
Mocktails: 
Capturing the 
Memory Behaviour 
of Proprietary 
Mobile 
Architectures

Mario Badr1, Carlo Delconte2, Isak
Edo1, Radhika Jagtap2, Matteo 
Andreozzi2, and Natalie Enright 
Jerger1

1 University of Toronto
2 Arm

1



What is Mocktails?

2

• An open-source tool for synthesizing memory requests
• Focuses on proprietary mobile workloads running on specialized architectures

• Industry: Generate and distribute models
• Models hide industry secrets and proprietary details of the workload and architecture

• Models are 84% smaller than trace files

• Academia: Generate memory requests from the models to evaluate memory
• Maximum 7.8% error on read row hits and 2.8% error on write row hits



Presentation 
Outline

Background
Heterogeneity

Memory hierarchy

Statistical simulation

Mocktails
Modeling Requests

Uncovering patterns

Synthesizing

Evaluation Memory controller

Conclusion Summary of results

3



A System-on-Chip

• General-purpose cores (CPU)

• Graphics-Processing Unit (GPU)

• Display-Processing Unit (DPU)

• Video Processing Unit (VPU)

CPU Cluster

Cache

Interconnection Network(s)

GPU

Cache DPU VPU

Other 
Accelerator

Memory
Main 

Memory
Other 

Accelerator

Compute MemorySignificant real estate 
allocated to accelerators.



Heterogeneity is Increasing

0

10

20

30

40

50

2010 2011 2012 2013 2014 2015 2016 2017

A4 A5 A6 A7 A8 A9 A10 A11

N
u

m
b

e
r 

o
f 

IP
 B

lo
ck

s

Apple SoCs

Based on data from: Y. S. Shao, B. Reagen, G. Wei, and D. Brooks, “The Aladdin approach to accelerator design and modeling,” IEEE Micro, 2015.

5



Apple SoCs – The Cache Hierarchy

0
1024
2048
3072
4096
5120
6144
7168
8192

A4 A5 A5X A6 A6X A7 A8 A8X A9 A9X A10 A10X A11 A12 A12X

Si
ze

 (
K

B
)

Apple SoC

L1 L2 L3

Based on data from: https://en.wikipedia.org/wiki/Apple-designed_processors

6

Wide variety of cache designs 
from the same vendor.



Heterogeneous Systems-on-Chip

7

• Specialized hardware for commonly used workloads

• Spend area to buy performance and energy efficiency

• More IP blocks = varying demands on memory

How do we evaluate the 
memory hierarchy?



This Photo by Eva the Weaver is licensed under CC BY-SA-NC

Academic research in SoC 
memory hierarchies.

Proprietary IP blocks 
increasingly used in SoCs.

8

Statistical 
simulation can 
bridge the gap.

https://www.flickr.com/photos/evaekeblad/611546983
https://creativecommons.org/licenses/by-nc-sa/3.0/


Statistical Simulation

9

Trace 
Generator

Statistical Profile

Mocktails

Model 
Generator

Industry Academia

State-of-the-Art 
Mobile SoC

Proprietary Trace

Simulator-of-Choice

Traffic 
Generator

Synthetic TraceOption A

Option B

Statistical profiles hide 
proprietary details.



Up Next: 
Mocktails

Background
Heterogeneity

Memory hierarchy

Statistical simulation

Mocktails
Modeling Requests

Uncovering patterns

Synthesizing

Evaluation Memory controller

Conclusion Summary of results

10



Modeling a Memory Request

11

Compute Device
Memory 

Component

Timestamp

Address

Size (B) 

Operation

Memory 
Component

Timestamp

Address

Size (B) 

Operation

Memory 
Component

Compute Device

Timestamp

Address

Size (B) 

Operation

Black-box modeling works with filtered 
or unfiltered memory requests.

Industry can pick and choose the 
appropriate level.



An Example Workload

• Lots of variability

• Hard to find a pattern 
in the memory 
accesses

• We can zoom in



Modeling Addresses

• Given a starting 
address, model the 
strides

• Stride models used in 
prior art

Time Address Stride

1 D

2 A -12

3 C 8

4 B -4

5 C 4

6 C 0

7 W 16896

8 X -8

9 Y 4

10 A -16884

11 Y 16884

12 B -16880

High variability in strides is difficult to 
model accurately.



Temporal Partitioning

• Divide the sequence of 
requests in two

• Two starting addresses

• Two stride models

• Each partition has 
different behaviour

• Temporal partitioning 
used in prior art

Time Address Stride

1 D

2 A -12

3 C 8

4 B -4

5 C 4

6 C 0

7 W

8 X -8

9 Y 4

10 A -16884

11 Y 16884

12 B -16880

Time Interval 1

Time Interval 2

Time interval 2 has high variability in 
stride values.



Spatial Partitioning

• Divide requests into 
separate address 
ranges

• Each partition has 
different behaviour

• Spatial partitioning 
used in prior art
• But tuned for CPUs

Time Address Stride

1 D

2 A -12

3 C 8

4 B -4

5 C 4

6 C 0

10 A -8

12 B 4

Time Address Stride

7 W

8 X -8

9 Y 4

11 Y 0

Spatial Partition 1

Spatial Partition 2

Spatial partitioning reduces the variance 
in the stride feature for both partitions.



Partitioning in Two 
Dimensions

• Temporal: reduces 
variability in delta 
times

• Spatial: reduces 
variability in strides

Original Workload Temporal First Spatial Second

Original Workload Spatial First Temporal Second

Write Request

Read Request



Carefully Dividing Requests

17

• Dynamic Spatial Partitioning

• Find requests that belong to contiguous memory regions

• Spatial partitioning uncovers variable-sized time intervals
• Phases with different start times and durations

Dynamic spatial partitioning adapts to 
the memory access behaviour of the 

workload and device.



Modeling Each 
Partition

• Each partition consists 
of a sequence of 
memory requests

• Model each partition 
independently

• Save each partition’s:
• Start time

• Start address

Write Request

Read Request



Modeling Each 
Feature

• Model each feature 
independently

• Features that do not 
change:
• Constant value

• Features that do 
change:
• Markov chain

Write Request

Read Request

Variable operation, stride, and 
delta time. Use Markov chain.

Constant operation, stride, and 
delta time.



Synthesizing Requests

• Each model is used to 
generate requests
• Need initial time and 

address

• Requests pushed into a 
priority queue
• Ordered by 

timestamp

request

stride op.

Read

size time

request

stride op.

size time
…

Priority Queue

Model Model

16

8



Up Next: 
Evaluation

Background
Heterogeneity

Memory hierarchy

Statistical simulation

Mocktails
Modeling Requests

Uncovering patterns

Synthesizing

Evaluation Memory controller

Conclusion Summary of results

21



Methodology

22

• Proprietary memory access traces from Arm

• CPU, DPU, GPU, VPU devices

• Trace-based simulation with gem5

• Baseline: Arm traces

• Requests sent to main memory over a crossbar

• Memory Controller Configuration

• 4 channels: Each channel has a read and write queue

• Dynamic scheduling: First-ready, first-come first-serve



Model Comparison

23

• Perform hierarchical partitioning
• Model each partition with two different approaches
• Configuration: Temporal then Spatial (i.e., 2L-TS)

• 500,000 cycle time intervals

• Mocktails Approach
• Markov chain or Constant value for each feature (i.e., the McC model)

• STM Approach
• A statistical simulation technique for the CPU
• Weighted coin flip for operation feature
• Markov chain with history for stride feature
• Other features use Mocktails approach



Absolute Accuracy of Row Hits

24

0

5

10

15

20

CPU DPU GPU VPU

A
ve

ra
ge

 E
rr

o
r 

(%
)

Read Row Hits

McC STM

CPU DPU GPU VPU

Write Row Hits

McC STM

The STM models for operations and 
strides has higher error on write row hits.



Write Row Hits (DPU)

25

0

2000

4000

6000

8000

10000

Linear FBC Tiled FBC

N
u

m
b

e
r 

o
f 

H
it

s

Baseline McC STM

Modeling the operation feature is 
important for capturing time-varying 

read/write behaviour.



Average Queue Length

26

0

5

10

15

20

25

30

CPU DPU GPU VPU

A
ve

ra
ge

 L
en

gt
h

Read Queue

Baseline McC STM

CPU DPU GPU VPU

Write Queue

Baseline McC STM

On average, the time-varying behaviour 
of requests is captured.



Write Queue Length (Manhattan GPU)

27

0

5000

10000

15000

20000

25000

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63

C
o

u
n

t

Queue Length Seen by a Request

Channel 0

Baseline McC STM

Time-varying behaviour is captured 
overall, not just on average.



Up Next: 
Conclusion

Background
Heterogeneity

Memory hierarchy

Statistical simulation

Mocktails
Modeling Requests

Uncovering patterns

Synthesizing

Evaluation Memory controller

Conclusion Summary of results

28



Summary of Results

29

• Mocktails is accurate for proprietary mobile applications that use specialized 
hardware
• Maximum 7.8% error on read row hits and 2.8% error on write row hits

• Mocktails is accurate for traditional CPU benchmarks
• SPEC CPU2006: 5.6% average error on L1 cache miss rates

• More details and exploration in the paper

• Mocktails profiles are distributable
• 84% smaller than trace files

• Do not include proprietary details



Mocktails is Open Source

30

• https://github.com/mariobadr/statistical-simulation

• Mocktails Models of proprietary IP blocks

• Source code for…
• Mocktails model/trace generation

• Prior work comparisons (i.e., STM, HRD)

• gem5 integration

• Miscellaneous utilities and libraries

https://github.com/mariobadr/statistical-simulation

	Slide 1: Mocktails: Capturing the Memory Behaviour of Proprietary Mobile Architectures
	Slide 2: What is Mocktails?
	Slide 3: Presentation Outline
	Slide 4: A System-on-Chip
	Slide 5: Heterogeneity is Increasing
	Slide 6: Apple SoCs – The Cache Hierarchy
	Slide 7: Heterogeneous Systems-on-Chip
	Slide 8
	Slide 9: Statistical Simulation
	Slide 10: Up Next: Mocktails
	Slide 11: Modeling a Memory Request
	Slide 12: An Example Workload
	Slide 13: Modeling Addresses
	Slide 14: Temporal Partitioning
	Slide 15: Spatial Partitioning
	Slide 16: Partitioning in Two Dimensions
	Slide 17: Carefully Dividing Requests
	Slide 18: Modeling Each Partition
	Slide 19: Modeling Each Feature
	Slide 20: Synthesizing Requests
	Slide 21: Up Next: Evaluation
	Slide 22: Methodology
	Slide 23: Model Comparison
	Slide 24: Absolute Accuracy of Row Hits
	Slide 25: Write Row Hits (DPU)
	Slide 26: Average Queue Length
	Slide 27: Write Queue Length (Manhattan GPU)
	Slide 28: Up Next: Conclusion
	Slide 29: Summary of Results
	Slide 30: Mocktails is Open Source

