
CCA 2004 Preliminary Version

Hyperbolic Julia Sets are Poly-Time
Computable

Mark Braverman 1,2

Dept. of Computer Science

University of Toronto

Toronto, ON, Canada

Abstract

In this paper we prove that hyperbolic Julia sets are locally computable in polyno-
mial time. Namely, for each complex hyperbolic polynomial p(z), there is a Turing
machine Mp(z) that can “draw” the set with the precision 2−n, such that it takes
time polynomial in n to decide whether to draw each pixel. In formal terms, it
takes time polynomial in n to decide for a point x whether d(x, Jp(z)) < 2−n (in
which case we draw a pixel with center x), or d(x, Jp(z)) > 2 · 2−n (in which case
we don’t draw this pixel). In the case 2−n ≤ d(x, Jp(x)) ≤ 2 · 2−n either answer will
be acceptable. This definition of complexity for sets is equivalent to the definition
introduced in Weihrauch’s book [16] and used by Rettinger and Weihrauch in [13].

Although the hyperbolic Julia sets were shown to be recursive, complexity bounds
were proven only for a restricted case in [13]. Our paper is a significant general-
ization of [13], in which polynomial time computability was shown for a special
kind of hyperbolic polynomials, namely, polynomials of the form p(z) = z2 + c with
|c| < 1/4.

We show that the machine drawing the Julia set can be made independent of
the hyperbolic polynomial p, and provide some evidence suggesting that one cannot
expect a much better computability result for Julia sets.

We also introduce an alternative real set computability definition due to Ko, and
show an interesting connection between this definition and the main definition.

Key words: computable analysis, Julia sets, computational
complexity, complex dynamics.

1 Research is partially supported by the Natural Sciences and Engineering Research Council
of Canada.
2 Email: mbraverm@cs.toronto.edu

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Braverman

1 Introduction

Nowadays, computers are being increasingly applied to represent mathemat-
ical objects. Computer-generated images are being extensively used in the
analysis and simulations of real-life processes and their mathematical models.
Our goal is to investigate a formal framework which allows us to define the
computational complexity of real sets, measuring the complexity of drawing
the set on a computer. Within this framework, we obtain a new result on the
computability of Julia sets.

We mainly use the definition of real set complexity introduced by Weihrauch
in [16] and used in [13] as the measure of complexity of some Julia sets (see
also [2]).

In sections 2 and 3 we present two different definitions of computability of
real sets that have been proposed, and show that they are equivalent if and
only if P=NP, a result of independent interest. Theorem 3.3 can be used to
prove computability of many sets for which a direct proof of computability
would be hard.

Julia sets are some of the best known illustrations of a highly complicated
chaotic system generated by a very simple mathematical process. These sets
have been deeply studied in the framework of complex dynamics during the
last century. Julia sets are not only an intriguing mathematical object, but also
a major source of amazing images. Many computer programs, some of which
are freely available on the web, have been written to generate these images.
Algorithms for computing Julia sets have been presented and discussed in [11]
and [14], for example.

It appears, however, that none of the algorithms or their implementations
cope well with zooming in. With the computer using fixed-precision numbers,
rounding errors significantly affect the computation when we try to zoom in.
These programs also seem to work poorly near some “pathological” polyno-
mials, for example, with p(z) = z2 + 1/4 + ε, 0 < ε ≪ 1. We will return to
this example in section 8.

We give the first polynomial bound on the complexity of an arbitrary
hyperbolic Julia set. The class of hyperbolic polynomials is very rich. For
example, in the case p(z) = z2 + c, p(z) is hyperbolic for all c’s outside the
Mandelbrot set. It is conjectured that it is also hyperbolic for all c’s in the
interior of the Mandelbrot set (but not on the boundary), see [9] for more
information. The algorithm is outlined in sections 6 and 7. The details of
the construction are mathematically involved, and many of them had to be
omitted due to space constraints.

The algorithm that we present is not uniform in p(z). That is, the Turing
Machine computing Jp(z) depends on p(z). However, in section 8 we will show
that no uniform Turing Machine computing Jp(z) exists. Our algorithm can
be modified to be uniform in the hyperbolic p(z)’s, and such a modification
will remain polynomial in the precision of the computation, but might be

2

Braverman

c = 0.25

Fig. 1. The Mandelbrot set with the point c = 1/4 highlighted.

arbitrarily hard in the polynomial p(z). Explicitly, we obtain a bound of
K(p) · nM(n) on the running time, where K(p) is a coefficient depending on
the polynomial, 2−n is the required precision and M(n) is the complexity of
multiplying two n-bit numbers.

It should be noted that the model of computation we are using is very
different from the BCSS model presented in [1]. It has been shown that most
Julia sets are not computable in that model (see [1] for more details).

The results of the paper can be easily generalized from hyperbolic poly-
nomials to hyperbolic rational functions, and are very similar to the results
obtained independently in [12].

2 Computability and Complexity of Bounded Subsets
of R

2

Several different computability notions for subsets of the real numbers have
been proposed. It has been shown, for example, that non-trivial Julia sets
are not computable in the real-RAM model (see [1]). We will use a different
model introduced by Klaus Weihrauch in [16] and described in [13]. This is a
very natural model when one is concerned with the complexity of “drawing”
a set on the computer.

Intuitively, the definition says that the computational complexity of a set
S is t(n) if we can decide whether to draw a pixel of size 2−n in the picture
of S in time t(n). To make this notion precise, we have to decide what are
our expectations from a picture of S. First of all, we expect a good picture
of S to cover the whole set S. On the other hand, we expect every point of
the picture to be close to some point of S, otherwise the picture would have
no descriptive power about S. Mathematically, we write these requirements
as follows:

Definition 2.1 A set T is said to be a 2−n-picture of a bounded set S if

(i) S ⊂ T , and (ii) T ⊂ B(S, 2−n) = {x ∈ R
2 : |x− s| < 2−n for some s ∈

S}.

Requirement (ii) can be also written as dH(S, T) ≤ 2−n, where dH is the
Hausdorff distance, defined by

dH(S, T) := inf{r : S ⊂ B(T, r) and T ⊂ B(S, r)}.

3

Braverman

Suppose we are trying to generate a 2−n-picture of a set S using a union
of round pixels of radius 2−n−2 with centers at all the points of the form
(

i
2n+2 ,

j
2n+2

)

, with i and j integers. In order to draw the picture, we have to

decide for each pair (i, j) whether to draw the pixel centered at
(

i
2n+2 ,

j
2n+2

)

or not. We want to draw the pixel if it intersects S and to omit it if some
neighborhood of the pixel does not intersect S. Formally, we want to compute
a function

fS(n, i/2n+2, j/2n+2) =

1, B((i/2n+2, j/2n+2), 2−n−2) ∩ S 6= ∅

0, B((i/2n+2, j/2n+2), 2 · 2−n−2) ∩ S = ∅ (∗)

0 or 1, in all other cases

S

f(x)=1

f(x)=0

f(x)=?

f(x)=?

Fig. 2. Sample values of f . The radius of the inner circle is 2−n−2.

Lemma 2.2 The picture drawn according to fS(n, •) is a 2−n-picture of S.

Here • stands for the different values of the parameters (i/2n+2, j/2n+2).
The lemma illustrates the tight connection between the complexity of “draw-
ing” the set S and the complexity of computing f . In order to reflect this
connection we define the time complexity of S as follows.

Definition 2.3 A bounded set S is said to be computable in time t(n) if there
is a function f(n, •) satisfying (∗) which runs in time t(n). We say that S is
poly-time computable if there is a polynomial p, such that S is computable in
time p(n).

This definition is easily seen to be equivalent to the definition introduced
in [16] and used in [13]. We will show that hyperbolic Julia sets are poly-time
computable under this definition.

3 An Alternative Computability Definition – Ko P-
Computability

We present an alternative definition of poly-time computability for sets in R
2,

which was introduced by Arthur W. Chou and Ker-I Ko in [4] (see also [8]).

4

Braverman

While it is not equivalent, and is generally weaker than the definition we are
using, it is still very useful due to a connection with our definition we present
below.

In the model below we give x as an oracle to the machine which tries to
decide whether x ∈ S. By an oracle we mean a “black box” function φ that
on input n outputs a binary approximation φ(n) ∈ D

2 with |φ(n) − x| < 2−n.
Here D denotes the set of the dyadic numbers D = {k/2l : k ∈ Z, l ∈ N}.
Querying the oracle takes one time unit. A set is said to be strongly P -
recognizable if there is an oracle Turing Machine, that on input x outputs 1
if x ∈ S and 0 if x is 2−n-far from S, i.e. the machine is allowed to make
small one-sided errors. The definition was presented in [4] under the name of
strong P-recognizability, we call it Ko P-computability to avoid confusion due
to the fact that this definition is actually weaker than the other definition of
computability that we are using. We summarize,

Definition 3.1 A set S is said to be Ko P-computable if there is an oracle
TM Mφ(n) which runs in time polynomial in n, and outputs: (i) 1, if φ
represents a point x ∈ S, (ii) 0, if φ represents a point x /∈ B(S, 2−n), (iii) 0
or 1, otherwise.

We can prove the following result, giving a simple complexity-theoretical
connection between Ko P-computability and poly-time computability. See [3]
for the proof.

Theorem 3.2 Every poly-time computable set S is Ko P-computable. The
converse statement (i.e. “every Ko P-computable set S is poly-time com-
putable”) holds if and only if P = NP .

The following theorem makes the notion of Ko P-computability useful in
the context of computing sets, in particular Julia sets. It states that Ko
P-computable sets are exponential-time computable.

Theorem 3.3 Suppose that a set S is Ko P-computable by a machine Mφ(n)
running in time p(n). Moreover, suppose that on input n, Mφ uses at most l(n)
first bits of x from the oracle. Then S is computable in time t(n) = p(n) ·2O(l).

To prove this theorem one combines the proof of the ‘if’ direction in the-
orem 3.2 with the brute force algorithm for NP-problems, which leads to an
exponential upper bound on the computation time.

4 Julia Sets and Hyperbolic Julia Sets

We will give one of the equivalent definitions of the hyperbolic Julia set. More
detailed information, as well as proofs and further references can be found in
[9] and [10]. [10] gives a particularly good exposition of the hyperbolic Julia
sets.

5

Braverman

For the rest of the paper we fix our polynomial to be p(z). Note that p(z)
is a polynomial with complex coefficients. Let pk(z) denote the k-th iteration
of p(z), i.e. p1(z) = p(z) and pk+1(z) = p(pk(z)). By a convention, p0(z) = z.
We define the orbit of z as the sequence (z, p(z), p2(z), . . .). A point z is
called periodic if pk(z) = z for some k ≥ 1. The minimal such k is called the
period of z. A periodic point z with period k and its (finite in this case) orbit
(z, p(z), . . . , pk−1(z)) are said to be attracting if |(pk)′(z)| < 1 and repelling
if |(pk)′(z)| > 1. Intuitively, if we iterate a point in the neighborhood of an
attracting periodic point, then we will approach the attracting orbit, while if
we iterate a point in the neighborhood of a repelling periodic point, we will
escape the neighborhood. We say that a point c is a critical point of p(z) if
p′(c) = 0. We are now ready to state one of the equivalent definitions of a
hyperbolic polynomial.

Definition 4.1 A polynomial p(z) of degree ≥ 2 is said to be hyperbolic if
every critical point of p(z) converges to an attracting periodic orbit of p(z) or
to ∞.

Here we include ∞ as a special case to simplify matters, but in fact, by
considering the Riemann sphere instead of the complex plane, we can regard
∞ as an attracting periodic point of p(z), since we have p(∞) = ∞ and
limn→∞ |pn(z)| = ∞ for |z| large enough.

We can now give a simple definition of the Julia set in the hyperbolic case.
See [10] for a proof that in the hyperbolic case this definition is equivalent to
the general definition of the Julia set.

Definition 4.2 The Julia set Jp of a hyperbolic polynomial p(z) is the set
of all points w, such that the orbit of w does not converge to an attracting
periodic orbit of p(z) or to ∞. The complement of the Julia set is denoted
Kp = J c

p and is called the Fatou set of the polynomial p(z).

As we have mentioned above, the class of the hyperbolic polynomials is
extremely robust. In particular, z2 + c is hyperbolic for all c’s outside the
Mandelbrot set M , and is believed to be hyperbolic for all the c’s in the
interior of M (see fig. 1). We summarize the most important facts about
hyperbolic Julia sets we will be using in the following lemma. See [10] for
details and proofs.

Lemma 4.3 For a hyperbolic polynomial p(z) the following facts hold:

(i) The interior of Jp is empty.

(ii) Jp = p(Jp) = p−1(Jp).

(iii) p(z) has at most deg(p) − 1 attracting periodic orbits (regarding an
orbit as a set).

The definition itself gives a very naive “algorithm” for computing Jp.
Namely, set a threshold T . To determine whether a point w is in Jp com-
pute the first T elements of the orbit of w, p(w), p2(w), . . . , pT (w). If the orbit

6

Braverman

gets close to one of the attracting orbits, say that w /∈ Jp, otherwise say that
w ∈ Jp. In fact, many of the computer programs that draw Julia sets use this
method. The problem, of course, is how to choose a good T and how to define
“close”. If T is not chosen properly, we might reject w’s which are very close
to Jp or accept w’s which are far away from Jp. We will have to develop more
theory in order to choose T which makes the method above work properly.
The tool which we will use to control the distance between w and Jp is one of
the fundamental tools in complex dynamics, called the Poincaré metric.

5 The Poincaré Metric

The Poincaré metric, known also as the hyperbolic metric, is a metric which
naturally arises on hyperbolic Riemann surfaces. It is beyond the scope of this
paper to discuss the metric in full generality, so we will restrict our attention to
subsets of the complex plane C. See [10] for a more comprehensive exposition.
It is known that any connected open subset S ⊂ C of the complex plane which
omits at least 2 points is a hyperbolic Riemann surface and has a unique (up
to a multiplication by a constant) Poincaré metric dS. We call these subsets
of C hyperbolic sets.

To define the Poincaré metric, we first need to describe another funda-
mental mathematical concept – the notion of a covering map. While covering
maps are defined in many different topological settings, we will define it for
our case: the hyperbolic subsets of C. A map f : X → Y between two hy-
perbolic subsets of C is said to be a covering map, if for each y ∈ Y there
is a neighborhood N(y) of y such that for each connected component N ′ of
f−1(N(y)), the map f : N ′ → N(y) is a conformal (locally shape preserving)
isomorphism.

In general, covering maps allow us to analyze the structure of Y using the
structure of X. In particular, it is used in the definition of the Poincaré metric.
We skip the details and present only the final result we use in our case. This
result can be viewed as the defining property of yhr Poincaré metric. We refer
the interested reader to [10].

Theorem 5.1 (Theorem of Pick) There is one, and up to a multiplication
by a constant, only one family of metrics defined on hyperbolic subsets of C

such that for any hyperbolic subsets S and T of C the following holds. If
f : S → T is a holomorphic map, then exactly one of the following three
statements is valid:

(i) f is a conformal isomorphism from S onto T , and maps S with its
Poincaré metric isometrically to T with its Poincaré metric.

(ii) f is a covering map but is not one-to-one. In this case, it is locally
but not globally a Poincaré isometry. Every smooth path P : [0, 1] → S of
arclength l in S maps to a smooth path f ◦ P of the same length l in T .

(iii) In all other cases, f strictly decreases all non-zero distances (in the

7

Braverman

Poincaré metric).

For every hyperbolic set S the Poincaré metric dS has a weight function
pS : S → R

+ such that pS(x) measures the ratio between dS and the Euclidean
metric near the point x. Formally, the lenght of an arc γ : [0, 1] → S in dS is
given by

ldS
(γ) =

1
∫

0

pS(γ(t))|γ′(t)|dt.

We now have the basic complex-analytic background required for the con-
struction, and we are ready to prove that the hyperbolic Julia sets are poly-
time computable. Note that we can view Jp as a subset of R

2 using the trivial
identification of C with R

2.

6 Hyperbolic Julia Sets are Ko P-Computable

As noted above, we will present an algorithm that uses some nonuniform
information, i.e. information which depends on the polynomial p(z) but not on
the precision parameter n. The polynomial p(z) itself is given to the algorithm
as an oracle that outputs its coefficients with any required precision. Denote
the polynomial p(z) = cmzm + cm−1z

m−1 + . . . + c1z + c0. We can query
each ci with precision 2−r with time cost r. As per the definition of Ko P-
recognizability, the input x to the algorithm is also given as an oracle. We
want to decide whether x ∈ Jp.

We will now list the nonuniform information used by the algorithm. This
information can be computed from the initial data (i.e. the coefficients of
p(z)) as will be noted later, see theorem 8.4. We still list it as nonuniform to
spare overcomplicated technical details from the reader.

Nonuniform constants information:

We summarize the nonuniform information used by the algorithms in the
following lemma. See appendix for the explicit construction of the set Ũ .

Lemma 6.1 There is an explicitly presented open set Ũ and numbers d̃l > 0,
R′ > 0, d > 0, D ≥ 1, rc > 0 and an integer q, such that the following hold.

(i) denote Ṽ = p−1(Ũ), then Ṽ ⊂ Ũ and d(Ũ c, Ṽ) ≥ d̃l,

(ii) for any critical point yi of p, whenever |y − yi| < rc we have pq(y) /∈ Ũ ,

(iii) Jp ⊂ Ũ ⊂ B(0, R′),

(iv) d is a lower bound such that |p′(z)| > d whenever |z − yi| > rc

2
for all

critical points yi of p,

(v) D is an upper bound such that |p′(p(y))| < D and |p′(y)| < D/2 whenever
|y| < R′.

Ũ can be thought of a huge disk with small holes poked in it around the
attracting orbits. The orbit of each critical point eventually leaves Ũ by the

8

Braverman

definition of hyperbolic Julia sets and this happens after at most q steps. In
general, the orbit of any point outside Jp converges to one of the attracting
periodic orbits, and hence eventually leaves Ũ .

Denote U = p−q−1(Ũ), V = p−q−1(Ṽ). Then by the definition of rc and
q, B(yi, rc) ∩ U = ∅ for any critical point yi. Lemma 4.3 implies that Jp =
p−q−2(Jp) ⊂ p−q−2(Ũ) = V .

As a corollary of Ṽ ⊂ Ũ , we conclude that V ⊂ U , and furthermore we
can compute a lower bound dl on the distance between V and U c.

Lemma 6.2 d(U c, V) ≥ dl = d̃l

Dq+1 .

U and V are obviously hyperbolic sets, and hence the Poincaré metric is
defined on them. Denote the weight function of the Poincaré metric on U by
pU and the weight function of the Poincaré metric on V by pV . Denote the
Poincaré metrics themselves by dU and dV , respectively. We have the following
simple lemma bounding the metric pU . This lemma is a simple consequence
of Pick’s theorem (theorem 5.1). We refer the interested reader to [3] for the
proof of this and other technical lemmas.

Lemma 6.3 pU(z) > 2
R′

for all z ∈ U , and pU(z) < 2
dl

for all z ∈ V .

The reason that we would like to bound V from the boundary of U is that
it would allow us to bound the ratio pV (z)

pU (z)
on V from below and bound the

diameter of V in dU from above.

We will skip the details, and only state the final results.

Lemma 6.4 pV (z) ≥ c · pU(z) > pU(z) for all z ∈ V , where c > 1 is some
constant computable from dl and R′ (see appendix for details and an explicit
calculation of c).

The existence of c > 1 as above has been known and can be easily proven
using a compactness argument. Our contribution is in constructively comput-
ing such a c, which is much harder. This is particularly important for theorem
8.4, where we make the construction uniform.

Lemma 6.5 For x, y in the same connected component of V , dU(x, y) <
MW = 128R′2

d2
l

.

Observe that by our construction V does not contain critical points of p,
hence the map p : V → U is an m-fold covering map. Hence by Pick’s theorem
(theorem 5.1) it is a local Poincaré isometry. Formally, we obtain

Lemma 6.6 pV (x) = |p′(z)| · pU(p(x)) for all x ∈ V .

We see that lemmas 6.4 and 6.6 imply together that p(z) locally increases
the metric pU on V . As a consequence of lemmas 6.4, 6.6 and 4.3 we obtain
the following key lemma.

Lemma 6.7 Let dU(Jp, z) denote the distance between the point z and the
Julia set Jp in the Poincaré metric dU . Then dU(Jp, z) is well defined for

9

Braverman

all z ∈ U and dU(Jp, p(x)) ≥ c · dU(Jp, x) for all x ∈ V , where c > 1 is a
computable constant.

Lemma 6.7 gives us a tool to estimate the speed at which a point x /∈ Jp

runs away from Jp in the Poincaré metric. If initially the Euclidean distance
d(Jp, x) > ε, then by lemma 6.3, dU(Jp, x) > 2ε

R′
, and assuming that the orbit

of x stays in V in s steps we have by lemma 6.7 that dU(Jp, p
s(x)) > 2ε

R′
· cs.

But then by lemma 6.5 we have s ≤ logc
MW

2ε/R′
. If ε = 2−n the estimate on s is

linear in n. This allows us to obtain a poly-time algorithm to Ko P-compute
Jp:

Algorithm 1
Input: The non-uniform input as described above,
the input x, c0, c1, . . . , cm given on an oracle tape and m,n.
Output: 0 if d(Jp, x) > 2−n, 1 if x ∈ Jp, either 0 or 1 otherwise.
1. Compute c described above.
2. Compute a natural number N = O(n) such that

N ≥ 2 + logc (MW · R′ · 2n−1) + q.

3. Compute pN(x) within an error of d̃l

4
.

3.1. If pN(x) /∈ Ũ , output 0,
3.2. If pN(x) ∈ Ṽ , output 1,
3.3. Otherwise, output 0 or 1.

Note that given Ũ , and making computations with precision d̃l/4 we can
unambiguously decide if one of the possibilities 3.1 or 3.2 holds. Observe that
N = O(n), so we perform linearly many operations on x, hence we require
linearly many bits of x in order to achieve the required (fixed) precision level
at the end of the computation. Hence by theorem 3.3 we know that Jp is
computable in time poly(n) · 2O(n) = 2O(n). Algorithm 1 does not compute Jp

in our definition, since it might reject points x /∈ Jp which are very close to Jp

(closer than 2−n−1). In the next section we will be referring to the exponential
time algorithm computing Jp in our sense as Algorithm 1.

7 Jp is Poly-Time Computable

We are now ready to outline the proof of the poly-time computability of the
Julia set Jp. We use the result from the previous section combined with a
technique very similar to the technique used in [13] to pass from an exponential
to a polynomial time algorithm. Algorithm 1 does not compute Jp because
it might output 0 for points x which are not in Jp, but within a very small
distance of it, while the definition of computability requires output 1 in this
case. To avoid this problem we need to estimate the distance from x to Jp

both from above and below. We employ techniques similar to the ones used
in [13].

Lemma 7.1 There are positive constants α, β > 0 computable from the initial

10

Braverman

data such that for any z ∈ B(0, R′) and 0 < ε < α satisfying d(Jp, z) ≤ ε, we
have (|p′(z)| − βε)d(Jp, z) ≤ d(Jp, p(z)) ≤ (|p′(z)| + βε)d(Jp, z).

The lemma says that the change in the distance from z to Jp is locally
controlled by the expansion factor |p′(z)| up to some small relative error.
This enables Algorithm 2 to iterate the orbit of x keeping track of the ratio
between the distance d(Jp, p

l(x)) and d(Jp, x) as long as d(Jp, p
l(x)) is not

too big (O(1/n)). When d(Jp, p
l(x)) becomes big, we apply Algorithm 1 to

estimate it. Algorithm 1 runs fast here because it needs to give an estimate
with precision factor O(1/n) = O(1/2log n), so its running time is exponential
in log n. Knowing an estimate of the ratio d(Jp, p

l(x))/d(Jp, x) we are able to
give a good estimate on d(Jp, x).

We then plug in Algorithm 2 into itself instead of Algorithm 1, to obtain
Algorithm 3 which computes Jp and runs in time O(n ·M(n)), where M(n) is
the time complexity of multiplying two n-bit numbers. See appendix for a full
exposition and pseudocode for Algorithm 2. Using the best known estimate
of O(n log n log log n) on M(n) (see [7] p. 311 and [15]) we obtain

Theorem 7.2 For every fixed hyperbolic polynomial p(z), the Julia set Jp is
poly-time computable in time O(nM(n)) ⊂ O(n2 log n log log n).

8 Can the Result be Improved?

In this section we will try to address the question of whether the result of
this paper can be improved, and by how much. The first question one might
ask is whether there is a uniform algorithm computing Jp for an arbitrary p
given as an oracle. The answer is negative. In fact, there is no such algorithm
even for p of degree 2. We use the following lemma, which is very typical
to computable analysis (cf. [16], p. 108, Thm 4.3.1). See section 2 for the
definition of the Hausdorff metric.

Lemma 8.1 If a function f : R
m → Kn, where Kn is the set of compact sets

in R
n, is computable by an oracle machine Mφ, then f is continuous in the

Hausdorff metric.

We use the following lemma which follows from [5], section 11, theorem
11.3:

Lemma 8.2 The function J : c 7→ Jz2+c is not continuous at c = 0.25 in the
Hausdorff metric.

Lemmas 8.1 and 8.2 imply together that

Theorem 8.3 No oracle machine Mφ, where φ represents the number c, can
compute the Julia set Jz2+c.

In fact, most of the programs written to draw Julia sets perform poorly
for the polynomial p(z) = z2 + 0.25 + ε for small positive values of ε.

11

Braverman

On the other hand, our construction can be made uniform over all hyper-
bolic polynomials p(z). All the nonuniform information used in our construc-
tion can be extracted from the coefficients of p(z). This, however, might take
indefinitely long, depending on the hyperbolic polynomial p. Hence there is an
algorithm, polynomial in the precision n for computing Jp, which is uniform
given that p(z) is hyperbolic. We will not prove it here. See [3] for a discussion
of the main ideas of the proof.

Theorem 8.4 The Julia set Jp, where the coefficients of a hyperbolic p(z)
are given as oracles, can be locally computed with precision 2−n in time O(nM(n)),
where the constant factor in the O(•) depends on p(z) but not on n. In other
words the time complexity of locally computing Jp is bounded by K(p) ·nM(n)
for some K(p). Here, again, M(n) ∈ O(n log n log log n) is the complexity of
multiplying two n-bit numbers.

This theorem does not contradict theorem 8.3, because it only works for
hyperbolic polynomials, while the polynomial p(z) = z2 + 0.25 around which
the discontinuity occurs in lemma 8.2 is parabolic and not hyperbolic. The
uniform algorithm would never terminate on this input. Note that the point
c = 0.25 lies on the boundary of the Mandelbrot set (see figure 1).

Further research in the area of computability of Julia sets might address
the following two problems.

Problem 8.5 Are there poly-time algorithms for other types of Julia sets? In
particular, are parabolic Julia sets poly-time computable?

Problem 8.6 We have seen in theorem 8.3 that the problem of computing the
Julia set for a general polynomial is not computable. Is there a particular
polynomial p(z) for which Jp is not computable? Is there such a polynomial
p(z) with computable coefficients?

Acknowledgements
I would like to thank my graduate supervisor, Prof. Stephen Cook, for his

insights and support during the preparation of this paper and for the many
hours we spent discussing the computability of real sets.

I would like to thank Prof. Michael Yampolsky from the Department of
Mathematics in the University of Toronto for helping me to learn the complex
analytic background I needed for this research, suggesting that the Poincaré
metric is a useful tool for tackling the problem and for the theoretical help he
has provided during the preparation of this paper.

References

[1] Blum, L., F. Cucker, M. Schub, S. Smale, “Complexity and Real Computation”,
Springer, New York, 1998.

12

Braverman

[2] Brattka, V., K. Weihrauch, Computability of Subsets of Euclidean Space I:

Closed and Compact Subsets, Theoretical Computer Science, 219 (1999), pp
65-93.

[3] Braverman M., “Computational Complexity of Euclidean Sets: Hyperbolic
Julia Sets are Poly-Time Computable”, Thesis, University of Toronto, 2004
(to appear).

[4] Chou, A., K. Ko, Computational complexity of two-dimensional regions, SIAM
J. Comput. 24 (1995), pp 923-947.

[5] Douady, A., Does a Julia set depend continuously on the polynomial? Proc.
Symposia in Applied Math.: Complex Dynamical Systems: The Mathematics
Behind the Mandelbrot Set and Julia Sets, vol 49 (1994), ed R. Devaney
(Providence, RI: American Mathematical Society) pp 91-138.

[6] Jost, J., “Compact Riemann Surfaces”, Second edition, Springer, 2002.

[7] Knuth, D., “The Art of Computing Programming, v. 2: Seminumerical
Algorithms”, 3rd ed., Addison-Wesley, 1997.

[8] Ko, K., Polynomial-time computability in analysis, in ”Handbook of
Recursive Mathematics”, Volume 2 (1998), Recursive Algebra, Analysis and
Combinatorics, Yu. L. Ershov et al. (Editors), pp 1271-1317.

[9] McMullen, C., “Complex Dynamics and Renormalization”, Princeton
University Press, Princeton, New Jersey, 1994.

[10] Milnor, J., “Dynamics in One Complex Variable - Introductory Lectures”,
second edition, Vieweg, 2000.

[11] Pickover, C. A. (ed.), “Chaos and Fractals – Computer Graphical Journey, Ten
Year Compilation of Advanced Research.” Elsevier, 1998.

[12] Rettinger, R., A Fast Algorithm for Julia Sets of Hyperbolic Rational Functions,
in CCA’04, Aug 16-20, 2004, Lutherstadt Wittenberg, Germany.

[13] Rettinger, R., K. Weihrauch, The Computational Complexity of Some Julia

Sets, in STOC’03, June 9-11, 2003, San Diego, California, USA.

[14] Saupe, D., Efficient Computation of Julia Sets and Their Fractal Dimension.

Physica D, 28 (1987), pp 358–370.

[15] Schönhage, A., V. Strassen, Schnelle Multiplikation grosser Zahlen, Computing
7 (1971), pp 281–292.

[16] Weihrauch, K., “Computable Analysis”, Springer, Berlin, 2000.

[17] Zhong N., Recursively enumerable subsets of Rq in two computable models:

Blum-Schub-Smale machine and Turing machine. Theoretical Computer
Science, 197 (1998), pp 79-94.

13

	Introduction
	Computability and Complexity of Bounded Subsets of R2
	An Alternative Computability Definition -- Ko P-Computability
	Julia Sets and Hyperbolic Julia Sets
	The Poincaré Metric
	Hyperbolic Julia Sets are Ko P-Computable
	Jp is Poly-Time Computable
	Can the Result be Improved?
	References

