
Week 11 Client/Server

Nov 20/03

CSC407 1

Systems Architecture

Client-Server Systems

(Week 11 hour 1)

Week 11 Client/Server

Nov 20/03

CSC407 2

Is the architecture?

• We continue our smorgasbord of alternative system

structures.

– A little like our buffet of patterns.

• Last week we discussed a monolithic approach

– No good when users need to share the data managed by the system

to work collaboratively.

• This week we describe a few optional ways of building

client server systems.

– Client server

– “Raw” Sockets

– Distributed Objects

– Enterprise Java Beans

• Just a quick tour to introduce a few concepts.

– Much (much) complexity beyond our scope.

Week 11 Client/Server

Nov 20/03

CSC407 3

Client/Server

• In general, any application where multiple clients connect

to a single server.

client1 client2 client3

server

• one client program (most typical)
or

• multiple client programs

Week 11 Client/Server

Nov 20/03

CSC407 4

IPC

• “Inter-Process Communications”

– How processes will communicate and synchronize with one-

another.

– communications mechanisms:

• shared memory

– very fast

– can’t use over a network

» well, you can

• message passing

– can use over a network

– slower

» well, not always

– will consider only message passing (much more common

programming model at present)

Week 11 Client/Server

Nov 20/03

CSC407 5

IPC Protocols

• Basic message-passing mechanisms provide for a byte-

stream only.

• Must implement various protocols on top of this

– sockets

– RPC (remote procedure call)

– DO (distributed objects)

Week 11 Client/Server

Nov 20/03

CSC407 6

Java Sockets code example

public class Server {

 public static void main(String[] args) throws Exception {

 ServerSocket server = new ServerSocket(1234);

 Socket client = server.accept();

 BufferedReader fromClient = new BufferedReader(

 new InputStreamReader(client.getInputStream()));

 System.out.println(fromClient.readLine());

 }

}

public class Client {

 public static void main(String[] args) throws Exception {

 Socket server = new Socket(“localhost”, 1234);

 DataOutputStream toServer = new DataOutputStream(

 server.getOutputStream());

 toServer.writeBytes(“hello server”);

 server.close();

 }

}

Week 11 Client/Server

Nov 20/03

CSC407 7

Performance

• Latency

– The time to go back and forth

• Bandwidth

– The amount of data that can be sent

• Analogy to dump truck of disks

• Can carry quarter million or so (about 1 Gbyte) DVD’s

• I reckon in the region of 10,000 per cubic m

• 5 hours from Montreal to Toronto (18,000 sec)

• Better than 10G/sec.

• Good bandwidth. Crummy latency.

Week 11 Client/Server

Nov 20/03

CSC407 8

Test System

• Windows 2000 Java Server

– Network

• 100 Mbit/s ethernet

– CPU

• dual 1GHz processors

– Memory

• 1 GByte

• Windows 98 Java Client

– Network

• 100 Mbit/s ethernet

– CPU

• 366 MHz

– Memory

• 96 MByte

Week 11 Client/Server

Nov 20/03

CSC407 9

Java/Windows Performance Measures

• Latency: Sending “hello server\r\n” back and forth

– Local method calls

• .13 usec/2call

• 100 cycles or so..

– Socket on local machine

• 70 usec / 2call (x500 i.e 500 times slower than local method call)

– Socket on remote machine

• 320,000 usec /2call (x5,000 , x2,500,000)

• Bandwidth

– Sending “hello server\r\n” to server repeatedly

• 1400 usec / 2call (x10,000 , x230)

Week 11 Client/Server

Nov 20/03

CSC407 10

Performance

In Process Network

Latency 1 2,500,000
Bandwidth 1 10,000

RPC 250x slower than local call

Week 11 Client/Server

Nov 20/03

CSC407 11

C/Windows Performance Measures

• Latency: Sending “hello server\r\n” back and forth

– Local method calls

• .01 usec/2call (10x Java i.e. 10 times faster than Java)

• Only 10 cycles. Not copying string. Just passing it by reference.

– Socket on local machine

• 12 usec / 2call (6x Java)

– Socket on remote machine

• 840 usec /2call (380x Java)

Week 11 Client/Server

Nov 20/03

CSC407 12

Performance

In Process Network

Latency 1 84,000

Week 11 Client/Server

Nov 20/03

CSC407 13

Performance Implications

• Modern research micro-kernel operating systems like

(UofT and IBM’s) k42 require about one thousand cycles

for RPC from one local process to another..

– even C/Windows is pretty slow compared to what it could be..

• Meanwhile, back where the apps are being built..

• Do as few calls as possible over the net
– “Slice” app up correctly or performance will be terrible.

• Consider asynchronous approaches?
– problem: success/failure indications

– send lots of stuff, then synchronize

• Use bigger transactions

• Prefer one call with lots of data to many calls with the

same amount of data
– but not by much

• Send as little data as possible
Week 11 Client/Server

Nov 20/03

CSC407 14

Relational Databases

• Most common type of client/server software is where the

server is an RDBMS server:

• Oracle

• SQLserver

• Sybase

• Informix

• mySQL

• postgress

Week 11 Client/Server

Nov 20/03

CSC407 15

Relational Databases

• Most common client/server program is where the server is

a relational database server.

– warning: some use the term client/server to refer to this usage

exclusively (we won’t).

RDBMS

client1 client2 client3

Week 11 Client/Server

Nov 20/03

CSC407 16

Relational Database Implementation

disks

client1 client2 client3

RDBMS Server

Week 11 Client/Server

Nov 20/03

CSC407 17

Proprietary Client/Server

• Most of the time, when are assisted by a clerk in

government or business plugging data into a graphical user

form, they are operating a proprietary client.

– Powerbuilder was dominant at one point.

– Microsoft visual basic apps query databases using proprietary

ODBC protocol.

– Popularity somewhat eclipsed by “thin client” applications.

– All big database vendors have their own equivalent products.

– Usually include elaborate screen builder development environment

– Often include own language to control client.

– Include very elaborate widgets that do things like populate tabular

data from the results of database queries.

– Total victory of tactics (speed of development) over strategy

(reusable and well packaged business logic).

Week 11 Client/Server

Nov 20/03

CSC407 18

Database Access

• Access using SQL (Standard Query Language)

select itemname,quantity

from

orderitems,items

where

orderid = 239

and

orderitems.itemid = items.itemid

query result

itemname quantity

bread 2142

sugar 345

includes notion of a “stored

procedure” if a chunk of SQL like

this is parameterized and named

Week 11 Client/Server

Nov 20/03

CSC407 19

Programmatic Database Access

• Can access database by

– typing commands at an sql command prompt

– by running a GUI tool

– programmatically

• ODBC

– Open Database Connectivity – Microsoft standard API

– ANSI/ISO CLI is ODBC level1 compliant (Call Level Interface)

» (see also DAO, OLE DB and ADO)

• JDBC

– very similar to ODBC

• Various embedded SQL hacks

Week 11 Client/Server

Nov 20/03

CSC407 20

JDBC

• All sorts of possible configurations of client-side & server-
side drivers

RDBMS

server

JDBC

ODBC

App

Week 11 Client/Server

Nov 20/03

CSC407 21

import java.sql.*;

 public class Main {

 private static final query =

 “select itemname,quantity “ +

 “from orderitems,items “ +

 “where orderid=1 and orderitems.itemid=items.itemid”;

 public static void main(String[] args) throws Exception {

 Class.forName(“sun.jdbc.odbc.JdbcOdbcDriver”);

 Connection c = DriverManager.getConnection(“jdbc:odbc:grocery”);

 Statement s = c.createStatement();

 if(s.execute(query)) {

 ResultSet r = s.getResultSet();

 printResults(r);

 }

 }

 private static void printResults(ResultSet r) throws Exception {

 final int nC = printHeadings(r);

 printRows(nC, r);

 }

 …

 }

Database Access from Java

Week 11 Client/Server

Nov 20/03

CSC407 22

Database Access from Java

private static int printHeadings(ResultSet r)

throws Exception {

 ResultSetMetaData m = r.getMetaData();

 final int nC = m.getColumnCount();

 for(int c = 1; c <= nC; c++) {

 System.out.print(m.getColumnName(c));

 System.out.print(“\t”);

 }

 System.out.println();

 return nC;

}

Week 11 Client/Server

Nov 20/03

CSC407 23

Database Access from Java

private static void printRows(int nC, ResultSet r)

throws Exception {

 while(r.next()) {

 for(int c = 1; c <= nC; c++) {

 System.out.print(r.getString(c));

 System.out.print(“\t”);

 }

 System.out.println();

 }

}

Week 11 Client/Server

Nov 20/03

CSC407 24

Without ODBC

Class.forName(

 “org.gjt.mm.mysql.Driver“

);

Connection c = DriverManager.getConnection(

 "jdbc:mysql://penny.dhcp.cs.toronto.edu/grocery”

);

Week 11 Client/Server

Nov 20/03

CSC407 25

Performance

• localhost

– JDBC:ODBC

• 850 us/query

– JDBC:MYSQL

• 500 us/query

• over network

– JDBC:ODBC

• 3,800 us/query

– JDBC:MYSQL

• 1,600 us/query

• local Java method call

– 0.13 us/query

• C socket over network

• 840 us/query

database does work.

Week 11 Client/Server

Nov 20/03

CSC407 26

Data Compatibility

• Issue with any sort of system is how to support changes in

data format from release to release of the software:

– backwards compatible

• newer releases of the software can open older datasets

– forwards compatible

• older releases of the software can open newer datasets

• General approach

– have some sort of flexible header format

– for backwards compatibility:

• encode a current data version number

– for forwards compatibility

• store the oldest data version number such that

– older software that uses that data version can still use this data

Week 11 Client/Server

Nov 20/03

CSC407 27

RDBMS Compatibility Advantages

• RDBMS's have 2 advantages w.r.t compatibility:

– The data is not fragile.

• e.g., in a binary file format, one small change somewhere can screw

up the whole file

• in SQL the schema can change considerably yet the data can still be

accessed

– Query engines can be very fast. Optimizers are sophisticated.

– RDBMS are intended to be the main store for data as applications

are developed and mature.

– And languish on life support interminably..

– RDBMSs support schema evolution

• SQL

– CREATE TABLE

– MODIFY TABLE

Can work on in-place databases

Week 11 Client/Server

Nov 20/03

CSC407 28

UpdateDatabase Code Example

private void updateDatabase() {

 int version = getDataVersion();

 if(version < 1)

 die(“DB consistency error: Version number must be 1 or greater”);

 switch(version) {

 case 1:

 updateDatabaseToVersion2();

 // fall-through

 case 2:

 updateDatabaseToVersion3();

 // fall-through

 case 3:

 o.println(“<Database is up-to-date>”);

 break;

 default:

 die(“Database was created with newer version of software”);

 break;

 }

}

Week 11 Client/Server

Nov 20/03

CSC407 29

Update Database Code

private void updateDatabaseToVersion2() {

 o.println(“<Converting database from version 1 to version 2>”);

 try {

 sqlup(“ALTER TABLE Coders ADD COLUMN w REAL”);

 sqlup(“UPDATE Coders SET w = 0.6”);

 sqlup(“UPDATE Version SET version = 2”);

 sqlcommit();

 } catch(Exception e) {

 try {

 sqlrollback();

 } catch(Exception e2) { }

 die(“Error converting database to version 2: “ +

 e.getMessage());

 }

}

