Architecture

Mary Shaw and David Garlan

Taken from Tutorial on Architectures for Software Systems
http://spoke.compose.cs.cmu.edu/shaweb/p/pubs.htm

Week 12 - Shaw/Garlan
Nov 27/03

Part I: Architectural Design

I. Architectural design: planning system structure

> What is software architecture?

> What is its relation to other aspects of design?
IL. The variety of software architectures: common styles
III. Deciding which architecture to use

=== break ---

IV. Concrete examples
V. Dealing with mismatched parts
VI, Topics of possible future interest

Week 12 - Shaw/Garlan
Nov 27/03

Typical Descriptions of
Software Architectures

Teenivain ek * Descriptions of software systems
often include a section on “the
architecture of this system”

Usually informal prose plus box-
and-line diagram

m\;‘ {] * Lots of appeal to intuition
] |_/ » Little precision, rarely formal

Architectures

Week 12 - Shaw/Garlan
Nov 27/03

The Role of Software Architecture

User view of problem User Model

Software view of problem Requirement
Components & connections Architecture
Algorithms & data strs Code

Data layouts, memory maps Executable

pr— — — p— p—
bt M M e

Software Architectures

Week 12 - Shaw/Garlan
Nov 27/03

Architectural Design Task

Different issues for architecture & programs

Architecture
interactions among parts
structural properties
declarative
mostly static
system-level performance
outside module boundary
composition of subsystems

Programs
implementations of parts
computational properties
operational
mostly dynamic
algorithmic performance
inside module boundary
copy code or call libraries

Typical Descriptions of
Software Architectures

=

W

v

A

"Camelot is based on the client-server model and
uses remote procedure calls both locally and remotely
to provide communication among applications and
servers." [Spector 87]

"We have chosen a distributed, object-oriented
approach to managing information." [Linton 87]

"The easiest way to make the canonical sequential
compiler into a concurrent compiler is to pipeline the
execution of the compiler phases over a number of
processors." [Seshadri 88]

"The ARC network [follows] the general network

Week 12 - Shaw/Garlan
Nov 27/03

architecture specified by the ISO in the Open
Systems Interconnection Reference Model." [Paulk 85]

wate Architectures

-

Week 12 - Shaw/Garlan
Nov 27/03

Observations about Designers

* They freely use informal patterns (idioms)
> Very informal, imprecise semantics
= Diagrams as well as prose, but no uniform rules
- Communication takes place anyhow
* Their vocabulary uses system-level abstractions
> Overall organization (styles)
= Kinds of components and interactions among them

* They compose systems from subsystems

Week 12 - Shaw/Garlan
Nov 27/03

Expected Benefits

* Clarify design intentions

= Intended architecture is often lost. 1t's mostly informal, it's
hard to communicate anyhow.

* Provide basis for analysis in design

= Engineering design entails performance prediction and design
tuning. Routine practice

* Improve maintenance

> Over half of maintenance effort goes into figuring oul just
what's there

* Provide good questions
= Even without formal methods, explicit attention to experience

wate Architectures

yields guidance about sensitive points

Week 12 - Shaw/Garlan
Nov 27/03

Anticipated Benefits

Feview document 16%)

swirze change
(%)

wase logic 123%)
Reduce maintenance
ectly and
» Clarify intentions indirectly

* Make decisions and r
p i " estf Avcept
implications explicit

* Permit system-level '
analysis Maintenance

-

Codellnteg

Week 12 - Shaw/Garlan

Nov 27/03 9

Part II: The Conceptual Vocabulary of Styles

1. Architectural design: planning system structure
IL. The variety of software architectures: common styles
> Components and connectors
= Style as design rules
> Lots of examples
I11. Deciding which architecture to use
--- break ---
IV. Concrete examples
V. Dealing with mismatched parts
VI. Topics of possible future interest

Week 12 - Shaw/Garlan
Nov 27/03

Common Architectural Idioms

1. Data flow systems
Batch sequential Pipes and filters
Control loops
2. Call-and-return systems
Main program & subroutines Object-oriented systems
3. Independent components
Communicating processes Event systems
4. Data-centered systems (repositories)
Databases Blackboards
5. Virtual machines
Interpreters Rule-based systems

Hierarchical layers

. and more ...

Week 12 - Shaw/Garlan m
Nov 27/03

Group 1: Dataflow Architectures

* Batch sequential

= Historically dominated by database updates
* Pipes and filters

> Filters connected in a dataflow graph
* Others

= Pipelines

= Control loops (Closed-loop control)

Week 12 - Shaw/Garlan
Nov 27/03

Data Flow Systems

+ A data flow system is one in which
> availability of data controls computation

= the structure of the design is dominated by orderly motion of

data from component to component
= the pattern of data flow is explicit
* In a pure data flow system, there is no other
interaction between processes

Week 12 - Shaw/Garlan

Kinds of Data Flow Systems

In general, data can
fow in arbitrary
patterns

Here we are primarily

data flow systems,

constrained cyclic
structures

interested in nearly- linear

orin very simple, highly

Week 12 - Shaw/Garlan
Nov 27/03

Nov 27/03 13
Batch Sequential
Data Transformation
tape tape tape tape
— | validate l—’| Sort |—>| Update || Report ‘—-
\ / —
/ Classical data processing
Data Flow
are Architectures
Week 12 - Shaw/Garlan I5

Nov 27/03

Batch Sequential: Model

* Processing steps are independent programs

* Each step runs to completion before next step starts
* Data transmitted as a whole between steps

* Typical applications:

= classical data processing
= program development

Week 12 - Shaw/Garlan
Nov 27/03

Pipes and Filters

Week 12 - Shaw/Garlan

Pipes and Filters: Model

* Filter
= Incrementally transform some amount of the data at inputs
to data at outputs
» Stream-to-stream transformations
= Use little local context in processing stream
> Preserve no state between instantiations
* Pipe
= Move data from a filter output to a filter input
> Pipes form data transmission graphs
* Overall Computation

> Run pipes and filters (non-deterministically) until no more
compulations are possible.

wate Architectures

Lo

Week 12 - Shaw/Garlan
Nov 27/03

Nov 27/03 17
Batch Sequential vs Pipe & Filter (UNIX
Both
Decompose task into fixed sequence of computations
Interact only through data passed from one to another
Batch Sequential Pipe/Filter
Coarse-grained, total Fine-grained, incremental
High latency (real-timeput ok Processing localized in input
No concurrency Feedback loops possible
Non-interactive Often interactive, awkwardly
Week 12 - Shaw/Garlan 19

Nov 27/03

Group 2: Call-and-Return Architectures

* Main program and subroutines

= Classical functional decomposition
* Object-oriented (abstract data types)

> Information hiding, especially hiding of representations
* Layered hierarchies

= Decompositions in which each element interacts only with
adjacent elements

* Other
> Client-server systems
= Remote procedure calls

ware Architectures

-

Week 12 - Shaw/Garlan
Nov 27/03

20

Control Flow vs Data Flow

+ Control Flow
> Dominant question is how locus of control moves through the
program
= Data may accompany the control but is not dominant
= Reasoning is about order of computation
* Data Flow

= Dominant question is how data moves through a collection of
(atemic) computations

> As data moves, control is activated
> Reasoning is about data availability, transformation, latency

Week 12 - Shaw/Garlan

Nov 27/03 21

Main Program/Subroutine Pattern

(Main controller j
J.

%uh 1

Sub 2

Subroutines Call/return

Software Architectures

Week 12 - Shaw/Garlan

Main Program and Subroutines

* Hierarchical decomposition:

> Based on definition-use relationship
* Single thread of control:

= Supported directly by programming languages
* Subsystem structure implicit:

= Subroutines typically aggregated into modules
* Hierarchical reasoning:

= Correctness of a subroutine depends on the correctness of the
subroutines it calls

-

Week 12 - Shaw/Garlan

Nov 27/03 3

Nov 27/03 2
Data Abstraction or Object-Oriented
Manager , . ﬂ/
Proe call
I —
ohj is a manager
op s an invocation
Week 12 - Shaw/Garlan 2%

Nov 27/03

Object Architectures: Model

* Encapsulation:

> Restrict access to cerfain information
* Inheritance:

> Share one definition of shared functionality
* Dynamic binding:

= Determine actual operation to call at runtime
* Management of many objects:

= Provide structure on large set of definitions
* Reuse and maintenance:

= Exploit encapsulation and locality

Week 12 - Shaw/Garlan

Nov 27/03 25

Group 3: Independent Components

* Communicating processes

= Passing messages among known partieipants
* Event systems

= Implicit invecation with unknown participants
* Others

> Multicast messages with dynamic binding

= Interrupt-driven processes

Week 12 - Shaw/Garlan

Nov 27/03 26

Communicating Processes

Composite

procisa

msg s 1 message

Week 12 - Shaw/Garlan

Nov 27/03 7

Communicating Processes

* Components: independent processes
> typically implemented as separate tasks
* Connectors: message passing
> point-to-point
> asynchronous and synchronous
= RPC and other protocols can be layered on top

Week 12 - Shaw/Garlan

Nov 27/03 28

Event Systems

Implicit Invocation

/ \ /

-

Week 12 - Shaw/Garlan

Nov 27/03 2

Event Systems: Model

+ Components: objects or processes
> Interface defines a set of incoming procedure calls
= Interface also defines a set of outgoing events
* Connections: event-procedure bindings
> procedures are registered with events
= components communicate by announcing events at
“appropriate” times
> when an event is announced the associated procedures are
(implicitly) inveked
> order of invocation is non-deterministic

Week 12 - Shaw/Garlan

Group 5: Data-Centered Systems
(Repositories)

« Transactional databases
= Large central data store
= Operation order determined by input stream
* Blackboards
= Central shared representation tuned to application
= "Knowledge sources" execute opportunistically
* Others
= CASE tools
> Integrated design systems

(mz: were referred to as group 4 earlier)

Week 12 - Shaw/Garlan

Nov 27/03 3

Nov 27/03 0
Repository (Blackboard)
Direct gecess n G omputation
Blackboard
(shared
data)
- \"‘"
m Memory
Week 12 - Shaw/Garlan 0

Nov 27/03

The Blackboard Model

* Knowledge Sources

= World and domain knowledge partitioned into separate,
independent computations

= Respond to changes in blackboard
* Blackboard Data Structure

> Entire state of problem solution

= Hierarchical, nonhomogeneous

> Only means by which knowledge sources interact to yield
solution

* Control

= In model, knowledge sources self-activating

Week 12 - Shaw/Garlan

Nov 27/03 B

Group 4: Virtual machines

* Interpreters

= Create virtual machine when the one you want isn't there
* Rule-based systems

> Specific kind of interpreter
= Other

= Syntactic "shells"

> Command language processors

(mz: were referred to as group 4 earlier)

ware Architectures

-

Week 12 - Shaw/Garlan

Interpreter: Model

* Execution engine simulated in software
* Data:
= representation of program being interpreted
> data (program state) of program being interpreted
= internal state of interpreter
* Control resides in "execution cycle” of interpreter

> but simulated control flow in interpreted program resides
in internal interpreter state

* Syntax-driven design

Week 12 - Shaw/Garlan

Nov 27/03 35

Nov 27/03 i
Layered Pattern
Usually —
procedure Useful Sys
Basic Ut
I
|
Composites of Users
various elements
Week 12 - Shaw/Garlan 36

Nov 27/03

Layered Pattern: Model

* Each layer provides certain facilities
= hides part of lower layer
= provides well-defined interfaces
* Serves various functions
= kernels: provide core capability, often as set of procedures
= shells, virtual machines: support for portability
* Various scoping regimes
= Opaque versus translucent layers

Week 12 - Shaw/Garlan 37
Nov 27/03

Comparison of System Patterns

System Model Components Connections Control Struct

Pipeline
stream -> filters (local data flow data flow
stream processing) ASCII streams
Data abstraction (object-oriented)
localized servers procedure decentralized,
state maint (ADTs, objs) call single thread
Events
implicit independent blind loose coupling
invocation components announce
Interpreter
wirtual state mach, fetch, input-driven
machine two memories store
Repository
central 1 memory direct access internal or
Cdatabase N processes or proc call external
tware Architectures

Week 12 - Shaw/Garlan
Nov 27/03

38

Common Architectural Idioms

1. Data flow systems
Batch sequential Pipes and filters
Control loops
2. Call-and-return systems
Main program & subroutines Object-oriented systems
3. Independent components
Communicating processes Event systems
4. Data-centered systems (repositories)
Databases Blackboards
5. Virtual machines
Interpreters Rule-based systems

Hierarchical layers

. and more ...

Week 12 - Shaw/Garlan 39
Nov 27/03

Common Architectural Idioms

-

. Data flow systems

Batch sequential Pipes and filters
Control loops

[l

Call-and-return systems
Main program & subroutines Object-oriented systems

3. Independent components
Communicating processes Event systems

4. Data-centered systems (repositories)
Databases Blackboards

5. Virtual machines
Interpreters Rule-based systems

Hierarchical layers

. and more ...

Week 12 - Shaw/Garlan
Nov 27/03

40

The Punch Line

* Interactions matter -- how a component must
interact, not just what it computes

* Packaging matters -- compatibility among
components, not just functionality

* Distinctions matter -- there are different types
of components, interactions, styles

* Decisions matter -- different kinds of problems
require different solutions

Provide a solid basis in models, notations, and
tools to support developers” intuitions

Week 12 - Shaw/Garlan
Nov 27/03

41

Week 12 - Shaw/Garlan
Nov 27/03

Part ITI: Design Decisions and Processes

1. Architectural design: planning system structure
IL. The variety of software architectures: common styles
II1. Deciding which architecture to use

> Problem frames and solution frames

> Design spaces for considering tradeoffs

> Rules of thumb for selecting architectures

= Example

> Processes for architectural design and review

--- break -

IV. Concrete examples
V. Dealing with mismatched parts
VI. Topics of possible future interest

42

