected component of V . V ⊂ W implies that x, y

are also in the same connected component of W . Hence by lemma 4.4.8 there is a path

γ of Euclidean length < 32R′2

dl

. We can use lemma 4.4.7 to bound the Poincaré length

lU(γ) in the Poincaré metric of U :

dU(x, y) ≤ lU(γ) =

∫

γ

pU(z)|dγ(z)| ≤
∫

γ

4

dl

|dγ(z)| ≤ length(γ)· 4

dl

<
32R′2

dl

· 4

dl

=
128R′2

d2
l

.

We are now ready to prove lemma 4.4.5.

Chapter 4. Complexity of Hyperbolic Julia Sets 65

Proof: (of lemma 4.4.5). First of all, as we have previously mentioned, such a c

must exist by a compactness arguments. We know that pV (z) > pU(z) for all z ∈ V

and pV (z)/pU(z) → ∞ as z tends to the boundary of V . Hence c = minV pV (z)/pU(z)

must exist and we must have c > 1. Computing c is not essential for proving that Jp is

computable for each fixed polynomial p(z), since we might as well have given c as part

of the nonuniform input. It is essential, however, to compute a specific value of c in

terms of more basic (and computable in the hyperbolic case) information about p(z) in

order to get a uniform poly-time computability result for hyperbolic Julia sets (theorem

4.6.1). We will give a lower bound > 1 on c in terms of dl and R′. Our goal is to set a

computable lower bound on c for theoretical purposes. We believe that the bound can

be improved using more involved analysis.

We have V ⊂ W ⊂ U and hence pV (z) > pW (z) for all z ∈ V . Hence it is enough

to find a constant c > 1 such that pW (z) > c · pU(z) for all z ∈ W . Fix a specific point

w ∈ W . Let W0 ⊂ U0 be the connected components of W and U respectively which

contain w. Then by definition pW (w) = pW0(w) and pU(w) = pU0(w). From lemma 4.4.6

we conclude that B(W0, dl/2) ⊂ U0.

As it has been already mentioned in theorem 4.3.1, there are covering maps qW :

DW → W0 and qU : DU → U0 where DW = DU = {z : |z| < 1} are just two open unit

disks. Let w̃ be a preimage of w under qW , that is qW (w̃) = w.

Consider the inclusion map ι : W0 →֒ U0. From the map lifting property of the

covering map qU , there is a map ι̃ : DW → DU such that the diagram

DW −→ι̃ DU

qW ↓ ↓ qU

W0 →֒ι U0

(4.1)

commutes. (see [Jo02] pp. 7-15 for more information about map lifting).

Let x ∈ U0\W0 be a point such that dU(x,w) < 2MW . Such a point must exist since

there is a point y on the boundary ∂W0 with dU(w, y) ≤ MW by a trivial modification

Chapter 4. Complexity of Hyperbolic Julia Sets 66

of lemma 4.4.9 to use W instead of V (the same proof is still valid), and a point x in U0

outside W0 with dU(x, y) < MW . Hence dU(x,w) ≤ dU(x, y) + dU(y, w) < MW + MW =

2MW . Let γ be a path in U0 from w to x such that the Poincaré length lU(γ) < 2MW .

By the commutativity of diagram (4.1) we know that qU(ι̃(w̃)) = ι(w) = w, hence by the

path lifting property there is a path γ̃ in DU which is a lift of γ such that γ̃(0) = ι̃(w̃).

Denote x̃ = γ̃(1) ∈ DU . Then we have qU(x̃) = x, i.e. x̃ is a lift of x. Observe that

qU is a covering map, and hence by Pick’s theorem (theorem 4.3.3) it preserves Poincaré

lengths of paths. Hence dDU
(x̃, ι̃(w̃)) ≤ lDU

(γ̃) = lU(γ) < 2MW .

It is known that for every point z in the unit disk, there is an automorphism of the

unit disk which takes z to the center of the disk. (See [Mil00], for example). Denote by

φ : DU → DU an automorphism that takes x̃ to 0. So φ(x̃) = 0 and φ−1(0) = x̃. Consider

the following commutative diagram

DW −→φ◦ι̃ D′
U −→φ−1

DU

qW ↓ ↓ qU

W0 →֒ι U0

(4.2)

Where D′
U is just a copy of the unit disk DU . φ−1 : D′

U → DU is an automorphism, so

by Pick’s theorem it is a Poincaré isometry. Hence

dD′

U
(0, φ ◦ ι̃(w̃)) = dDU

(φ−1(0), φ−1 ◦ φ ◦ ι̃(w̃)) = dDU
(x̃, ι̃(w̃)) < 2MW .

We know that the Poincaré metric on the unit disk is given by pD′

U
(z) = 2/(1− |z|2),

hence
∫ |φ◦ι̃(w̃)|

0

2|dz|
(1 − |z|2) < 2MW .

So we obtain

2MW >

∫ |φ◦ι̃(w̃)|

0

2dt

1 − t2
=

∫ |φ◦ι̃(w̃)|

0

(

dt

1 + t
+

dt

1 − t

)

>

∫ |φ◦ι̃(w̃)|

0

dt

1 − t

= − log(1 − t)||φ◦ι̃(w̃)|
0 = − log(1 − |φ ◦ ι̃(w̃)|).

Hence |φ ◦ ι̃(w̃)| < 1 − e−2MW .

Chapter 4. Complexity of Hyperbolic Julia Sets 67

We will now show that 0 /∈ φ ◦ ι̃(DW). Suppose, on the contrary, that there is

a z̃ ∈ DW with φ ◦ ι̃(z̃) = 0. Denote z = qW (z̃) ∈ W0. Then ι(z) = qU(ι̃(z̃)) =

qU(φ−1 ◦ φ ◦ ι̃(z̃)) = qU(φ−1(0)) = qU(x̃) = x, which contradicts our assumption that

x /∈ W0. This shows that the map φ ◦ ι̃ : DW → D′
U can be factored through the

punctured unit disk PD = {z : 0 < |z| < 1}. In other words, the diagram

DW −→φ◦ι̃ PD →֒ι′ D′
U −→φ−1

DU

qW ↓ ↓ qU

W0 →֒ι U0

(4.3)

where ι′ is an inclusion map of the punctured unit disk into the simple unit disk, com-

mutes.

We can now analyze the ratio pW (w)/pU(w), which is the goal of the proof. Pick’s

theorem says that covering maps locally preserve the Poincaré metric. Hence we have

pW (w) = pDW
(w̃)/|q′W (w̃)| and pU(w) = pDU

(ι̃(w̃))/|q′U(ι̃(w̃))|. The functions φ ◦ ι̃ :

DW → PD and φ−1 : D′
U → DU do not increase the Poincaré metric, hence pPD(φ ◦

ι̃(w̃)) · |(φ ◦ ι̃)′(w̃)| ≤ pDW
(w̃) and pDU

(ι̃(w̃)) · |(φ−1)′(φ ◦ ι̃(w̃))| ≤ pD′

U
(φ ◦ ι̃(w̃)). Finally,

by the commutativity of diagram (4.3), we have |q′W (w̃)| = |(φ◦ ι̃)′(w̃)| · |(φ−1)′(φ◦ ι̃(w̃))| ·

|q′U(ι̃(w̃))|. Using all these facts together we obtain

pW (w)

pU(w)
=

pDW
(w̃)/|q′W (w̃)|

pDU
(ι̃(w̃))/|q′U(ι̃(w̃))| =

pDW
(w̃) · |q′U(ι̃(w̃))|

pDU
(ι̃(w̃)) · |q′W (w̃)| ≥

pPD(φ ◦ ι̃(w̃)) · |(φ ◦ ι̃)′(w̃)| · |q′U(ι̃(w̃))|
(pD′

U
(φ ◦ ι̃(w̃))/|(φ−1)′(φ ◦ ι̃(w̃))|) · |q′W (w̃)| =

pPD(φ ◦ ι̃(w̃)) · |(φ ◦ ι̃)′(w̃)| · |(φ−1)′(φ ◦ ι̃(w̃))| · |q′U(ι̃(w̃))|
pD′

U
(φ ◦ ι̃(w̃)) · |(φ ◦ ι̃)′(w̃)| · |(φ−1)′(φ ◦ ι̃(w̃))| · |q′U(ι̃(w̃))| =

pPD(φ ◦ ι̃(w̃))

pD′

U
(φ ◦ ι̃(w̃))

.

There are explicit formulas for pD′

U
and pPD. DU ′ is just the unit disk, and we are

familiar with its Poincaré metric. PD is the punctured unit disk, its Poincaré metric is

given by (see [Mil00], p. 19) pPD(z) = 1/(|z| · | log |z||). Denote r = |φ ◦ ι̃(w̃)|. We know

that r < 1 − e−2MW . Then

pW (w)

pU(w)
≥ pPD(φ ◦ ι̃(w̃))

pD′

U
(φ ◦ ι̃(w̃))

=
1/(r| log r|)
2/(1 − r2)

=
1 − r2

2r| log r| = − 1 − r2

2r log r
.

Chapter 4. Complexity of Hyperbolic Julia Sets 68

Denote f : [0, 1] → R by f(r) = − 1−r2

2r log r
. Then f is differentiable on the interval (0, 1)

and

f ′(r) = −−2r(2r log r) − (2 + 2 log r)(1 − r2)

(2r log r)2
= −2r2 − 2 log r − 2 − 2r2 log r

(2r log r)2
.

By the simple fact that follows from the Taylor expansion of log r around 1: log r <

(r − 1) − (r − 1)2/2 for all 0 < r < 1,

2r2−2 log r−2−2r2 log r = 2r2−2−(2+2r2) log r > 2r2−2−(2+2r2)((r−1)−(r−1)2/2) =

2r2−2−2r+2−2r3 +2r2 +(1+ r2)(r−1)2 = −2r3 +4r2−2r+1−2r+2r2−2r3 + r4 =

r4 − 4r3 + 6r2 − 4r + 1 = (r − 1)4 > 0.

Hence f ′(r) < 0 for all r ∈ (0, 1), and the function f is decreasing on this interval. Thus

r < 1 − e−2MW implies that f(r) > f(1 − e−2MW). So

pW (w)

pU(w)
≥ pPD(φ ◦ ι̃(w̃))

pD′

U
(φ ◦ ι̃(w̃))

= f(r) > f(1 − e−2MW) =

− 1 − (1 − e−2MW)2

2(1 − e−2MW) log(1 − e−2MW)
. (4.4)

Choose

c = f(1 − e−2MW) = − 1 − (1 − e−2MW)2

2(1 − e−2MW) log(1 − e−2MW)
= 1.

Since c does not depend on w, (4.4) is satisfied for all w ∈ W0. Hence if v ∈ W0 ∩ V ,

then pV (v)
pU (v)

> pW (v)
pU (v)

> c. All we have to see now is that c > 1. We apply L’Hospital’s rule

to obtain

lim
r→1−

f(r) = lim
r→1−

− 1 − r2

2r log r
= lim

r→1−
− −2r

2 log r + 2
= 1.

f is decreasing on (0, 1) and approaches 1 as r → 1, hence f(r) > 1 for all r ∈ (0, 1) in

particular c = f(1 − e−2MW) > 1. In fact, one can see that c = 1 + Θ((e−2MW)2). This

completes the proof.

Observe that by our construction V does not contain critical points of p, hence the

map p : V → U is an m-fold covering map. Thus by Pick’s theorem (theorem 4.3.3) it is

a local Poincaré isometry. Formally, we obtain

Chapter 4. Complexity of Hyperbolic Julia Sets 69

Lemma 4.4.10 pV (x) = |p′(z)| · pU(p(x)) for all x ∈ V .

We are now ready to prove the following lemma which is the key to our construction.

Lemma 4.4.11 Let dU(Jp, z) denote the distance between the point z and the Julia set Jp

in the Poincaré metric dU . Then dU(Jp, z) is well defined for all z ∈ U and dU(Jp, p(x)) ≥

c · dU(Jp, x) for all x ∈ V , where c > 1 is a binary constant computable from the initial

data.

Proof: First of all, we need to show that dU(Jp, z) is finite. In other words, we need

to show that for each connected component U0 of U , Jp ∩U0 6= ∅. We prove by induction

on k that for each connected component Y0 of Y k = p−k(Ũ), Y0 ∩ Jp 6= 0. In particular,

applying the result with k = q + 1 will imply that Jp ∩ U0 6= ∅, since U0 is a connected

component of U = p−(q+1)(Ũ).

For the base of the induction it is obvious that Y0 = Ũ is connected and Jp ∩ Y0 6= ∅.

For the step fix k ≥ 0. Assume that the claim holds for k, we want to prove it for k + 1.

Consider the map p : Y k+1 → Y k. p is a polynomial, so it is an open map. In other

words, p maps open sets to open sets. It is not hard to see from here that by topological

observations p must map connected components of Y k+1 onto connected components of

Y k. Let Y0 be a connected component of Y k+1. Then p(Y k+1) is a connected component

of Y k, and so by the induction assumption there is a j′ ∈ Jp ∩ p(Y k+1). Hence there is a

j ∈ Y k+1 with p(j) = j′ ∈ Jp hence by lemma 4.2.3, j ∈ Jp, which completes the proof

that dU(Jp, z) is finite, and so it is well defined.

Fix an arbitrary x ∈ V . Let c > 1 be the computable constant we have found in the

proof of lemma 4.4.5. Denote dU(Jp, p(x)) = l ≥ 0. We will show that dU(Jp, x) ≤ (l+ε)/c

for all ε > 0, and so dU(Jp, x) ≤ l/c = dU(Jp, p(x))/c.

By the definition of the distance dU(Jp, p(x)), for any ε > 0 there is a path γ in U such

that γ(0) = p(x), γ(1) ∈ Jp and the length of γ in the Poincaré metric of U , lU(γ) ≤ l+ε.

p : V → U is a covering map, so by the path lifting property, we can lift γ to a path

Chapter 4. Complexity of Hyperbolic Julia Sets 70

γ̃ in V , such that γ = p(γ̃) and γ̃(0) = x. In particular, we have p(γ̃(1)) = γ(1) ∈ Jp,

hence by lemma 4.2.3, γ̃(1) ∈ Jp, and so dU(Jp, x) ≤ lU(γ̃). By lemma 4.4.10 we know

that p : V → U is a local Poincaré isometry. In particular, it preserves path lengths. So

lV (γ̃) = lU(γ). We apply lemma 4.4.5 to obtain

dU(Jp, x) ≤ lU(γ̃) =

∫ 1

0

pU(γ̃(t))|γ̃′(t)|dt ≤ 1

c
·
∫ 1

0

pV (γ̃(t))|γ̃′(t)|dt =

lV (γ̃)

c
=

lU(γ)

c
≤ l + ε

c
.

Hence dU(Jp, x) ≤ l/c = dU(Jp, p(x))/c, which completes the proof.

4.4.3 The Algorithm

Lemma 4.4.11 gives us a tool to estimate the speed at which a point x /∈ Jp runs away

from Jp in the Poincaré metric. If initially the Euclidean distance d(Jp, x) > ε, then by

lemma 4.4.4, dU(Jp, x) > 2ε
R′

, and assuming that the orbit of x stays in V in s steps we

have by lemma 4.4.11 that dU(Jp, p
s(x)) > 2ε

R′
· cs. But then by lemma 4.4.9 we have

s ≤ logc
MW

2ε/R′
. If ε = 2−n the estimate on s is linear in n. This allows us to obtain a poly

time algorithm which Ko P-computes Jp:

Algorithm 1

Input: The non-uniform input as described above,

the input x, c0, c1, . . . , cm given on an oracle tape and m,n.

Output: 0 if d(Jp, x) > 2−n, 1 if x ∈ Jp, 0 or 1 otherwise, as required in (2.6).

1. Compute c described above.

2. Compute a natural number N = O(n) such that

N ≥ 2 + logc (MW · R′ · 2n−1) + q.

Chapter 4. Complexity of Hyperbolic Julia Sets 71

3. Compute pN(x) within an error of d̃l

4
.

3.1. If pN(x) /∈ Ũ , output 0,

3.2. If pN(x) ∈ Ṽ , output 1,

3.3. Otherwise, output 0 or 1.

Note that we know the attracting orbits with precision good enough to unambiguously

decide if one of the possibilities 3.1 or 3.2 holds. By the discussion above d(Jp, x) > 2−n

implies that pN(x) /∈ Ũ , and so the algorithm outputs 0 in this case. If, on the other

hand, x ∈ Jp, then by lemma 4.2.3 pN(x) ∈ Jp ⊂ Ṽ , and the algorithm would output 1.

This shows the correctness of the algorithm.

Observe that N = O(n), so we perform linearly many operations on x, hence we

require linearly many bits of x in order to achieve the required (fixed) precision level at

the end of the computation. Hence by theorem 3.2.2 we know that Jp is computable in

time poly(n) · 2O(n) = 2O(n). Algorithm 1 does not compute Jp in our definition, since it

might reject points x /∈ Jp which are very close to Jp (closer than 2−n−1). In the next

section we will be referring to the exponential time algorithm computing Jp in our sense

as algorithm 1.

4.5 Jp is Poly-Time Computable

We are now ready to prove the main result of the paper, namely the poly-time com-

putability of the Julia set Jp. We use the result from the previous section combined with

a technique very similar to the technique used in [RW03] to pass from an exponential

to a polynomial time algorithm. The goal is to estimate the distance from x to Jp both

from above and below.

Chapter 4. Complexity of Hyperbolic Julia Sets 72

4.5.1 Estimating the Distance from Jp

The following lemma is our main tool for giving estimates on the distance from Jp.

Lemma 4.5.1 There are positive constants α, β > 0 computable from the initial data

such that for any z ∈ B(0, R′) and 0 < ε < α satisfying d(Jp, z) ≤ ε, we have

(|p′(z)| − βε)d(Jp, z) ≤ d(Jp, p(z)) ≤ (|p′(z)| + βε)d(Jp, z).

Proof: Once again, in the proof of this lemma, we do not try to achieve the best possible

parameter values. A more involved analysis would probably yield better numbers.

Let α ≤ rcd
4D

. Then d(Jp, z) < α implies that |p′(z)| > d. Recall that we have denoted

the polynomial p(z) = cmzm + cm−1z
m−1 + . . . + c1z + c0. Let

β >
D2

d2

m
∑

i=2

(

(

Dα

d

)i−2

·
m−i
∑

k=0

(i + k)!

i!k!
|ci+k|R′k

)

.

This is obviously an easily computable number.

Let j ∈ Jp be the element of Jp which is closest to z, i.e. |j − z| = d(Jp, z) ≤ ε. Jp is

compact, so such an element must exist. Then p(j) ∈ Jp by lemma 4.2.3. Expanding to

Taylor series around z (which has finitely many elements in this case), we obtain

d(Jp, p(z)) ≤ |p(j)−p(z)| =

∣

∣

∣

∣

∣

m
∑

i=0

p(i)(z)(j − z)i

i!
− p(z)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

m
∑

i=1

p(i)(z)(j − z)i

i!

∣

∣

∣

∣

∣

≤ |p′(z)||j−z|+

∣

∣

∣

∣

∣

m
∑

i=2

p(i)(z)(j − z)i

i!

∣

∣

∣

∣

∣

= |p′(z)||j − z| + |j − z|2
∣

∣

∣

∣

∣

m
∑

i=2

(

(j − z)i−2

m−i
∑

k=0

(i + k)!

i!k!
ci+kz

k

)∣

∣

∣

∣

∣

≤

|p′(z)||j − z| + ε|j − z|
m

∑

i=2

(

(

Dα

d

)i−2

·
m−i
∑

k=0

(i + k)!

i!k!
|ci+k|R′k

)

< (|p′(z)| + βε)d(Jp, z).

In the opposite direction, let l ∈ Jp be the point of Jp closest to p(z), i.e. d(Jp, p(z)) =

|l−p(z)|. |p′(z)| is bounded from above by D, so it is not hard to see that p cannot expand

distances by more than a factor of D, and so |l − p(z)| = d(Jp, p(z)) ≤ D · d(Jp, z) ≤

Dε < Dα ≤ d · rc

4
. Let γ denote the straight line segment connecting p(z) to l, that is

γ(0) = p(z),γ(1) = l and length(γ) = |l − p(z)| < d · rc

4
. Then we can lift γ to γ̃ So that

Chapter 4. Complexity of Hyperbolic Julia Sets 73

γ̃(0) = z and p(γ̃) = γ. This can be done starting from γ̃(0) = z as long as γ̃ does not

hit any singularities. We will show that γ̃ cannot get rc

2
-close to any singularity so in

particular γ̃ never passes through a singular point and |p′(x)| > d for all x on γ̃.

Suppose γ̃′ : [0, t] → C for 0 ≤ t ≤ 1 is a partial lift of γ until the first time it

gets rc

2
-close to a singularity yi, so that γ̃′(0) = z and |γ̃′(t) − yi| = rc

2
. This implies

that d(Jp, γ̃
′(t)) ≥ d(Jp, yi) − rc

2
> rc − rc/2 = rc/2. Also d(Jp, z) < α < rc/4 and so

length(γ̃′) ≥ |z − γ̃′(t)| > rc

4
. Note that γ̃′ does not pass close to any singularities, and

so the contraction factor on it is at least d. p(γ̃′) is a portion of γ, and so length(γ) ≥

length(p(γ̃′)) ≥ d · length(γ̃′) > d · rc

4
, which is a contradiction.

Let γ̃ be a lift of γ as discussed before. Denote l̃ = γ̃(1). Then p(l̃) = l, and by lemma

4.2.3, l̃ ∈ Jp. We have d(Jp, z) ≤ |l̃ − z| ≤ length(γ̃) ≤ length(γ)/d = d(Jp, p(z))/d ≤

D · d(Jp, z)/d < D · α/d. Just as before, we expand to Taylor series around z to obtain

d(Jp, p(z)) = |p(l̃)−p(z)| =

∣

∣

∣

∣

∣

m
∑

i=0

p(i)(z)(l̃ − z)i

i!
− p(z)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

m
∑

i=1

p(i)(z)(l̃ − z)i

i!

∣

∣

∣

∣

∣

≥ |p′(z)||l̃−z|−

∣

∣

∣

∣

∣

m
∑

i=2

p(i)(z)(l̃ − z)i

i!

∣

∣

∣

∣

∣

= |p′(z)||l̃ − z| − |l̃ − z|2
∣

∣

∣

∣

∣

m
∑

i=2

(

(l̃ − z)i−2

m−i
∑

k=0

(i + k)!

i!k!
ci+kz

k

)∣

∣

∣

∣

∣

≥

|p′(z)||l̃ − z| − D · d(Jp, z)

d

D · d(Jp, z)

d

m
∑

i=2

(

(

Dα

d

)i−2

·
m−i
∑

k=0

(i + k)!

i!k!
|ci+k|R′k

)

≥

|p′(z)|d(Jp, z)−εD2 · d(Jp, z)

d2

m
∑

i=2

(

(

Dα

d

)i−2

·
m−i
∑

k=0

(i + k)!

i!k!
|ci+k|R′k

)

> (|p′(z)|−βε)d(Jp, z),

which completes the proof.

4.5.2 The Algorithm

Lemma 4.5.1 says that the change in the distance from z to Jp is locally controlled

by the expansion factor |p′(z)| up to some small relative error. More precisely, if we

choose α < rc/2, then we know that |p′(z)| > d, and so we can bound the relative error:

d(Jp, p(z)) ≤ (|p′(z)| + βε)d(Jp, z) = (1 + βε
|p′(z)|

)|p′(z)|d(Jp, z) ≤ (1 + βε
d

)|p′(z)|d(Jp, z).

Similarly, d(Jp, p(z)) ≥ (1−βε
d

)|p′(z)|d(Jp, z). We apply the lemma to obtain an algorithm

Chapter 4. Complexity of Hyperbolic Julia Sets 74

which computes Jp in poly-time. We first give a slightly weaker version of the algorithm.

Assume for this algorithm that α < d̃l (which is a constant).

Algorithm 2

Input: The non-uniform input as described above,

the input c0, c1, . . . , cm given on an oracle tape, m,n and

a binary x of length O(n) are given as inputs.

Output: 0 if d(Jp, x) > 2−nD, 1 if d(Jp, x) < 2−n/32, either 0 or 1 otherwise.

1. Compute c, α and β described above.

2. Compute a natural number N = O(n) such that

N ≥ 2 + logc (MW · R′ · 2n−1) + q.

3. Compute pN(x) within an error of d̃l

4
.

3.1. If pN(x) ∈ Ṽ , output 1,

3.2. Otherwise, goto 4.

4. Choose ε ∈ 1/O(n) a power of 2 such that ε < α, (1 + βε
d

)N+1 < 2,

and (1 − βε
d

)N+1 > 1/2.

4.1. If ε ≤ 2−n decide the question of the algorithm using Algorithm 1.

5. Compute the smallest M ≤ N + 1 such that 2nε/D < ΠM−1
i=0 |p′(pi(x))| < 2nε,

if no such M exists, output 0.

6. Apply Algorithm 1 to check if d(Jp, p
i(x)) < ε/16 or d(Jp, p

i(x)) > ε/2, for

each 0 ≤ i ≤ M , to do this it is enough to compute pi(x) with precision ε/16,

7. Output 0, if Algorithm 1 outputs d(Jp, p
i(x)) > ε/2 in one of the cases,

and 1 otherwise.

Note that the algorithm is not quite a computation of Jp as per definition 3.1.6 of set

complexity, because the ratio between the radius of acceptance and the radius of rejection

is 32D rather than 2. This can be fixed by covering the ball B(x, 2−n) with < (32D)2

small balls with centers on the 32D × 32D grid, and running Algorithm 2 on each of the

grid points. Hence we can compute Jp within a constant factor from the complexity of

Chapter 4. Complexity of Hyperbolic Julia Sets 75

Algorithm 2. In the next section we will prove the correctness and analyze the running

time of Algorithm 2.

4.5.3 Analysis of Algorithm 2

We will present a series of short lemmas about the algorithm, which will show its cor-

rectness.

Lemma 4.5.2 If d(Jp, x) > 2−nD, then the algorithm does not exit in line 3.

Proof: Exactly as in the analysis of algorithm 1. Even under a weaker assumption of

d(Jp, x) > 2−n we know that the orbit of x must exit Ũ in at most N steps, and so the

algorithm will not exit in line 3 in this case.

Lemma 4.5.3 ε as described in line 4 exists.

Proof: We have
(

1 + β
d
· d

β(N+1)

)N+1

≈ e and
(

1 − β
d
· d

β(N+1)

)N+1

≈ 1
e
. So we can

choose ε = O
(

d
β(N+1)

)

= 1/O(n) which satisfies the condition of line 4.

Lemma 4.5.4 If d(Jp, x) < 2−n/32 and the algorithm reaches line 5, then there is an

M as described in line 5 (and the algorithm finds it).

Proof: We know that the orbit of x exits Ũ in no more than N + 1 steps, otherwise

the algorithm would have stopped in line 3.

We have assumed that ε < α < d̃l, so d(Jp, p
N+1(x)) ≥ d(Jp, Ũ

c) > d(Ṽ , Ũ c) ≥ d̃l > ε.

On the other hand, by the condition in line 4.1, d(Jp, x) < 2−n/32 < ε/32. Let 0 < T ≤

N + 1 be the smallest natural number such that d(Jp, p
T (x)) > ε. Then pT−1(x) must

be in Ũ (because any point of the orbit outside Ũ satisfies the condition). We also have

d(Jp, p
i(x)) ≤ ε for all i = 0, 1, . . . , T − 1, hence by the bound on the relative error we

have from lemma 4.5.1 (see the discussion after the statement of the lemma), we have

ε < d(Jp, p
T (x)) ≤

(

1 +
βε

d

)T

ΠT−1
i=0 |p′(pi(x))|d(Jp, x) < 2ΠT−1

i=0 |p′(pi(x))|(2−n/32).

Chapter 4. Complexity of Hyperbolic Julia Sets 76

Hence ΠT−1
i=0 |p′(pi(x))| > 2nε. pi(x) ∈ Ũ for all i < T we have |p′(pi(x))| < D/2 for all

such i. We also have Π0
i=0|p′(pi(x))| = 1 < 2nε. So we can pick a smallest 1 ≤ M < T

such that ΠM−1
i=0 |p′(pi(x))| falls in the interval (2nε/D, 2nε), which completes the proof.

The last two lemmas show that the algorithm does the right thing if it reaches lines

6 − 7.

Lemma 4.5.5 If d(Jp, x) < 2−n/32 and the algorithm reaches line 6, then it outputs 1.

Proof: We prove that the algorithm does not reject for any 0 ≤ i ≤ M by induction

on i. It suffices to show that d(Jp, p
i(x)) < ε/16 for all 0 ≤ i ≤ M .

d(Jp, x) < 2−n/32 < ε/32 < ε/16, so the statement holds for i = 0. Suppose that the

statement holds for some 0, 1, 2, . . . , i − 1 ≤ M − 1, we want to show that it holds for i.

By the minimality of M in line 5 we know that Πi−1
j=0|p′(pj(x))| < 2nε. By the induction

hypothesis d(Jp, p
j(x)) < ε/16 < ε for all j < i. Hence by the estimate on the relative

error which follows from lemma 4.5.1 and we have

d(Jp, p
i(x)) ≤

(

1 +
βε

d

)i
(

Πi−1
j=0|p′(pj(x))|

)

d(Jp, x) < 2 · 2nε · 2−n/32 = ε/16.

So the algorithm outputs 1 in this case.

Lemma 4.5.6 If d(Jp, x) > 2−nD and the algorithm reaches line 6, then it outputs 0.

Proof: Assume, on the contrary, that the algorithm outputs 1. This means that

d(Jp, p
i(x)) ≤ ε/2 < ε for all i = 0, 1, . . . ,M . Hence we can apply the lower bound on

the relative error that follows from lemma 4.5.1 to obtain

d(Jp, p
M(x)) ≥

(

1 − βε

d

)M
(

ΠM−1
j=0 |p′(pj(x))|

)

d(Jp, x) >
1

2
(2nε/D)2−nD = ε/2,

contradiction.

We now discuss the time complexity of the algorithm. Denote the time complexity of

Algorithm 1 by S1(n) and the time complexity of Algorithm 2 by S2(n).

Chapter 4. Complexity of Hyperbolic Julia Sets 77

Lemma 4.5.7 The time complexity of Algorithm 2 is O(nM(n) + nS1(log n + O(1))),

where M(n) is the time complexity of multiplying two binary n-digit numbers.

Proof: We analyze the complexity of the algorithm line by line.

Line 1 — Requires constant O(1) time.

Line 2 — By doubling N each time can be easily done in O(M(n) log n) steps.

Line 3 — Requires computations with precision O(n) bits, hence the total complexity

of this line is O(nM(n)).

Line 4 — Requires O(n) steps if we want to write ε down. Observe that ε = 1/O(n)

and so log(1/ε) = log n + O(1).

Line 4.1 — Requires O(S1(log 1
ε
)) = O(S1(log n + O(1))) to finish the running of the

algorithm.

Line 5 — Requires O(nM(n)) time.

Line 6 — We need O(nM(n)) time to compute the orbit and then we use O(n)

applications of algorithm 1 with parameter log(1/O(ε)) which require O(nS1(log n +

O(1))) time.

Line 7 — Requires O(n) time.

By adding up all the complexities we see that the time complexity of the algorithm is

dominated by the time complexity of line 6, which is O(nM(n) + nS1(log n + O(1))).

From the discussion following Algorithm 1 we know that S1(n) = 2O(n), hence S2(n) =

O(nM(n) + n2O(log n)) = poly(n).

4.5.4 Improving Algorithm 2

We can now improve Algorithm 2, by using the poly-time Algorithm 2 in steps 4.1, 6

and 7 instead of the exponential Algorithm 1:

Chapter 4. Complexity of Hyperbolic Julia Sets 78

Algorithm 3

Runs exactly as Algorithm 2, except that it uses Algorithm 2

instead of Algorithm 1 in lines 4.1, 6 and 7.

The time complexity of Algorithm 3 is O(nM(n) + nS2(log n + O(1))), where S2(k)

is the complexity of running Algorithm 2 with input k. We have S2(k) = poly(k), hence

Algorithm 3 runs in time S3(n) = O(nM(n) + n · poly(log n)) = O(nM(n)).

Using Schönhage-Strassen algorithm for fast multiplication (see [Knu97] p. 311 and

[SS71]), we can bound M(n) ≤ O(n log n log log n). We conclude,

Theorem 4.5.8 For every fixed hyperbolic polynomial p(z), the Julia set Jp is poly-time

computable in time O(nM(n)) ≤ O(n2 log n log log n).

The result above shows that every fixed hyperbolic Julia set is poly-time computable.

Our next goal is to show that they are also uniformly computable with the polynomial

p(z) being given as a parameter, with no hardwired information about it.

4.6 Uniformizing the Construction

The construction in the previous sections can indeed be uniformized over all hyperbolic

polynomials. As seen in the following theorem.

Theorem 4.6.1 The Julia set Jp, where the coefficients of a hyperbolic p(z) are given

as oracles, can be locally computed with precision 2−n in time O(nM(n)), where the

constant factor in the O(•) depends on p(z) but not on n. In other words the time

complexity of locally computing Jp is bounded by K(p) · nM(n) for some K(p). Here,

again, M(n) ≤ O(n log n log log n) is the complexity of multiplying two n-bit numbers.

Our goal in this section is to prove theorem 4.6.1. It should be noticed that as seen

from the construction, the constant K(p) could be very big. For example it will grow

exponentially fast in 1
ε

for p(z) = z2 + 1/4 + ε.

Chapter 4. Complexity of Hyperbolic Julia Sets 79

All we have to do in order to prove theorem 4.6.1 is to show that the nonuniform

information given in section 4.4.1 can extracted directly from the coefficients of p(z)

given as oracles. At this point we are not concerned with the complexity of computing

this information.

It is not hard to see that using standard numerical analysis techniques one can ap-

proximate the critical points y1, y2, . . . , ym−1 with an arbitrarily good precision. For every

natural l we can find all the periodic orbits of period l by solving the polynomial equation

pl(z)− z = 0. Then by approximations we can check if each of the orbits is an attracting

orbit, and if it is, we can find some contraction factor > 1 near the orbit, and output the

numbers xij, rij and si as required in the nonuniform information. This means that if

we will keep looking for all the attracting orbits we will eventually find all of them.

Once we have found all the attracting orbits it is very easy to compute the rest of the

nonuniform information (i.e. R, R′, rc, q, d̃l, d and D) using standard numerical analysis

techniques. The problem, of course, is how do we know at which point have we found all

the attracting orbits. The number of there orbits is not fixed a-priori, so the algorithm

described above will never terminate. To deal with this problem, we use the following

theorem about attracting orbits. See [Mil00], Theorem 8.6 for a discussion and a proof.

Theorem 4.6.2 If p is a polynomial of degree ≥ 2, then the immediate basin of every

attracting periodic orbit contains at least one critical point.

In particular, for every attracting periodic orbit o of p there is a critical point yi

such that the orbit of yi converges to o. On the other hand, we have assumed that p is

hyperbolic, hence every critical point converges to an attracting periodic orbit. So for

each i the algorithm above will eventually find the attracting periodic orbit to which yi

converges. Once we have found the attracting periodic orbits O = {o1, o2, . . . , os} such

that yi converges to one of the orbits in O or to ∞ for i = 1, 2, . . . ,m− 1, we know that

by theorem 4.6.2 there can be no other attracting periodic orbits and we can stop looking

Chapter 4. Complexity of Hyperbolic Julia Sets 80

for them at this point. We summarize the process of looking for attracting periodic orbits

as follows:

Keep looking for attracting periodic orbits o1, . . . , os

until each yi converges to one of these orbits or to ∞.

We will omit the details on how to implement this procedure. This completes the

proof of theorem 4.6.1.

4.7 Can the Results be Improved?

It is a natural question of whether the result of theorem 4.6.1 can be extended beyond

the hyperbolic Julia sets. In particular, is there a uniform algorithm which computes the

Julia set Jp from the coefficients of p for an arbitrary polynomial p.

Note that now we are no longer trying to compute a single set Jp but rather a set-

valued function J : p(z) 7→ Jp. In other words, given a good approximation of the

coefficient of p(z) we hope to be able to compute Jp with a given precision. We have seen

that one of the equivalent definitions of set computability is Hausdorff approxiambility.

That is, given a precision parameter n and the coefficients of p(z) as oracles, we would

like to give a 2−n-Hausdorff approximation of Jp.

We restrict our attention to quadratic polynomials of the form p(z) = z2 + c for

c ∈ C. In this case J is a set valued function J : c 7→ Jz2+c. Denote the set of the

compact subsets of C by K∗, and view K∗ as a metric space with the Hausdorff metric

on it. Then uniformly computing Jz2+c for all c is equivalent to computing the function

J : c 7→ Jz2+c in the sense of definition 2.1.7 with K∗ replacing Rk as the target space.

For these functions the analogue of theorem 2.1.8 holds. We omit the proof here.

Lemma 4.7.1 If a function f : Rm → K∗, where K∗ is the set of compact sets in C, is

computable by an oracle machine Mφ, then f is continuous in the Hausdorff metric.

Chapter 4. Complexity of Hyperbolic Julia Sets 81

Hence if J : c 7→ Jz2+c is computable, it must be continuous in the Hausdorff metric.

On the other hand, we have the following result which follows from [Dou94], section

11, theorem 11.3:

Lemma 4.7.2 The function J : c 7→ Jz2+c is not continuous at c = 1
4

in the Hausdorff

metric.

Lemmas 4.7.1 and 4.7.2 imply together that

Theorem 4.7.3 No oracle machine Mφ, where φ represents the number c, can compute

the Julia set Jz2+c.

In fact, most of the programs written to draw Julia sets perform poorly near the

discontinuity c=0.25, for polynomials of the form p(z) = z2 + 0.25 + ε for small positive

values of ε.

This theorem does not contradict theorem 4.6.1, because theorem 4.6.1 only works

for hyperbolic polynomials, while the polynomial p(z) = z2 + 0.25 around which the

discontinuity occurs in lemma 4.7.2 is parabolic and not hyperbolic. Note that the point

c = 0.25 lies on the boundary of the Mandelbrot set (see figure 4.1).

In particular we have shown that hyperbolic and parabolic Julia sets cannot be uni-

formly computed by the same oracle machine.

Chapter 5

Directions of Future Work

In this chapter we give several directions in which the present work can be extended.

5.1 Extending the Definition of Computable Func-

tions

As it was pointed out in section 2.1, all computable functions must be continuous. Even

the simplest step function χ[0,∞) is not computable under the present definition.

The general purpose of the computability theory is to classify problems into “easy”

(computable) and “hard” (noncomputable). Keeping this purpose in mind one could

argue that the simple function mentioned above is misclassified by the current com-

putability definition.

An alternative definition of computability can be proposed based on the connection

established in theorem 2.3.1 between computable functions and computable sets. The-

orem 2.3.1 says that a continuous function is computable if and only if its graph is

computable. This suggests extending the definition of computability to discontinuous

functions by saying that a function is computable if and only if its graph is computable.

The step function χ[0,∞) would obviously be computable under this definition because its

82

Chapter 5. Directions of Future Work 83

graph is just a union of two rays.

Formally, if C is a class of functions extending the class of continuous functions we

can define.

Definition 5.1.1 (tentative) Let C be a class of functions from some compact rectangle

S ⊂ Rk to R extending the class of the continuous functions. We say that a function

f ∈ C is computable if and only if the closure of its graph Gf = {(x, f(x)) : x ∈ S} is

computable as a subset of Rk+1.

Note that in the case where C is just the class of the continuous functions, definition

5.1.1 is equivalent to the standard definition 2.1.7 of functions computability.

One of the difficulties is to select the right class C of functions. We want C to be rich

enough to include simple discontinuous functions such as the step function mentioned

above. On the other hand, we don’t want C to be too rich. Suppose we had chosen C to

be the class of all functions. Consider an arbitrary A ⊂ [0, 1] such that A = [0, 1] and

Ac = [0, 1]. Let fA : [0, 1] → [0, 1] be defined by

fA(x) =

1 if x ∈ A

0 if x /∈ A

Then the closure of the graph of fA is a union of two line segments, so it is computable

according to definition 5.1.1 regardless of our choice of the set A. This doesn’t seem right.

The best choice for the set C is yet to be investigated. One possible choice is the class

of functions with bounded variation, or some extension of this class.

Questions regarding the computability of the basic operations, such as composition,

maximum, integration etc. on computable functions under the new definitions are also

to be investigated.

Chapter 5. Directions of Future Work 84

5.2 Computability and Complexity of Julia Sets of

Other Types

In the present work we have resolved the questions regarding the complexity of hyperbolic

Julia sets. The questions regarding the computability and complexity of other classes of

Julia sets remain open.

We believe that parabolic Julia sets are computable, but it is unclear whether they

are poly-time computable.

The complexity of other classes of Julia sets, in particular sets with Siegel discs and

Cremer points, is yet to be investigated. It appears, however, that some Julia sets of

these types are noncomputable (see next section). More information about the different

types of Julia sets can be found in [Mil00].

5.3 Noncomputable Julia Sets

Theorem 4.7.3 has established that there is no Turing Machine universally computing the

Julia set Jp as a function of the polynomial p. Whether there is a particular polynomial

p(z) such that no machine can compute Jp given the coefficients of p as oracles is a much

more difficult problem.

A diagonalization-like technique can be employed to nonconstructively demonstrate

the existence of such a polynomial of the form p(z) = z2 + c. The fundamental idea is

still to employ theorem 4.7.1 along with the structure of the discontinuities of J : c 7→

Jz2+c. The work on noncomputable Julia sets is joint with Michael Yampolsky from the

University of Toronto.

Chapter 5. Directions of Future Work 85

5.4 Computability and Complexity of Mandelbrot’s

Set

The Mandelbrot set is probably the most famous fractal object arising in complex dy-

namics. For a complex number c ∈ C consider the sequence 0, c, c2 + c, (c2 + c)2 + c, . . .

obtained from 0 by iterating the map z 7→ z2 + c. The Mandelbrot set M is the set of

points for which this sequence does not diverge to ∞.

Figure 5.1: The Mandelbrot set.

The Mandelbrot set can be viewed as a set of indexes c for Julia sets of the form

Jz2+c. The points outside the set and all the known points inside the set correspond

to hyperbolic Julia sets. It is a major open problem in complex dynamics whether all

the points in the interior of the Mandelbrot set correspond to hyperbolic Julia sets (see

[McMl94] for more details). The conjecture is also known as the question of whether the

hyperbolic components are dense in the Mandelbrot set.

The question of the computability of the Mandelbrot set is open. Assuming the

Chapter 5. Directions of Future Work 86

density of the hyperbolic components it can be shown that it is computable. On the

other hand, it is hard to imagine a proof of the computability of M without assuming

the hyperbolic components density or a similar conjecture.

Even assuming the hyperbolic components density conjecture, the question of the

computational complexity of M is still wide open. It would be interesting to get efficient

algorithms for computing M even in the Ko computability sense.

5.5 Computability in Other Dynamical Systems

Dynamical systems occur everywhere in the real world. Almost every physical process

which is complex enough has a dynamical system with a very complicated behavior

attached to it. This makes the study of dynamical systems important in general, and in

the particular setting of the computability and complexity theory.

The Julia sets are some of the best studied dynamical systems. This allowed us to

answer several key questions regarding their computability and complexity. The situ-

ation is more complicated and less studied for other dynamical systems. Examples of

such systems range from the Newtonian N body problem, through population dynamics

to chemical reactions. Answering basic computability questions as well as developing

algorithms is of both practical and theoretical importance.

5.6 Church’s Thesis

It has been suggested (see [Yao02] for example) that any computationally hard-to-

simulate physical system can be used to challenge Church’s thesis and the extended

Church’s thesis.

The Church-Turing thesis, or just Church’s thesis, is the belief that if a function can

be computed by any conceivable physical device, then it can be computed by a Turing

Machine. The Extended Church-Turing thesis asserts also that a Turing Machine is as

Chapter 5. Directions of Future Work 87

efficient as any physical device. Formally, if a problem can be solved in time T (n) using

some physical device, then it can be solved in time (T (n))k for some k on a Turing

Machine.

The extended Church-Turing thesis has been recently challenged by the possibility of

constructing a quantum computer which would factor integers in polynomial time.

The noncomputability results for Julia sets (see section 5.3) suggest that dynamical

systems can contain a high level of noncomputability. Some of the dynamical systems

arrive from physical systems, which gives us the hard-to-simulate physical system we

need to challenge the Church-Turing thesis. The problem is that we need some level

of robustness in the physical system in order to use it for computation. We need this

robustness to compensate for our inability to provide the input with infinite accuracy.

An interesting direction is to try to provide an observable parameter for some dynam-

ical system which is

1. Noncomputable or hard to compute, and

2. is sufficiently robust (not too sensitive to minor changes of the initial conditions).

Such a system, if it exists, might even have some practical computational applications.

Bibliography

[BCSS] L. Blum, F. Cucker, M. Shub, S. Smale, Complexity and Real Computation,

Springer, New York, 1998.

[BW99] V. Brattka, K. Weihrauch, Computability of Subsets of Euclidean Space I:

Closed and Compact Subsets, Theoretical Computer Science, 219, pp. 65-93, 1999.

[CK95] A. Chou, K. Ko, Computational complexity of two-dimensional regions, SIAM

J. Comput. 24, pp. 923-947, 1995.

[Dou94] A. Douady, Does a Julia set depend continuously on the polynomial? Proc.

Symposia in Applied Math.: Complex Dynamical Systems: The Mathematics Be-

hind the Mandelbrot Set and Julia Sets, vol 49, 1994, ed R. Devaney (Providence,

RI: American Mathematical Society) pp. 91-138.

[Fri84] H. Friedman, On the Computational Complexity of Maximization and Integra-

tion, Advances in Math. 53, pp. 80-98, 1984.

[Jo02] J. Jost, Compact Riemann Surfaces, Second edition, Springer, 2002.

[Ko86] K.Ko, Approximation to Measurable Functions and its Relation to Probabilistic

Computation, Annals of Pure and Applied Logic, 30, 173-200, 1986.

[Ko91] K. Ko, Complexity Theory of Real Functions, Birkhäuser, Boston, 1991.

88

Bibliography 89

[Ko98] K. Ko, Polynomial-time computability in analysis, in ”Handbook of Recursive

Mathematics,” Volume 2, Recursive Algebra, Analysis and Combinatorics, Yu. L.

Ershov et al. (Editors), 1998, pp. 1271-1317.

[Knu97] D. Knuth, The Art of Computing Programming, v. 2: Seminumerical Algo-

rithms, 3rd ed., Addison-Wesley, 1997.

[McMl94] C. McMullen, Complex Dynamics and Renormalization, Princeton University

Press, Princeton, New Jersey, 1994.

[Mil00] J. Milnor, Dynamics in One Complex Variable - Introductory Lectures, second

edition, Vieweg, 2000.

[Pick98] C. A. Pickover (ed.), Chaos and Fractals – Computer Graphical Journey, Ten

Year Compilation of Advanced Research. Elsevier, 1998.

[PR89] M. B. Pour-El, J. I. Richards, Computability in Analysis and Physics, Springer-

Verlag, 1989.

[RW03] R. Rettinger, K. Weihrauch, The Computational Complexity of Some Julia Sets,

in STOC’03, June 9-11, 2003, San Diego, California, USA.

[Sau87] D. Saupe, Efficient Computation of Julia Sets and Their Fractal Dimension.

Physica D, 28, pp. 358–370, 1987.

[SS71] A. Schönhage, V. Strassen, Schnelle Multiplikation grosser Zahlen, Computing 7:

pp. 281–292, 1971.

[TW98] J. F. Traub, A. G. Werschultz, Complexity and Information, Cambridge Uni-

versity Press, 1998.

[Tur36] A. M. Turing, On Computable Numbers, With an Application to the Entschei-

dungsproblem. In Proceedings, London Mathematical Society, 1936, pp. 230-265.

Bibliography 90

[Wei00] K. Weihrauch, Computable Analysis, Springer, Berlin, 2000.

[Yao02] A. Yao, Classical Physics and the Church-Turing Thesis, Electronic Colloquium

on Computational Complexity, Report No. 62, 2002.

[Zh98] N. Zhong, Recursively enumerable subsets of Rq in two computable models: Blum-

Schub-Smale machine and Turing machine. Theoretical Computer Science, 197, pp.

79-94, 1998.

