Systems Architecture

Monolithic Systems

week 10 - Monolithic CSC407
Nov 13/03

Monolithic Systems

e “no architecture”

reports

-\\-

./

static data |

./

imported data

—
I:I |

dynamic data

m

week 10 - Monolithic CSC407
Nov 13/03

Examples

* Most programs you deal with day-to-day
— word processing
— spreadsheets
— powerpoint
— e-mail (?)
— inexpensive accounting packages
— development environments
— compilers
— many games
» Large, corporate batch systems
— payroll
— reports
— astounding number of very large mainframe COBOL programs

week 10 - Monolithic CSC407
Nov 13/03

Characteristics

* Usually written in a single programming language.
* Everything compiled and linked into a single (monolithic)
application
— as large as 1 MLOC C++
— as large as 100M loaded executable
— as large as 2G virtual memory
* May operate in both
— batch mode
— GUI mode
* Data
— load into memory
— write all back on explicit save
— No simultaneous data sharing
* May have concurrency
— multi-threading
— multi-processing (but only one executable)

week 10 - Monolithic CSC407
Nov 13/03

Concurrency

» multiple threads share address space.
+ Java includes built in threads.
* Windows NT supports threads well.

* “modern” programming model.
source code

shared memory
shared system resources
single or multi-cpu

executes within 0S Process

oo ee
multi-threading

1 source code

Threads share address space hence sharing data is
fast but requires sophisticated synchronization.

week 10 - Monolithic CSC407
Nov 13/03

Concurrency

* symmetric multi-processing
+ newly forked processes get copy of parents address space

* old unix style..
master

program

fork
fork

slaves program

[[program
@

1 source code

precise copies except for fork() return value

forked processes start out with a copy of parent’s
address space. Sharing harder and more coarse grained
hence fewer synchronization issues.

week 10 - Monolithic CSC407
Nov 13/03

Concurrency

+ distributed processing
+ different programs cooperating.

1) [l program 2
program
® ®e
e ®
many source codes
week 10 - Monolithic CSC407

Nov 13/03

Concurrency

* Why multi-threading?
— Throughput (when you have access to multiple CPUs)

A design philosophy for dealing with asynchronous events
* interrupts
» GUI events
+ communications events
— Maintain interactivity
+ can continue to interact with user despite time-consuming operations
* c.g., msword green grammer squigglies
performance
* pre-load, network initializations
multi-tasking (lets the user do many tasks at once)
* e.g., downloads from the net

* You probably will have to multi-thread your program

— ..so start early in the design process

week 10 - Monolithic CSC407
Nov 13/03

Concurrency

* Why symmetric multi-processing?

you need parallelism
* throughput
* interactivity..
— aprogram is not written to be multi-threaded
* many unix systems lacked good thread implementations until recently

— modern fork implementations good, hence cost may be
inexpensive relative to amount of work to be done by slaves.

— Course grained parallelism.
* Many (unix) system mechanisms support communication
between processes:
— signals, pipes, named pipes, shared memory regions, message
queues, etc.
— Mostly outside programming language purview.

week 10 - Monolithic CSC407 9

Nov 13/03

Monolithic Architecture

* A monolithic system is therefore characterized by
— 1 source code
— 1 program generated
— but... may contain concurrency

week 10 - Monolithic CSC407
Nov 13/03

Data

* In a monolithic architecture

data is read into application memory

— data is manipulated

— reports may be output

— data may be saved back to the same source or different

» Multi-user access is not possible

week 10 - Monolithic CSC407 11
Nov 13/03

Multi-User Access

» Can changes by one user be seen by another user?
— not if each copy of the application reads the data into memory
— only sequential access is possible

o O O ©

week 10 - Monolithic CSC407
Nov 13/03

Multi-User Access

» Allowing multiple users to access and update volatile data
simultaneously is difficult.
* Big extra cost

— require relational database expertise or other heavyweight
infrastructure.

e More on this later.

week 10 - Monolithic CSC407 13
Nov 13/03

Advantages of Monolithic Systems

* Performance
— Reading and writing of data can be optimized for performance
without regard to issues such as multi-user data sharing.
— read data directly from the disk via file system

— read data less directly from the disk via layers of intervening
software (e.g., RDBMS, OODBMS, distributed data server).

— modifying data needn’t worry about writers in other address
spaces.

* in-memory is massively quicker
+ caching would present many subtle issues for shared data systems
— No IPC overhead
» Simplicity
— less code to write
— fewer issues to deal with
* locking, transactions, integrity, performance, geographic distribution

week 10 - Monolithic CSC407 14
Nov 13/03

Disadvantages of monolithic systems

» Lack of support for shared access
— forces one-at-a-time access
— mitigate:
+ allowing datasets that merge multiple files
* hybrid approaches
— complex monolithic analysis software
— simple data client/server update software
* Quantity of data
— when quantity of data is too large to load into memory
* too much time to load
* too much virtual memory used
— Depending on which is possible
* sequential access (lock db or shadow db)
* selective access

week 10 - Monolithic CSC407 15
Nov 13/03

Red Herring

* Monolithic systems are “less modular” ??
» monolithic exterior obscures potential modularity of
isolated layers or other software structure.

week 10 - Monolithic CSC407 16
Nov 13/03

Red Herring

* The code for distributed systems will need to share common objects.

— The fact that the system has been sliced into distributed programs doesn’t
mean that modules are nicely decoupled.

week 10 - Monolithic CSC407 17
Nov 13/03

Red Herring (sort of)

 Distributed systems require architects to define and
maintain interfaces between components
— stub generator need to know the distributed interface.
— overmuch coupling shows up as performance problem.
even for RDBMS systems
+ relational schema + stored procedures define an important interface
by default: nothing is visible

» must work to expose interface
» For monolithic systems, this is “optional”

— Dbecause there are no process boundaries, any tiny component can
depend on (use, invoke, instantiate) any other in the entire
monolithic system. e.g.,

extern void a_routine I should not call(int a, int b);
— default: everything is visible

* must work to hide non-interface

Module Structure
» To preserve the architectural integrity of a monolithic

system, we must work to define and maintain (typically)
extra-linguistic sub-system boundaries.

>

S o

— recall facade pattern

week 10 - Monolithic CSC407 19
Nov 13/03

week 10 - Monolithic CSC407 18
Nov 13/03

Library Structure (unix)

cl/lib/link for windows

foo.c foo.o bar.o
01010010010101

— 100 ///

1090010010100

1 1
011010101010101 011010101010101
01101010101010 01101010101010

o \

0 010
1010100100101 1010100100101

/ \ main.o

01010010010101

main

0101001000101
1

010
101010010010

lib.a/lib.so

01010010010101

10100100101000
1001000210010001
1001010100100101
011010100100101
011010101010101
01101010101010

10100100101000
1001000210010001
1001010100100101
011010100100101
011010101010101
01101010101010

010
1010100100101

1010100100101

\

week 10 - Monolithic CSC407 20
Nov 13/03

Library Structure in C/C++

* Decide
— how many libraries to have
— their names
— which subsystems go into which libraries
* wise to align library structure with a subsystem or layer
* not necessary to do so
— I’ve seen libs organized by alphabetic split of objects.
* rationale
e Why?
— reduce compilation dependencies
¢ can be changing a bunch of .c’s and .h’s and others can keep using the library
* but... don’t change any.h’s exported beyond the library
* “poor man’s” configuration management system
— often most practical
— Reduces link time (libraries often pre-linked)
— Shipping libraries
¢ Common library supports many apps
* Hopefully libraries are reusable.

week 10 - Monolithic CSC407 21
Nov 13/03

