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What is Mocktails?

* An open-source tool for synthesizing memory requests
* Focuses on proprietary mobile workloads running on specialized architectures

* Industry: Generate and distribute models
* Models hide industry secrets and proprietary details of the workload and architecture
* Models are 84% smaller than trace files

* Academia: Generate memory requests from the models to evaluate memory
* Maximum 7.8% error on read row hits and 2.8% error on write row hits
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A System-on-Chip

General-purpose cores (CPU)
Graphics-Processing Unit (GPU)
Display-Processing Unit (DPU)

Video Processing Unit (VPU)

Significant real estate

allocated to accelerators.
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Based on data from: Y. S. Shao, B. Reagen, G. Wei, and D. Brooks, “The Aladdin approach to accelerator design and modeling,” IEEE Micro, 2015.

Heterogeneity Is Increasing
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Based on data from: https://en.wikipedia.org/wiki/Apple-designed_processors

Apple SoCs — The Cache Hierarchy
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Heterogeneous Systems-on-Chip

 Specialized hardware for commonly used workloads

How do we evaluate the
* Spend areato b memory hierarchy? iciency

* More IP blocks = varying demands on memory




Academic research in SoC Proprietary IP blocks
memory hierarchies. increasingly used in SoCs.
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https://www.flickr.com/photos/evaekeblad/611546983
https://creativecommons.org/licenses/by-nc-sa/3.0/

Statistical Simulation

State-of-the-Art
Mobile SoC

Trace
Generator

Statistical Profile

Proprietary Trace

Industry

Model
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Mocktails

Synthetic Trace
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. Traffic
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Academia

Statistical profiles hide
proprietary details.




Modeling Requests
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Modeling a Memory Request
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Address — Memory
! Component

Black-box modeling works with filtered
or unfiltered memory requests.

Memory
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An Example Workload

Lots of variability

Hard to find a pattern
in the memory
accesses

We can zoom in

Address
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Modeling Addresses

* Given a starting
address, model tF
strides

e Stride models used in
prior art

Time Address Stride
1 D
2 A -12
3 C 8
4 B -4
High variability in strides is difficult to g
model accurately. 16896
8 X -8
9 Y 4
10 A -16884
11 Y 16884
12 B -16880

13



Time Address Stride

Temporal Partitioning

1 D
2 A -12
Time Interval 1 3 ¢ .
. . 4 B -4
* Divide the sequence of
requests in two . . . .« Lsleg. s 4
aness Time interval 2 has high variability in
* Two starting add . 0
 Two stride mode stridevalues. [~ --=---
8 X -8
* Each partition has _ 9 Y 4
different behaviour Time Interval 2
10 A -16884
11 Y 16884
* Temporal partitioning 12 B 16880

used in prior art



Time Address Stride
. . . . 1 D
Spatial Partitioning 5 A 12
3 C 8
Spatial Partition 1 4 B 4
. . : 5 C 4
* Divide requests into 0
separate address . cre )
ranges Spatial partitioning reduces the variance |
in the stride feature for both partitions. | ,
e Each partition has
different behaviour Time Address Stride
7 W
> SpaiiEl perlieniy Spatial Partition 2 5 X 8
used in prior art 9 Y 4
e But tuned for CPUs 11 Y 0
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Partitioning in Two
Dimensions

e Temporal: reduces
variability in delta
times

e Spatial: reduces
variability in strides
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Carefully Dividing Requests

* Dynamic Spatial Partitioning

Dynamic spatial partitioning adapts to

the memory access behaviour of the
workload and device.

e Spatial partitioning uncovers variable-sized time intervals

e Phases with different start times and durations

* Find requé




Modeling Each
Partition

Each partition consists
of a sequence of
memory requests

Model each partition
independently

Save each partition’s:
e Start time
e Start address

8@ Write Request

Q Read Request
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Modeling Each
Feature

Model each feature
independently

Features that do not
change:

* Constant value

Features that do
change:

e Markov chain

Variable operation, stride, and
delta time. Use Markov chain.

8@ Write Request

@ Read Request

Constant operation, stride, and
delta time.
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Synthesizing Requests

e Each modelis used to
generate requests

* Need initial time and
address

* Requests pushed into a
priority queue

* Ordered by
timestamp
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Up Next:

Evaluation

Evaluation Memory controller




Methodology

* Proprietary memory access traces from Arm
 CPU, DPU, GPU, VPU devices

* Trace-based simulation with gem5
e Baseline: Arm traces
* Requests sent to main memory over a crossbar

* Memory Controller Configuration
* 4 channels: Each channel has a read and write queue
* Dynamic scheduling: First-ready, first-come first-serve




Model Comparison

* Perform hierarchical partitioning

* Model each partition with two different approaches
* Configuration: Temporal then Spatial (i.e., 2L-TS)
* 500,000 cycle time intervals

* Mocktails Approach
* Markov chain or Constant value for each feature (i.e., the McC model)

 STM Approach
» A statistical simulation technique for the CPU
* Weighted coin flip for operation feature
* Markov chain with history for stride feature
* Other features use Mocktails approach




Absolute Accuracy of Row Hits

Read Row Hits Write Row Hits
O McC BSTM O McC BSTM
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The STM models for operations and
strides has higher error on write row hits.
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Write Row Hits (DPU)

O Baseline @McC ESTM
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X 6000 important for capturing time-varying
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Average Queue Length

Read Queue Write Queue
O Baseline @McC ESTM O Baseline @ McC ESTM
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On average, the time-varying behaviour
of requests is captured. 1
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Write Queue Length (Manhattan GPU)

Channel 0
- = Baseline McC - STM
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Up Next:

Conclusion

Conclusion Summary of results
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Summary of Results

* Mocktails is accurate for proprietary mobile applications that use specialized
hardware
e Maximum 7.8% error on read row hits and 2.8% error on write row hits

* Mocktails is accurate for traditional CPU benchmarks
e SPEC CPU2006: 5.6% average error on L1 cache miss rates
* More details and exploration in the paper

* Mocktails profiles are distributable
* 84% smaller than trace files
* Do not include proprietary details




Mocktails is Open Source

* https://github.com/mariobadr/statistical-simulation

* Mocktails Models of proprietary IP blocks

e Source code for...
* Mocktails model/trace generation
e Prior work comparisons (i.e., STM, HRD)
* gemb>5 integration
* Miscellaneous utilities and libraries



https://github.com/mariobadr/statistical-simulation
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