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Abstract—We prove that poly-sized AC0 circuits cannot
distinguish a poly-logarithmically independent distribution
from the uniform one. This settles the 1990 conjecture by
Linial and Nisan [LN90]. The only prior progress on the
problem was by Bazzi [Baz07], who showed that O(log2n)-
independent distributions fool poly-size DNF formulas.
Razborov [Raz08] has later given a much simpler proof
for Bazzi’s theorem.

I. INTRODUCTION

A. The problem

The main problem we consider is on the power of
r-independence to fool AC0 circuits. For a distribution
µ on the finite support {0, 1}n, we denote by Eµ[F ]
the expected value of F on inputs drawn according to
µ. For an event X , we denote by Pµ[X] its probability
under µ. When the distribution under consideration is
the uniform distribution on {0, 1}n, we suppress the
subscript and let E[F ] denote the expected value of F ,
and P[X] the probability of X . A distribution µ is said
to ε-fool a function F if

|Eµ[F ]−E[F ]| < ε.

The distribution µ on {0, 1}n is r-independent if
every restriction of µ to r coordinates is uniform on
{0, 1}r. AC0 circuits are circuits with AND, OR and
NOT gates, where the fan-in of the gates is unbounded.
The depth of a circuit C is the maximum number of
AND/OR gates between an input of C and its output.
The problem we study is

Main Problem. How large does r = r(m, d, ε) have
to be in order for every r-independent distribution µ on
{0, 1}n to ε-fool every function F that is computed by
a depth-d AC0 circuit of size ≤ m?

Prior to our work, Bazzi [Baz07], [Baz09], in a proof
that was later simplified by Razborov [Raz08], showed
that a poly-logarithmic r is sufficient for d = 2 (i.e.
when the F ’s are DNF or CNF formulas):

Theorem 1. [Baz07], [Raz08] r(m, 2, ε)-independence
ε-fools depth-2 circuits, where

r(m, 2, ε) = O
(
log2 m

ε

)
.

Our main result is that for any constant d, r(m, d, ε)
is poly-logarithmic in m/ε. This gives a huge class
of distributions that look random to AC0 circuits. For
example, as in [Baz09], it implies that linear codes with
poly-logarithmic seed length can be PRGs for AC0.

B. Main results

We prove the following:

Main Theorem. Let s ≥ log m be any parameter. Let
F be a boolean function computed by a circuit of depth
d and size m. Let µ be an r-independent distribution
where

r ≥ r(s, d) = 3 · 60d+3 · (log m)(d+1)(d+3) · sd(d+3),

then
|Eµ[F ]−E[F ]| < ε(s, d),

where ε(s, d) = 0.82s · (15m).

In particular, by taking s = 5 log 15m
ε , we get the

following:

Corollary 2. r(m, d, ε)-independence ε-fools depth-d
AC0 circuits of size m, where

r(m, d, ε) =

3 · 60d+3 · (log m)(d+1)(d+3) ·
(

5 log
15m

ε

)d(d+3)

=

(
log

m

ε

)O(d2)

.

Note that by choosing ε = 2−nδ

for a small δ =
δ(d), one sees that polynomial independence fools AC0

circuits up to an exponentially small error. The results
carry some meaning for super-constant d’s up to d =
Õ(
√

log m).
The original conjecture by [LN90] was that for con-

stant ε, r(m, d, ε) = O((log m)d−1). Thus our results



leave a gap between O(d) and O(d2) in the exponent.
We believe that the conjecture is true with O(d).

As in [Baz09], we can use [AGM02] to show that
almost r-independent distributions also fool AC0. A
distribution µ is called a (δ, r)-approximation, if µ is δ-
close to uniform for every r (distinct) coordinates. Thus
an r-independent distribution is a (0, r)-approximation.
We use the following theorem.

Theorem 3. [AGM02] Let µ be a (δ, r)-approximation
over n variables. Then µ is nr · δ-close to an r-
independent distribution µ′.

Theorem 3 and the Main Theorem immediately im-
ply:

Corollary 4. For every boolean circuit F of depth d
and size m over n variables and any s ≥ log m, let

r ≥ r(s, d) = 3 · 60d+3 · (log m)(d+1)(d+3) · sd(d+3).

Then for any (δ, r)-approximation µ,

|Eµ[F ]−E[F ]| < ε(s, d)+nr ·δ = 0.82s ·(15m)+nr ·δ.
Corollary 4 in turn implies:

Corollary 5. (δ, r(m, d, ε))-approximations ε-fool
depth-d AC0 circuits of size m, where

r(m, d, ε) =

4 · 60d+3 · (log m)(d+1)(d+3) ·
(

5 log
15m

ε

)d(d+3)

,

as long as δ is sufficiently small so that
ε

δ
> 2nr(m,d,ε).

C. Techniques and proof outline

As in [Baz09], our strategy is to approximate F
with low degree polynomials over R. The reason being
that degree-r polynomials are completely fooled by r-
independence.

Proposition 6. Let f : Rn → R be a degree-r
polynomial, and let µ be an r-independent distribution.
Then f is completely fooled by µ:

Eµ[f ] = E[f ].

Proposition 6 is true by linearity of expectation, since
every term of f is a product of ≤ r variables, whose
distribution is uniform under µ.

In our construction we combine two types of approx-
imations of AC0 circuits by low degree polynomials
over R. The first one is combinatorial in the spirit of
[Raz87], [Smo87], [BRS91], [Tar93] (for a comprehen-
sive survey on polynomials in circuit complexity see e.g.

[Bei93]). These approximating polynomials agree with
F on all but a small fraction of inputs. Thus for such
a polynomial f , P[f = F ] is very close to 1. While
essentially using the same construction as [BRS91],
[Tar93], utilizing tools from [VV85], we repeat the
construction from scratch in Lemma 8, since we want
to reason about details of the construction. We believe
that any construction in this spirit would fit in our proof.

The second approximation is based on Fourier anal-
ysis and uses [LMN93] where it is shown that any
AC0 function G can be approximated by a low degree
polynomial g so that the `2 norm ‖G − g‖22 is small.
There is no guarantee, however, that g agrees with G
on any input (most likely, it doesn’t).

We use an approximation f of F of the first type as
the starting point of our construction. Thus P[f 6= F ]
is very small. If we knew that ‖F − f‖22 is small we
would be done by a simple argument similar to one
that appeared in [Baz09]. Unfortunately, there are no
guarantees, that f is close to F on average, since f
may deviate wildly on points where f 6= F (in fact, it
is likely untrue that ‖F − f‖22 is small).

Our key insight is that in the construction of f , the
indicator function E of where f fails to agree with F is
an AC0 function itself. Thus E = 1 whenever f 6= F ,
and P[E = 1] is very small (since f = F most of the
time). We then use a low-degree approximation Ẽ of E
of the second type so that ‖Ẽ − E‖22 is very small. We
then take f ′ = f · (1 − Ẽ). The idea is that 1 − Ẽ ≈
1−E will kill the values of f where it misbehaves (and
thus E = 1), while leaving other values (where E = 0)
almost unchanged. Note that the values where f = 0
remain completely unchanged, and thus f ′ is a semi-
exact approximation of F . In Lemma 10 we show that
‖F − f ′‖22 is small. We choose f ′ to “almost agree”
with F against both the uniform distribution and the
distribution µ, a property we use to finish the proof.

It should be noted that while an inductive proof on
the depth d of F is a natural approach to the problem, a
non-inductive construction appears to yield much better
parameters for the theorem.

D. Paper organization

The rest of the paper is organized as follows. In
Section II we repeat the [LMN93] theorem on low-
degree `2-approximation, and develop low-degree ap-
proximation tools that are used in the proof of the main
theorem. In Section III we prove the main theorem.
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II. SEMI-EXACT APPROXIMATIONS AND ERROR
FUNCTIONS

We will make use of the [LMN93] bound:

Lemma 7. ([LMN93]) If F : {0, 1}n → {0, 1} is a
boolean function computable by a depth-d circuit of size
m, then for every t there is a degree t polynomial f̃ with

‖F−f̃‖22 =
1
2n

∑

x∈{0,1}n

|F (x)−f̃(x)|2 ≤ 2m·2−t1/d/20.

As a first step, we prove the following lemma:

Lemma 8. Let ν be any probability distribution on
{0, 1}n. For a circuit of depth d and size m computing a
function F , for any s, there is a degree r = (s · log m)d

polynomial f and a boolean function Eν computable by
a circuit of depth < d + 3 and size O(m2r) such that
• Pν [Eν(x) = 1] < 0.82sm, and
• whenever Eν(x) = 0, f(x) = F (x).

Thus Eν tells us whether there is a mistake in f , and
the weight of the mistakes as measured by ν is very
small. Note that when there is a mistake, f does not
have to be equal to 1−F , and can actually be quite large
in absolute value. The functions f and Eν are illustrated
on Fig. 1 (b) and (c).

Proof: We construct the polynomial f by induction
on d, and show that w.h.p. f = F . The function Eν

follows from the construction. Note that we do not know
anything about the measure ν and thus cannot give an
explicit construction for f . Instead, we will construct a
distribution on polynomials f that succeeds with high
probability on any given input. Thus the distribution is
expected to have a low error with respect to ν, which
implies that there is a specific f that has a small error
with respect to ν.

We will show how to make a step with an AND gate.
Since the whole construction is symmetric with respect
to 0 and 1, the step also holds for an OR gate. Let

F = G1 ∧G2 ∧ . . . ∧Gk,

where k < m. For convenience, let us assume that k =
2` is a power of 2. We take a collection of

t := s log m

random subsets of {1, 2, . . . , k} where each element
is included with probability p independently of the

others: at least s subsets for each of the p =
2−1, 2−2, . . . , 2−` = 1/k. Denote the sets by S1, . . . , St

– we ignore empty sets. In addition, we make sure to
include {1, . . . , k} as one of the sets. Let g1, . . . , gk be
the approximating polynomials for G1, . . . , Gk. We set

f :=
t∏

i=1


∑

j∈Si

gj − |Si|+ 1


 .

By the induction assumption, the degrees of gj are d′ ≤
(s · log m)d−1, hence the degree of f is bounded by
t ·d′ ≤ (s · log m)d. Next we bound the error P[f 6= F ].
It consists of two terms:

Pν [f 6= F ] ≤ Pν [gj 6= Gj for some j]+

Pν




t∏

i=1


∑

j∈Si

Gj − |Si|+ 1


 6=

k∏

j=1

Gj


 . (1)

In other words, to make a mistake, either one of the
inputs has to be dirty, or the approximating function for
the AND has to make a mistake. We will focus on the
second term. The first term is bounded by union bound.
We fix a vector of specific values G1(x), . . . , Gk(x),
and calculate the probability of an error over the possi-
ble choices of the random sets Si.

Note that if all the Gj(x)’s are 1 then the value
of F (x) = 1 is calculated correctly with probability
1. Suppose that F (x) = 0 (and thus at least one of
the Gj(x)’s is 0). Let 1 ≤ z ≤ k be the number of
zeros among G1(x), . . . , Gk(x), and α be such that
2α ≤ z < 2α+1. Let S be a random set as above with
p = 2−α−1. Our formula will work correctly if S hits
exactly one 0 among the z zeros of G1(x), . . . , Gk(x).
The probability of this event is exactly

z · p · (1− p)z−1 ≥ 1
2
· (1− p)1/p−1 >

1
2e

> 0.18.

Hence the probability of being wrong after s such sets
is bounded by 0.82s. Since this is true for any value
of x, we can find a collection of sets Si such that
the probability of error as measured by ν is at most
0.82s according to ν. By making the same probabilistic
argument at every node and applying union bound, we
get that the condition “if the inputs are correct then the
output is correct” is satisfied by all nodes except with
probability < 0.82sm. Thus the error of the polynomial
is < 0.82sm.

Finally, if we know the sets Si at every node, it is
easy to check whether there is a mistake by checking
that no set contains exactly one 0, thus yielding the
depth < (d + 3) function Eν . The blowup in size is at
most O(mr) since at each node we take a disjunction
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Figure 1. An illustration depicting the various functions constructed in the paper. The boolean cube {0, 1}n is represented by the x axis in
these figures. Graph (a) depicts an AC0 boolean function F ; graphs (b) and (c) show the functions f and Eν from Lemma 8: the support of
Eν is small w.r.t. to the measure ν, f = F outside the support of Eν while behaving wildly inside; graphs (d)-(f) depict the functions from
Lemma 10, in particular we see on graph (f) that F ′ = 0 implies f ′ = 0
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over all the possible pairs of (Si, Gj ∈ Si) of whether
Gj is the only 0 in the set Si.
Recall that t = s log m as in the proof of Lemma 8; we
have:

Proposition 9. In Lemma 8, for s ≥ log m, ‖f‖∞ <

(2m)deg(f)−2 = (2m)td−2.

Proof: We prove the statement by induction on d.
For d = 1, deg(f) = t and the functions gj are just
0/1-valued literals. Since |Si| ≤ m for all i, we have
for every x:

|f(x)| =
t∏

i=1

∣∣∣∣∣∣
∑

j∈Si

gj − |Si|+ 1

∣∣∣∣∣∣
≤ mt < (2m)t−2.

For the step, assuming the statement is true for d−1 ≥
1, we have

‖f‖∞ ≤
t∏

i=1

∣∣∣∣∣∣
∑

j∈Si

‖gj‖∞ + |Si| − 1

∣∣∣∣∣∣
<

t∏

i=1

∣∣∣m · (2m)td−1−2 + m
∣∣∣ <

(
(2m)td−1−1

)t

< (2m)td−2.

Applying results from [LMN93] we can now take any
shallow function F and modify it a little bit, so that
the modified function would have a good one-sided-
error approximation. The ingredients of the proof are
illustrated on Fig. 1 (d)-(f).

Lemma 10. Let F be computed by a circuit of depth
d and size m. Let s1, s2 be two parameters with s1 ≥
log m. Let µ be any probability distribution on {0, 1}n.
Set

ν :=
1
2
(µ + U{0,1}n).

Let Eν be the function from Lemma 8 with s = s1. Set
F ′ = F ∨ Eν . Then there is a polynomial f ′ of degree
rf ≤ (s1 · log m)d + s2, such that
• P[F 6= F ′] < 2 · 0.82s1m;
• Pµ[F 6= F ′] < 2 · 0.82s1m;
• ‖F ′ − f ′‖22 < 0.82s1 · (4m)+

22.9(s1·log m)d log m−s
1/(d+3)
2 /20, and

• f ′(x) = 0 whenever F ′(x) = 0.

Proof: The first two properties follow from Lemma
8 directly, since

P[Eν = 1],Pµ[Eν = 1] ≤ 2 ·Pν [Eν = 1] < 2 ·0.82s1m.

Let f be the approximating polynomial for F from
that lemma, so that F = F ′ = f whenever Eν = 0,
and thus f = 0 whenever F ′ = 0. By Proposition 9 we
have

‖f‖∞ < (2m)(s1·log m)d

< 21.4(s1·log m)d log m.

We let Ẽν be the low degree approximation of Eν of
degree s2. By [LMN93] (Lemma 7), we have

‖Eν − Ẽν‖22 < O(m3) · 2−s
1/(d+3)
2 /20.

Let
f ′ := f · (1− Ẽν).

Then f ′ = 0 whenever F ′ = 0. It remains to estimate
‖F ′ − f‖22:

‖F ′ − f ′‖22 ≤
2 · ‖F ′ − f · (1− Eν)‖22 + 2 · ‖f · (1− Eν)− f ′‖22 =

2 · ‖Eν‖22 + 2 · ‖f · (Eν − Ẽν)‖22 ≤
2 ·P[Eν = 1] + 2 · ‖f‖2∞ · ‖Eν − Ẽν‖22 <

0.82s1(4m) + 22.9(s1·log m)d log m−s
1/(d+3)
2 /20,

which completes the proof.

III. MAIN THEOREM

As in Bazzi’s proof ([Baz07], Lemma 3.3) we can
now use Lemma 10 to prove the following:

Lemma 11. For every boolean circuit F of depth d
and size m and any s ≥ log m, and for any probability
distribution µ on {0, 1} there is a boolean function F ′

and a polynomial f ′l of degree less than

rf = 3 · 60d+3 · (log m)(d+1)(d+3) · sd(d+3)

such that
• Pµ[F 6= F ′] < ε(s, d)/3,
• P[F 6= F ′] < ε(s, d)/3,
• f ′l ≤ F ′ on {0, 1}n, and
• E[F ′ − f ′l ] < ε(s, d)/3,

where ε(s, d) = 0.82s · (15m).

Proof: Let F ′ be the boolean function and let f ′

be the polynomial from Lemma 10 with s1 = s and
s2 ≈ 60d+3 · (log m)(d+1)(d+3) · sd(d+3). The first two
properties follow directly from the lemma. Set

f ′l := 1− (1− f ′)2.

It is clear that f ′l ≤ 1 and moreover f ′l = 0 whenever
F ′ = 0, hence f ′l ≤ F ′. Finally, F ′(x) − f ′l (x) = 0
when F ′(x) = 0, and is equal to

F ′(x)− f ′l (x) = (1− f ′(x))2 = (F ′(x)− f ′(x))2
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when F ′(x) = 1, thus

E[F ′ − f ′l ] ≤ ‖F ′ − f ′‖22 < 0.82s · (5m) = ε(s, d)/3

by Lemma 10. To finish the proof we note that the
degree of f ′l is bounded by

2 · ((s1 · log m)d + s2) < 2.5 · s2 < rf .

Lemma 11 implies the following:

Lemma 12. Let s ≥ log m be any parameter. Let F
be a boolean function computed by a circuit of depth
d and size m. Let µ be an r-independent distribution
where

r ≥ 3 · 60d+3 · (log m)(d+1)(d+3) · sd(d+3),

then

Eµ[F ] > E[F ]− ε(s, d),

where ε(s, d) = 0.82s · (15m).

Proof: Let F ′ be the boolean function and let f ′l
be the polynomial from Lemma 11. The degree of f ′l
is < r. We use the fact that since µ is r-independent,
Eµ[f ′l ] = E[f ′l ] (see Proposition 6 above):

Eµ[F ] ≥ Eµ[F ′]−Pµ[F 6= F ′] ≥
Eµ[f ′l ]− ε(s, d)/3 = E[f ′l ]− ε(s, d)/3 =

E[F ′]−E[F ′− f ′l ]− ε(s, d)/3 > E[F ′]− 2ε(s, d)/3 ≥
E[F ]−P[F ′ 6= F ]− 2ε(s, d)/3 > E[F ]− ε(s, d).

The dual inequality to Lemma 12 follows immedi-
ately by applying the lemma to the negation F = 1−F
of F . We have Eµ[F ] > E[F ]− ε(s, d), and thus

Eµ[F ] = 1−Eµ[F ] < 1−E[F ]+ε(s, d) = E[F ]+ε(s, d).

Together, these two statements yield the main theorem:

Main Theorem. Let s ≥ log m be any parameter. Let
F be a boolean function computed by a circuit of depth
d and size m. Let µ be an r-independent distribution
where

r ≥ r(s, d) = 3 · 60d+3 · (log m)(d+1)(d+3) · sd(d+3),

then

|Eµ[F ]−E[F ]| < ε(s, d),

where ε(s, d) = 0.82s · (15m).
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