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What is Mocktails?
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• An open-source tool for synthesizing memory requests
• Focuses on proprietary mobile workloads running on specialized architectures

• Industry: Generate and distribute models
• Models hide industry secrets and proprietary details of the workload and architecture

• Models are 84% smaller than trace files

• Academia: Generate memory requests from the models to evaluate memory
• Maximum 7.8% error on read row hits and 2.8% error on write row hits
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A System-on-Chip

• General-purpose cores (CPU)

• Graphics-Processing Unit (GPU)

• Display-Processing Unit (DPU)

• Video Processing Unit (VPU)

CPU Cluster

Cache

Interconnection Network(s)

GPU

Cache DPU VPU

Other 
Accelerator

Memory
Main 

Memory
Other 

Accelerator

Compute MemorySignificant real estate 
allocated to accelerators.



Heterogeneity is Increasing
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Based on data from: Y. S. Shao, B. Reagen, G. Wei, and D. Brooks, “The Aladdin approach to accelerator design and modeling,” IEEE Micro, 2015.
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Apple SoCs – The Cache Hierarchy
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Based on data from: https://en.wikipedia.org/wiki/Apple-designed_processors
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Wide variety of cache designs 
from the same vendor.



Heterogeneous Systems-on-Chip
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• Specialized hardware for commonly used workloads

• Spend area to buy performance and energy efficiency

• More IP blocks = varying demands on memory

How do we evaluate the 
memory hierarchy?



This Photo by Eva the Weaver is licensed under CC BY-SA-NC

Academic research in SoC 
memory hierarchies.

Proprietary IP blocks 
increasingly used in SoCs.

8

Statistical 
simulation can 
bridge the gap.

https://www.flickr.com/photos/evaekeblad/611546983
https://creativecommons.org/licenses/by-nc-sa/3.0/


Statistical Simulation
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Statistical profiles hide 
proprietary details.
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Modeling a Memory Request
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Black-box modeling works with filtered 
or unfiltered memory requests.

Industry can pick and choose the 
appropriate level.



An Example Workload

• Lots of variability

• Hard to find a pattern 
in the memory 
accesses

• We can zoom in



Modeling Addresses

• Given a starting 
address, model the 
strides

• Stride models used in 
prior art

Time Address Stride

1 D

2 A -12

3 C 8

4 B -4

5 C 4

6 C 0

7 W 16896

8 X -8

9 Y 4

10 A -16884

11 Y 16884

12 B -16880

High variability in strides is difficult to 
model accurately.



Temporal Partitioning

• Divide the sequence of 
requests in two

• Two starting addresses

• Two stride models

• Each partition has 
different behaviour

• Temporal partitioning 
used in prior art

Time Address Stride

1 D

2 A -12

3 C 8

4 B -4

5 C 4

6 C 0

7 W

8 X -8

9 Y 4

10 A -16884

11 Y 16884

12 B -16880

Time Interval 1

Time Interval 2

Time interval 2 has high variability in 
stride values.



Spatial Partitioning

• Divide requests into 
separate address 
ranges

• Each partition has 
different behaviour

• Spatial partitioning 
used in prior art
• But tuned for CPUs

Time Address Stride

1 D

2 A -12

3 C 8

4 B -4

5 C 4

6 C 0

10 A -8

12 B 4

Time Address Stride

7 W

8 X -8

9 Y 4

11 Y 0

Spatial Partition 1

Spatial Partition 2

Spatial partitioning reduces the variance 
in the stride feature for both partitions.



Partitioning in Two 
Dimensions

• Temporal: reduces 
variability in delta 
times

• Spatial: reduces 
variability in strides

Original Workload Temporal First Spatial Second

Original Workload Spatial First Temporal Second

Write Request

Read Request



Carefully Dividing Requests
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• Dynamic Spatial Partitioning

• Find requests that belong to contiguous memory regions

• Spatial partitioning uncovers variable-sized time intervals
• Phases with different start times and durations

Dynamic spatial partitioning adapts to 
the memory access behaviour of the 

workload and device.



Modeling Each 
Partition

• Each partition consists 
of a sequence of 
memory requests

• Model each partition 
independently

• Save each partition’s:
• Start time

• Start address

Write Request

Read Request



Modeling Each 
Feature

• Model each feature 
independently

• Features that do not 
change:
• Constant value

• Features that do 
change:
• Markov chain

Write Request

Read Request

Variable operation, stride, and 
delta time. Use Markov chain.

Constant operation, stride, and 
delta time.



Synthesizing Requests

• Each model is used to 
generate requests
• Need initial time and 

address

• Requests pushed into a 
priority queue
• Ordered by 

timestamp

request

stride op.

Read

size time

request

stride op.

size time
…

Priority Queue

Model Model
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Methodology
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• Proprietary memory access traces from Arm

• CPU, DPU, GPU, VPU devices

• Trace-based simulation with gem5

• Baseline: Arm traces

• Requests sent to main memory over a crossbar

• Memory Controller Configuration

• 4 channels: Each channel has a read and write queue

• Dynamic scheduling: First-ready, first-come first-serve



Model Comparison
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• Perform hierarchical partitioning
• Model each partition with two different approaches
• Configuration: Temporal then Spatial (i.e., 2L-TS)

• 500,000 cycle time intervals

• Mocktails Approach
• Markov chain or Constant value for each feature (i.e., the McC model)

• STM Approach
• A statistical simulation technique for the CPU
• Weighted coin flip for operation feature
• Markov chain with history for stride feature
• Other features use Mocktails approach



Absolute Accuracy of Row Hits
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The STM models for operations and 
strides has higher error on write row hits.



Write Row Hits (DPU)
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Modeling the operation feature is 
important for capturing time-varying 

read/write behaviour.



Average Queue Length
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On average, the time-varying behaviour 
of requests is captured.



Write Queue Length (Manhattan GPU)
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Time-varying behaviour is captured 
overall, not just on average.
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Summary of Results
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• Mocktails is accurate for proprietary mobile applications that use specialized 
hardware
• Maximum 7.8% error on read row hits and 2.8% error on write row hits

• Mocktails is accurate for traditional CPU benchmarks
• SPEC CPU2006: 5.6% average error on L1 cache miss rates

• More details and exploration in the paper

• Mocktails profiles are distributable
• 84% smaller than trace files

• Do not include proprietary details



Mocktails is Open Source
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• https://github.com/mariobadr/statistical-simulation

• Mocktails Models of proprietary IP blocks

• Source code for…
• Mocktails model/trace generation

• Prior work comparisons (i.e., STM, HRD)

• gem5 integration

• Miscellaneous utilities and libraries

https://github.com/mariobadr/statistical-simulation
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