Mocktails:
Capturing the
Memory Behaviour
of Proprietary
Mobile
Architectures

Mario Badr?, Carlo Delconte?, Isak
Edo?!, Radhika Jagtap?, Matteo
Andreozzi?, and Natalie Enright
Jerger!

L University of Toronto
ZArm

Fl
A A A A s

What is Mocktails?

* An open-source tool for synthesizing memory requests
* Focuses on proprietary mobile workloads running on specialized architectures

* Industry: Generate and distribute models
* Models hide industry secrets and proprietary details of the workload and architecture
* Models are 84% smaller than trace files

* Academia: Generate memory requests from the models to evaluate memory
* Maximum 7.8% error on read row hits and 2.8% error on write row hits

Presentation

Outline

Q

Background

Mocktails

Evaluation

Conclusion

Heterogeneity
Memory hierarchy

Statistical simulation

Modeling Requests
Uncovering patterns

Synthesizing

Memory controller

Summary of results

A System-on-Chip

General-purpose cores (CPU)
Graphics-Processing Unit (GPU)
Display-Processing Unit (DPU)

Video Processing Unit (VPU)

Significant real estate

allocated to accelerators.

CPU Cluster GPU
Cache Cache DPU VPU
{ : ! !
Interconnection Network(s)

i { !
Main Memor Other
Memory v Accelerator
Other

Accelerator

Compute

Memory

Based on data from: Y. S. Shao, B. Reagen, G. Wei, and D. Brooks, “The Aladdin approach to accelerator design and modeling,” IEEE Micro, 2015.

Heterogeneity Is Increasing

50
2
s40 e @
=
a 30 _ _---T
= R
<20 ___--
2 -
£ 10 =T H
Z
0
2010 2011 2012 2013 2014 2015 2016 2017
A4 A5 A6 A7 A8 A9 A10 All

Apple SoCs

Based on data from: https://en.wikipedia.org/wiki/Apple-designed_processors

Apple SoCs — The Cache Hierarchy

OL1 OL2 mL3

8192

7168
— 6144 = l l
%Zégg Wide variety of cache designs

& 3072 from the same vendor.

2048
.
o ™ =

A4 A5 A5X A6 A6X A7 A8 A8X A9 A9X Al10 A10X A1l A12 A12X
Apple SoC

Heterogeneous Systems-on-Chip

 Specialized hardware for commonly used workloads

How do we evaluate the
* Spend areato b memory hierarchy? iciency

* More IP blocks = varying demands on memory

Academic research in SoC Proprietary IP blocks
memory hierarchies. increasingly used in SoCs.

— ‘."'ﬂ‘_—‘_'- vl o ! \——-;3&!-
g - : h‘_; 7 :::"-

Statistical
simulation can

8

This Photo by Eva the Weaver is licensed under CC BY-SA-NC

https://www.flickr.com/photos/evaekeblad/611546983
https://creativecommons.org/licenses/by-nc-sa/3.0/

Statistical Simulation

State-of-the-Art
Mobile SoC

Trace
Generator

Statistical Profile

Proprietary Trace

Industry

Model
Generator

Mocktails

Synthetic Trace

Option A
. Traffic
Option B Generator

Simulator-of-Choice

Academia

Statistical profiles hide
proprietary details.

Modeling Requests

T MOthai|S Uncovering patterns

J p I\- eXt : Synthesizing

<tails

Modeling a Memory Request

——————————

Address — Memory
! Component

Black-box modeling works with filtered
or unfiltered memory requests.

Memory
Component

appropriate level.

Industry can pick and choose the -,
N

Operation y

——————————

An Example Workload

Lots of variability

Hard to find a pattern
in the memory
accesses

We can zoom in

Address

O read X write

®oo®
§ e &
X
f(}” X3 % K NS
BEROEOD x
s | COCEOO ° ~
J 2.00@0000 1
/ ‘o
/ 553 © RN
© /X o © © g X O X \.\ X
’ Time '\,
e e e e m i it r = — >
®° ®
© g & “
@]
g &° ®©
g g) @0 (QE‘Q @% @ @?b
< O
& &
g° @ O ©8 & @

._I—I—l—I—I—I—I—I—I—I—I—I—I—I—l

Modeling Addresses

* Given a starting
address, model tF
strides

e Stride models used in
prior art

Time Address Stride
1 D
2 A -12
3 C 8
4 B -4
High variability in strides is difficult to g
model accurately. 16896
8 X -8
9 Y 4
10 A -16884
11 Y 16884
12 B -16880

13

Time Address Stride

Temporal Partitioning

1 D
2 A -12
Time Interval 1 3 ¢ .
. . 4 B -4
* Divide the sequence of
requests in two« Lsleg. s 4
aness Time interval 2 has high variability in
* Two starting add . 0
 Two stride mode stridevalues. [~ --=---
8 X -8
* Each partition has _ 9 Y 4
different behaviour Time Interval 2
10 A -16884
11 Y 16884
* Temporal partitioning 12 B 16880

used in prior art

Time Address Stride
. . . . 1 D
Spatial Partitioning 5 A 12
3 C 8
Spatial Partition 1 4 B 4
. . : 5 C 4
* Divide requests into 0
separate address . cre)
ranges Spatial partitioning reduces the variance |
in the stride feature for both partitions. | ,
e Each partition has
different behaviour Time Address Stride
7 W
> SpaiiEl perlieniy Spatial Partition 2 5 X 8
used in prior art 9 Y 4
e But tuned for CPUs 11 Y 0

15

Partitioning in Two
Dimensions

e Temporal: reduces
variability in delta
times

e Spatial: reduces
variability in strides

A

A

%000 ®qP

cooo P aeo :,;

o o

A

1 1
23,0001 5QP1

| |

. o
0000 !2@?@ 163

: o' ©

Original Workload'

A

23(%30

2%3000

o |
0000 P® g iC

@) @)

Temporal First

%:000__¥q,

T 5

0000 B
.. 6

[
»

Original Workloadr

Spatial First

v

8@ Write Request

Q Read Request

- - - -

| |
....... Sl T 0
:> 00001 !

)

| o O

’ »

3

Spatial Second

|

Temporal Second

16

Carefully Dividing Requests

* Dynamic Spatial Partitioning

Dynamic spatial partitioning adapts to

the memory access behaviour of the
workload and device.

e Spatial partitioning uncovers variable-sized time intervals

e Phases with different start times and durations

* Find requé

Modeling Each
Partition

Each partition consists
of a sequence of
memory requests

Model each partition
independently

Save each partition’s:
e Start time
e Start address

8@ Write Request

Q Read Request

v

Modeling Each
Feature

Model each feature
independently

Features that do not
change:

* Constant value

Features that do
change:

e Markov chain

Variable operation, stride, and
delta time. Use Markov chain.

8@ Write Request

@ Read Request

Constant operation, stride, and
delta time.

v

Synthesizing Requests

e Each modelis used to
generate requests

* Need initial time and
address

* Requests pushed into a
priority queue

* Ordered by
timestamp

Model

stride op.
Read

~ -

~~—_’

request

-
—y
- ~

S ~
Model N
stride op.
8 é
size time
16 @D

7’
S o _ - -~
request |

Priority Queue

Up Next:

Evaluation

Evaluation Memory controller

Methodology

* Proprietary memory access traces from Arm
 CPU, DPU, GPU, VPU devices

* Trace-based simulation with gem5
e Baseline: Arm traces
* Requests sent to main memory over a crossbar

* Memory Controller Configuration
* 4 channels: Each channel has a read and write queue
* Dynamic scheduling: First-ready, first-come first-serve

Model Comparison

* Perform hierarchical partitioning

* Model each partition with two different approaches
* Configuration: Temporal then Spatial (i.e., 2L-TS)
* 500,000 cycle time intervals

* Mocktails Approach
* Markov chain or Constant value for each feature (i.e., the McC model)

 STM Approach
» A statistical simulation technique for the CPU
* Weighted coin flip for operation feature
* Markov chain with history for stride feature
* Other features use Mocktails approach

Absolute Accuracy of Row Hits

Read Row Hits Write Row Hits
O McC BSTM O McC BSTM

N
o

=
U

The STM models for operations and
strides has higher error on write row hits.

VPU CPU DPU G

CPU DPU GPU PU VPU

Average Error (%)
[HY
o

(92}

Write Row Hits (DPU)

O Baseline @McC ESTM

10000
| | | I ||
p 30 Modeling the operation feature is
X 6000 important for capturing time-varying
2 4000 read/write behaviour.
=
0

Linear FBC Tiled FBC

25

Average Queue Length

Read Queue Write Queue
O Baseline @McC ESTM O Baseline @ McC ESTM

w
o

N
U

On average, the time-varying behaviour
of requests is captured. 1

N
o

=
o

Average Length
[N
ol

92

o

anl e A HHI
GPU VPU

CPU DPU CPU DPU GPU VPU

Write Queue Length (Manhattan GPU)

Channel 0
- = Baseline McC - STM

25000

0000 Time-varying behaviour is captured
£ 15000 overal.l, not just on average.
S 10000 /f,..«'" ’g{

5000 o —

0 -_-__“_-“_-““_“"“"""".: “s,,___r__

0O 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63
Queue Length Seen by a Request

27

Up Next:

Conclusion

Conclusion Summary of results

28

Summary of Results

* Mocktails is accurate for proprietary mobile applications that use specialized
hardware
e Maximum 7.8% error on read row hits and 2.8% error on write row hits

* Mocktails is accurate for traditional CPU benchmarks
e SPEC CPU2006: 5.6% average error on L1 cache miss rates
* More details and exploration in the paper

* Mocktails profiles are distributable
* 84% smaller than trace files
* Do not include proprietary details

Mocktails is Open Source

* https://github.com/mariobadr/statistical-simulation

* Mocktails Models of proprietary IP blocks

e Source code for...
* Mocktails model/trace generation
e Prior work comparisons (i.e., STM, HRD)
* gemb>5 integration
* Miscellaneous utilities and libraries

https://github.com/mariobadr/statistical-simulation

	Slide 1: Mocktails: Capturing the Memory Behaviour of Proprietary Mobile Architectures
	Slide 2: What is Mocktails?
	Slide 3: Presentation Outline
	Slide 4: A System-on-Chip
	Slide 5: Heterogeneity is Increasing
	Slide 6: Apple SoCs – The Cache Hierarchy
	Slide 7: Heterogeneous Systems-on-Chip
	Slide 8
	Slide 9: Statistical Simulation
	Slide 10: Up Next: Mocktails
	Slide 11: Modeling a Memory Request
	Slide 12: An Example Workload
	Slide 13: Modeling Addresses
	Slide 14: Temporal Partitioning
	Slide 15: Spatial Partitioning
	Slide 16: Partitioning in Two Dimensions
	Slide 17: Carefully Dividing Requests
	Slide 18: Modeling Each Partition
	Slide 19: Modeling Each Feature
	Slide 20: Synthesizing Requests
	Slide 21: Up Next: Evaluation
	Slide 22: Methodology
	Slide 23: Model Comparison
	Slide 24: Absolute Accuracy of Row Hits
	Slide 25: Write Row Hits (DPU)
	Slide 26: Average Queue Length
	Slide 27: Write Queue Length (Manhattan GPU)
	Slide 28: Up Next: Conclusion
	Slide 29: Summary of Results
	Slide 30: Mocktails is Open Source

