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Abstract poor performance compared to native code. Consequently,
many important systems, such as Sun’s HotSpot [1] and
Direct-threaded interpreters use indirect brancheste dis  IBM’s production Java virtual machine [21] run in mixed
patch bytecodes, but deeply-pipelined architecturesaaly = mode, compiling and executing some parts of a program
branch prediction for performance. Due to the poor cor- while interpreting others. Baseline interpreter perfonce
relation between the virtual program’s control flow and the thus continues to be relevant.
hardware program counter, which we call thentext prob- Recently, Ertl and Gregg observed that the performance
lem, direct threading’s indirect branches are poorly pre- of otherwise efficientlirect-threadednterpretation is lim-
dicted by the hardware, limiting performance. Our dispatch ited by pipeline stalls and flushes due to extremely poor
technique,context threadingimproves branch prediction indirect branch prediction [8]. Modern pipelined architec
and performance by aligning hardware and virtual machine tures, such as the Pentium IV (P4) and the PowerPC (PPC),
state. Linear virtual instructions are dispatched with- must keep their pipelines full to perform well. Hardware
tive calls and returnsligning the hardware and virtual PC.  branch predictors use theative PC to exploit the highly-
Thus, sequential control flow is predicted by the hardware biased branches found in typical (native code) CPU work-
return stack. We convert virtual branching instructions to loads [3, 12]. Direct-threaded virtual machine (VM) inter-
native branches, mobilizing the hardware’s branch predic- preters, however, are not typical workloads. Their brasthe
tion resources. We evaluate the impact of context thread-targets are unbiased and therefore unpredictable [8].For a
ing on both branch prediction and performance using inter- interpreted program, it is theirtual program counter (or
preters for Java and OCaml on the Pentium and PowerPC vPC) that is correlated with control flow. We therefore pro-
architectures. On the Pentium IV, our technique reduces pose to organize the interpreter so that the native PC cor-
mean mispredicted branches by 95%. On the PowerPC, itrelates with thevPC, exposing virtual control flow to the
reduces mean branch stall cycles by 75% for OCaml and hardware.
82% for Java. Due to reduced branch hazards, context We introduce a technique basedsarbroutine threading
threading reduces mean execution time by 25% for Java andonce popular in early interpreters for languages like Forth
by 19% and 37% for OCaml on the P4 and PPC970, respec-To leverage return address stack prediction. we implement
tively. We also combine context threading with a conserva- each virtual instruction as a subroutine which ends in a na-
tive inlining technique and find its performance comparable tjve return instruction. Note, however, that these subrou-
to that of selective inlining. tines are not full-fledged functions in the sense of a higher-
level programming language such as C (no register save/re-
store, stack frame creation, etc.). When the instructidns o
1 Introduction a virtual program are loaded by the interpreter, we trans-
late them to a sequence of call instructions, one per virtual
Interpretation is a powerful tool for implementing pro- instruption, whose targets are the.se subroutings. Viitial
structions are then dispatched simply by natively execut-

gramming language systems. It facilitates interactive pro . . .
gram development and debugging, compact and portable'ng this sequence of calls. The key to the effectiveness of

deployment, and simple language prototyping. This com- this simple approach is that at dispatch time, the native PC

bination of features makes interpreted languages atteacti 's perLgctbec?rrelzted mth thte virtu da(; PC. Tth ui’ f or nocr;-
in many settings, but their applicability is constrained by ranching bytecodes, e retirn adaress stack in modern
processors reliably predicts the address of the next byte-

*This research was supported by NSERC, IBM CAS and CITO. code to execute. Because the next dynamic instruction is




not generally the next static instruction in the virtual pro [ Dbirect Threading Table ~ Opcode Implementation Bodid

gram, branches pose a greater challenge, For these virtual . &IN(ISD‘IT-II; )USH INST GOTO: c=argh
instructions, we provide a limited form of specializedmli Program bytecode | T goto *vPC++;
ing, replacing indirect with relative branches, thus expgs ~ ¢/eed 2 compie 2&INST_PUSH,
virtual branches to the hardware’s branch predictors. boeh 7| oader damat | | NS PRNT
We review techniques for virtual instruction dispatch in | mu! S| &INST_PRINT/ ™, goto 'WPCH4
. . . print 6| &INST_DONE--
interpreters, describe their performance problems, and de | done -=|INST_DONE:

fine the context problenin Section 2. Then, we discuss vPe . ex; #he en
other work on improving dispatch performance in Section 3. Virtual Program Stack “?\1 INsT_muL:

We provide relevant details of ourimplementations in a Java

virtual machine (SableVM) and the OCaml interpreter on = L.,
the Pentium IV and Power PC architectures in Section 4. = Sart |
Using an extensive suite of benchmarks for both Java and =
OCaml, we evaluate context threading in Section 5.

This paper makes the following contributions:

goto *vPC++p

INST_PUSH:

goto *vPC++:

Figure 1. Direct Threaded VM Interpreter

¢ We introduce a new dispatch technique for virtual ma-  nov eax = (r1) ;rlisvPC | Ilwz r2 = 0(r1)

chine interpreters that dramatically improves branch addl 4,r1 mctr r2
prediction and demonstrate that our technique does not j np *eax addi rl,rl1,4
depend on a specific language or CPU architecture. bctr

(a) Pentium IV assembly (b) Power PC assembly

¢ We show context threading is effective. On both the P4
and the PPC970, it eliminates 25% of the mean elapsed
time of Java benchmarks, with individual benchmarks
running twice as fast as with direct threading. For

OCaml, we achieve a 20% reduction in the mean ex- as the Direct Threading Table, or DTT. The operands are

ecution time on the P4 and a 35% reduction on the also stored in this list, immediately after the correspagdi

PPC970 with some benchmarks achieving as much asopcode address. ThePC points into the DTT to indicate

40% and 50%, respectively. the instruction to be executed. The actual dispatch to the
next instruction is accomplished by thgdt o * vPC++"
at the end of each opcode body, which is supported by GNU
C’s labels-as-valuesxtensions. In Figure 2, we show the
assembly code corresponding to this dispatch statement for
the Pentium IV and PowerPC architectures. The overhead
of these instructions is comparable to the execution time of
small bodies in some VMs.

When executing the indirect branch in Figure 2(a) the
2 The Context Problem Pentium IV will speculatively dispatch instructions using

a predicted target address. The PowerPC uses a differ-

An interpreter executes a virtual program by dispatching ent strategy for indirect branches, as shown in Figure 2(b).
its virtual instructions in sequence. The current insfarct  First the target address is loaded into a register, and then a
is indicated by a virtual program counter,\PC. The vir- branch is executed to this register address. Rather than spe
tual program is a list of virtual instructions, each corisggt ~ ulate, the PowerPC stalls until the target address is known,
of an opcode and zero or more operands. The exact reprealthough other instructions may be scheduled between the
sentation depends on the dispatch technique used. load and the branch to reduce or eliminate these stalls.

A typical switch-dispatched interpreter, implemented in  Stalling and incorrect speculation are serious pipeline
C, is af or loop which fetches the opcode aPC, and hazards. To perform at full speed, modern CPU’s need to
then executes swi t ch statement, each opcode being im- keep their pipelines full by correctly predicting branch-ta
plemented by a separat@ase block (theopcode bodyor gets. Indirect branch predictors assume that the braneh des
body). However,swi t ch dispatch is considerably slower tination is highly correlated with the address of the indi-
than the start-of-the-art, direct-threaded dispatch [7]. rect branch instruction itself. As observed by Ertl [8, 9],

As shown in Figure 1, a direct threaded interpreter rep- this assumption is usually wrong for direct threaded in-
resents virtual program instructions a$ist of addresses  terpreter workloads. In a direct-threaded implementation
Each address points to the opcode body. We refer to this listthere is onlyonejump instruction per virtual opcode imple-

Figure 2. Direct Threaded Dispatch

e We show that context threading is compatible with in-
lining, using a simple heuristic that we caihy Inlin-
ing. On OCaml, we achieve speedups relative to di-
rect threading of at least 10% over context threading
alone. On Java, we perform as well as or better than
SableVM’s implementation of selective inlining.



mented. For example, in Figure 1, there are two instancesstack. On the other hand, Curley found subroutine thread-
of I NST_PUSH. In the context ofvPC=0, the dispatch at ing faster on the 68000 [5]. On modern hardware the cost
the end of thé NST_PUSH body results in a native indirect  of the call andreturnis much lower, due to return branch
branch back to the start of theNST_PUSH body (since the  prediction hardware, while the cost of direct threading has
next virtual instruction av PC=2 is also an NST_PUSH). increased due to misprediction. In Section 5 we demon-
However, the target of the same native indirect branch in strate this effect on several modern CPUs.

the context ofvPC=2 is determined by the address stored  Superinstructionseduce the number of dispatches. Con-
atvPC=4, which in this example is ahnNST_MJUL opcode.  sider the code to add a constant integer to a variable. This
Thus, the target of the indirect branch depends orvthe  may require loading the variable onto the stack, loading the
tual context—thevPC—rather than thbéardware PCofthe  constant, adding, and storing back to the variable. VM de-

branch, causing the hardware to speculate incorrectlyr nosigners can instead extend the virtual instruction set with
atall. We refer to this lack of correlation between the r&tiv  single superinstruction that performs the work of all four

PC and thesPC as thecontext problem instructions. This technique is limited, however, because
the virtual instruction encoding (often one byte per opgode
3 Related Work may allow only a limited number of instructions, and the

number of desirable superinstructions grows exponentiall
in the number of subsumed atomic instructions. Further-

patch problem. Kogge [14] remains a definitive description more, the optimal superinstruction set may change based
of many threaded code dispatch techniques. These can b&" the workload. One approach uses proflle-feedback to
divided into two broad classes: those which refine the dis- ;elect and create the superinstructions statically (when t
patch itself, and those which alter the bodies so that theremter'preter is compiled [10]). L

are more efficient or simply fewer dispatches. Switch and ~ Piumarta [15] presentselective inlining It constructs
direct threading belong to the first class, as does submutin SUPerinstructions when the virtual program is loaded. They
threading, discussed next. Later, we will discuss superin-are created in a relatively portable way, igme py’ing the
structions and replication, which are in the second class.native code in the bodies, again using GNU C labels-as-
We are particularly interested in subroutine threading and Values. This technique was first documented earlier [19],
replication because they both provide context to the branchPUt Piumarta’s independent discovery inspired many other
prediction hardware. projects to exploit selective inlining. Like us, he applied

Some Forth interpreters use subroutine-threaded dis-OPtimization to OCaml, and reports significant speedup on
patch. Here, the program is not represented as a list Ofseven_al m|c_robenchmarks. As we discuss in Se.ctlon 5.4, our
body addresses, but instead as a sequence of ratiie technl'qu.e is sepgra}te from, but supports and indeed facili-
to the bodies, which are then constructed to end with na-{ates, inlining optimizations.
tive returns. Curley [5, 6] describes a subroutine-threaded ~ Only certain classes of opcode bodies can be relocated
Forth for the 68000 CPU. He improves the resulting code by usingment py alone—the body must contain no pc-relative
inlining small opcode bodies, and converts virtual branch instructions (typically this excludes C function calls)e-S
opcodes to single native branch instructions. He cred-lective inlining requires that the superinstruction steat
its Charles Moore, the inventor of Forth, with discovering @ virtual basic block, and ends at or before the end of
these ideas much earlier. Outside of Forth, there is lit- the block. Ert’'sdynamic superinstructionfg] also use
tle thorough literature on subroutine threading. In partic Mentpy, but are applied to effect a simple native compi-
ular, few authors address the problem of where to store vir-lation by inlining bodies for nearly every virtual instruc-
tual instruction operands. In Section 4, we document how tion. Ertl shows how to avoid the virtual basic block con-
operands are handled in our implementation of subroutinestraints, so dispatch to interpreter code is only requiced f
threading. virtual branches and un-relocatable bodies. Catenatidh [2

The choice of optimal dispatch technique depends on thepatches Sparc native code so that allimplementations can be
hardware platform, because dispatch is highly dependent orinoved, specializes operands, and converts virtual branche
micro-architectural features. On earlier hardwasd| and ~ to native, thereby eliminating the virtual program counter
return were both expensive and hence subroutine thread- Replication—creating multiple copies of the opcode
ing required two costly branches, versus one in the case ofbody—decreases the number of contexts in which it is exe-
direct threading. Rodriguez [17] presents the tradeoffs fo cuted, and hence increases the chances of successfully pre-
various dispatch types on several 8 and 16-bit CPUs. Fordicting the successor [9]. Replication implemented by in-
example, he finds direct threading is faster than subroutinelining opcode bodies reduces the number of dispatches, and
threading on a 6809 CPU, because the JSR and RET instructherefore, the average dispatch overhead [15]. In the ex-
tion require extra cycles to push and pop the return addresdreme, one could create a copy for each instruction, elimi-

Much of the work on interpreters has focused on the dis-



nating misprediction entirely. This technique resultsig s Direct Thysading Table Opcode Implementation Bodit

nificant code growth, which may [24] or may not [9] cause o[&(CTTIOD, _ o, vPC=argh
i Program bytecode| ol g T \\ComextThreadmg Table goto *VPC++
cache misses. Program bytecode|  o/g{CTT) |, . (CTT)
y compiel a7 *~._YCALL INST PUSH .
. .. - . h 11 ;4 INST_PRINT]
In summary, misprediction of the indirect branches used Eﬂilm oader || sﬁfgll[[;]];;;: CALL INST V0L L
by a direct threaded interpreter to dispatch virtual irstru | i e e R W
tions limits its performance on modern CPUs because of the 1% e i oy
context problem. We have described several recent dispatch Virtual Program Stack oL
optimization techniques. Some of the techniques improve a
performance of each dispatch by reducing the number of ST PUSH
contexts in which a body is executed. Others reduce the AL

number of dispatches, possibly to zero.

Dynamo [2] is a system for trace-based runtime opti-  Figure 3. Subroutine Threaded VM Interpreter
mization of arbitrary programs. Its optimizations include
replacing indirect branches with guarded linear contreiflo
One would expect this to be highly applicable to threaded 4 1 Understanding Branches
interpreters. Sullivan et al. [22] applied Dynamo to a Java
VM, but found it faired poorly. This was due to the con-
text problem—it could not distinguish between the differ- To motivate our design, first note that the virtual pro-
ent runtime contexts of a bytecode body. The solution wasgram may contain all the usual types of control flow: con-
to detect traces using<pc, vPC> tuple, instead of only  ditional and unconditional branches, indirect branched, a
pc. Our technique, while simpler, accomplishes the samecalls and returns. We must also consider the dispatch of
thing. In the following section we will describe how we  straight-line virtual instructions. For direct-threadater-
address the context problem directly, by devirtualizing th preters, sequential (virtual) execution is just as expenss
interpreter’s control flow and thus exposing virtual execu- handling control transfers, sinedl virtual instructions are
tion to native branch prediction resources. dispatched with an indirect branch. Second, note that the
dynamic execution path of the virtual program will contain
patterns (loops, for example) that are similar in nature to
the patterns found when executing native code. These con-
trol flow patterns originate in the algorithm that the vidtua
program implements, whether it is interpreted or compiled.

Finally, note that modern microprocessors have consid-
Direct-threaded interpreters are known to have very poor erable resources devoted to identifying these patterna-in n
branch prediction properties, however, they are also knowntjve code, and exploiting them to predict branches. In fact,
to have a small cache fOOtprint (for small to medium sized the hardware provides different types of predictors to sup-
opcode bodies) [18]. Since both branches and cache missegort different types of native branches. Unfortunatelseci
are major pipeline hazards, we would like to retain the threading uses only indirect branches and, due to the con-
good cache behavior of direct-threaded interpreters whiletext problem, the patterns that exist in the virtual program

improving the branch behavior. The preceding section de- are effectively hidden from the microprocessor.
scribes various techniques for improving branch predictio

by replicating entire bodies. The effect of these techrsque
is to trade instruction cache size for better branch predic-
tion. Ertl [9] claims that for Forth, with small opcode bod-
ies, code growth occurs but does not cause cache-relate
stalls. Vitale [24] finds that, with larger opcode bodiegjeo
growth from replication does induce cache-misses. We be
lieve it is best to avoid growing code if possible. We intro-
duce a new technique which minimally affects code size and
produces dramatically fewer branch mispredictions than ei
ther direct threading or direct threading with inlining.

4 Design and Implementation

The fundamental goal of our approach is to expose these
virtual control flow patterns to the hardware, such that the
physical execution path matches the virtual execution.path
alo achieve this goal, we exploit the different types of hard-

are prediction resources to handle the different types of
virtual control flow transfers. In Section 4.2 we show how
"to replace straight-line dispatch with subroutine thragdi
In Section 4.3 we show how to inline conditional and indi-
rect jumps and in Section 4.4 we discuss handling virtual
calls and returns with native calls and returns. We strive
to maintain the property that the virtual program counter is

In this section we motivate our design in terms of align- precisely correlated with the physical program counter and
ing virtual machine context with physical machine context, in fact, with our technique there is a one-to-one mapping
and outline our implementation. between them at control flow points.



4.2 Handling Linear Dispatch 4.3 Handling Virtual Branches

Subroutine threading handles the branches that are in-

The dispatch of straight-line virtual instructions is the duced by the dispatch of straight-line virtual instrucipn
largest single source of branches when executing an interhowever, the actual control flow of the virtual program is
preter. Any technique that hopes to improve branch pre-still hidden from the hardware. That is, bodies of opcodes
diction accuracy must thus address dispatch. The obvioughat affect the virtual control flow still have no context.
solution is inlining, as it eliminates the dispatch entirfer There are two problems, one relating to shared indirect
straight-line sequences of virtual instructions. Inloaso branch prediction resources, and one relating to a lack of
has other benefits, such as enabling optimizations acress thhistory context for conditional branch prediction res@s.c
implemfantations. of multiple virtual ins‘gruc_tioln_s. The in- Consider the implementation dfNST_GOTO in Fig-
crease in code size caused by aggressive inlining, however

has th tential t helm the benefits with th N fure 3. Even for this simple unconditional virtual branch,
nas the potential to overwneim the benefits wi ecosto prediction is problematic, becaualt | NST_GOTOinstruc-
increased instruction cache misses.

tions in the virtual program share a single indirect brameh i

Rather than eliminate dispatch, we propose an alterna-Struction (and hence have a single prediction context)-Con
ditional virtual branches have the same problem. A sim-

tive organization for the interpreter in which native caibia e ) oun
ple solution is to generate replicas of the indirect branch

return instructions are used. Conceptually, this appraach ! T , ; i
elegant because subroutines are a natural unit of absimacti Instruction in the CTT immediately following the call to the
to express the implementations of virtual instructions. branching opcode body. Branching opcode bodies now end
with native return, which transfers control to the replezht
Figure 3 illustrates our implementation of subroutine indirect branch in the CTT. As a consequence, each virtual
threading, using the same example program as Figure 1branch instruction now has its own hardware context. We
In this case, we show the state of the virtual mackifie  refer to this technique dsranch replication
ter the first virtual instruction has been executed (note that  g.54ch replication is attractive because it is simple, and
the virtual program stack now contains the value “11"). We ,q,,ces the desired context with a minimum of replicated
add a new strucFure to the '”terp“?ter archlt_ecture, celed  jsiryctions. However, it has a number of drawbacks. First,
Context Threading TabkETT), which contains a sequence o yranching opcodes, we execute three hardware control
of nativecall instructions. Each nativeall dispatches the  gnfers (a call to the body, a return, and the actual bjanch
body for its virtual instruction. We use the ter@ontext \hich js an unnecessary overhead. Second, we still use the
Threa_dmg because the hardware gddress of each call IN-overly general indirect branch instruction, even in caes |
struction in the CTT provides execution context to the hard- | NST_GOTOwhere we would prefer a simpler direct native
ware, most importantly, to the branch.predlcto'rs. Eaph NON-pranch. Third, by only replicating the dispatch part of the
branching opcode body now ends with a natigRIrnin- i,a) instruction, we do not take full advantage of the-con
struction, while opcodes that modify the virtual controWlo  itional branch predictor resources provided by the hard-

end with an indirect jump, as in direct-threading. The Di- a1 Dye to these limitations, we only use branch replica-
rect Threading Table (DTT) is still necessary to store imme- - tor indirect virtual branches and exceptions.

diate virtual operands, and to correctly resolve virtual-co

trol transfer instructions. In direct threading, entriegtie For all other branches we fully inline the bodies of vir-
DTT point to opcode bodies, whereas in subroutine thread-tual branch instructions into the CTT. We refer to this as
ing they refer to call sites in the CTT. branch inlining In the process of inlining, we convert in-

direct branches into direct branches, where possible. We

It seems counterintuitive to improve dispatch perfor- thus reduce pressure on the BTB, and instead exploit the
mance by calling each body. It is not obvious whether a call conditional branch predictors. In particular, the virtaah-
to a constant target is more or less expensive to execute thaditional branches now appear as real conditional branches
an indirect jump, but that is not the issue. Modern micro- to the hardware. The primary cost of branch inlining is in-
processors contain specialized hardware to improve the percreased code size, but this is modest because virtual branch
formance ofcall andreturn— specifically, a return address instructions are simple and have small bodies. For instance
stack that predicts the destination of the return to be theon the Pentium IV, most branch instructions can be inlined
instruction following the corresponding call. Althougleth  with no more than 10 words of additional space. Figure 4
cost of subroutine threading is two control transfers,wers shows an example of inlining theNST_GOTO branch in-
one for direct threading, this cost is outweighed by the ben- struction. The figure also illustrates how we handle virtual
efit of eliminating a large source of unpredictable branches call/return control flow, described next.



Context Threading Table Opcode ,mmementaﬂo‘ lenges to implementing our design for apply/return inlin-
(CTT) Bod_ies ing. First, one must take care to match the hardware stack
e :*\;F:é INST GOTO = agamsfc the VII’tL!a| program stack. Fpr instance, in OCaml,
IMP destination opcode body = exceptions unwind the virtual machine stack; the hardware
‘s stack must be unwound in a corresponding manner. Sec-
CALLINST CALL _ —— | e manpulate vPC * ond, some run-time environments are extremely sensitive to
CALL_INDIRECT callee — "~~~ | per hardware stack manipulations, since they use or modify the
first D 2, machine stack pointer for their own purposes (such as han-
opcode{| CALL ... o, dling signals). In such cases, it is possible to create a-sepa
in callee|” /= opcodes in callee */ ==~ . rate stack structure and swap between the two at virtual call
[* opcodes in callee */ 2 INST RETURN: and return points. This approach would introduce signifi-
;* ggggg:z :2 EZ::E: ; / /* manipulate vPC */ cant overhead, and is only justified if apply/return inligin
IMP INST_RETURN RET provides a substantial performance benefit.
Having described our design and its general implementa-

. tion, we now evaluate its effectiveness on real interpseter
Figure 4. Context Threaded VM Interpreter:

Branch and Return Inlining . .
5 Experimental Evaluation
4.4 Handling Virtual Call and Return
In this section, we evaluate the performance of context

The only significant source of control transfers that re- threading and compare it to direct threading and direct-
main in the virtual program are virtual calls and returns; Fo threaded selective inlining. Context threading combines
successful branch prediction, the real problem is not the vi Subroutine threading, branch inlining and apply/return in
tual call, but rather the virtual return, because one vire)a ~ lining. We evaluate the contribution of each of these tech-
turn may go back to multiple call sites. As noted previously, Niques to the overall impact of context threading using
the hardware already has an elegant solution to this problenfwo virtual machines and three microprocessor architec-
for native code in the form of the return address stack. We tures. We begin by describing our experimental setup in
need only to deploy this resource to predict virtual returns Section 5.1. We then investigate how effectively our tech-

We describe our solution with reference to Figure 4. The Niques address pipeline branch hazards in Section 5.2, and
virtual call body should effect a transfer of control to the the overall effect on execution time in Section 5.3. Finally
start of the callee. We begin at a virtual call instructioee(s ~ Section 5.4 demonstrates that context threading is comple-
arrow labeled “1”). The virtual call body simply sets the Mmentaryto inlining resulting in a portable, relatively gita,
vPC to refer to the virtual callee and executes a natare  te€chnique that provides performance comparable to or bet-
turnto the next CTT location. Similar to branch replication, ter than SableVM's implementation of selective inlining.
we insert a new nativeall indirectinstruction at this point
in the CTT to transfer control to the start of the callee (ar- 5.1 Virtual Machines, Benchmarks and Platforms
row “2"). This call indirect causes the next location in the
CTT to be pushed onto the hardware’s return address stackoCaml We chose OCaml as representative of a class of
The first instruction of the callee is then dispatched (arrow efficient, stack-based interpreters that use direct-tleea
“3"). Atthe end of the callee, we modify the virtual return - dispatch. The bytecode bodies of the interpreter are very
instruction as follows. In the CTT, we emit a native di- efficient, and have been hand-tuned, including register al-
rect branch to dispatch the body of the virtual return (arrow |ocation. The implementation of the OCaml interpreter is
“4”.) Unlike using a nativecall for this dispatch, the direct  clean and easy to modify.
branch avoids perturbing the return address stack. We mod-

ify the body of the virtual return to end with a nativegurn . , . .
instruction, which now transfers control all the way back SableVM  SableVM is a Java Virtual Machine built for

quick interpretation, implementing lazy method loadind an

a novel bi-directional virtual function lookup table. Hard

With this final step, we have a complete technique that ware signals are used to handle exceptlgns. Most impor-
tantly for our purposes, SableVM already implements mul-

aligns all virtual program control flow with the correspond- . . . . . 4 .
9 prog b tiple dispatch mechanisms, including switch, direct tdrea

ing native flow. There are however, some practical chal- . R . :
g hative 1o ere are however, some practical cha ing, and selective inlining (which SableVM callaline

luapply” is the name of the (generalized) function call opeoi thr_eading [11]. _The support for multiple dispatCh mech-
OoCaml anisms makes it easy to add context threading, and allows

to the instruction following the original virtual call (aw
“5".) We refer to this technique aspply/return inlining-.




Table 1. Description of OCaml benchmarks

Pentium IV PowerPC 7410 PPC970| Lines
Branch Branch Elapsed of
Time Mispredicts Time Stalls Time Source

Benchmark| Description (TSC*10%)  (MPT*105) | (Cycles*10®) (Cycles*10°) | (sec) Code
boyer Boyer theorem prover 3.34 7.21 1.8 43.9 0.18 903
fft Fast Fourier transform 31.9 52.0 18.1 506 1.43 187
fib Fibonacci by recursion 2.12 3.03 2.0 64.7 0.19 23
genlex A lexer generator 1.90 3.62 1.6 27.1 0.11 2682
kb A knowledge base program 17.9 42.9 9.5 283 0.96 611
nucleic nucleic acid’s structure 14.3 19.9 95.2 2660 6.24 3231
quicksort Quicksort 9.94 20.1 7.2 264 0.70 91
sieve Sieve of Eratosthenes 3.04 1.90 2.7 39.0 0.16 55
soli A classic peg game 7.00 16.2 4.0 158 0.47 110
takc Takeuchi function (curried) 4.25 7.66 3.3 114 0.33 22
taku Takeuchi function (tuplified) 7.24 15.7 5.1 183 0.52 21

Table 2. Description of SpecJVM benchmarks

Pentium IV PowerPC 7410 PPC970

Branch Branch Elapsed
Time Mispredicts Time Stalls Time
Benchmark| Description (Tsc*1o0'')  (MPT*10°) | (Cycles*10'®) (Cycles*0®) (sec)
compress | Modified Lempel-Ziv compression 4.48 7.13 17.0 493 127.7
db performs multiple database functions 1.96 2.05 7.5 240 65.1
jack A Java parser generator 0.71 0.65 2.7 67 18.9
javac the Java compiler from the JDK 1.0.2 1.59 1.43 6.1 160 44.7
jess Java Expert Shell System 1.04 1.12 4.2 110 29.8
mpegaudio | decompresses MPEG Layer-3 audio files  3.72 5.70 14.0 460 106.0
mtrt two thread variant of raytrace 1.06 1.04 5.3 120 26.8
raytrace a raytracer rendering 1.00 1.03 5.2 120 31.2
scimark performs FFT SOR and LU, 'large’ 4.40 6.32 18.0 690 118.1
soot java bytecode to bytecode optimizer 1.09 1.05 2.7 71 35.5

us to compare it against a selective inlining implementatio cause so few instructions contribute to the behavior.
which we believe is a more complicated technique.

SableVM Benchmarks SableVM experiments were run
OCaml Benchmarks The benchmarks in Table 1 con- onthe complete SPECjvm98 [20] suite (compress, db, mpe-
stitute the complete standard OCaml benchmark %uite gaudio, raytrace, mtrt, jack, jess and javac), one largeabbj
Boyer, kb, quicksort and sieve are mostly integer process-oriented application (soot [23]) and one scientific applica
ing, while nucleic and fft are mostly floating point bench- tion (scimark [16]). Table 2 summarizes the key character-
marks. Soli is an exhaustive search algorithm that solvesistics of these benchmarks.
a solitaire peg game. Fib, taku, and takc are tiny, highly-
recursive programs which calculate integer values. These

three benchmarks are unusual because they contain Ve%Pentlurm IVrMe:/sTredTenttshThﬁq F;fznt;iurg IL/ (P‘é) prrob-r N
few distinct virtual instructions, and often contain onlyeo €ssor aggressively dispatches Instructions based onfbra

instance of each. These features have two important conPredictions. As discussed in Section 2, the taken indirect

sequences. First, the indirect branch in direct-threaded d 3ir;gghgj;‘:'g?ggﬁggﬁ%}%ﬁ?ﬁfﬁ %Sg);lmhv?ée\,%ﬁg er::zgr
patch is relatively predictable. Second, even minor change ) Y

can have dramatic effects (both positive and negative) be->4r€ the mlsprepl ict .penalty for these branches to see their
effect on execution time, but the P4 does not have a counter

2ftp://ftp.inria.fr/INRIA Projects/cristal/ for this purpose. Instead, we count the numbeM'
Xavi er . Ler oy/ benchmar ks/ obj cani . tar. gz predicted taken brancheg®PT) to show how effectively
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Figure 5. OCaml Pipeline Hazards Relative to Direct Threading

context threading improves branch prediction. We measureplus branch inlining and branch replication for exceptions
time on the P4 with the cycle-accurdime stamp counter  and indirect branches (label8RANCH); and our complete
(TSC) register. We count both MPT and TSC events using context threading implementation which includes apply/re
our own Linux kernel module, which collects complete data turn inlining (labeledCONTEXT). We include bars for se-
for the multithreaded Java benchmaiks lective inlining in SableVM (labele@ELECT) and our own
simple inlining technique (labeled NY) to facilitate com-

PowerPC Measurements We need to characterize the parisons, although inlining results are not discussed unti
cost of branches diﬂ‘erenﬂy on the PowerPC than on the Section 5.4. We do not show a bar for direct threading be-
P4, as these processors do not typically speculate on indicause it would have height 1.0, by definition.
rect branchée’s Instead, split branches are used (as shown
in Figure 2(b)) and the PPC stalls in the branch unit un- 5.2 Effect on Pipeline Branch Hazards
til the branch destination is known. Hence, we would like
to count the number of cycles stalled due to link and count  Context threading was designed to align virtual program
register dependencies. Fortunately, the older PPC7410 CPl$tate with physical machine state to improve branch pre-
has a counter (counter 15, “stall on LR/CTR dependency”) diction and reduce pipeline branch hazards. We begin our
that provides exactly this information [4]. On the PPC7410, evaluation by examining how well we have met this goal.
we also use the hardware counters to obtain overall ex- Figure 5 reports the extent to which context threading re-
ecution times in terms of clock cycles. We expect that duces pipeline branch hazards for the OCaml benchmarks,
the branch stall penalty should be larger on more deeply-while Figure 6 reports these results for the Java benchmarks
pipelined CPUs like the PPC970, however, we cannot di- on SableVM. On the left of each Figure, the graphs la-
rectly count these stall cycles on this processor. Inswwad, beled (a) present the results on the P4, where we count
report only elapsed execution time for the PPC970. mispredicted taken branches (MPT). On the right, graphs
labeled (b) present the effect on LR/CTR stall cycles on the
Interpreting the data In presenting our results, we nor- PPC7410. The last cluster of each bar graph reports the ge-
malize all experiments to the direct threading case, since i 0metric mean across all benchmarks.
is the baseline state-of-the art dispatch technique. We giv.  Context threading eliminates most of the mispredicted
the absolute execution times and branching charactevistic taken branches (MPT) on the Pentium IV and LR/CTR stalll
for each benchmark and platform using direct threading in cycles on the PPC7410, with similar overall effects for both
Tables 1 and 2. Bar graphs in the following sections show interpreters. Examining Figures 5 and 6 reveals that subrou
the contributions of each component of our technique: sub-tine threading has the single greatestimpact, reducing MPT

routine threading only (labeleBUB); subroutine threading by an average of 75% for OCaml and 85% for SableVM on
_ the P4, and reducing LR/CTR stalls by 60% and 75% on
SMPT events are counted with performance counter 8 by settim@4

CCCR to 0x0003b000 and the ESCR to value 0xc001004 [13] average for the PPC7410. This result matches our expec-
4A “hint bit” can be used to encourage speculation in later efotike tations because SUbrOU_tme threading addressgs thetlarges
the PPC970 but it is not used by default. single source of unpredictable branches—the dispatch used
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for all straight-line bytecodes. Branch inlining has th&tnhe duce pipeline branch hazards, we now examine the impact
largest effect, again as expected, since conditional hkesc  of these reductions on overall execution time.
are the most significant remaining pipeline hazard after ap-
plying subroutine threading. On the P4, branch inlining 5.3 Performance
cuts the remaining MPTs by about 60%. On the PPC7410
branch inlining has a smaller, though still important effec Context threading improves branch prediction, resulting
eliminating about 25% of the remaining LR/CTR stall cy- jn increased pipeline usage on both the P4 and the PPC.
cles. A notable exception to the MPT trend occurs for the However, using a nativeall/return pair for each dispatch
OCaml benchmarks fib, takc and taku. In these tiny, recur-increases instruction overhead. In this section, we examin
sive benchmarks de-virtualizing the conditional branches the net result of these two effects on overall execution time
hurts prediction by a small amount. As noted previously, As before, all data is reported relative to direct threading
even minor changes in the behavior of a single instruction Figures 7 and 8 show results for the OCaml and
can have a noticeable impact for these benchmarks. SableVM benchmarks respectively. They are organized in
Interestingly, the same OCaml benchmarks that are athe same way as the previous section, with P4 results on
challenge for branch inlining on the P4 also reap the greatesthe left, labeled (a), and PPC7410 results on the right, la-
benefit from apply/return inlining, as shown in Figure 5(a). beled (b). Figure 9 reports the performance of OCaml and
Due to the recursive nature of these benchmarks, their persapleVVM on the PPC970 CPU. The geometric means (right-
formance is dominated by the behavior of virtual calls and most cluster) in Figures 7, 8 and 9 show that context thread-
returns. Thus, mapping these operations to native calls andng significantly outperforms direct threading on both vir-
returns has an enormous impact. For sieve, on the P4, theual machines and on all three architectures. The geomet-
result of apply/return inlining is an increase in MPT, while ric mean execution time of the Ocaml| VM is about 19%
for the non-recursive OCaml benchmarks, the overall effect jower for context threading than direct threading on P4, 9%
on both platforms is a small improvement. lower on PPC7410, and 39% lower on the PPC970. For
For SableVM on the P4, however, apply/return inlining SableVM, context threading, compared with direct thread-
is restricted by the fact that SableVM uses the processor’sing, runs about 17% faster on the PPC7410 and 26% faster
esp register. Rather than implement a complicated stack on both the P4 and PPC970. Although we cannot measure
switching technique as discussed in Section 4.4, we allowthe cost of LR/CTR stalls on the PPC970, the greater reduc-
the virtual and machine stacks to become mis-aligned whentions in execution time are consistent with its more deeply-
SableVM manipulates thesp directly. This increases the pipelined design (23 stages vs. 7 for the PPC7410).
overhead of our apply/return inlining implementation and  Across interpreters and architectures, the effect of our
reduces the effectiveness of the return address stackcpredi techniques is clear. Subroutine threading has the single
tor, as can be seen in the bar labeled CONTEXT in Fig- largest impact on elapsed time. Branch inlining has the
ure 6(a). On the PPC7410, the effect of apply/return inlin- next largest impact eliminating an additional 3-7% of the
ing on LR/CTR stalls is very small for SableVM. elapsed time. In general, the reductions in execution time
Having shown that our techniques can significantly re- track the reductions in branch hazards seen in Figures 5 and
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6. The instruction overheads of our dispatch technique are
most evident in the OCaml benchmarks fib and takc onthe Table 3. Selective Inlining vs Context+Tiny
P4 where the benefits of improved branch prediction (rela-  (SableVM)

tive to direct threading) are minor. In these cases, the op- Context ~Selective Tiny A A
code bodies are very small and the extra instructions exe{ _Arch © ©) M (sC0) (s
cuted for dispatch are the dominant factor. P4 0.762 0.721 | 0.731 | —0.041 | —0.010

PPC7410| 0.863 0.914 0.839 0.051 0.075

The effect of apply/return inlining on execution time
pply 9 PPC970 0.753 0.739 0.691 | —0.014 0.048

is minimal overall, changing the geometric mean by only
+1% with no discernible pattern. Given the limited perfor-
mance benefit and added complexity, a general implemen-

tation of apply/return inlining does not seem worthwhile. head surrounding the smallest bodies and, as calls in the
Ideally, one would like to detect heavy recursion automati- CTT are replaced with comparably-sized bodies, tiny inlin-
cally, and only perform apply/return inlining when needed. ing ensures that the total code growth is minimal. In fact,
We conclude that, for general usage, subroutine threadinghe smallest inlined OCaml bodies on P4 wemeallerthan

plus branchinlining provides the best trade-off. the length of a relative call instruction. Table 3 summasize
We now demonstrate that context-threaded dispatCh iSthe effect of t|ny |n||n|ng On the P4, we come within 1%
complementary to inlining techniques. of SableVM's sophisticated selective inlining implementa
tion. On PowerPC, we outperform SableVM by 7.8% for

5.4 Inlining the PPC7410 and 4.8% for the PPC970.

The primary costs of direct-threaded interpretation are

Inlining techniques address the context problem by repli- Pipeline branch hazards, caused by the context problem.
cating bytecode bodies and removing dispatch code. ThisContext threading solves this problem by correctly deploy-
reduces both instructions executed as well as pipeline hazing branch predictionresources, and as a result, outpesfor
ards. In this section we show that, although both selectivedirect threading by a wide margin. Once the pipelines are
inlining and our context threading technique reduce pigeli full, the secondary cost of executing dispatch instructiien
hazards, context threading is slower because of instructio Significant. A suitable technique for addressing this over-
overhead. We address this issue by comparing ourtown head is inlining, and we have shown that context threading
inlining technique with selective inlining. is compatible with inlining using the “tiny” heuristic. Exe

In Figures 6, 8 and 9(a) the bar label®BLECT shows  With this simp!e approach, context threading' achigvgs per-
our measurements of Gagnon’s selective inlining imple- formance equivalent to, or better than, selective inlining
mentation for SableVM [11]. From these Figures, we see
that selective inlining reduces both MPT and LR/CTR stalls 6 Current and Future Work
significantly as compared to direct threading, but it is not
as effective in this regard as subroutine threading alone.

) A At the time of writing, we have extended our con-
The larger reductions in pipeline hazards for context tiirea

ina. h d | late into b text threading technique with a general purpose framework
Ing, however, do not necessarily transiate Into beter per-,ich 4jjows for the safe execution of arbitrary instrumen-

fﬁrmgncl;elz S\Iﬁ,r sellectlye |.nII|'n|.ng. bFlgure 8(a) 'IL:JStr%t_es tation code in between bytecodes. Within this framework,
that SableVM's selective inlining beats context threading \yq pye implemented bytecode logging to assist with de-

on the P4 by roughly 5%, whereas on the PPC7410 and thg, ,;ing and several frequency and branch bias profilers.
PPC97.O’ b.Oth techniques havq roughly the same effect Oy have developed a lazy linking technique that allows us
executpn time, as shown in Figure 8(b) and Fllgur.e 9(a), to dynamically add generated code segments. Using these
respectively. These resuits show that reducing pipelize ha tools, we currently identify hot basic blocks, then regener
ards caused by dis'patt':h.is' not suffic?en't to' match the P€ate and link them into the program on the fly. We intend to
formance of selective inlining. By eliminating some dis- .0 hege capabilities to dynamically generate code feroth

p?‘tﬁ? code, selective |?]I|n|ng can dr? thz_same real Workinseresting compilation units including loop bodies, &ac
with fewer instructions than context threading. and whole methods.

Context threading is only a dispatch technique, and can
be easily combined with inlining strategies. To investigat .
the impact of dispatch instruction overhead and to demon-/  Conclusions
strate that context threading is complementary to inlining
we implementedTiny Inlining, a simple heuristic that in- Modern CPUs have deep pipelines which must be kept
lines all bodies with a length less than four times the length full for them to perform well. Filling these pipelines re-
of our dispatch code. This eliminates the dispatch over- quires that the processor speculate on which instructions i
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