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Mary Shaw and David Garlan
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Part I: Architectural Design

I.  Architectural design: planning system structure

> What is software architecture?

> What is its relation to other aspects of design?
IL. The variety of software architectures: common styles
III. Deciding which architecture to use

=== break ---

IV. Concrete examples
V. Dealing with mismatched parts
VI, Topics of possible future interest
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Typical Descriptions of
Software Architectures

Teenivain ek * Descriptions of software systems
often include a section on “the
architecture of this system”

# Usually informal prose plus box-
and-line diagram

m\;‘ {] * Lots of appeal to intuition
] |_/ » Little precision, rarely formal

Architectures
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The Role of Software Architecture

User view of problem User Model

Software view of problem Requirement
Components & connections Architecture
Algorithms & data strs Code

Data layouts, memory maps Executable
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bt M M e

Software Architectures
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Architectural Design Task

Different issues for architecture & programs

Architecture
interactions among parts
structural properties
declarative
mostly static
system-level performance
outside module boundary
composition of subsystems

Programs
implementations of parts
computational properties
operational
mostly dynamic
algorithmic performance
inside module boundary
copy code or call libraries

Typical Descriptions of
Software Architectures

=
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"Camelot is based on the client-server model and
uses remote procedure calls both locally and remotely
to provide communication among applications and
servers." [Spector 87]

"We have chosen a distributed, object-oriented
approach to managing information." [Linton 87]

"The easiest way to make the canonical sequential
compiler into a concurrent compiler is to pipeline the
execution of the compiler phases over a number of
processors." [Seshadri 88]

"The ARC network [follows] the general network
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architecture specified by the ISO in the Open
Systems Interconnection Reference Model." [Paulk 85]

wate Architectures

-
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Observations about Designers

* They freely use informal patterns (idioms)
> Very informal, imprecise semantics
= Diagrams as well as prose, but no uniform rules
- Communication takes place anyhow
* Their vocabulary uses system-level abstractions
> Overall organization (styles)
= Kinds of components and interactions among them

* They compose systems from subsystems
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Expected Benefits

* Clarify design intentions

= Intended architecture is often lost. 1t's mostly informal, it's
hard to communicate anyhow.

* Provide basis for analysis in design

= Engineering design entails performance prediction and design
tuning. Routine practice

* Improve maintenance

> Over half of maintenance effort goes into figuring oul just
what's there

* Provide good questions
= Even without formal methods, explicit attention to experience

wate Architectures

yields guidance about sensitive points

Week 12 - Shaw/Garlan
Nov 27/03




Anticipated Benefits

Feview document  16%)

swirze change
(%)

wase logic 123%)
Reduce maintenance
ectly and
» Clarify intentions indirectly

* Make decisions and r
p i " estf Avcept
implications explicit

* Permit system-level '
analysis Maintenance

-

Codellnteg
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Part II: The Conceptual Vocabulary of Styles

1. Architectural design: planning system structure
IL. The variety of software architectures: common styles
> Components and connectors
= Style as design rules
> Lots of examples
I11. Deciding which architecture to use
--- break ---
IV. Concrete examples
V. Dealing with mismatched parts
VI. Topics of possible future interest
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Common Architectural Idioms

1. Data flow systems
Batch sequential Pipes and filters
Control loops
2. Call-and-return systems
Main program & subroutines  Object-oriented systems
3. Independent components
Communicating processes Event systems
4. Data-centered systems (repositories)
Databases Blackboards
5. Virtual machines
Interpreters Rule-based systems

Hierarchical layers

. and more ...
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Group 1: Dataflow Architectures

* Batch sequential

= Historically dominated by database updates
* Pipes and filters

> Filters connected in a dataflow graph
* Others

= Pipelines

= Control loops (Closed-loop control)
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Data Flow Systems

+ A data flow system is one in which
> availability of data controls computation

= the structure of the design is dominated by orderly motion of

data from component to component
= the pattern of data flow is explicit
* In a pure data flow system, there is no other
interaction between processes
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Kinds of Data Flow Systems

In general, data can
fow in arbitrary
patterns

Here we are primarily

data flow systems,

constrained cyclic
structures

interested in nearly- linear

orin very simple, highly
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Batch Sequential
Data Transformation
tape tape tape tape
— | validate l—’| Sort |—>| Update || Report ‘—-
\ / —
/ Classical data processing
Data Flow
are Architectures
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Batch Sequential: Model

* Processing steps are independent programs

* Each step runs to completion before next step starts
* Data transmitted as a whole between steps

* Typical applications:

= classical data processing
= program development
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Pipes and Filters
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Pipes and Filters: Model

* Filter
= Incrementally transform some amount of the data at inputs
to data at outputs
» Stream-to-stream transformations
= Use little local context in processing stream
> Preserve no state between instantiations
* Pipe
= Move data from a filter output to a filter input
> Pipes form data transmission graphs
* Overall Computation

> Run pipes and filters (non-deterministically) until no more
compulations are possible.

wate Architectures

Lo
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Batch Sequential vs Pipe & Filter (UNIX
Both
Decompose task into fixed sequence of computations
Interact only through data passed from one to another
Batch Sequential Pipe/Filter
Coarse-grained, total Fine-grained, incremental
High latency (real-timeput ok Processing localized in input
No concurrency Feedback loops possible
Non-interactive Often interactive, awkwardly
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Group 2: Call-and-Return Architectures

* Main program and subroutines

= Classical functional decomposition
* Object-oriented (abstract data types)

> Information hiding, especially hiding of representations
* Layered hierarchies

= Decompositions in which each element interacts only with
adjacent elements

* Other
> Client-server systems
= Remote procedure calls

ware Architectures

-
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Control Flow vs Data Flow

+ Control Flow
> Dominant question is how locus of control moves through the
program
= Data may accompany the control but is not dominant
= Reasoning is about order of computation
* Data Flow

= Dominant question is how data moves through a collection of
(atemic) computations

> As data moves, control is activated
> Reasoning is about data availability, transformation, latency
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Main Program/Subroutine Pattern

( Main controller j
J.

%uh 1

Sub 2

Subroutines Call/return

Software Architectures
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Main Program and Subroutines

* Hierarchical decomposition:

> Based on definition-use relationship
* Single thread of control:

= Supported directly by programming languages
* Subsystem structure implicit:

= Subroutines typically aggregated into modules
* Hierarchical reasoning:

= Correctness of a subroutine depends on the correctness of the
subroutines it calls

-
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Data Abstraction or Object-Oriented
Manager , . ﬂ/
Proe call
I —
ohj is a manager
op s an invocation
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Object Architectures: Model

* Encapsulation:

> Restrict access to cerfain information
* Inheritance:

> Share one definition of shared functionality
* Dynamic binding:

= Determine actual operation to call at runtime
* Management of many objects:

= Provide structure on large set of definitions
* Reuse and maintenance:

= Exploit encapsulation and locality
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Group 3: Independent Components

* Communicating processes

= Passing messages among known partieipants
* Event systems

= Implicit invecation with unknown participants
* Others

> Multicast messages with dynamic binding

= Interrupt-driven processes
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Communicating Processes

Composite

procisa

msg s 1 message
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Communicating Processes

* Components: independent processes
> typically implemented as separate tasks
* Connectors: message passing
> point-to-point
> asynchronous and synchronous
= RPC and other protocols can be layered on top
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Event Systems

Implicit Invocation

/ \ /

-
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Event Systems: Model

+ Components: objects or processes
> Interface defines a set of incoming procedure calls
= Interface also defines a set of outgoing events
* Connections: event-procedure bindings
> procedures are registered with events
= components communicate by announcing events at
“appropriate” times
> when an event is announced the associated procedures are
(implicitly) inveked
> order of invocation is non-deterministic
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Group 5: Data-Centered Systems
(Repositories)

« Transactional databases
= Large central data store
= Operation order determined by input stream
* Blackboards
= Central shared representation tuned to application
= "Knowledge sources" execute opportunistically
* Others
= CASE tools
> Integrated design systems

(mz: were referred to as group 4 earlier)
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Nov 27/03 0
Repository (Blackboard)
Direct gecess n G omputation
Blackboard
(shared
data)
- \"‘"
m Memory
Week 12 - Shaw/Garlan 0

Nov 27/03




The Blackboard Model

* Knowledge Sources

= World and domain knowledge partitioned into separate,
independent computations

= Respond to changes in blackboard
* Blackboard Data Structure

> Entire state of problem solution

= Hierarchical, nonhomogeneous

> Only means by which knowledge sources interact to yield
solution

* Control

= In model, knowledge sources self-activating
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Group 4: Virtual machines

* Interpreters

= Create virtual machine when the one you want isn't there
* Rule-based systems

> Specific kind of interpreter
= Other

= Syntactic "shells"

> Command language processors

(mz: were referred to as group 4 earlier)

ware Architectures

-
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Interpreter: Model

* Execution engine simulated in software
* Data:
= representation of program being interpreted
> data (program state) of program being interpreted
= internal state of interpreter
* Control resides in "execution cycle” of interpreter

> but simulated control flow in interpreted program resides
in internal interpreter state

* Syntax-driven design
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Layered Pattern
Usually —
procedure Useful Sys
Basic Ut
I
|
Composites of Users
various elements
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Layered Pattern: Model

* Each layer provides certain facilities
= hides part of lower layer
= provides well-defined interfaces
* Serves various functions
= kernels: provide core capability, often as set of procedures
= shells, virtual machines: support for portability
* Various scoping regimes
= Opaque versus translucent layers
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Comparison of System Patterns

System Model Components Connections  Control Struct

Pipeline
stream -> filters (local  data flow data flow
stream processing) ASCII streams
Data abstraction (object-oriented)
localized servers procedure decentralized,
state maint (ADTs, objs)  call single thread
Events
implicit independent blind loose coupling
invocation components  announce
Interpreter
wirtual state mach, fetch, input-driven
machine two memories store
Repository
central 1 memory direct access  internal or
Cdatabase N processes  or proc call external
tware Architectures
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Common Architectural Idioms

1. Data flow systems
Batch sequential Pipes and filters
Control loops
2. Call-and-return systems
Main program & subroutines  Object-oriented systems
3. Independent components
Communicating processes Event systems
4. Data-centered systems (repositories)
Databases Blackboards
5. Virtual machines
Interpreters Rule-based systems

Hierarchical layers

. and more ...
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Common Architectural Idioms

-

. Data flow systems

Batch sequential Pipes and filters
Control loops

[l

Call-and-return systems
Main program & subroutines  Object-oriented systems

3. Independent components
Communicating processes Event systems

4. Data-centered systems (repositories)
Databases Blackboards

5. Virtual machines
Interpreters Rule-based systems

Hierarchical layers

. and more ...
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The Punch Line

* Interactions matter -- how a component must
interact, not just what it computes

* Packaging matters -- compatibility among
components, not just functionality

* Distinctions matter -- there are different types
of components, interactions, styles

* Decisions matter -- different kinds of problems
require different solutions

Provide a solid basis in models, notations, and
tools to support developers” intuitions
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Part ITI: Design Decisions and Processes

1. Architectural design: planning system structure
IL. The variety of software architectures: common styles
II1. Deciding which architecture to use

> Problem frames and solution frames

> Design spaces for considering tradeoffs

> Rules of thumb for selecting architectures

= Example

> Processes for architectural design and review

--- break -

IV. Concrete examples
V. Dealing with mismatched parts
VI. Topics of possible future interest
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