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Abstract

We consider the complexity of properly learning concept
classes, i.e. when the learner must output a hypothesis of
the same form as the unknown concept. We present the fol-
lowing new upper and lower bounds on well-known concept
classes:

o We show that unless NP = RP, there is no
polynomial-time PAC learning algorithm for DNF
formulae where the hypothesis is an OR-of-thresholds.
Note that as special cases, we show that neither DNF
nor OR-of-thresholds are properly learnable un-
less NP = RP. Previous hardness results have
required strong restrictions on the size of the out-
put DNF formula. We also prove that it is NP-hard to
learn the intersection of £ > 2 halfspaces by the in-
tersection of k halfspaces for any constant k > 0.
Previous work held for the case when k = (.

e Assuming that NP ¢ DTIME(2™) for a certain con-
stant € < 1 we show that it is not possible to learn
size s decision trees by size s* decision trees for any
k > 0. Previous hardness results for learning deci-
sion trees held for k < 2.

o We present the first non-trivial upper bounds on prop-
erly learning DNF formulae and decision trees. In
particular we show how to learn size s DNF by DNF
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The hardness results for DNF formulae and intersections
of halfspaces are obtained via specialized graph products
for amplifying the hardness of approximating the chromatic
number as well as applying recent work on the hardness
of approximate hypergraph coloring. The hardness results
for decision trees, as well as the new upper bounds, are ob-
tained by developing a connection between automatizability
in proof complexity and learnability, which may have other
applications.

1. Introduction

A fundamental goal of computational learning theory
is to establish hardness results for PAC learning concept
classes. Seminal work due to Kearns and Valiant [23] has
shown that under the assumption that certain cryptographic
primitives are computationally intractable (e.g. inverting
one-way functions), there are no polynomial-time learn-
ing algorithms for concept classes which are expressive
enough to compute pseudorandom-functions. Subsequent
work [24, 30, 21] has shown that even constant depth, poly-
nomial size circuits (often referred to as AC®) are capable
of computing pseudo-random objects and are unlikely to be
learnable in polynomial time.

Still, several well-studied concept classes seem too weak
to compute cryptographic primitives, such as polynomial-
size DNF formulae, intersections of halfspaces, and deci-
sion trees. For all of these concept classes the existence
of a polynomial-time PAC learning algorithm remains a
challenging open problem. The primary contribution of
this work is an array of new negative results for learning



DNF formulae, intersections of halfspaces, and decision
trees. Our hardness results apply to representation depen-
dent learning algorithms, algorithms where the output hy-
pothesis is required to be a member of a restricted class of
polynomial-time computable functions.

1.1. Previous Work

Previous representation dependent hardness results for
learning concept classes applied to proper learning algo-
rithms and required strong restrictions on the size of the hy-
pothesis output by the learning algorithm [6, 17, 22, 33, 31].
In each case, the hardness assumption required is not cryp-
tographic, but a worst-case assumption on the complexity
of NP (e.g. NP # RP).

Initial hardness results for properly learning DNF formu-
lae due to Pitt and Valiant [33] show that unless RP = NP,
k-term DNF formulae over n variables are not learnable
by 2k-term DNF (more specifically the result holds for the
case when k& = O(n)). In other words, it is hard to out-
put a DNF formula whose size is at most twice the size of
an unknown DNF formula with Q(n) terms. The best result
along these lines is due to Nock et al. [31] who have used
reductions from generalized coloring problems to show that
it is hard to output a DNF formula whose size is at most
O(k®n®) times the size of the unknown k-term DNF for-
mula fora < 2,b > 0 and £ = Q(n”) for any v > 0. For
k = O(1) the best hardness result is due to Pitt and Valiant
[33] who show that learning k-term DNF is hard if the out-
put hypothesis is a k-term DNF.

The best hardness result for learning intersections of
halfspaces is due to Blum and Rivest [6]; implicit in their
work (when combined with the hardness results on chro-
matic number due to Feige and Kilian [15]) is a proof that
unless NP = RP it is hard to learn the intersection of n”
halfpsaces by n' =7 halfspaces for any v > 0; n is the num-
ber of variables (i.e. number of dimensions). For the case of
intersections of k¥ = (1) halfspaces they show the asso-
ciated learning problem is hard if the output is equal to the
intersection of k halfspaces.

For decision trees, Hancock et al. [19] have shown that
it is hard to learn size s decision trees over n variables by
size s-21°8" " ¢ decision trees for some v > Ounless NP C
RTIME(2l°gO(1) ™). The result holds for s = Q(n).

We note here that the above hardness results hold for
proper Occam algorithms, learning algorithms which work
by receiving a suitably large set of training examples and
outputting a small hypothesis consistent with the examples.
It is not known, in general, if the existence of a proper PAC
learning algorithm for a concept class implies the existence
of a proper Occam algorithm for the class[32]. In particu-
lar is not known for the classes of DNF formulae and inter-
sections of halfspaces. Our hardness results for DNF formu-

lae and intersections of halfspaces hold for any proper PAC
learning algorithm and overcome this limitation.

Several results are known for the hardness of learning
DNF in the exact model with membership and equivalence
queries (see Hellerstein and Raghavan [20] for details).

1.2. Our Results

We provide new hardness results on the complexity of

learning DNF formulae, intersections of halfspaces, and de-
cision trees which place far fewer restrictions on the size
and form of the learning algorithm’s output hypothesis. We
complement these hardness results by describing new algo-
rithms for achieving non-trivial upper bounds on the proper
learnability of DNF formulas and decision trees.
1.2.1. Upper Bounds By making a connection between
proper learning and the automatizability of certain propo-
sitional proof systems, we give the first non-trivial upper
bounds on the complexity of properly learning decision
trees and DNF formulae:

Theorem 1 Decision trees of size s are properly learnable

in time n©(1°8 %) DNF formulae of size s are properly learn-
able in time n©(V108 ),

The above upper bound for decision trees matches the
fastest known algorithm for learning decision trees due to
Ehrenfeucht and Haussler [13]. The above 2°(v™) upper
bound for properly learning polynomial-size DNF formula
should be contrasted with the 20("""*)_time algorithm for
learning DNF due to Klivans and Servedio [27]; theirs is
the fastest known DNF learning algorithm but does not out-
put a DNF formula as a hypothesis.

1.2.2. Hardness for Learning Decision Trees and Jun-
tas The parameterized minimum hitting set problem, takes
as input a system .S of m subsets of [n] and a parameter k,
and should output a hitting set of size & for S if one exists.
The parameter k is supposed to be a slowly growing func-
tion w.r.t. n (like k& = logn). This problem is complete for
the class W[2] of the parameterized hierarchy ([12]).

Theorem 2 Let C be the concept class of all decision trees.
Assume that no randomized algorithm approximates pa-
rameterized minimum hitting set to within a factor d in
polynomial time, for k = O(logn) and any constant d.
Then there is no algorithm A such that for every ¢ €
C, distribution D and error parameter €, A runs in time
poly(n, ||, 1/€) and with probability 2/3 outputs a deci-
sion tree T such that Prycp[T(x) = ¢(x)] > 1 —e.

The above theorem combined with a result of [2] implies
the following theorem.

Theorem 3 Decision trees are not properly PAC learnable
in polynomial time unless NP C DTIME(2"") for some € <
1.



We also show that hardness of approximating the param-
eterized minimum hitting set problem implies some partial
hardness results for learning juntas, functions which depend
on only a small subset of relevant variables (see Section 4).

1.2.3. Hardness for Learning DNF Formulae Learning
DNF formulae is one of the central challenges in compu-

plify known hardness results for the problem of distin-
guishing between graphs with small and large chromatic
number. Feige and Kilian [15] have proved that for any
~v > 0 it is NP-hard (under randomized reductions) to dis-
tinguish between graphs with chromatic number O(n") and
graphs with chromatic number Q(n'~7). This result com-
bined with known reductions from graph coloring to prop-

tational Tearning theory. We give strong evidence that there
are no polynomial-time learning algorithms for DNF for-
mulae which output DNF formulae or unions of halfspaces
as output hypotheses:

Theorem 4 Let C be the concept class of DNF formulae.
If there exists an algorithm A such that for every ¢ €
C, distribution D and error parameter €, A runs in time
poly(n,|c|,1/€) and with probability 2/3 outputs an OR-
of-thresholds formula f such that if Pryep[f(x) = c(z)] >
1 — ¢, then NP = RP.

1.2.4. Hardness for Learning Intersections of Halfs-
paces Let h = sign(}., w;z; — 6) where each w; and
0 are integers; h naturally induces two halfspaces: the set
of points in {0, 1}" which make h positive and the set of
points which make h negative (h is often referred to as
a linear threshold function). Although several polynomial-
time algorithms for learning halfspaces are known (e.g. [7]),
a longstanding open problem in learning theory is to de-
velop polynomial-time algorithms for learning intersections
of halfspaces (i.e. functions of the form h = /\lehi where
each h; is a linear threshold function).

The above theorem proves as a special case that in-
tersections of halfspaces are not properly learnable unless
NP = RP. If we wish to restrict the concept class to in-
tersections of just two halfspaces (even for this case no
polynomial-time learning algorithms are known), we can
prove the following hardness result:

Theorem 5 Let C be the concept class of intersections of
two halfspaces. If there exists an algorithm A such that for
every ¢ € C, distribution D and error parameter €, A runs
in time poly(n, |c|, 1/€) and with probability 2 /3 outputs f,
an intersection of k halfspaces for any constant k > 0 such
that Pryep|f(x) = ¢(x)] > 1 — ¢, then NP = RP.

1.3. Our Approach

Our techniques can be divided into two categories: 1)
negative results based on the intractability of approximate
graph and hypergraph coloring and 2) positive and nega-
tive results obtained by establishing a connection between
automatizability of propositional proof systems and proper
learnability.

1.3.1. Amplifying Hardness Results for Approximate
Graph Coloring For proving hardness results for prop-
erly learning DNF and intersections of halfspaces we am-

erly learning DNF formulae (e.g. [33]) imply that it is NP-
hard to distinguish between distributions induced by n”-
term DNF formulae and n!~7-term DNF formula.

We wish to amplify this n' =7 bound and prove hardness
results for n®-term DNF formulae (and intersections of n®
halfspaces) for any a > 0. To do this we apply specialized
graph products (along the lines of Linial and Vazirani [28])
to create distributions which amplify the size of the under-
lying chromatic number. In addition, we provide an accom-
panying transformation of DNF formulae and intersections
of halfspaces into “normal forms” which satisfy only ex-
amples derived from subsets of independent sets from the
product. Many terms or halfspaces are required for a good
approximation to these distributions if and only if the origi-
nal graph had large chromatic number.

For proving hardness results for learning the intersection
of two halfspaces, we make critical use of recent hardness
results due to Dinur et al. [11] on the hardness of color-
ing 2-colorable, 3-uniform hypergraphs. We give a reduc-
tion from ¢-coloring k-colorable, 3-uniform hypergraphs to
properly learning intersections of k halfspaces by ¢ halfs-
paces.

1.3.2. Automatizability and Proper Learning A propo-
sitional proof system S is said to be automatizable if there
is an algorithm A which takes as input a CNF formula f,
and returns a proof of f, in time polynomial in the size of
the shortest S-proof of f. Automatizability is an important
concept; while a proof system may be extremely powerful
and admit short proofs of many hard statements, if it is im-
possible to find these proofs quicky, then for all practical
purposes we are no further ahead than we were with a naive
exhaustive proof method.

There are two types of automatizability for any
proof system S. The first type (called automatizabil-
ity) requires that the automatizing algorithm return an
S-proof of f. The second type (called weak automa-
tizability) only requires that the algorithm returns any
polynomially-verifiable proof, and not necessarily an
S-proof. Informally, we have the following relation-
ship. Let C be a circuit class, and let P(C) be a proof
system which manipulates formulas from C. Three im-
portant examples are: (i) When C' is the class of deci-
sion trees, the corresponding proof system is DPLL; (ii)
When C is the class of DNF formulae, the correspond-
ing proof system is Resolution, and (iii) When C is the
class of intersections of threshold formulae, a correspond-



ing proof system is Cutting Planes. Then automatizability
of proof system P(C') corresponds to proper PAC learn-
ing of C' and weak automatizability of P(C') corresponds to
learnability of C'. In both cases (automatizability and learn-
ability), the desired algorithm is searching for an object
over C. We will see that techniques used to obtain pos-
itive and negative results for automatizability of various
proof systems can be exploited to obtain new learnabil-
ity results.

2. Preliminaries
2.1. Learning models

Our learning model is Valiant’s well known Probably
Approximately Correct (PAC) learning model [34]. In this
model for a concept c and distribution D over X an example
oracle EX (¢, D) is an oracle that upon request returns an
example (z, c¢(x)) where x is chosen randomly with respect
to D independently of any previous examples. For e > 0 we
say that function g e-approximates function f with respect
to distribution D if Prp[f(z) = g(z)] > 1 —e. We say that
an algorithm A efficiently learns concept class C' if for ev-
erye > 0,5 > 0,n, ¢ € C, and distribution D,, over X,
A(n, €,d), runs in time polynomial in n, 1/4, 1/e, |¢| and
outputs, with probability at least 1 — 4, an efficiently com-
putable hypothesis i from some class of functions H that
e-approximates c. When H = C (the hypothesis must be
some concept in C') then the algorithm A is a proper PAC
learning algorithm. Frequently we will prove hardness re-
sults for cases where H is actually a larger class of func-
tions than C'; such results are thus stronger than traditional
hardness results for proper learnability.

2.2. Propositional Proof Complexity

The resolution principle says that if C' and D are clauses
and z is a variable, then any assignment that satisfies both of
the clauses C'Vx and DV - x also satisfies C'V D. A resolu-
tion refutation for a CNF formula F' consists of a sequence
of clauses C1,Cs,...,Cs where (i) each clause C; is ei-
ther a clause of F', or is a resolvent of two previous clauses
and (ii) C; is the empty clause, denoted A. A tree-like Res-
olution refutation is a Resolution refutation where the un-
derlying directed acyclic graph is a tree. A DPLL refuta-
tion of an unsatisfiable formula F' is a decision tree for f
with the additional property that for every path p in the de-
cision tree and corresponding partial truth assignment p, the
leaf of p is labelled by a clause in f that is falsified by p. Itis
well known that tree-like Resolution refutations and DPLL
refutations are equivalent. The automatizability problem for
proof systems, formalized in [8], is to find effective algo-
rithms for constructing refutations whose size is close to
optimal:

Definition 6 For a propositional proof system S, let s(F)
denote the size of the smallest refutation of formula F in S.
S is automatizable if there exists an algorithm that on input
F' (on n variables and m clauses), outputs an S-refutation
of f in time polynomial in s(F) and n and m. More gen-
erally S is q(s,n, m)-automatizable if there exists an al-
gorithm that runs in time q(s(F'),n, m) and outputs an S-
refutation of F..

3. Upper bounds for Properly Learning Deci-
sion Trees and DNF

In [4] (see also [5, 10]), algorithms were presented for
automatizaility of DPLL and Resolution. In this section, we
will show how these algorithms can be used to prove The-
orem 1. We first present a proof of our theorem and then
discuss how it can be viewed as a modification of the algo-
rithm presented in [4].

Proof:(of Theorem 1 — outline)

Let P be a DNF formula. P is b-bounded if all terms ap-
pearing in it have size at most b. Fix €, d, n, and s. The al-
gorithm will begin by obtaining a set S of m labelled exam-
ples chosen at random according to the underlying distribu-
tion D(The value of m will be chosen later.). The algorithm
will then produce a hypothesis consistent with S. Then us-
ing a standard argument, it can be shown that any algorithm
that produces a hypothesis from a relatively small set of hy-
potheses, that is consistent with a set of m examples (m
sufficiently large), will also satisfy the requirements of PAC
learning, with high probability.

First, we need a subroutine, called Bounded-search,
which takes as input a set of labelled examples over n vari-
ables, S, |S| = m, and an integer parameter b, and finds a
b-bounded DNF consistent with S, if one exists. The sub-
routine works by learning a single disjunction over a new
set of n® variables (each variable corresponds to one of
the n® different terms of the unknown DNF of length b).
It is well-known that disjunctions over N variables can be
learned in time O(N) using O(N/¢) examples. The out-
put of the subroutine can be converted to a DNF with at
most n® terms. In our context, this subroutine runs in time
To(n,m,b) = O(n® +m).

The main algorithm called Search takes as input a set of
m labelled examples over n variables, S, and an auxiliary
parameter b. The output of Search will be a decision tree
with the leaves of the tree labelled by b-bounded DNF for-
mulas. The algorithm is as follows. First, we use Bounded-
search(S,b) to find a b-bounded DNF formula consistent
with S if one exists. If not, then for each of the 2n literals [,
apply Search to the set of labelled examples S[;—1, in or-
der to identify the literal [ for which Search(S[;=) termi-
nates fastest. These 2n calls to Search are executed in a se-
quence of parallel rounds; in round ¢ the ¢th step of each of



the 2n calls is performed. As soon as the first of the calls ter-
minates, say for literal [*, all of the other calls are aborted,
except the call corresponding to = [*, which is run to com-
pletion. The output of Search(.S, b) is a decision tree where
the leaves of the decision tree are labelled with b-bounded
DNF’s, the root is labelled by [*, and the left subtree is a hy-
pothesis consistent with the samples S|[;«=o, and the right
subtree is a hypothesis consistent with the samples S [;«—1.

To prove the first part of the theorem, set b = 0, and
set m = (n°U°89) 4 log(1/4))/e. Since b = 0, the output
by Search will be an ordinary decision tree. For the upper
bound on DNF formulae, let m = (nV"198% 4 log(1/4))/e
and set b = v/nlog s. The output of Search can be seen to
be a DNF of size n©(vVi1ogs) O

3.1. Discussion: Relationship to Previous Work

We mention here how the above algorithms are varia-
tions on results in proof complexity (e.g. [4]) used to find
size s DPLL proofs in time n®(1°8%) and size s Resolution
proofs in time n@(V"1°85) Let f be an unsatisfiable CNF
formula with n variables and m clauses. Modify Search
to take as input a CNF formula f with n variables and m
clauses (rather than a set of examples), and an auxiliary pa-
rameter b. The output of modified Search produces a deci-
sion tree with leaves of the tree labelled by width b Resolu-
tion refutations. Similarly modify Bounded-search to take
as input an unsatisfiable CNF formula f and an integer pa-
rameter b, and finds a width b Resolution refutation for f,
if one exists. Now if f has as size s DPLL refutation, run
modified Search with b = 0, and if f has a size s Reso-
lution refutation, run modified Search with b = y/nlogs.
The same analysis as above yields the automatizability al-
gorithms for DPLL and Resolution, respectively.

4. Hardness of Learning of Decision Trees and
Juntas

For an unsatisfiable CNF formula f, the search prob-
lem associated with f is to find a violated clause, given a
truth assignment to the variables underlying f. Because a
DPLL refutation for f produces a decision tree for solving
the search problem associated with f, automatizability of
DPLL is strongly connected to PAC learning decision trees
with a respect to a distribution induced by the search prob-
lem associated with f. In fact, many of the hardness results
of this section were inspired by a paper of Alekhnovich and
Razborov [1] on non-automatizability of Resolution and
DPLL. Our hardness assumptions will center around the fol-
lowing problem:

Definition 7 The Parameterized Minimum Hitting Set
Problem (PMHS), with parameters n, m and k, takes as in-
put a system of m subsets of [n], S = (S1,...,Sm). The

output is a hitting set of size k for §, ie. a set I s.t
Vi INS; #0,if one exists.

This classical optimization problem is equivalent to a
more popular Set Cover problem. We added the adjective
“parameterized” to stress that the parameter k is supposed
to be much smaller than n (typically & = log® n or smaller).
This problem is complete for the class W[2] of the parame-
terized hierarchy [12].

4.1. Learning Juntas vs Approximating Minimum
Hitting Set

The following construction goes along the lines in [19].

Definition 8 Let S = (S1, ..., Sy) be a set system. Let Dg
be a distribution on {0,1}" given by Pryp [z = 0"] =
1/2 and Vj € [m] Pry~p [z = Xxs;] = 1/2m, where x;
is the characteristic vector of S;. Define a partial function
hg:{0,1}" — {0,1} so that

Vi € [m] hz(xs:) = 1, hg(0") =0.

Below we consider the complexity of learning the con-
cept class of juntas. A function h(z1, ..., z,) is said to be
a k-junta iff its value is completely determined by the in-
put values of some k variables z;, , ..., z;, . We represent a
k-junta as an index set I of its essential coordinates and
the truthtable of size 2* on these coordinates. Learning jun-
tas has recently been studied by Mossel et al. [29] who gave
a time n-"%4* algorithm for learning a k-junta with respect
to the uniform distribution on inputs.

Theorem 9 Assume that it is possible to approximate
PMHS within factor f1(k) in time fo(k)n®M), where f1, fs
are arbitrary functions. Then k-juntas are PAC learn-
able in time f(k)n®W for f(k) = [fi(k) + fo(k)]CD),
moreover the hypothesis produced by the algorithm is an

f1(k)k-junta.

Proof: Let D be a distribution on {0,1}". Fix €,§ > 0.
Choose m = fi(k)n?/(ed). Given examples from a k-
junta h(z) with z ~ D we generate a table of m sam-
ples (z1,h1), ..., (T, hin), where h; = h(z;). Our goal is
to find an f; (k)k-junta consistent with all . samples. We
write the following CNF ¢y, n,)3 (Y1, -, Yn):

Sy = /\ V ow (1)

hi#hj (zi)e#(25)

We claim that ¢y, 5,)} has a satisfying assignment of
weight k. Indeed since h is a k-junta there exists a set of co-
ordinates I C [n] of size k that completely determine the
value of h, thus if h(z;) # h(x;) there is k € I for which
(i) # (z;)r. If we set y = xr then we get a satisfying
assignment for (1) of weight k. Moreover, given any satis-
fying assignment y of weight &’ for (1) one may construct



k'-junta h consistent with m samples in time 2 For this it
is sufficient to choose a function that depends only on coor-
dinates I = {i|y; = 1} consistent with m samples.

Note that CNF ¢y, )} (1, -, Yn) is monotone w.r.t.
y; thus we may regard it as an instance of the minimum hit-
ting set problem, in which sets correspond to disjunctions.
Given an f; (k)-approximation algorithm for the latter prob-
lem one may find a hypothesis h that depends only upon
fi1(k)E variables consistent with all m samples. We finish
the proof by the standard computation of the probability of
choosing the correct hypothesis. O

Theorem 10 Assume that no randomized algorithm ap-
proximates PMHS Hitting Set within factor c in time
f(E)n®M) . Then no algorithm given examples from
a k-junta h(zx) chosen from distribution D finds a
(1 — 1/n°W)-approximation of h by a (ck)-junta h' in
time f(k)n®W),

Proof: Assume for the sake of contradiction that there ex-
ists a learning algorithm 4 with the properties described
in the statement. Consider an instance of PMHS § k. We
run the algorithm A on hg w.r.t. the distribution Dg. Be-
cause Dg gives a non- negllglb]e weight to every word
in {0™, xs,,-.-,Xs,, } the approximating function that de-
pends only on ck variables ought to compute hg on D 5 ex-
actly, thus any such function corresponds to a hitting set of
size ck. d

4.2. Lower Bounds on Learnability of Decision
Trees

In this section we give the proof of Theorem 2. In the
above subsection we outlined the proof that the infeasibil-
ity of approximating the parameterized minimum hitting set
implies that it is hard to learn a k-junta (on a special distri-
bution) in polynomial time. This result itself implies that
given access to examples from a function computable by
size S decision tree it is hard to construct an approximat-
ing size ¢ - S decision tree in polytime (and this argument
is similar to the reduction in [19]). However we need to ob-
tain a stronger polynomial gap for learning decision trees,
thus we use a different type of amplification. We may as-
sume w.l.0.g. (by scaling n appropriately) that & < logn/2.

Definition 11 For an instance S with parameters n, m, k of
PMHS problem we build a partial function g , along with
the distribution on its instances D g ;. in the following way.
Fix the maximal ( satisfying 2tk < n (thus
logn/k|). Let y! for i € [n],j € [{] be ran-

dom Boolean variables chosen according to the follow-
ing experiment. Choose x = (x1,...,&,) according to
Dg. For every i € [n] choose a tuple 'yil,...,yf uni-
formly from all tuples satisfying @;nzl y! = z;. De-

note by D§,k the resulting distribution on y{ . Finally let

[ .
955l yn) = hg (EBJ 1y1,---769j:1y%)-

Thus gz, is a function that depends upon [nlogn/k|
bits. In the next two theorems we show that the decision
tree approximation complexity of gz, on Dg , is tightly

connected to the minimum hitting set 7(5) These results
will imply lower bounds on proper learnability of decision
trees modulo the hardness of approximating the minimum
hitting set.

Theorem 12 (upper bound) Assume that 7(5" ) < k. Then
there exists a decision tree of size n that computes gg , on
Dg , with probability 1.

The proof shows that the natural decision tree that
queries all variables in the hitting set yields the stated up-
per bounds.

Theorem 13 (lower bound) If v(S) > ck then any de-
cision tree T' that approximates gg , with error less than

1/(5m) has size nc—0(),

The proof of this theorem involves a careful analysis of
the examples generated by the distribution, showing that
they correspond to particular “flexible paths” in the deci-
sion tree.

By the above two theorems the inappoximability of
PMHS implies hardness for learning decision trees (The-
orem 2). [2] prove that if PMHS for all ¢ can be solved in
polynomial time for & = logn, then NP C DTIME(2"")
for some € < 1. Thus Theorem 3 follows.

5. Hardness of Learning DNF and Intersec-
tions of Halfspaces

In this section we prove our main hardness result for
DNF formulae, namely that an algorithm for learning DNF
in polynomial-time by ORs of threshold functions can be
used to approximate the chromatic number of a graph. We
will actually prove the equivalent hardness result for CNF
formulae and ANDs of thresholds (intersections of halfs-
paces). It is easy to see that this will imply the intractability
of properly learning both DNF formulae and intersections
of halfspaces. We begin by defining a set of distributions
over a set examples induced by taking specialized products
of a graph.

5.1. The Distribution

Given a graph G = (V, E)) we construct a distribution D
over a set of examples as follows. We fix some positive in-
teger parameter r, which might depend on n. The examples
are from {0, 1}"*" = ({0,1}")".



Definition 14 Let G(V, E) be a graph with n vertices and
m edges. For a vertex v of G, let z(v) denote the vector with
a 1 in the ith position if v is the ith vertex of G and 0 every-
where else. For an edge e = (u,v) of G let z(e) be the vec-
tor with a 1 in positions i and j if u is the ith vertex of G
and v is the jth vertex of G and 0 everywhere else.

For each vector (vq,vs,...,v,) € V" we asso-
ciate a negative example (z(vy),...,2(v.),—). There
are a total of |[V"| = n” negative examples. For each

choice of ki, ko, suchthat 1 < ky < r, 1 < ky < r,
ki # ko, e = (u,w) € E and v; € V for each
1 =1,2,...,7,1 # ki, ks we associate a positive example
(z(v1)y. oy 2(€), 2(Vky41)s -« 50, 2(Vkgt1)y « -+ 2(00), +).
Let ST denote the positive examples and S~ denote the
negative examples. Set S = ST U S™.

There are r ways to choose k1, r — 1 ways to choose ks,
| E| ways to choose e, and |V'|"~2 ways to choose the rest of
v;’s. Hence there is a total of 7 - (r — 1) - | E| - n"~2 positive
examples.

Distribution D is uniform over the above set of ex-
amples S, so the probability of each negative example
is ﬁ and the probability of each positive example is

5.2. The Case of Small Chromatic Number

Here we prove that if the chromatic number x(G) is
small, then there exists a small CNF formula consistent with
the examples above. Set r = g(n)/e = g/, for some func-
tion g such that g(n) < n and constant ¢ < 1. Hence
€ = g/r. Then we have

Lemma 15 If x(G) < n° = n9/", then there is a CNF con-
sistent with the examples with at most n9 terms, and hence
of size n9.

Proof: Suppose V' = (J, I;, where I; are indepen-
dent sets. Such sets must exist by the definition of . De-
fine the CNF formula f(z1, 22, ..., 2n) = ATy Vjgr, 7)-
We then define a formula on r n  variables,
which we claim is consistent with the learn-
ing problem: F((z},...,zL),... (27,...,2")) =

n
Vier Fat, - zh) = Ve Al Ve, af.

Note that F' above is not written as a CNF formula. It
is, however, a disjunction of » CNF formulas, each having
at most x(G) clauses. Hence expanding the formula yields
a CNF formula with at most x(G)" < (n°)" = nY terms.
So F' can be written as a CNF formula satisfying the con-
ditions of the lemma, and it is not to hard to check that it is
consistent with all of the examples.

5.3. The Case of Large Chromatic Number
In this section we assume that x(G) > n'~¢, and we

prove that no small AND-of-thresholds formula gives a
good approximation to the learning problem.

Theorem 16 Let G be a graph such that x(G) > n'~¢. Let

F = AL h; where { < 5~ (Xﬁl)

. Then F' has error at
2xr \ logn

least # with respect to D.

We will need the following covering lemma which was
first proved by Linial and Vazirani [28] and is a special
case of a result due to Feige on randomized graph prod-
ucts (Corollary 2.9 of [14]):

Lemma 17 [28] One needs at least (%)T products of the
form Iy X Is x ... x I, where the I;’s are independent sets,
tocoverV' =V xV x...xV.

Let a product in the above form be called a product of
independent sets. At a high level, we will argue that any
hy, € F correctly classifies very few negative examples that
lie outside a particular product of independent sets. Then us-
ing the above lemma, it will follow that we need many hy’s
to cover (correctly classify) all negative examples. We now
proceed to the details.

Fix a particular hy € F.Lethy = Y, Y7, abah >
(. For each ¢ < r, the i-coefficients in h are the coefficients
of the form ag-, 7 < n.Foreachi < r, let I; be the set of
all j < n such that there is no edge (k, j) € E such that o,
is less than aé. (That is, we order all i-coefficients in non-
decreasing order, and take the coefficients in order that are
independent). Note that I; is an independent set of G. Let
Sk =VxIyx...xI,,S¥ =1, xVxI3x...xI,,andso
forth. Let S¥ = U7_, S¥. The following lemma shows that
hy, either misclassifies many positive examples, or misclas-
sifies almost all negative examples outside of S*.

Lemma 18 Fix hy, I1,...,I., S* as above. Let N denote
the number of negative examples outside of S* that hy, clas-
sifies correctly. Then the number of positive examples that
hy, misclassifies is at least N /2n.

Proof: Let « = 2(j1),...,2(j,) be a negative example
such that « is not in S*, and hy(a) = 0. Thus hg(a) =
a}l + 0‘?2 + ...+ aj < [. Since a is not in Sk,
there exist two j;’s, say j; and jo such that j; ¢ Iy and
jo & I5. Since j; is not in I, there is some vertex kp in
I; such that the edge (j1, k1) is present in E; and simi-
larly there is a vertex ko in I such that the edge (42, k2)
is in F». By the way we chose I; and s, it follows that
op, <« and of, < . Either (a) o, < a,, or (b)

2 1 1 1 3
aj, < o). If (a) holds, then ap, o o+ o+

aj < [. But this corresponds to the positive example
o = (2(j1,k1),0,2(j3),-..,2(jr)) and thus hy misclas-
sifies /. Similarly if b holds, then hj, misclassifies the pos-
itive example o = (0, z(jo, k2), 2(J3), - - -, 2(jr). Thus we
have a mapping from the set of all correctly classified neg-
ative examples outside of S* to incorrectly classified posi-
tive examples. Since each positive example is mapped onto
by at most 2n negative examples, it follows that the number



of positive examples misclassified by hy, is at least N/2n.
O

Recall that F' is the conjunction of £ threshold formulas,
hi, ..., he. Foreach hy, let S* be the associated set of cross
sifies be denoted by I'ng U Outy,, where Iny, are those cor-
rectly classified negative examples in S*, and Out;, are the
remaining correctly classified negative examples.

Lemma 19 Let S*, k < { be defined as above. If { < 217 .
(Xfl)r thenn” — | U,_, S*| > 1. (Xﬁl)r.

Inn Inn

Proof: If this were not the case, we would have a collection
T . .
of ¢-x-r< % . ( X1 ) products of independent sets which

Inn
cover all but m < % . (%)r points of V. (To see this,
replace the cross product Iy X ... ;1 XV x ... x I;1q X
...xI. by x crossproducts [y X ... [;—1 X Jp X [;41 X... X%
...xI.,where k < x,and Ji, Js, ... J, is a partition of the
vertices in G into x independent sets.) Then by adding m
singletons (which are trivially products of independent sets)
we obtain a cover of V" by Ixr + m < (%)T products
of independent sets, which contradicts the above covering

lemma (Lemma 17). O

We can now analyze the overall error with respect to D.
Let F' = Ai:lhk’ where each hy, is a threshold formula,

andl < ﬁ (%)r

Let R = % . (%n_—;)r There are two cases to consider.
The first case is when | U,_, Outy| > R. Then by Lemma
18, the number of positive examples that F' misclassifies is

at least %. Thus the probability of error with respect to D

. R . .
is at least T =1) =2 which, for sufficiently large n,
is at least:
_1\T 1. n'=9/7—1 "
R S1C - M G
- nr+4 - nr+4
1—2g/r\"
> (” / ) — 204 — 1
nr+4 n2g+4'

In the second case, | U,_, Out;| < R. But then by
Lemma 19, the number of negative examples misclassified
is at least % . (%) "— R which is equal to . Thus the prob-
ability of an error with respect to D is at least 213? , which
again is at least # for sufficiently large n.

Finally, we have reduced the problem of approximating

X (@) to learning CNF:

Theorem 20 Suppose that CNF is efficiently learnable by
ANDs-of-thresholds in time O(n*9(™ . sk . (L)k) ywhere
k> 1,and 1 < g(n) < n. Then there exists a random-
ized algorithm for approximating the chromatic number of
a graph within a factor of n*~Y/¥ in time O(n'*k9(M)+2),
Moreover, the algorithm will always give a valid answer for
Y > nl-1/14k,

Proof: Set ¢ = 7729% and r = 14kg. Let G be a graph and
let D be the distribution induced from G as described pre-
viously. Run the learning algorithm with respect to distri-
bution D. If it does not terminate after n°*9 steps output
“x > n'~1/14k> Otherwise, let h be the hypothesis the al-
gorithm outputs. Calculate the error €5, of h with respect to
the distribution D. If &, < —Lrr output “y < nl/14k”,
otherwise output “y > n'~1/14” We claim that this al-
gorithm works with probability at least 3/4 for sufficiently
large n in approximating ¥ < n'/'** and works perfectly
for y > n!—1/14k,

If x < n'/13% by Lemma 15, s < n9. Hence
the running time with probability > 3/4 is at most
O(nF9n@kpRetOky < Onsk9) < n°%9 for suffi-
ciently large n, and the output is supposed to have an error
< & = —i7. Hence the algorithm outputs “y < n!/14k”
with probability at least 3/4 in this case.

If x > n'~ /1% by Lemma 16 the output of the al-

gorithm must contain at least 5 (3=2)" terms in order to
xr \'Inn

have an error < € = ﬁ. In this case the running time of

the algorithm (for n sufficiently large) is at least:

1 X_]- r S 1 n171/14k_1 r
% ( Inn ) = n3 < Inn )
Lo 1jise\ 19
> o5 ()

> %nmk‘q Z n9kg.

Hence if the algorithm terminates in n?*9 steps, its er-
ror will be bigger than ¢, and the algorithm outputs “y >
n'—1/14k> with probability 1 in this case. O

We will require the following hardness result due to
Feige and Kilian [15]:

Theorem 21 [15] For any constant € > 0, there exists a
polynomial-time randomized reduction mapping instances
f of SAT of length n to graphs G with N = poly(n) vertices
with the property that if f is satisfiable then x(G) < O(N°€)
and if f is unsatisfiable then x(G) > Q(N'~¢). The reduc-
tion has zero-sided error.

An immediate corollary is that approximating the chro-
matic number is hard:

Corollary 22 [15] Let € > 0 be a constant. Assume there
exists an algorithm which approximates the chromatic num-
ber of a graph with n vertices within a factor of n'~¢
in RPTIME(t(n)) (with zero error if x > n'~¢). Then
NP C RPTIME(t(n®)) for some constant a > 1.

Now we can combine Theorem 20 and Corollary 22 to
prove Theorem 4.
Proof:(of Theorem 4) If DNF formulae are properly learn-
able in polynomial-time, we show how to approximate the



chromatic number of a graph in polynomial-time to within
a factor of n¢ for some small constant ¢ > 0. Let G be
a graph on n vertices. From Theorem 20 setting ¢ = 1,
we can approximate x(G) within a factor of n'~1/14k
in time O(n'***2) where k is a constant, with zero er-
ror for y > n!'~1/1*k Hence, by Corollary 22, NP C
RPTIME(n®™M) = RP. O

From the proof of Theorem 20 we can see that it is hard
to learn even n‘-term DNF by n’-term OR-of-thresholds in
time n® for any constant b > 0. We can, under a stronger
hardness assumption, prove stronger hardness results for
learning superpolynomial size DNF formulae (i.e. if we do
not restrict our concept class to be polynomial-size DNF

Lemma 25 Coloring a k-colorable  hypergraph
H = (V,E) using g colors reduces to learning k-
term DNF formulae by outputting a g-term DNF formu-

lae.

The proof of the lemma is a straightforward extension of the
reduction from coloring graphs [33].

Recently, several researchers [18, 25, 11] have shown
that it is hard to color uniform hypergraphs, i.e. hypergraphs
where each hyperedge is of equal size. We use the follow-
ing strong hardness result due to Dinur et al. [11]:

Theorem 26 [11] It is NP-hard to k-color a 2-colorable 3-
uniform hypergraph for any constant k > 0.

formulae):

Corollary 23 Suppose that SAT ¢ RPTIME(O(n™")) for
some 3. Then for any k > O there is a > 0 such that DNF
formulas are not properly learnable in time O(n™" - s* .

(2)"):

Notice that if we assume SAT ¢ RPTII\/IE(Q"ﬁ) for
some [ and substitute £ = 1 in Corollary 23 then we can
conclude that DNF formulae are not properly learnable in
time O(n"™" - s - %) for some o < 1. Theorem 1 states,
however, that DNF formula are properly learnable in time

20((nlogs)'/* log ")/e, so our lower bound is fairly tight.

6. Hardness Results for Smaller Concept
Classes

In the previous two sections our hardness results applied
to learning the general class of DNF formulae and intersec-
tions of halfspaces. In this section we present new hardness
results when we restrict the concept class to intersections of
just 2 halfspaces or 2-term DNF formulae.

More specifically, we can show that it is hard to learn the
intersection of 2-halfspaces by the intersection of any con-
stant number of halfspaces and that it is hard to learn 2-term
DNF formulae by any k-term DNF formula for any con-
stant k. The results for intersections of halfspaces may be
especially interesting in light of the fact that it is not known
how to learn (even non-properly) the intersection of two n-
dimensional halfspaces in time less than 2°0(") (there is a
simple, non-proper algorithm for learning k-term DNF in
time O(nk)).

Theorem 24 Assuming NP # RP there is no polynomial-
time algorithm for learning 2-term DNF formulae by k-term
DNF formulae for any constant k > 0.

Proof:(outline) The main idea is first to show a reduction
from coloring a hypergraph to learning of DNF formulae
and then apply recent results on the hardness of hypergraph
coloring. More specifically we prove the following lemma

O

Analogous results for intersections of halfspaces

(namely Theorem 5) can be proved using the follow-
ing lemma:

Lemma 27 The problem of k-coloring a 2-colorable, hy-
pergraph on n vertices reduces to learning the intersection
of 2 halfspaces over n variables by k halfspaces.

The lemma can be proved by a simple modification of the
reduction from coloring graphs [6].

Remark 28 Under the
DTIME(QIOgO(l) ™) Dinur et al. prove that there is no poly-
nomial time algorithm for coloring a 2-colorable 3-uniform
hypergraph using O((loglogn)'/?) colors. This analo-
gously translates into stronger hardness of learning results
under the assumption that NP # RPTII\/IE(QIOgO(l) .

assumption that NP #
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