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Solving Box-Constrained Integer
Least Squares Problems

Xiao-Wen Chang, Qing Han

Abstract— A box-constrained integer least squares problem We refer to (3) as théox-constrained integer least squares
(BILS) arises from several wireless communications applations. (BILS) problem
Solving a BILS problem usually_has two stages: reduction (pr Any typical method for solving the ILS problem (1) or the
preprocessing) and search. This paper presents a reduction BILS bl 3) has t t - reducti .
algorithm and a search algorithm. Unlike the typical reduction al- problem (3) has two stages: reduction (or preprocegsin
gorithms, which use only the information of the lattice geneator ~@nd search. An excellent survey on the search methods for
matrix, the new reduction algorithm also uses the informaton ~ solving (1) can be found in the semi-tutorial paper [1], whic
of the given input vector and the box constraint and is very also mentions typical reduction methods. In [1], an effitien
effective for search. The new search algorithm overcomes 8®  geq:ch glgorithm based on the Schnorr-Euchner enumeration

shortcomings of the existing search algorithms and gives ste .
other improvement. Simulation results indicate the combiration strategy (see [6]) was proposed for solving the ILS problem

of the new reduction algorithm and the new search algorithm an (). The algorithm was then modified in [7] to solve the BILS
be much more efficient than the existing algorithms, in partcular ~ problem (3) by taking the box constraint (2) into account. In

when the least square residual is large. [5], two search algorithms based on the Phost enumeration
Index Terms— Integer least squares, lattice, MIMO channels, strategy (see [8], [9] and [10]) and Schnorr-Euchner enamer
detection, decoding. reduction, search. tion strategy, respectively, were proposed for solvingBHeS

problem (3). As in [1] for solving the ILS problem (1), it
was found in [5] that the Schnorr-Euchner strategy is uguall
. ) more efficient than the Phost strategy for solving the BILS
G IVEN a realm-vectory and a reakn x n matrix A with  yroplem (3). To make the search process easier and more
full column rank, one wants to solve the minimizationgiicient, the reduction stage is needed to transfotnto an
problem . ) upper triangular matrix by an orthogonal transformatiohe T
T ly — Az||3, 1) key part of a reduction algorithm is to reorder the columns
" . of A. Different ordering may have significant effect on the
whereZ™ denotes the set of all integer-vectors. We refer search speed. In [5], three reduction strategies weredutred.

Itott'(l) tﬁs thert.egernleda?[] squarest(ILS) tp.roblfe?r ;[ht?' In [11], an algorithm was proposed for finding a suboptimal
attice theory,A 1S called the generator matrix ot the 1atlices,) vion of the ILS problem (1) and it can be used for the
L(A) = {Ax : ¢ € Z"}, y is called the input vector, and

. : : . reduction purpose. All these reduction strategies use iy
(1) is referred to as a&losest-point problemsince it is to information of the generator matrid
finpl a point in the Iattic_e which is closest to_the given input Since computing the optimal solution to (3) may become
pomty. In channel coding, the ”‘.S problem is referr.ed FO aﬁme-prohibitive when the least squares residual is largh®
decoding The ILS problem may arise from many apphcatlonsdimenSion of the problem is large (see, e.g., [12]), regentl

éucr as corr:jmunlcatl(t':)ns,t.cry?tograp(;l, Ia}tt|ce_ deS|gnC,i Mlorgtolme algorithms have been proposed to compute a suboptimal
arlo second-moment estimaion, radar imaging, and g Ol%%Iution by using convex optimization methods or semidefini
posm_onmg systems etc, see, e.g., [1], [2], [3] an_d reces rogramming techniques, see, e.g., [13]-[15]. But conmguti
tZereln. It is well know that the ILS problem (1) is NP-har suboptimal solution is beyond the scope of this paper and
[4]. . S o . will not be discussed further.
In some wweles; communications applications, the integer, goal of this paper is to present a faster algorithm for
vectorz is constrained to a box (see, e.g., [5]): solving the general BILS problem (3). We do not consider
B={xcz":1<x<u,lcZ" uclZ"}. (2) any specific application. Specifically, we will propose a new
reduction algorithm, which uses all information provided i
Then one wants to solve the BILS problem (3) and is much more effective than the
reduction strategies given in [5] and [11], and a new search
algorithm, which gives a few maodifications of the Schnorr-

. Euchner strategy based algorithms given in [5] and [7].
This work was supported by NSERC of Canada grant RGPIN21:0391 Th f th . ized foll In Secti
and it was done when the second author was an M.Sc. studeet thalfirst € res; ot the paper '_S Organ'z_e as _0 OW_5- n Section
author’s supervision II, we review the reduction algorithms given in [16] and
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gives simulation results to show the advantages of our ndwen the search process tries to solve (6). Note thaitsfthe
algorithms. Finally a summary is given in Section V. solution to (6), thent = P2 is the solution to (3).

The following notation is used in the pap&™*™ andR" For solving the ILS problem (1), an often used reduc-
denotes the set of all real x n matrices and the set of all realtion algorithm is the well-known LLL algorithm [17], which
n-vectors.Z™*™ andZ"™ denotes the set of all integet x n computes (4), butP is a unimodular matrix, i.e.P is an
matrices and the set of all integervectors. Bold upper caseinteger matrix with|det(P)| = 1. For the BILS problem
letters and bold lower case letters are used to denote mstri3), a general unimodular transformation will make the box
and vectors, respectively. A vectaris a column vector and a constraint3 very complicated. So the LLL reduction is usually
vectora’ is a row vector. The: x n identity matrix is denoted not used for solving the BILS problem in the literature. Here
by I or I,. MATLAB notation is used to denote a submatrixwe introduce a few typical reduction strategies suitable fo
[v1;v2] denotes a column vector whose top part is a vectsolving (3).
v1 and whose bottom part is a vectog. For a real scalar To make the search process more efficient, a reduction
z, we use|z] to denote its nearest integer. If there is a tiealgorithm usually strives for
|z] denotes the one with smaller magnitude. The operation
sign(z) returns—1if z <0 and 1 ifz > 0. [r11] < Jraz] < < frnl.

Note that this may not be achievable. The justification for
Il. OVERVIEW OF SOME EXISTING ALGORITHMS this order can be found in [1] which considers solving the

We will briefly review some recent algorithms for solvingunconstrained problem (1).
the BILS problem (3). In Section II-A, we give a general In [16], P was chosen such that the columns of the
reduction process and introduce two permutation stragegfermutedA are arranged in a nondecreasing order in terms
proposed in [16] and [5], respectively, and suggest anott@frthe 2-norms.
strategy which was proposed in [11] to find a suboptimal In [5], the so-called vertical Bell Labs layered space-
solution of the ILS problem (1) for reduction. In Section8)- time (V-BLAST) optical detection ordering given in [18] was
we introduce the two Schnorr-Euchner strategy based seapsaposed for permutations. The permutation strategy (to be
algorithms presented in [5] and [7], respectively, and givme called V-BLAST) determines the columns of the permutkd

comments. from the last to the first. Let7, denote the set of column
indices for the not yet chosen columns when khlh column
A. Reduction of the permutedA is to be determinedi(=n,n —1,...,1).

. This strategy chooses thp¢k)-th column of the original matrix
A reduction process transforms the matex to an upper A as thek-th column of the permuted matrid we seek:

triangular matrix, which has good properties to make the
search process more efficient. For solving the BILS problem j (k) = arg max aJT [I _ Akj(A;fjAk_j)*lA;fj}aj @)
(3), this can be accomplished by the QR decompositiod of €Tk A '

with column pivoting: wherea; is the j-th column of A and A, ; is them x (k—1)
R matrix formed by the columna; with i € 7, — {j}.

AP =[Q,, Q)] {0] =Q,R 4 We can easily show thatJTIJ::I—Ak,j (Ag,jAk,j)*lAf’j} a;

in (7) is the square of the Euclidean distance framto the

nxXn j 1 1
where P € Z 'S @ permutation matr"‘{%’%n] € space spanned by the columns 4f ;. Note that in the QR

R™*™ s orthogonal, andR € R™*" is nonsingular upper decomposition (4)|r| is the orthogonal distance from the
triangular. The QR decomposition can be computed by usth column of AP to the space spanned by the fidst-

ing Householder transformations, Givens rotations, om@ra 1 columns of AP. Thus a, ) is the column which makes
Schmidt orthogonalization (which gives onfy; not Q), see, |rix| maximum over all the not yet chosen columns when
e.g., [20, Sec 2.4]. The main difference between differeme determine thé-th column of the permutedd for k£ =

reduction strategies in the literature is the permutati@trin m,m —1,..., 1. For finding the permutations, we can design
P. an efficient algorithm, which will become obvious after we
With the QR decomposition (4), we have give a new reduction algorithm in Section IlI-A.

T T T Numerical simulations given in [5] show that the second
ly - Az|; = lQ1y - RP 2|3+ Q2[5 (5) strategy above is more effective than the first one. In [5],
Define another reduction strategy called V-BLAST MMSE-DFE was
_ T T - Ty T introduced. But it uses some statistical informationyoand
y=Ciy, z=Pz, I=P1l a=Pu x and is for computing a sub-optimal solution to (3). Our
Then from (5) we see that the original BILS problem (3) isimulations indicated that this strategy is not as effects

equivalent to the reduced one: the second strategy when they are used for finding the optimal
o ) solution to (3). For these reasons, it will not be introduced
Iznelg Hy - RzHQ (6) here.
Where In [11], the so calledsorted QR decompositio(EQRD)

B - - algorithm was proposed for decoding the same codes as
B={ze€Z":l<z<u,leZ" ueZ}. what the V-BLAST algorithms decode. It is used to find a
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suboptimal solution (the Babai integer point, see laterth®s  Suppose the solution of (6) satisfies the following bound
ILS problem (1). We can use it for the reduction purpose.

— 2
In contrast to the V-BLAST strategy, this SQRD strategy Iy — Rz|” <3 (8)
determines the columns of the permutddwve seek from the or equivalently
first to the last by using the modified Gram-Schmidt method. n n )
In the k-th step of the modified Gram-Schmidt method, the 3 (Qk _ Zrkaj) < 8. 9)
k-th column of the permutedt we seek is chosen from the =1 =k

remainingn — k + 1 columns of A such thatry; is smallest

2
(fork=1,2,....n). If we are only aware of an upper bound fhg— Ax||3, rather

than (8), we can easily obtain (8) by using the equd|igy—

Az|3 = |[y— Rz|3+| Q% y|j3. The inequality (8) stands for a
hyper-ellipsoid inR™. The search process is to seek the integer
point within this hyper-ellipsoid which minimize the lefahd

side of (8). Since (8) can also be regarded as a hyper-sphere
in terms ofw, wherew = Rz and allw forms the lattice set
generated byR, finding the optimal lattice point in the hyper-
éphere is referred to as sphere decoding in communications.

| Algorithm SQRD

Input: The generator matrixd € R™*™ with full column
rank, the input vectog € R™, the lower bound vectdre 7™,
and the upper bound vectar € Z".

Output: The reduced upper triangular matri® € R™*",
the permutation matrix? € Z"*", the vectory € R", the
permuted lower bound vectdyand the permuted upper boun

B Define
vector a. .
(Initialization) @, := A, R:= 0, P .= I, 1 := I, @ := u. Cn =Tn/Tun> k= Tk — > Trj%)/The,  (10)
for k=1,....n j=k+1
p = argminje (x. . n} [lq;ll2- for k = n—1,...,1. Note thatc, depends Omj 1, zji2,
if p# k, then ..., zn. Then (9) can be rewritten as
interchange columng andp of Q,, R and P n
interchange entries andp of I andu Zf“ik(zk —p)? < B, (11)
end k=1
ek = g2 which implies a set of inequalities:
a5, = qy,/Tkk ) )
for j=k+1:n leveln : r;, (zn, —cn)” < B, (12)
i = 41,4,
q4; ‘= 4q; — Tkjqy n
end level k - 72 2 2 2
end evelk: 7y, (zx —ck)” < B — Z ri(zi —c)?, (13)
_ T i=k+1
Yy =&Y
Note that in a practical implementation, we need only a
vector rather than the matriP to store the permutation 9 9 "L, 9
information. There is a numerical stability problem witreth  '€V€! L+ mia(z1 —e1)” < f — grii(zi —ci) (14)
i—

above algorithm—th&), factor may lose orthogonality when _ - )
A is ill-conditioned (see, e.g., [20, Sec 2.4]). We can easigased on the above mequalltle_s, a search process using the
overcome this problem by using Householder transformatiorchnorr and Euchner enumeration strategy can start. First a
instead of the modified Gram-Schmidt orthogonalization #§V€!7, choosez, = |¢,]. If it does not satisfy the inequality
compute the QR decomposition with the same permutatiék?): N0 any other integer will satisfy the inequality, s@ th
strategy. The simulations given in [11] indicated that th@Ptimal solution of (1) is outside the hyper-ellipsoid ane w
Babai integer point (see later) as an estimate of the coaderfi@ve 10 increase the value of (this will not happen if the
parameter vector obtained by the SQRD strategy is slighfjtial bound 5 is large enough, see some choices introduced
less accurate than the Babai integer point obtained by the&-the end of Section I1I-B). If it satisfies the inequalityew
BLAST strategy. However, SQRD is computationally mor@roceed to leveh — 1. At this level, we compute:, ; by
efficient than V-BLAST. Algorithm SQRD requiregmn? (10) and choose,,_1 = |¢,1]. If 2, does not satisfy the
flops (see [19, p232]) and note that computing|l||» can be inequality (13) withk = n — 1, then we move back to level

done inO(mn) flops, cf. [19, p240]), while an implementation” @nd choose:,, to be the second nearest integercfg and
of V-BLAST requires more flops, see IlI-A. so on; otherwise, we proceed to level- 2. We continue this

procedure until we reach the level 1 and obtain an integer
point z. We store this point and update the bouhty taking
B. Search B = ||y — Rz||>. Then we start the search process again to try
We first introduce the ideas of the search algorithm for the find a better integer point. First we move up to level 2 to
unconstrained problem (i.€5,in (6) is replaced by."), which update the value of, by choosingz, to be the next nearest
leads to the search algorithm given in [5] for the constrinénteger tocy (“next” means “next tozy”). If it satisfies the
problem by some modifications. inequality at level 2, we move down to level 1 to update the
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value ofz; (note thatz, has just been updated angl ..., z, of AT A. From the least squares theory (see, e.g., [20, Sec
are the same as those corresponding entrie®) obtherwise 2.2]), obtaining R in this way may cause some numerical
we move up to level 3 to update the valuegf and so on. difficulties when A is ill conditioned. Thus we just apply
Finally, when we fail to find a new value faf, to satisfy the the BGBF algorithm to the reduced problem (6), which was
inequality (12), the search process stops and the latestdfowbtained by the QR decomposition. In the BGBF algorithm,
integer point is the optimal solution we seek. If the initiathe diagonal entries aRR are assumed to be positive. If any
boundg is set to bex, then we refer to the first found integerdiagonal entry of theR obtained by the QR decomposition
point z as the Babai integer point (note that the lattice poid negative, we can multiply the corresponding row Bf
RZ is called the Babai point in [1]). by —1 and the corresponding column @ by —1, leading

To solve the BILS problem (3), the box constraint in (6)o the new@ and R factors as we desire. In the original
has to be considered during the search. The following sea®8@BF algorithm, the bounds for all integer parameters
algorithm presented in Damen, El Gamal, and Caire (DE@Je identical, i.e.ly = --- = [, andu; = -+ = u,.
[5] (with minor changes) shows how the modification can bBut we can easily extend the algorithm to deal with the
done to take the box constraint into account. more general constrai given in (2). The following is the
description of the BGBF algorithm (with slight modificat®n

| Algorithm DEC]|
Input: The nonsingular upper triangular matrR € R™*", ‘Algorithm BGBF‘
the vectory € R", the lower bound vector € Z", the upper |nput: The upper triangular matril® € R"*" with positive
bound vectoru € Z", and the initial hyper-ellipsoid boun@.  diagonal entries, the vectgr € R, the lower bound vector
Output: The solutionz € Z" to the BILS prOblem (6) z e 7", the upper bound vecto € Z", the initial hyper-

1) (Initialization) Setk :=n andTj, :=0 ellipsoid bounds.

2) Computecy, := (gx — Z;‘:kﬂ TkiZj)/Tkky 2k = |cx], Output: The solutionz € Z™ to the BILS problem (6).

Ak = sigr(ck — Zk)

3) if Th + 72, (2 — cx)? > B, then 1) (Initialization) Setlcl:: n, Tk = 0
Go to Step 4 /I we are not inside the ellipsoid ComputeH := R™", s, := Hy, . -
else if 2, ¢ [ik,ﬂk]y then 2 = |_Sk}k}—|! 2k = max(zk,lk),-zk = mln(zk,uk),
Go to Step 6  // we are inside the ellipsoid pr = (s — 210) [Torey D := Sign(pr.)

2) ComputeTl := Ty + p?
if T'< @ andk # 1, then
Go to Step 3  // we are inside the ellipsoid

/I but outside the box constraint
else if k > 1, then
ComputeTy_1 := Ty + i) (2 — cx)?

Setk:= k — 1, go to Step 2 elseGo to Step 4 // we are not inside the ellipsoid
elseGoto Step5 k=1 3) ?Or;d. 1 k1
end i=1:k—
4) if k =n, then Comp_utesiyk,l = Sik — Prhik
Terminate Il s;; is thei-th entry ofs;

elseSetk := k + 1, go to Steps eSZ?T P ohh 1
end k—1:= 1, mi=k =
5) (A valid point is found) ComDU_tEZk = LSkl@L o i
Computef := T} + 13, (z1 — ¢1)? 2 = maxX(zy, lk), 2k := m.IE(Z{c, k),
Setz:=zandk:=Fk+1 pr = (skk — 21)/ Pk, Ay = Sign(pr)
6) (Enumeration at levet) Go to Step 2
Computezy, := z, + Ay, Ag = —Ay — Sign(A) 4) if T <p then /lk=1

Go to Step3. S_etﬁ =T, z:=z [/l avalid point is found
else if k = n, then
Suppose that in Step 3 the inequallly+73, (zx —cx)? < 3 else-lge[nllgnit?
holds, then and =

2 € “Ck — VB =Tu/Irerl], |ex+ /B - Tk/|7°kk|” _ 5) (Enumeration at levet)

Computezy, := z + Ag.

If the above interval is large, but there is small overlap or n if 2z <l Or zx > 4, then

overlap between it and the intervia}, @, ], then a lot of invalid ComputeAy, := —Ag — sign(Ag), 2z := 2z + Ak
integers are enumerated in Step 6. This shortcoming is esloid end

in another Schnorr-Euchner strategy based algorithm sexbo if zx < I or z; > 4y, then

in Boutros, Gresset, Brunel and Fossorier (BGBF) [7], which Go to Step 4

is a direct extension of the search algorithm proposed end

in [1] to deal with the box constraint. Their algorithm Computepy, := (skk — 2k)/ Pk,

is for a nonsingular generator matrid and the upper Ay = —Ag — sign(Ag)

triangular R is obtained from the Cholesky decomposition Go to Step 2
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Here we give a few comments on this algorithm. There @btained by a Schnorr and Euchner based search algorithm
a minor inefficiency problem with Step 4. If < g is true, when the initial bound3 = oo. But this choice may cause
then from Step 2, we can conclude tltamust be equal to 1, a problem. Note that the first nearest integer can be very
thus it should be increased to+ 1 immediately after setting close to or even equal te,. Thus even if|ry;| is very
z = z, since at level 1 the equality in (14) holds fdrand we large, |rxx(zx — cx)| can be very small or even zero, i.e., a
can not find any other integer fas to satisfy the inequality. column of R (or equivalently a column ofd) corresponding

Note that Algorithm BGBF, a direct extension of the seardio a large|rx,| may not be chosen as thgh column, while
algorithm presented in [1], works withf, the inverse ofR, a column corresponding to a smadlty,| may be chosen
rather thanR itself. It is not difficult to show thats;;, and as thekth column. Sincelry17as - - - 15| is fixed (note that
p3 in Algorithm BGBF are identical tay, andr?, (2, — cx)?  |ri1ra2 - 7on| = |det(R)| = det'/?(AT A)), the above
in Algorithm DCE, respectively. But working wittR as in choice could result smalt;| for a large index and largdr;;|
Algorithm DEC is more nature and is easier to follow thafor a small indexi, not complying with our requirement (see
working with H. Also from the numerical stability point of the last sentence of the previous paragraph). Thus we pgopos
view, H may have large rounding errorsi is ill conditioned. to choosez; to be the second nearest integer[n iy to cx
Thus it is better to work withR. to avoid the above problem. For this choita,—cy| is always

In Step 1 and in Step 3, the last value gf may be the larger than 0.5, so ifrix| is large,|rxr (21 — ci)| is large too.
lower boundl;, or the upper bound;,. In either case, in Step On the other handz;, — x| is usually not very large for this
4 the algorithm enumerates some integers outside the @itershoice, thus ifiry (zr —cx)| is large,|rxx | is usually large too.
I, ux]. For instance, whehs;, ] > @y in Step 1 or Step 3, the In other words, the above choice comply with our requirement
offset variableAy is 1 sincep, = (sgx — @r)/hir > 0. This  (again see the last sentence of the previous paragraph). Our
means the next value af, to be enumerated ig, := 2z, +1 = simulations showed that the above choice fgris a little
ur+1, followed byuy —1,ux+2, . . .. For efficiency, however, more effective than some other slightly different choiees,,
only the integers within the interval should be considemd taking z;, to be the first nearest integer &, @z to ¢, if it
enumeration, although this shortcoming does not seemuserionakes|z; — cx| > 1 or the second nearest integer if the first

nearest integer makes;, — ci| < 1. Foreg in |rer (2 — ck)l,

I1l. NEW ALGORITHMS we obtain it by using the formula given in (10), where each
We first present a new reduction algorithm which uses &l is chosen to be the first nearest integerlgnu;] to c; for
available information in Section Ill-A, and then presenteavn J =n,n—1,...,k + 1 —this is a choice used in a Schnorr
search algorithm. and Euchner based search process if the initial bgiadoo.
In the following we will show how to efficiently compute the
A. Reduction reduction.

We first compute the QR decomposition & (with no

The three st_rateg|es given in Sectlor_w IIl-B use only th&ermutations) by Householder transformations and compute
generator matrixA and do not use the input vectgr and > _ QTy. Note that we do not need to explicitly form and

the box constraint. But the search speed appears to dependan. i Q-factor of the QR decomposition in our computa-

all of the above information. In this section we propose a NeYYns. Then we obtain the corresponding, (2, — ¢, )|, where
reduction strategy which use all available information. e = n/ram aNd 2, is the second nearest rntegner,[lh ]
n — n nn n b) n

In the search process, at levelve have the inequality to ¢,. In order to determine the last column of the permuted

n or equivalently the last column of the permutB) we seek,
ralzi— )’ < B Z T (2 = ck)”. (15) \(/ve inqterchangg the last column & Withpits j-trtlggolumn for
k=i+1 j=1,2,...,n — 1. After each interchange, we compute the
When the right hand side of (15) is fixed, we require frgt QR decomposition of the ned®. We now show how to do
be as large as possible to reduce the search rangefafi: = this in an efficient way. After we interchange theh column
n,n—1,...,1. This gives some motivation for the V-BLAST and the last column oR, we obtain (forn = 6 andj = 3)

reduction strategy introduced in Section II-A. However tha
other hand, to reduce the search range;pfve want the right
hand side of (15) to be small, i.e., each (2, —cx)? should be
large. This motivates us to propose a new reduction strategy
The basic idea is to determine the permutationdafuch that
|rir(zk — cx)| is as large as possible fér=n,n —1,...1,

and also simultaneously take the requirement that should o )
be as large as possible into account. Then we use: — j Givens rotations&y,—1,n, Gn—2.n-1, - -

The question now is how to choosg and z; in |r (zs — G, j+1 to eliminate the lask — j elements in thg-th column
c1)| when we determine the permutations. First suppgse °f the permutedg, where
is known. It appears sensible to chooge to be the first I, 4
nearest integer on the constrained interyil @] to cy, - c s o 2
since the resulting point will be the first integer point Giit1 = » s =1
(i.e, the Babai integer point for the constrained case) to be I, ;4

X X X X X X
X X

X
X X
X

X X X X X
X X X X
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However, these Givens rotations make the subdiagonaksntpermuted lower bound vectds the permuted upper bound
Tnon—1, Tn—1,n—2, --- Tj4+2,j+1 honzero, respectively. To vectoru, and the Babai integer poikte Z".

make these subdiagonal entries zero, we apph j — 1 - R

Givens rotationsG’ 1 ;.. Gy i3 - Gy, leading Compute[Q,, @,]" A = [0} by the Householder transfor-

to an updated upper trianguld®. When we updateR by a mations and simultaneously compi@, , Q,]”y and
Givens rotation, we simultaneously update the vegtbry the sety = QTy

same Givens rotation. Then we can obtain the correspondigg, p .~ I,.1 :1: La=u 2=[],andg =g

[rnn(zn — cp)|. If this quantity is larger than the largest, . _, . 1.9

|”nn(2n — )| Obtained in the previoug — 1 permutations, it k<n

we keep the currenR (andy as well). Therefore, finally after Il for computinge; and latere; (j < k) use

n — 1 permutations, an updated upper trianguRrand an Computeq(1:k) == §(1:k) —JR(lik k4 1) 2
updated vectog corresponding to the largeBt,,, (z, — ¢, )| end ’

is obtained and the last column of the permutkdve seek is Computecy := §(k)/ri

determined. We then obtaiy,, the first nearest integer on the Setz, to be the second nearest integer[fm @x) 10 ¢
constrained interval,,, @,] to ¢,, which will be used in later Computea := |y (21 — c1,)| and setp == k
computations. Now we show how to determine iftle column Set Rymp := R(1:k, 1:k), Yy = (1:k)

of the permutedA we seek (fork = n —1,n —2,...,2). for j :pl o1 tmp

Based on theR we obtained in the previous step, we compute SetR':= Runp, ¥ = ymp /ltemporary variables

|r’“k(fsz“ - f’“”’ where Clk t(see (;0).) ct?]n be corgputed "t1 Interchange columns of and % of R’ and transform
an efficient way (see later) ang; is the second neares it to an upper triangular matrix by Givens rotations

integer on|l, @] to ¢x. Then we interchange columns G
andk of R(1:k,1:k) for j = 1,2,--- ,k — 1. As before, k=1,ks
after each interchange we apply Givens rotations to bring
R(1:k,1:k) back to an upper triangular matrix. In order to
compute the new value dfy (2 — cx)|, we still need to
obtain¢; and z; (which is determined immediately aftey,

is obtained). Note that the expression@fin (10) involves

Yr andry k11, - . ., "en, Which could be obtained if we apply
those Givens rotations (which brinB(1:k,1: k) back to an
upper triangular matrix) to the vecter(1: k) and the matrix

Gl and Gy s, Gl
Compute

Y =Gl Gl j2Gije - Groipy
Computec, = y' (k) /7. B
Setz, to be the 2nd nearest integer {in, @;] to ¢},
Computed’ = |}, (2, — )|
if o/ > «, then

Seta:=d,p:=j, R(1:k,1:k):=R,

y1:k) =y, =¢

R(1:k, k+1:n). However, updating?(1:k, k+1:n) for each Store the Givens rotationS .y, .., Gjji1
o . andG' ;10 G_1 g

column permutation is expensive and unnecessary. A more end T3 ’

efficient way is to apply those Givens rotations to the vector end

g(1:k) =2 g(1:k) — R(1:k,k+1:0)[2kt1, Zht2s- -5 2n) T it p = , then

(this vector can also be computed in an efficient way, see plnte;chan e columns andk of P. entriesp and &

our later algorithm). Notice that theth entry of the updated of 1 andgﬁ B ' P

vectorg(1: k) is equal tociri, (See (10) again), so thaj,
can be obtained. If the value ofy, (2, — cx)| is larger than
the largest obtained in the previogis— 1 permutations, we
keep the currenR(1:k,1:k), g(1:k), Givens rotations and
ci. Finally after k — 1 column permutations, we obtain an
updated upper triangulaR(1 : k,1 : k) which corresponds
to the largest|rii(zx — cx)|, and thekth column of the
permuted A we seek is determined. At this point, we
apply those corresponding Givens rotationsgfl, k) and end . N .
R(1 : k,k + 1 :n) and find 2, the first nearest integercompmey(l) = (1) — R(1,2)%

= . Computec; := g(1)/r11
on [li, @] to c,. After this, we move to the next step toS (5 to be the firet tint Bt q
determine columrk —1 of the permutedA. Note that when “St71 10 D€ e Tirst nearestinteger @, %] 10 ¢, an
the reduction process is finished, the Babai integer point 2=l 2]
2 =[%1,2%,...,%,)7 is obtained as well.

Computey(1:k) == G 1 Goi1 pio
XGppi1- Gro1xy(1:k)
ComputeR(1:k,k+1:n) :=G}_ - Gpy1 pio
XGp,p_H .- -Gk_lij(lik, k + 1:TL)
end
Set Z; to be the 1st nearest integer {ﬁg, i) to ¢
and 2z := [2; 2]

Note that in practical implementation, we need only a vector
‘Algorithm REDUCTION‘ rather than the matriP to store the permutation information.
Now we discuss the computational cost of Algorithm REDUC-
Input: The generator matrixd € R™*™ with full column TION. Computing the QR decomposition ¢f andy at the
rank, the input vectoy € R™, the lower bound vectdre Z", beginning requires aboat?(m —n/3) flops (see [19, p225)).
and the upper bound vectar € Z". In the outer for loop, for eack, the cost of the steps before
Output: The reduced upper triangular matri® € R"*", the inner for loop is negligible, the cost of the inner forpas
the permutation matrixP € Z"*", the vectory € R", the about2k? flops (note that for eacjy the cost is about(k—j)?
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flops), the cost of the steps after the inner for loop is at moBhen it follows that

12k(n — k) flops. Thus the total cost of the outer for loop is n B
1012k 4+ 12k(n — k)] = n*/2 flops. The cost of the steps Uk — Z max (r;li, Tk tk)
after the outer for loop is negligible. Therefore the totastc j=k

of the algorithm is abou2mn? + n*/2 flops. n n -

Note that it is easy to modify Algorithm REDUCTION to < Tk — 3 Tkjzj < Uk — Y _min(rg;le, rijtix).  (16)
give an efficient implementation for the V-BLAST reduction J=k J=k
strategy (see Section II-A). The resulting algorithm cos{$the lower bound and the upper bound in (16) have the same
less than Algorithm REDUCTION since it does not need teign, i.e.,
computecy, but costs the same order of flops. Thus these
two algorithms have almost the same efficiency and are less

signy, — min(ryily, i
efficient than Algorithm SQRD (see Section II-A) which 9Tty Z (ks ey )]

j=k
costs only2mn? flops. However, for solving a general BILS 7n
problem, the search process has exponential computational = signys —ZmaX(Tkjl_k,Tkjﬂk)] (17)
complexity and dominates the cost of the whole algorithrd, an =k

the efficiency of the search process rather than the effigiehc
the reduction process is crucial for the efficiency of the lgho
algorithm. We will see our new reduction strategy makes the B ° 5

search process much more efficient than V-BLAST and SQRD. (G — Z TkjZ)” 2 di

Having said that, we want to point out that one still wants =k

to make the implementation of a reduction strategy efficienyhere d;, = min {[Qk _ Z;}:k min(mjl_k,rkjﬁk)]z, [k —
since for some applications one just wants to find a Baley} kmaX(Tkjl_k,Tkjﬂk)]Q}- In other cases, we také, = 0.

integer point, which does not need to do a search. If one jq@gw we derive an upper bound off, (z; — c)2. As in
wants to find a Babai integer point, our new reduction stsateg|gorithm DEC in Section 1I-B, we denote

may still be more preferable than SQRD and V-BLAST, since .
our simulations indicated that the Babai integer point ivistd T,=0, T= Z r2(z—c)?, k=1,....,n— L
by the new reduction strategy is usually much more closer to

then obviously we have

the ILS solution than the Babai integer point obtained blyegit =k
SQRD or V-BLAST. Then we have
2 2

B. Search ; ria(zi — )

In Section 11-B, we introduced two Schnorr-Euchner strat- k—1 n 9
egy based search algorithms: Algorithm DEC and Algorithm = Z (yi — Zrijzj) + 72 (2 — ex)? + T
BGBF. In this section, we will provide a new search algorithm i=1 j=i
which uses the advantages of those two algorithms, but svoid k—1
their drawbacks. To improve the search speed, the new search > Z di + 12 (z — c)? + T (18)
algorithm will also use a new bound which is as least as tight i=1
as that in (13) at each levél Define

To avoid enumerating integers beyond the box constraint at k-1
each level, which can occur in Step 4 of Algorithm BGBF, 01=0, 6= di, k=2,...,n.

i=1

we will introduce two flag variableabound andlbound, in

our new search algorithm to indicate whether the enumeratidhen if the bound (11) holds, i.e., the BILS solution is withi
has reached the lower bound and the upper bound of tie hyper-ellipsoid, we have from (18) that

box constraint at each levet, respectively. Using these 9 9

two variables, our new algorithm will always enumerate the Tk (26 — ck)” < B — 0k — T (19)
integers within the box constraint at each level. Obviously the upper bound in (19) is at least as tight as that

The complexity of a search algorithm highly depends on thg (13). This new bound is used in the following new search
size of the search region. If the bound of the search regiongagorithm.

each level is not tight enough, plenty of time might be wasted
by moving up and down between different levels before \iwgorithm SEARCH‘
k

obtain the result eventually. In the following, we will ma nput. The nonsingular upper triangular matrR € R™*"
use of the box constraint to derive a new upper bound @f vectorg € R, the lower bound vectat € Z*, the uppér

2 2
Tkk(?k —cx)” ) ~ bound vectom: € Z", and the initial hyper-ellipsoid boun.
Ewst we Qde”V‘; a Iower2 bggndi,;_ fgr eazh _(yk ~ Output: The solutionz € Z" to the BILS problem (6).
%\{/:ek Trj%)” OF Tig (2 — cx)". Sincely < zp < @y, We 1) (Initialization) Setk := n and T}, := 0, computed; for

1=1,...,n
min(rkjlk,rkjﬁk) <rgjzj < max(rkjlk,rkjak). 2) Computecy, := (gk — Z;‘l:k-q-l ’I’kaj)/Tkk, 2k = Lck]
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Setlbound, := 0 andubound := 0 that for solving the reduced BILS problem (6) obtained by
if z; <, then the V-BLAST reduction strategy or the SQRD strategy both
Setz, := I, Ibound, := 1 and A, :=1 Algorithm DEC and Algorithm DGBF are much faster by us-
else if z;, > uy, then ing the third strategy than by using the first strategy. Havev
Setz, 1= 1y, ubound ;=1 and Ay := —1 we also found from our simulations that if the reduced BILS
else /I no boundary of the constraint is reached problem (6) is obtained by Algorithm REDUCTION, using
SetAy = sign(ci — zx) the third strategy is more or less as effective as using the
end second strategy for any of the three search algorithms. The
3) if & + Ty + 13, (2 — cx)* > B, then reason we found is that the residyg) — R [2.]||2 (which
Go to Step 4 // we are not inside the ellipsoid is independent of the reduction strategy) is more or less the
else ifk > 1, then same as the residudly — Rz||2, i.e., the size of the initial
ComputeTy_1 := Ty + r,%k(zk —cr)?, search region for the third strategy is more or less the same
Setk := k — 1, go to Step 2 as that for the second strategy for our simulation examples.
else /I k=1 and a valid point is found
Computef := T1 + 71, (21 — a1)?, IV. SIMULATIONS
Setz:=zandk:=k+1, 9o to Step 5

In this section, we compare the performance of the proposed

_end algorithms given in Section Il with other existing algdwihs
4) if k =n, then . . . . .
. given in Section Il by computer simulations. All our com-
Terminate . .
elseSetk :— k + 1 putations were performed in MATLAB 6.5 on a sun4u sparc
end ' SUNW, Ultra-60 with 2048MB memory running SunOS 5.8.
5) (Enumeration of levek)
if ubound. = 1 and Ibound, = 1, then A. Setup
Go to Step 4 // no integer is available at this level |n our simulations, the elements of the generator mattites
end were drawn from an i.i.d. zero-mean, unit variance Gaussian
Setzy, =z, + Ak distribution. Without lose of generality, we tood to be a
if zx = lg, then square matrix. The input vectey was constructed as follows
Setlbound, :=1
ComputeA;, := —Ay, — sign(A) y=Az+v (20)

else if z;, = 4, then

Setubound =1

ComputeAy := —Ag — sign(Ag)
else ifIbound, = 1, then

where each entry ok was generated according to a uniform
distribution over a specific interval, and the elements @f th
noise vectory were drawn from an i.i.d zero-mean Gaussian
distribution. Each interval of the box constraint was set to

S_etAk =1 the same interval over which each entrymfvas generated.
else ifubound = 1, then Note that flat-fading multiple-input multiple-output (MI®)
SetAy = —1 ) systems in communications are usually assumed to have the
elseComputeA := —Ay — sign(Ay) same form as (20) and the assumptions abbandwv are also
end the same, except thad, v and x as well are complex, see
Go to Step3

e.g., [7] and [22]. Note that such a complex system can easily

We give a remark about choosing the initial hyper—ellipsoirge transformed into a real system, so that our algorithms can

bound 5. The first strategy, which is a typical one used i
the literature, is to choosg = oo. But since Algorithm
REDUCTION generates the Babai integer poitwe can
take 3 = ||y — R2||3 instead. This second strategy makeB. Comparison of the reduction strategies

Algorithm SEARCH a little faster than the first strategy. The To show the effectiveness of Algorithm REDUCTION,
third strategy is that we solve the box-constraimedl LS e compared it with the V-BLAST strategy and the SQRD

e applied directly, so does the merit of our algorithms. We
also tested other types of matrik and got similar results.

problem strategy. In our simulations, each entry of the integer arect
min |y — Rz|3 x was generated uniformly over the intenjél 3] and the
ZERT, Iszsu noise vectorv ~ N(0,02I) for o = 0.1,1,10. We took

to obtain the solutionz; € R™. Then we take = ||y — dimensionn = 10,...,40 and performed 200 runs for each

R |2:]|3. The box-constrainedeal LS problem can be case. Algorithm SEARCH was applied in the search process
solved by an active method (see, e.g., [20, Sec 5.2.4]) or tloe all the three reduction strategies and the initial boyhd
gradient projection method (see, e.qg, [21, Sec 16.6]).ldbe was set to infinity. The results for the average search time (i
strategies guarantee that the solution to (6) can be foundsiconds) are given in Fig. 1-Fig. 3, corresponding to theethr
the search region, otherwise the Babai integer psimg the differento.

solution for the second strategy amél;| is the solution for ~ From the simulations results, we observe that Algorithm
the third strategy. Our numerical simulation results iatic REDUCTION is (much) more effective than the V-BLAST
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10° ¢ 10
—6-SQRD , : —6-SQRD
—+V-BLAST ' ‘ —+V-BLAST
1% L —>-REDUCTION ; ~p—REDUCTION

P
S,

average search time [s]
s
average search time [s]

N e S

L L
10 15 20 25 30 35 40 10 15 20 25 30 35 40
dimension n dimension n

Fig. 1. Average search time vs dimensian~ N(0,0.121). Fig. 2. Average search time vs dimensian~ N (0, I).

and SQRD strategies, while V-BLAST is a little more effe: 5
than SQRD. The advantage of Algorithm REDUCTION : -6-SQRD
the other two becomes more significant as the dimens : —HVBLAST |
. o . —>—REDUCTION|
increases and as the noigéncreases (this usually means

the LS residual becomes larger).

In Fig. 1 which corresponds a small noise, we observ
when the dimension is small, the search process is ve
for all the three reduction strategies. But when the dinwm
n increases, the search time for the V-BLAST strate(
the SQRD strategy can increase rapidly, while the s
time for Algorithm REDUCTION increases very slowly
is interesting to note that unlike the latter, the former r
very unstable whem increases.

Fig.2 and Fig. 3 show that as the noise increases, the
time becomes more and more significant, and the effectiy b
of Algorithm REDUCTION becomes increasingly evident, 10’210 1‘5 2‘0 2‘5 0 " m
example, forn = 20, wheno = 1, Algorithm REDUCTIOI dimension n
makes the search process 8 times faster than the V-BLro.
strategy and the SQRD strategy, and when= 10 the Fig. 3. Average search time vs dimensian~ N (0, 1021).
improvement increases to more than 10 000 times.

average search time [s]

C. Comparison of the search algorithms new upper bound in (19) is likely to be equal to that in (13)

In Fig. 4 and Fig. 5, we compare the average search timéich is used in Algorithms DEC and BGBF. In addition,
of three search algorithms: Algorithm DEC, Algorithm BGBFwhen the noise is small, the Babai integer point is close to
and Algorithm SEARCH. In the simulations, each entry ahe optimal solution, which has a small LS residual. Thus
the vectorz was uniformly distributed oif0, 3] and the noise the ellipsoid bounds defined by the Babai integer point is
vectorv ~ N(0,02I) for o = 0.1,10. We took dimension small, and it is unlikely that the enumeration of Algorithms
n =10,...,40 and performed 200 runs for each case. For dDEC and BGBF goes far beyond the box constraint, i.e.,
the search algorithms, Algorithm REDUCTION was first usethe drawback of Algorithms DEC and BGBF (which is not
for reduction and the initial bound was set to infinity. serious in Algorithm BGBF in any case) we mentioned in

From the results we observe that when the noise is smd&kction II-B is rarely a problem. Therefore all the threerclea
there is no significant difference among the three searah alglgorithms have more or less the same search speed. When
rithms and all algorithms are relatively fast. An explaoatis the noise is large, we see Algorithm SEARCH is faster than
as follows: for Algorithm SEARCH, when the noise is smallAlgorithm BGBF, which is faster than Algorithm DEC for
the lower bound and the upper bound in (16) are likely tall tested dimensions. For example, in Fig. 5, whegs- 40,
have different signs, i.e., (17) is not likley to hold, sotthlee Algorithm DEC and Algorithm BGBF take about 134 and 43
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10 g : : : 10 : :
—6-DEC g ——V-BLAST, [0,63]
—+—BGBF ~ , , , , —>—V-BLAST, [0,3]
—»—SEARCH ﬁ ﬁ ﬁ q i ¢ |—+—REDUCTION, [0,63]
4 o )| 4 q ——REDUCTION, [0,3]
4l 9 4 K| il q
—_ q ¢ g ” 9 4l 4
90 2 i q 9 % i<
010 | Q10 | 4 44 {114 B EZAY o
£ _u:) "1 1 ) R AN o
£ < " d q q 4 d NP
§ & S & ! AR )
@ ¢ q
0 E AR q
o 9] R
] ol
g 9
g =
010 €10
7
10'2 i i i i i j 10 i MR AT AR5 A R A A AR A A A S s L 2 A
10 15 20 25 30 35 40 0 05 1 15 2 25 3 35 4 45 5
dimension n standard deviation g of v
Fig. 4. Average search time vs dimensian~ N (0, 0.5%1I). Fig. 6. Ratio between thg at the Babai integer point and titeat the ILS

solution vs the standard deviatien v ~ N (0, 02I), dimensionn = 8.

10

o-DEC ‘ : for all cases, as compared to the V-BLAST-Babai integeripoin
igEEECH , : We also see that for the two different box constraints, the V-

L BLAST-Babai integer point behaves very differently, white

i REDUCTION-Babai integer point does not. For both reduction
strategies (especially for V-BLAST), the smaller the baxlie
better the Babai integer point performs.

V. SUMMARY

We have proposed a new reduction algorithm and a new
search algorithm for solving a general box-constrained-int
ger least squares (BILS) problem. The reduction algorithm
uses all available information of the BILS problem, i.eg th
generator matrix, the input vector and the box constraint.
‘ ‘ ‘ ‘ Our simulations indicate it is much more effective than the
10 15 20 B 30 35 4 V-BLAST and SQRD strategies, in particular when the LS

dmensionn residual is large. Theoretical research about the critetip
determine the permutations need to be further studied in the
Fig. 5. Average search time vs dimensian~ N (0, 10%1). future. We also presented a new search algorithm to overcome
some drawbacks of Algorithms DEC and BGBF. The new

) ) ) search algorithm also used the box constraint to reduce the
seconds, respectively, while Algorithm SEARCH takes aboufich regions. Simulations showed that it performs bestar

27 seconds. This phenomenon is what we expected in Sectigforithms DEC and BGBF when the LS residual is large. It

II-B. is our belief that all given information should be fully used
to make a method efficient. Unlike many algorithms in the
D. Comparison of the Babai integer points literature, we paid attentions to the efficient implemeotat

galgorithms and took the numerical stability into accoimt

To compare the performance of the Babai integer poing o laorith We h d imol
corresponding to Algorithm REDUCTION and the V-BLAST esigning algorithms. We hope a reader can implement our

strategy, Fig. 6 gives the ratio between theat the Babai algorithms without difficulty.

integer point and theg at the optimal solution with different

noises when the dimensiom = 8 (note that3 = 3(z) = ACKNOWLEDGMENT

|ly— Rz||3). In our simulations, each entry efwas generated We would like to thank Mohamed Oussama Damen and
uniformly on [0, 3] and [0, 63] separately, and the noise vectoPing Wang for helpful discussions with them and Martin
v ~ N(0,0%I) with o = 0.05 : 0.05 : 5. For each case, 200 Gander for his suggestions to improve the presentation. We
runs were performed. We see that the REDUCTION-Babaie also grateful to the referees for their valuable sugmest
integer point is closer or much closer to the optimal soluticand to one referee for providing some references.

average search time [s]
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