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Solving Box-Constrained Integer
Least Squares Problems

Xiao-Wen Chang, Qing Han

Abstract— A box-constrained integer least squares problem
(BILS) arises from several wireless communications applications.
Solving a BILS problem usually has two stages: reduction (or
preprocessing) and search. This paper presents a reduction
algorithm and a search algorithm. Unlike the typical reduction al-
gorithms, which use only the information of the lattice generator
matrix, the new reduction algorithm also uses the information
of the given input vector and the box constraint and is very
effective for search. The new search algorithm overcomes some
shortcomings of the existing search algorithms and gives some
other improvement. Simulation results indicate the combination
of the new reduction algorithm and the new search algorithm can
be much more efficient than the existing algorithms, in particular
when the least square residual is large.

Index Terms— Integer least squares, lattice, MIMO channels,
detection, decoding. reduction, search.

I. I NTRODUCTION

G IVEN a realm-vectory and a realm×n matrix A with
full column rank, one wants to solve the minimization

problem
min
x∈Zn

‖y − Ax‖2
2, (1)

whereZ
n denotes the set of all integern-vectors. We refer

to (1) as the integer least squares (ILS) problem. In the
lattice theory,A is called the generator matrix of the lattice
L(A) = {Ax : x ∈ Z

n}, y is called the input vector, and
(1) is referred to as aclosest-point problem, since it is to
find a point in the lattice which is closest to the given input
point y. In channel coding, the ILS problem is referred to as
decoding. The ILS problem may arise from many applications,
such as communications, cryptograph, lattice design, Monte
Carlo second-moment estimation, radar imaging, and global
positioning systems etc, see, e.g., [1], [2], [3] and references
therein. It is well know that the ILS problem (1) is NP-hard
[4].

In some wireless communications applications, the integer
vectorx is constrained to a box (see, e.g., [5]):

B = {x ∈ Z
n : l ≤ x ≤ u, l ∈ Z

n, u ∈ Z
n}. (2)

Then one wants to solve

min
x∈B

‖y − Ax‖2
2. (3)
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We refer to (3) as thebox-constrained integer least squares
(BILS) problem.

Any typical method for solving the ILS problem (1) or the
BILS problem (3) has two stages: reduction (or preprocessing)
and search. An excellent survey on the search methods for
solving (1) can be found in the semi-tutorial paper [1], which
also mentions typical reduction methods. In [1], an efficient
search algorithm based on the Schnorr-Euchner enumeration
strategy (see [6]) was proposed for solving the ILS problem
(1). The algorithm was then modified in [7] to solve the BILS
problem (3) by taking the box constraint (2) into account. In
[5], two search algorithms based on the Phost enumeration
strategy (see [8], [9] and [10]) and Schnorr-Euchner enumera-
tion strategy, respectively, were proposed for solving theBILS
problem (3). As in [1] for solving the ILS problem (1), it
was found in [5] that the Schnorr-Euchner strategy is usually
more efficient than the Phost strategy for solving the BILS
problem (3). To make the search process easier and more
efficient, the reduction stage is needed to transformA to an
upper triangular matrix by an orthogonal transformation. The
key part of a reduction algorithm is to reorder the columns
of A. Different ordering may have significant effect on the
search speed. In [5], three reduction strategies were introduced.
In [11], an algorithm was proposed for finding a suboptimal
solution of the ILS problem (1) and it can be used for the
reduction purpose. All these reduction strategies use onlythe
information of the generator matrixA.

Since computing the optimal solution to (3) may become
time-prohibitive when the least squares residual is large or the
dimension of the problem is large (see, e.g., [12]), recently
some algorithms have been proposed to compute a suboptimal
solution by using convex optimization methods or semidefinite
programming techniques, see, e.g., [13]–[15]. But computing
a suboptimal solution is beyond the scope of this paper and
will not be discussed further.

The goal of this paper is to present a faster algorithm for
solving the general BILS problem (3). We do not consider
any specific application. Specifically, we will propose a new
reduction algorithm, which uses all information provided in
the BILS problem (3) and is much more effective than the
reduction strategies given in [5] and [11], and a new search
algorithm, which gives a few modifications of the Schnorr-
Euchner strategy based algorithms given in [5] and [7].

The rest of the paper is organized as follows. In Section
II, we review the reduction algorithms given in [16] and
[5] and the Schnorr-Euchner strategy based search algorithms
presented in [5] and [7]. In Section III, we present a new
reduction algorithm and a new search algorithm. Section IV
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gives simulation results to show the advantages of our new
algorithms. Finally a summary is given in Section V.

The following notation is used in the paper.R
m×n andR

n

denotes the set of all realm×n matrices and the set of all real
n-vectors.Zm×n andZ

n denotes the set of all integerm× n
matrices and the set of all integern-vectors. Bold upper case
letters and bold lower case letters are used to denote matrices
and vectors, respectively. A vectora is a column vector and a
vectoraT is a row vector. Then×n identity matrix is denoted
by I or In. MATLAB notation is used to denote a submatrix.
[v1; v2] denotes a column vector whose top part is a vector
v1 and whose bottom part is a vectorv2. For a real scalar
z, we use⌊z⌉ to denote its nearest integer. If there is a tie,
⌊z⌉ denotes the one with smaller magnitude. The operation
sign(z) returns−1 if z ≤ 0 and 1 if z > 0.

II. OVERVIEW OF SOME EXISTING ALGORITHMS

We will briefly review some recent algorithms for solving
the BILS problem (3). In Section II-A, we give a general
reduction process and introduce two permutation strategies
proposed in [16] and [5], respectively, and suggest another
strategy which was proposed in [11] to find a suboptimal
solution of the ILS problem (1) for reduction. In Section II-B,
we introduce the two Schnorr-Euchner strategy based search
algorithms presented in [5] and [7], respectively, and givesome
comments.

A. Reduction

A reduction process transforms the matrixA to an upper
triangular matrix, which has good properties to make the
search process more efficient. For solving the BILS problem
(3), this can be accomplished by the QR decomposition ofA

with column pivoting:

AP = [Q1, Q2]

[

R

0

]

= Q1R (4)

where P ∈ Z
n×n is a permutation matrix,[Q1

n
, Q2
m−n

] ∈

R
m×m is orthogonal, andR ∈ R

n×n is nonsingular upper
triangular. The QR decomposition can be computed by us-
ing Householder transformations, Givens rotations, or Gram-
Schmidt orthogonalization (which gives onlyQ1 not Q), see,
e.g., [20, Sec 2.4]. The main difference between different
reduction strategies in the literature is the permutation matrix
P .

With the QR decomposition (4), we have

‖y − Ax‖2
2 = ‖QT

1 y − RP T x‖2
2 + ‖QT

2 y‖2
2. (5)

Define

ȳ = QT
1 y, z = P T x, l̄ = P T l, ū = P T u.

Then from (5) we see that the original BILS problem (3) is
equivalent to the reduced one:

min
z∈B̄

‖ȳ − Rz‖2
2 (6)

where

B̄ = {z ∈ Z
n : l̄ ≤ z ≤ ū, l̄ ∈ Z

n, ū ∈ Z
n}.

Then the search process tries to solve (6). Note that ifẑ is the
solution to (6), then̂x = P ẑ is the solution to (3).

For solving the ILS problem (1), an often used reduc-
tion algorithm is the well-known LLL algorithm [17], which
computes (4), butP is a unimodular matrix, i.e.,P is an
integer matrix with | det(P )| = 1. For the BILS problem
(3), a general unimodular transformation will make the box
constraintB very complicated. So the LLL reduction is usually
not used for solving the BILS problem in the literature. Here
we introduce a few typical reduction strategies suitable for
solving (3).

To make the search process more efficient, a reduction
algorithm usually strives for

|r11| ≤ |r22| ≤ · · · ≤ |rnn|.

Note that this may not be achievable. The justification for
this order can be found in [1] which considers solving the
unconstrained problem (1).

In [16], P was chosen such that the columns of the
permutedA are arranged in a nondecreasing order in terms
of the 2-norms.

In [5], the so-called vertical Bell Labs layered space-
time (V-BLAST) optical detection ordering given in [18] was
proposed for permutations. The permutation strategy (to be
called V-BLAST) determines the columns of the permutedA

from the last to the first. LetJk denote the set of column
indices for the not yet chosen columns when thek-th column
of the permutedA is to be determined (k = n, n− 1, . . . , 1).
This strategy chooses thep(k)-th column of the original matrix
A as thek-th column of the permuted matrixA we seek:

p(k) = arg max
j∈Jk

aT
j

[

I − Ak,j(A
T
k,jAk,j)

−1AT
k,j

]

aj (7)

whereaj is thej-th column ofA andAk,j is them× (k−1)
matrix formed by the columnsai with i ∈ Jk − {j}.

We can easily show thataT
j

[

I−Ak,j(A
T
k,jAk,j)

−1AT
k,j

]

aj

in (7) is the square of the Euclidean distance fromaj to the
space spanned by the columns ofAk,j . Note that in the QR
decomposition (4),|rkk| is the orthogonal distance from the
k-th column of AP to the space spanned by the firstk −
1 columns ofAP . Thus ap(k) is the column which makes
|rkk| maximum over all the not yet chosen columns when
we determine thek-th column of the permutedA for k =
m, m− 1, . . . , 1. For finding the permutations, we can design
an efficient algorithm, which will become obvious after we
give a new reduction algorithm in Section III-A.

Numerical simulations given in [5] show that the second
strategy above is more effective than the first one. In [5],
another reduction strategy called V-BLAST MMSE-DFE was
introduced. But it uses some statistical information ofy and
x and is for computing a sub-optimal solution to (3). Our
simulations indicated that this strategy is not as effective as
the second strategy when they are used for finding the optimal
solution to (3). For these reasons, it will not be introduced
here.

In [11], the so calledsorted QR decomposition(SQRD)
algorithm was proposed for decoding the same codes as
what the V-BLAST algorithms decode. It is used to find a
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suboptimal solution (the Babai integer point, see later) tothe
ILS problem (1). We can use it for the reduction purpose.
In contrast to the V-BLAST strategy, this SQRD strategy
determines the columns of the permutedA we seek from the
first to the last by using the modified Gram-Schmidt method.
In the k-th step of the modified Gram-Schmidt method, the
k-th column of the permutedA we seek is chosen from the
remainingn − k + 1 columns ofA such thatrkk is smallest
(for k = 1, 2, . . . , n).

Algorithm SQRD
Input: The generator matrixA ∈ R

m×n with full column
rank, the input vectory ∈ R

m, the lower bound vectorl ∈ Z
n,

and the upper bound vectoru ∈ Z
n.

Output: The reduced upper triangular matrixR ∈ R
n×n,

the permutation matrixP ∈ Z
n×n, the vectorȳ ∈ R

n, the
permuted lower bound vectorl̄, and the permuted upper bound
vector ū.

(Initialization) Q1 := A, R := 0, P := In, l̄ := l, ū := u.
for k = 1, . . . , n

p := argminj∈{k,...,n} ‖qj‖2.
if p 6= k, then

interchange columnsk andp of Q1, R andP

interchange entriesk andp of l̄ and ū

end
rkk := ‖qk‖2

qk := qk/rkk

for j = k + 1 : n
rkj := qT

k qj

qj := qj − rkjqk

end
end
ȳ := QT

1 y

Note that in a practical implementation, we need only a
vector rather than the matrixP to store the permutation
information. There is a numerical stability problem with the
above algorithm—theQ1 factor may lose orthogonality when
A is ill-conditioned (see, e.g., [20, Sec 2.4]). We can easily
overcome this problem by using Householder transformations
instead of the modified Gram-Schmidt orthogonalization to
compute the QR decomposition with the same permutation
strategy. The simulations given in [11] indicated that the
Babai integer point (see later) as an estimate of the concerned
parameter vector obtained by the SQRD strategy is slightly
less accurate than the Babai integer point obtained by the V-
BLAST strategy. However, SQRD is computationally more
efficient than V-BLAST. Algorithm SQRD requires2mn2

flops (see [19, p232]) and note that computing all‖qj‖2 can be
done inO(mn) flops, cf. [19, p240]), while an implementation
of V-BLAST requires more flops, see III-A.

B. Search

We first introduce the ideas of the search algorithm for the
unconstrained problem (i.e.,̄B in (6) is replaced byZn), which
leads to the search algorithm given in [5] for the constrained
problem by some modifications.

Suppose the solution of (6) satisfies the following bound

‖ȳ − Rz‖2 < β (8)

or equivalently
n

∑

k=1

(

ȳk −

n
∑

j=k

rkjzj

)2

< β. (9)

If we are only aware of an upper bound on‖y−Ax‖2
2, rather

than (8), we can easily obtain (8) by using the equality‖y −
Ax‖2

2 = ‖ȳ−Rz‖2
2+‖QT

2 y‖2
2. The inequality (8) stands for a

hyper-ellipsoid inRn. The search process is to seek the integer
point within this hyper-ellipsoid which minimize the left hand
side of (8). Since (8) can also be regarded as a hyper-sphere
in terms ofw, wherew = Rz and allw forms the lattice set
generated byR, finding the optimal lattice point in the hyper-
sphere is referred to as sphere decoding in communications.

Define

cn = ȳn/rnn, ck = (ȳk −

n
∑

j=k+1

rkjzj)/rkk, (10)

for k = n − 1, . . . , 1. Note thatck depends onzk+1, zk+2,
. . ., zn. Then (9) can be rewritten as

n
∑

k=1

r2
kk(zk − ck)2 < β, (11)

which implies a set of inequalities:

level n : r2
nn(zn − cn)2 < β, (12)

...

level k : r2
k,k(zk − ck)2 < β −

n
∑

i=k+1

r2
ii(zi − ci)

2, (13)

...

level 1 : r2
11(z1 − c1)

2 < β −

n
∑

i=2

r2
ii(zi − ci)

2. (14)

Based on the above inequalities, a search process using the
Schnorr and Euchner enumeration strategy can start. First at
level n, choosezn = ⌊cn⌉. If it does not satisfy the inequality
(12), no any other integer will satisfy the inequality, so the
optimal solution of (1) is outside the hyper-ellipsoid and we
have to increase the value ofβ (this will not happen if the
initial boundβ is large enough, see some choices introduced
at the end of Section III-B). If it satisfies the inequality, we
proceed to leveln − 1. At this level, we computecn−1 by
(10) and choosezn−1 = ⌊cn−1⌉. If zn−1 does not satisfy the
inequality (13) withk = n − 1, then we move back to level
n and choosezn to be the second nearest integer tocn, and
so on; otherwise, we proceed to leveln− 2. We continue this
procedure until we reach the level 1 and obtain an integer
point ẑ. We store this point and update the boundβ by taking
β = ‖ȳ−Rẑ‖2. Then we start the search process again to try
to find a better integer point. First we move up to level 2 to
update the value ofz2 by choosingz2 to be the next nearest
integer toc2 (“next” means “next toẑ2”). If it satisfies the
inequality at level 2, we move down to level 1 to update the
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value ofz1 (note thatz2 has just been updated andz3, . . . , zn

are the same as those corresponding entries ofẑ), otherwise
we move up to level 3 to update the value ofz3, and so on.
Finally, when we fail to find a new value forzn to satisfy the
inequality (12), the search process stops and the latest found
integer point is the optimal solution we seek. If the initial
boundβ is set to be∞, then we refer to the first found integer
point ẑ as the Babai integer point (note that the lattice point
Rẑ is called the Babai point in [1]).

To solve the BILS problem (3), the box constraint in (6)
has to be considered during the search. The following search
algorithm presented in Damen, El Gamal, and Caire (DEC)
[5] (with minor changes) shows how the modification can be
done to take the box constraint into account.

Algorithm DEC
Input: The nonsingular upper triangular matrixR ∈ R

n×n,
the vectorȳ ∈ R

n, the lower bound vector̄l ∈ Z
n, the upper

bound vector̄u ∈ Z
n, and the initial hyper-ellipsoid boundβ.

Output: The solutionẑ ∈ Z
n to the BILS problem (6).

1) (Initialization) Setk := n andTk := 0
2) Computeck := (ȳk −

∑n
j=k+1 rkjzj)/rkk, zk := ⌊ck⌉,

∆k := sign(ck − zk)
3) if Tk + r2

kk(zk − ck)2 ≥ β, then
Go to Step 4 // we are not inside the ellipsoid

else if zk 6∈ [l̄k, ūk], then
Go to Step 6 // we are inside the ellipsoid

// but outside the box constraint
else if k > 1, then

ComputeTk−1 := Tk + r2
kk(zk − ck)2

Setk := k − 1, go to Step 2
elseGo to Step 5 //k = 1
end

4) if k = n, then
Terminate

elseSetk := k + 1, go to Step6
end

5) (A valid point is found)
Computeβ := T1 + r2

11(z1 − c1)
2

Set ẑ := z andk := k + 1
6) (Enumeration at levelk)

Computezk := zk + ∆k, ∆k := −∆k − sign(∆k)
Go to Step3.

Suppose that in Step 3 the inequalityTk+r2
kk(zk−ck)2 < β

holds, then

zk ∈
[

⌈

ck −
√

β − Tk/|rkk|
⌉

,
⌊

ck +
√

β − Tk/|rkk|
⌋

]

.

If the above interval is large, but there is small overlap or no
overlap between it and the interval[l̄k, ūk], then a lot of invalid
integers are enumerated in Step 6. This shortcoming is avoided
in another Schnorr-Euchner strategy based algorithm proposed
in Boutros, Gresset, Brunel and Fossorier (BGBF) [7], which
is a direct extension of the search algorithm proposed
in [1] to deal with the box constraint. Their algorithm
is for a nonsingular generator matrixA and the upper
triangular R is obtained from the Cholesky decomposition

of AT A. From the least squares theory (see, e.g., [20, Sec
2.2]), obtainingR in this way may cause some numerical
difficulties when A is ill conditioned. Thus we just apply
the BGBF algorithm to the reduced problem (6), which was
obtained by the QR decomposition. In the BGBF algorithm,
the diagonal entries ofR are assumed to be positive. If any
diagonal entry of theR obtained by the QR decomposition
is negative, we can multiply the corresponding row ofR

by −1 and the corresponding column ofQ by −1, leading
to the newQ and R factors as we desire. In the original
BGBF algorithm, the bounds for all integer parameters
are identical, i.e.,l1 = · · · = ln and u1 = · · · = un.
But we can easily extend the algorithm to deal with the
more general constraintB given in (2). The following is the
description of the BGBF algorithm (with slight modifications).

Algorithm BGBF

Input: The upper triangular matrixR ∈ R
n×n with positive

diagonal entries, the vector̄y ∈ R
n, the lower bound vector

l̄ ∈ Z
n, the upper bound vector̄u ∈ Z

n, the initial hyper-
ellipsoid boundβ.
Output: The solutionẑ ∈ Z

n to the BILS problem (6).

1) (Initialization) Setk := n, Tk := 0
ComputeH := R−1, sk := Hȳ,

zk := ⌊skk⌉, zk := max(zk, l̄k), zk := min(zk, ūk),
ρk := (skk − zk)/hkk, ∆k := sign(ρk)

2) ComputeT := Tk + ρ2
k

if T < β andk 6= 1, then
Go to Step 3 // we are inside the ellipsoid

elseGo to Step 4 // we are not inside the ellipsoid
end

3) for i = 1 : k − 1
Computesi,k−1 := sik − ρkhik

// sij is the i-th entry ofsj

end
SetTk−1 := T , k := k − 1
Computezk := ⌊skk⌉,

zk := max(zk, l̄k), zk := min(zk, ūk),
ρk := (skk − zk)/hkk, ∆k := sign(ρk)

Go to Step 2
4) if T < β, then // k = 1

Setβ := T , ẑ := z // a valid point is found
else if k = n, then

Terminate
elsek := k + 1
end

5) (Enumeration at levelk)
Computezk := zk + ∆k.
if zk < l̄k or zk > ūk, then

Compute∆k := −∆k − sign(∆k), zk := zk + ∆k

end
if zk < l̄k or zk > ūk, then

Go to Step 4
end
Computeρk := (skk − zk)/hkk,

∆k := −∆k − sign(∆k)
Go to Step 2
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Here we give a few comments on this algorithm. There is
a minor inefficiency problem with Step 4. IfT < β is true,
then from Step 2, we can conclude thatk must be equal to 1,
thus it should be increased tok + 1 immediately after setting
ẑ = z, since at level 1 the equality in (14) holds forẑ and we
can not find any other integer forz1 to satisfy the inequality.

Note that Algorithm BGBF, a direct extension of the search
algorithm presented in [1], works withH , the inverse ofR,
rather thanR itself. It is not difficult to show thatskk and
ρ2

k in Algorithm BGBF are identical tock andr2
kk(zk − ck)2

in Algorithm DCE, respectively. But working withR as in
Algorithm DEC is more nature and is easier to follow than
working with H . Also from the numerical stability point of
view,H may have large rounding errors ifR is ill conditioned.
Thus it is better to work withR.

In Step 1 and in Step 3, the last value ofzk may be the
lower bound̄lk or the upper bound̄uk. In either case, in Step
4 the algorithm enumerates some integers outside the interval
[l̄k, ūk]. For instance, when⌊skk⌉ > ūk in Step 1 or Step 3, the
offset variable∆k is 1 sinceρk = (skk − ūk)/hkk > 0. This
means the next value ofzk to be enumerated iszk := zk+1 =
ūk+1, followed byūk−1, ūk+2, . . .. For efficiency, however,
only the integers within the interval should be considered in
enumeration, although this shortcoming does not seem serious.

III. N EW ALGORITHMS

We first present a new reduction algorithm which uses all
available information in Section III-A, and then present a new
search algorithm.

A. Reduction

The three strategies given in Section II-B use only the
generator matrixA and do not use the input vectory and
the box constraint. But the search speed appears to depend on
all of the above information. In this section we propose a new
reduction strategy which use all available information.

In the search process, at leveli we have the inequality

r2
ii(zi − ci)

2 < β −

n
∑

k=i+1

r2
kk(zk − ck)2. (15)

When the right hand side of (15) is fixed, we require that|rii|
be as large as possible to reduce the search range ofzi for i =
n, n− 1, . . . , 1. This gives some motivation for the V-BLAST
reduction strategy introduced in Section II-A. However, onthe
other hand, to reduce the search range ofzi, we want the right
hand side of (15) to be small, i.e., eachr2

kk(zk−ck)2 should be
large. This motivates us to propose a new reduction strategy.
The basic idea is to determine the permutations ofA such that
|rkk(zk − ck)| is as large as possible fork = n, n − 1, . . . 1,
and also simultaneously take the requirement that|rkk| should
be as large as possible into account.

The question now is how to chooseck andzk in |rkk(zk −
ck)| when we determine the permutations. First supposeck

is known. It appears sensible to choosezk to be the first
nearest integer on the constrained interval[l̄k, ūk] to ck,
since the resulting pointz will be the first integer point
(i.e, the Babai integer point for the constrained case) to be

obtained by a Schnorr and Euchner based search algorithm
when the initial boundβ = ∞. But this choice may cause
a problem. Note that the first nearest integer can be very
close to or even equal tock. Thus even if |rkk| is very
large, |rkk(zk − ck)| can be very small or even zero, i.e., a
column ofR (or equivalently a column ofA) corresponding
to a large|rkk| may not be chosen as thekth column, while
a column corresponding to a small|rkk| may be chosen
as thekth column. Since|r11r22 · · · rnn| is fixed (note that
|r11r22 · · · rnn| = | det(R)| = det1/2(AT A)), the above
choice could result small|rii| for a large indexi and large|rii|
for a small indexi, not complying with our requirement (see
the last sentence of the previous paragraph). Thus we propose
to choosezk to be the second nearest integer on[l̄k, ūk] to ck

to avoid the above problem. For this choice,|zk−ck| is always
larger than 0.5, so if|rkk| is large,|rkk(zk − ck)| is large too.
On the other hand,|zk − ck| is usually not very large for this
choice, thus if|rkk(zk−ck)| is large,|rkk| is usually large too.
In other words, the above choice comply with our requirement
(again see the last sentence of the previous paragraph). Our
simulations showed that the above choice forzk is a little
more effective than some other slightly different choices,e.g.,
taking zk to be the first nearest integer on[l̄k, ūk] to ck if it
makes|zk − ck| ≥ 1 or the second nearest integer if the first
nearest integer makes|zk − ck| < 1. For ck in |rkk(zk − ck)|,
we obtain it by using the formula given in (10), where each
zj is chosen to be the first nearest integer on[l̄j, ūj ] to cj for
j = n, n − 1, . . . , k + 1 — this is a choice used in a Schnorr
and Euchner based search process if the initial boundβ = ∞.
In the following we will show how to efficiently compute the
reduction.

We first compute the QR decomposition ofA (with no
permutations) by Householder transformations and compute
ȳ = QT

1 y. Note that we do not need to explicitly form and
store the Q-factor of the QR decomposition in our computa-
tions. Then we obtain the corresponding|rnn(zn−cn)|, where
cn = yn/rnn and zn is the second nearest integer in[l̄n, ūn]
to cn. In order to determine the last column of the permutedA

(or equivalently the last column of the permutedR) we seek,
we interchange the last column ofR with its j-th column for
j = 1, 2, . . . , n − 1. After each interchange, we compute the
QR decomposition of the newR. We now show how to do
this in an efficient way. After we interchange thej-th column
and the last column ofR, we obtain (forn = 6 andj = 3)

















× × × × × ×
× × × × ×

× × × ×
× × ×
× ×
×

















.

Then we usen − j Givens rotationsGn−1,n, Gn−2,n−1, . . .,
Gj,j+1 to eliminate the lastn− j elements in thej-th column
of the permutedR, where

Gi,i+1 =









Ii−1

c s
−s c

In−i−1









, c2 + s2 = 1.
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However, these Givens rotations make the subdiagonal entries
rn,n−1, rn−1,n−2, . . ., rj+2,j+1 nonzero, respectively. To
make these subdiagonal entries zero, we applyn − j − 1
Givens rotationsG′

j+1,j+2, G′
j+2,j+3, . . ., G′

n−1,n, leading
to an updated upper triangularR. When we updateR by a
Givens rotation, we simultaneously update the vectorȳ by the
same Givens rotation. Then we can obtain the corresponding
|rnn(zn − cn)|. If this quantity is larger than the largest
|rnn(zn − cn)| obtained in the previousj − 1 permutations,
we keep the currentR (andȳ as well). Therefore, finally after
n − 1 permutations, an updated upper triangularR and an
updated vector̄y corresponding to the largest|rnn(zn − cn)|
is obtained and the last column of the permutedA we seek is
determined. We then obtain̂zn, the first nearest integer on the
constrained interval[l̄n, ūn] to cn, which will be used in later
computations. Now we show how to determine thekth column
of the permutedA we seek (fork = n − 1, n − 2, . . . , 2).
Based on theR we obtained in the previous step, we compute
|rk,k(zk − ck)|, where ck (see (10)) can be computed in
an efficient way (see later) andzk is the second nearest
integer on [l̄k, ūk] to ck. Then we interchange columnsj
and k of R(1 : k, 1 : k) for j = 1, 2, · · · , k − 1. As before,
after each interchange we apply Givens rotations to bring
R(1 : k, 1 : k) back to an upper triangular matrix. In order to
compute the new value of|rk,k(zk − ck)|, we still need to
obtain ck and zk (which is determined immediately afterck

is obtained). Note that the expression ofck in (10) involves
ȳk andrk,k+1, . . . , rkn, which could be obtained if we apply
those Givens rotations (which bringR(1 :k, 1 :k) back to an
upper triangular matrix) to the vector̄y(1 :k) and the matrix
R(1 :k, k+1:n). However, updatingR(1 :k, k+1:n) for each
column permutation is expensive and unnecessary. A more
efficient way is to apply those Givens rotations to the vector
ŷ(1 : k) , ȳ(1 : k) − R(1 : k, k + 1 : n)[ẑk+1, ẑk+2, . . . , ẑn]T

(this vector can also be computed in an efficient way, see
our later algorithm). Notice that thekth entry of the updated
vector ŷ(1 : k) is equal tockrkk (see (10) again), so thatck

can be obtained. If the value of|rk,k(zk − ck)| is larger than
the largest obtained in the previousj − 1 permutations, we
keep the currentR(1 :k, 1 :k), ŷ(1 :k), Givens rotations and
ck. Finally after k − 1 column permutations, we obtain an
updated upper triangularR(1 : k, 1 : k) which corresponds
to the largest|rkk(zk − ck)|, and thekth column of the
permuted A we seek is determined. At this point, we
apply those corresponding Givens rotations toȳ(1, k) and
R(1 : k, k + 1 : n) and find ẑk, the first nearest integer
on [l̄k, ūk] to ck. After this, we move to the next step to
determine columnk−1 of the permutedA. Note that when
the reduction process is finished, the Babai integer point
ẑ = [ẑ1, ẑ2, . . . , ẑn]T is obtained as well.

Algorithm REDUCTION

Input: The generator matrixA ∈ R
m×n with full column

rank, the input vectory ∈ R
m, the lower bound vectorl ∈ Z

n,
and the upper bound vectoru ∈ Z

n.
Output: The reduced upper triangular matrixR ∈ R

n×n,
the permutation matrixP ∈ Z

n×n, the vectorȳ ∈ R
n, the

permuted lower bound vector̄l, the permuted upper bound
vector ū, and the Babai integer point̂z ∈ Z

n.

Compute[Q1, Q2]
T A =

[

R

0

]

by the Householder transfor-

mations and simultaneously compute[Q1, Q2]
T y and

set ȳ := QT
1 y

SetP := In, l̄ := l, ū := u, ẑ = [ ], and ŷ := ȳ

for k = n : −1 : 2
if k < n

// for computingck and latercj (j < k) use
Computeŷ(1 :k) := ŷ(1 :k) − R(1 :k, k + 1)ẑk+1

end
Computeck := ŷ(k)/rkk

Setzk to be the second nearest integer on[l̄k, ūk] to ck

Computeα := |rkk(zk − ck)| and setp := k
SetRtmp := R(1 :k, 1:k), ytmp := ŷ(1 :k)
for j = 1 : k − 1

SetR′ := Rtmp, y′ := ytmp //temporary variables
Interchange columns ofj andk of R′ and transform

it to an upper triangular matrix by Givens rotations
Gk−1,k, . . . , Gj,j+1 andG′

j+1,j+2, . . . , G
′
k−1,k

Compute
y′ := G′

k−1,k · · ·G
′
j+1,j+2Gj,j+1 · · ·Gk−1,ky′

Computec′k := y′(k)/r′kk

Setz′k to be the 2nd nearest integer on[l̄j , ūj] to c′k
Computeα′ = |r′kk(z′k − c′k)|
if α′ > α, then

Setα := α′, p := j, R(1 : k, 1 : k) := R′,
ŷ(1 : k) := y′, ck := c′k

Store the Givens rotationsGk−1,k, . . . , Gj,j+1

andG′
j+1,j+2, . . . , G

′
k−1,k

end
end
if p 6= k, then

Interchange columnsp andk of P , entriesp andk
of l̄ and ū

Computeȳ(1 :k) := G′
k−1,k · · ·G

′
p+1,p+2

×Gp,p+1 · · ·Gk−1,kȳ(1 :k)
ComputeR(1 :k, k + 1:n) := G′

k−1,k · · ·G
′
p+1,p+2

×Gp,p+1 · · ·Gk−1,kR(1 :k, k + 1:n)
end
Set ẑk to be the 1st nearest integer on[l̄k, ūk] to ck

and ẑ := [ẑk; ẑ]
end
Computeŷ(1) := ŷ(1) − R(1, 2)ẑ2

Computec1 := ŷ(1)/r11

Set ẑ1 to be the first nearest integer on[l̄1, ū1] to c1 and
ẑ := [ẑ1; ẑ]

Note that in practical implementation, we need only a vector
rather than the matrixP to store the permutation information.
Now we discuss the computational cost of Algorithm REDUC-
TION. Computing the QR decomposition ofA and ȳ at the
beginning requires about2n2(m−n/3) flops (see [19, p225]).
In the outer for loop, for eachk, the cost of the steps before
the inner for loop is negligible, the cost of the inner for loop is
about2k3 flops (note that for eachj, the cost is about6(k−j)2



IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS 7

flops), the cost of the steps after the inner for loop is at most
12k(n − k) flops. Thus the total cost of the outer for loop is
∑n−1

k=2 [2k3 + 12k(n− k)] ≈ n4/2 flops. The cost of the steps
after the outer for loop is negligible. Therefore the total cost
of the algorithm is about2mn2 + n4/2 flops.

Note that it is easy to modify Algorithm REDUCTION to
give an efficient implementation for the V-BLAST reduction
strategy (see Section II-A). The resulting algorithm costs
less than Algorithm REDUCTION since it does not need to
computeck, but costs the same order of flops. Thus these
two algorithms have almost the same efficiency and are less
efficient than Algorithm SQRD (see Section II-A) which
costs only2mn2 flops. However, for solving a general BILS
problem, the search process has exponential computational
complexity and dominates the cost of the whole algorithm, and
the efficiency of the search process rather than the efficiency of
the reduction process is crucial for the efficiency of the whole
algorithm. We will see our new reduction strategy makes the
search process much more efficient than V-BLAST and SQRD.
Having said that, we want to point out that one still wants
to make the implementation of a reduction strategy efficient,
since for some applications one just wants to find a Baba
integer point, which does not need to do a search. If one just
wants to find a Babai integer point, our new reduction strategy
may still be more preferable than SQRD and V-BLAST, since
our simulations indicated that the Babai integer point obtained
by the new reduction strategy is usually much more closer to
the ILS solution than the Babai integer point obtained by either
SQRD or V-BLAST.

B. Search

In Section II-B, we introduced two Schnorr-Euchner strat-
egy based search algorithms: Algorithm DEC and Algorithm
BGBF. In this section, we will provide a new search algorithm
which uses the advantages of those two algorithms, but avoids
their drawbacks. To improve the search speed, the new search
algorithm will also use a new bound which is as least as tight
as that in (13) at each levelk.

To avoid enumerating integers beyond the box constraint at
each level, which can occur in Step 4 of Algorithm BGBF,
we will introduce two flag variablesuboundk and lboundk in
our new search algorithm to indicate whether the enumeration
has reached the lower bound and the upper bound of the
box constraint at each levelk, respectively. Using these
two variables, our new algorithm will always enumerate the
integers within the box constraint at each level.

The complexity of a search algorithm highly depends on the
size of the search region. If the bound of the search region at
each level is not tight enough, plenty of time might be wasted
by moving up and down between different levels before we
obtain the result eventually. In the following, we will make
use of the box constraint to derive a new upper bound on
r2
kk(zk − ck)2.
First we derive a lower bounddk for each (ȳk −

∑n
j=k rkjzj)

2 or r2
kk(zk − ck)2. Since l̄k ≤ zk ≤ ūk, we

have

min(rkj l̄k, rkj ūk) ≤ rkjzj ≤ max(rkj l̄k, rkj ūk).

Then it follows that

ȳk −
n

∑

j=k

max(rkj l̄k, rkj ūk)

≤ ȳk −

n
∑

j=k

rkjzj ≤ ȳk −

n
∑

j=k

min(rkj l̄k, rkj ūk). (16)

If the lower bound and the upper bound in (16) have the same
sign, i.e.,

sign[ȳk −

n
∑

j=k

min(rkj l̄k, rkj ūk)]

= sign[ȳk −
n

∑

j=k

max(rkj l̄k, rkj ūk)] (17)

then obviously we have

(ȳk −

n
∑

j=k

rkjzj)
2 ≥ dk

where dk = min
{

[ȳk −
∑n

j=k min(rkj l̄k, rkj ūk)]2, [ȳk −
∑n

j=k max(rkj l̄k, rkj ūk)]2
}

. In other cases, we takedk = 0.
Now we derive an upper bound onr2

kk(zk − ck)2. As in
Algorithm DEC in Section II-B, we denote

Tn = 0, Tk =
n

∑

i=k+1

r2
ii(zi − ci)

2, k = 1, . . . , n − 1.

Then we have
n

∑

i=1

r2
ii(zi − ci)

2

=

k−1
∑

i=1

(

ȳi −

n
∑

j=i

rijzj

)2

+ r2
kk(zk − ck)2 + Tk

≥

k−1
∑

i=1

di + r2
kk(zk − ck)2 + Tk. (18)

Define

δ1 = 0, δk =

k−1
∑

i=1

di, k = 2, . . . , n.

Then if the bound (11) holds, i.e., the BILS solution is within
the hyper-ellipsoid, we have from (18) that

r2
kk(zk − ck)2 < β − δk − Tk. (19)

Obviously the upper bound in (19) is at least as tight as that
in (13). This new bound is used in the following new search
algorithm.

Algorithm SEARCH
Input: The nonsingular upper triangular matrixR ∈ R

n×n,
the vectorȳ ∈ R

n, the lower bound vector̄l ∈ Z
n, the upper

bound vector̄u ∈ Z
n, and the initial hyper-ellipsoid boundβ.

Output: The solutionẑ ∈ Z
n to the BILS problem (6).

1) (Initialization) Setk := n andTk := 0, computeδi for
i = 1, . . . , n

2) Computeck := (ȳk −
∑n

j=k+1 rkjzj)/rkk, zk := ⌊ck⌉



IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS 8

Set lboundk := 0 anduboundk := 0
if zk ≤ l̄k, then

Setzk := l̄k, lboundk := 1 and∆k := 1
else if zk ≥ ūk, then

Setzk := ūk, uboundk := 1 and∆k := −1
else // no boundary of the constraint is reached

Set∆k := sign(ck − zk)
end

3) if δk + Tk + r2
kk(zk − ck)2 ≥ β, then

Go to Step 4 // we are not inside the ellipsoid
else if k > 1, then

ComputeTk−1 := Tk + r2
kk(zk − ck)2,

Setk := k − 1, go to Step 2
else // k = 1 and a valid point is found

Computeβ := T1 + r2
11(z1 − c1)

2,
Set ẑ := z andk := k + 1, go to Step 5

end
4) if k = n, then

Terminate
elseSetk := k + 1
end

5) (Enumeration of levelk)
if uboundk = 1 and lboundk = 1, then

Go to Step 4 // no integer is available at this level
end
Setzk := zk + ∆k

if zk = l̄k, then
Set lboundk := 1
Compute∆k := −∆k − sign(∆k)

else if zk = ūk, then
Setuboundk := 1
Compute∆k := −∆k − sign(∆k)

else if lboundk = 1, then
Set∆k := 1

else if uboundk = 1, then
Set∆k := −1

elseCompute∆k := −∆k − sign(∆k)
end
Go to Step3

We give a remark about choosing the initial hyper-ellipsoid
bound β. The first strategy, which is a typical one used in
the literature, is to chooseβ = ∞. But since Algorithm
REDUCTION generates the Babai integer pointẑ, we can
take β = ‖ȳ − Rẑ‖2

2 instead. This second strategy makes
Algorithm SEARCH a little faster than the first strategy. The
third strategy is that we solve the box-constrainedreal LS
problem

min
z∈Rn, l̄≤z≤ū

‖ȳ − Rz‖2
2

to obtain the solution̂zR ∈ R
n. Then we takeβ = ‖ȳ −

R ⌊ẑR⌉‖
2
2. The box-constrainedreal LS problem can be

solved by an active method (see, e.g., [20, Sec 5.2.4]) or the
gradient projection method (see, e.g, [21, Sec 16.6]). All these
strategies guarantee that the solution to (6) can be found in
the search region, otherwise the Babai integer pointẑ is the
solution for the second strategy and⌊ẑR⌉ is the solution for
the third strategy. Our numerical simulation results indicate

that for solving the reduced BILS problem (6) obtained by
the V-BLAST reduction strategy or the SQRD strategy both
Algorithm DEC and Algorithm DGBF are much faster by us-
ing the third strategy than by using the first strategy. However,
we also found from our simulations that if the reduced BILS
problem (6) is obtained by Algorithm REDUCTION, using
the third strategy is more or less as effective as using the
second strategy for any of the three search algorithms. The
reason we found is that the residual‖ȳ − R ⌊ẑR⌉‖2 (which
is independent of the reduction strategy) is more or less the
same as the residual‖ȳ − Rẑ‖2, i.e., the size of the initial
search region for the third strategy is more or less the same
as that for the second strategy for our simulation examples.

IV. SIMULATIONS

In this section, we compare the performance of the proposed
algorithms given in Section III with other existing algorithms
given in Section II by computer simulations. All our com-
putations were performed in MATLAB 6.5 on a sun4u sparc
SUNW, Ultra-60 with 2048MB memory running SunOS 5.8.

A. Setup

In our simulations, the elements of the generator matricesA

were drawn from an i.i.d. zero-mean, unit variance Gaussian
distribution. Without lose of generality, we tookA to be a
square matrix. The input vectory was constructed as follows

y = Ax + v (20)

where each entry ofx was generated according to a uniform
distribution over a specific interval, and the elements of the
noise vectorv were drawn from an i.i.d zero-mean Gaussian
distribution. Each interval of the box constraint was set to
the same interval over which each entry ofx was generated.
Note that flat-fading multiple-input multiple-output (MIMO)
systems in communications are usually assumed to have the
same form as (20) and the assumptions aboutA andv are also
the same, except thatA, v and x as well are complex, see
e.g., [7] and [22]. Note that such a complex system can easily
be transformed into a real system, so that our algorithms can
be applied directly, so does the merit of our algorithms. We
also tested other types of matrixA and got similar results.

B. Comparison of the reduction strategies

To show the effectiveness of Algorithm REDUCTION,
we compared it with the V-BLAST strategy and the SQRD
strategy. In our simulations, each entry of the integer vector
x was generated uniformly over the interval[0, 3] and the
noise vectorv ∼ N(0, σ2I) for σ = 0.1, 1, 10. We took
dimensionn = 10, . . . , 40 and performed 200 runs for each
case. Algorithm SEARCH was applied in the search process
for all the three reduction strategies and the initial boundβ
was set to infinity. The results for the average search time (in
seconds) are given in Fig. 1–Fig. 3, corresponding to the three
different σ.

From the simulations results, we observe that Algorithm
REDUCTION is (much) more effective than the V-BLAST
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Fig. 1. Average search time vs dimension,v ∼ N(0, 0.12I).

and SQRD strategies, while V-BLAST is a little more effective
than SQRD. The advantage of Algorithm REDUCTION over
the other two becomes more significant as the dimensionn
increases and as the noisev increases (this usually means that
the LS residual becomes larger).

In Fig. 1 which corresponds a small noise, we observe that
when the dimension is small, the search process is very fast
for all the three reduction strategies. But when the dimension
n increases, the search time for the V-BLAST strategy or
the SQRD strategy can increase rapidly, while the search
time for Algorithm REDUCTION increases very slowly. It
is interesting to note that unlike the latter, the former maybe
very unstable whenn increases.

Fig.2 and Fig.3 show that as the noise increases, the search
time becomes more and more significant, and the effectiveness
of Algorithm REDUCTION becomes increasingly evident. For
example, forn = 20, whenσ = 1, Algorithm REDUCTION
makes the search process 8 times faster than the V-BLAST
strategy and the SQRD strategy, and whenσ = 10 the
improvement increases to more than 10 000 times.

C. Comparison of the search algorithms

In Fig. 4 and Fig. 5, we compare the average search time
of three search algorithms: Algorithm DEC, Algorithm BGBF,
and Algorithm SEARCH. In the simulations, each entry of
the vectorx was uniformly distributed on[0, 3] and the noise
vector v ∼ N(0, σ2I) for σ = 0.1, 10. We took dimension
n = 10, . . . , 40 and performed 200 runs for each case. For all
the search algorithms, Algorithm REDUCTION was first used
for reduction and the initial boundβ was set to infinity.

From the results we observe that when the noise is small,
there is no significant difference among the three search algo-
rithms and all algorithms are relatively fast. An explanation is
as follows: for Algorithm SEARCH, when the noise is small,
the lower bound and the upper bound in (16) are likely to
have different signs, i.e., (17) is not likley to hold, so that the
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Fig. 2. Average search time vs dimension,v ∼ N(0, I).
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Fig. 3. Average search time vs dimension,v ∼ N(0, 102I).

new upper bound in (19) is likely to be equal to that in (13)
which is used in Algorithms DEC and BGBF. In addition,
when the noise is small, the Babai integer point is close to
the optimal solution, which has a small LS residual. Thus
the ellipsoid boundβ defined by the Babai integer point is
small, and it is unlikely that the enumeration of Algorithms
DEC and BGBF goes far beyond the box constraint, i.e.,
the drawback of Algorithms DEC and BGBF (which is not
serious in Algorithm BGBF in any case) we mentioned in
Section II-B is rarely a problem. Therefore all the three search
algorithms have more or less the same search speed. When
the noise is large, we see Algorithm SEARCH is faster than
Algorithm BGBF, which is faster than Algorithm DEC for
all tested dimensions. For example, in Fig. 5, whenn = 40,
Algorithm DEC and Algorithm BGBF take about 134 and 43
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Fig. 4. Average search time vs dimension,v ∼ N(0, 0.52I).
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Fig. 5. Average search time vs dimension,v ∼ N(0, 102
I).

seconds, respectively, while Algorithm SEARCH takes about
27 seconds. This phenomenon is what we expected in Section
II-B.

D. Comparison of the Babai integer points

To compare the performance of the Babai integer points
corresponding to Algorithm REDUCTION and the V-BLAST
strategy, Fig. 6 gives the ratio between theβ at the Babai
integer point and theβ at the optimal solution with different
noises when the dimensionn = 8 (note thatβ = β(z) =
‖ȳ−Rz‖2

2). In our simulations, each entry ofx was generated
uniformly on [0, 3] and[0, 63] separately, and the noise vector
v ∼ N(0, σ2I) with σ = 0.05 : 0.05 : 5. For each case, 200
runs were performed. We see that the REDUCTION-Babai
integer point is closer or much closer to the optimal solution
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Fig. 6. Ratio between theβ at the Babai integer point and theβ at the ILS
solution vs the standard deviationσ, v ∼ N(0, σ2I), dimensionn = 8.

for all cases, as compared to the V-BLAST-Babai integer point.
We also see that for the two different box constraints, the V-
BLAST-Babai integer point behaves very differently, whilethe
REDUCTION-Babai integer point does not. For both reduction
strategies (especially for V-BLAST), the smaller the box is, the
better the Babai integer point performs.

V. SUMMARY

We have proposed a new reduction algorithm and a new
search algorithm for solving a general box-constrained inte-
ger least squares (BILS) problem. The reduction algorithm
uses all available information of the BILS problem, i.e., the
generator matrix, the input vector and the box constraint.
Our simulations indicate it is much more effective than the
V-BLAST and SQRD strategies, in particular when the LS
residual is large. Theoretical research about the criterion to
determine the permutations need to be further studied in the
future. We also presented a new search algorithm to overcome
some drawbacks of Algorithms DEC and BGBF. The new
search algorithm also used the box constraint to reduce the
search regions. Simulations showed that it performs betterthan
Algorithms DEC and BGBF when the LS residual is large. It
is our belief that all given information should be fully used
to make a method efficient. Unlike many algorithms in the
literature, we paid attentions to the efficient implementation
of algorithms and took the numerical stability into accountin
designing algorithms. We hope a reader can implement our
algorithms without difficulty.
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