
week 10 - Monolithic
Nov 13/03

CSC407 1

Systems Architecture

Monolithic Systems

week 10 - Monolithic
Nov 13/03

CSC407 2

Monolithic Systems

• “no architecture”

static data

dynamic data

imported data

reports

week 10 - Monolithic
Nov 13/03

CSC407 3

Examples

• Most programs you deal with day-to-day

– word processing

– spreadsheets

– powerpoint

– e-mail (?)

– inexpensive accounting packages

– development environments

– compilers

– many games

• Large, corporate batch systems

– payroll

– reports

– astounding number of very large mainframe COBOL programs

week 10 - Monolithic
Nov 13/03

CSC407 4

Characteristics

• Usually written in a single programming language.
• Everything compiled and linked into a single (monolithic)

application
– as large as 1 MLOC C++
– as large as 100M loaded executable
– as large as 2G virtual memory

• May operate in both
– batch mode
– GUI mode

• Data
– load into memory
– write all back on explicit save
– No simultaneous data sharing

• May have concurrency
– multi-threading
– multi-processing (but only one executable)

week 10 - Monolithic
Nov 13/03

CSC407 5

Concurrency

• multiple threads share address space.

• Java includes built in threads.

• Windows NT supports threads well.

• “modern” programming model.

executes within

shared memory
shared system resources
single or multi-cpuOS Process

multi-threading

source code

1 source code

Threads share address space hence sharing data is
fast but requires sophisticated synchronization.

week 10 - Monolithic
Nov 13/03

CSC407 6

Concurrency

• symmetric multi-processing

• newly forked processes get copy of parents address space

• old unix style..

program
master

slaves

precise copies except for fork() return value

program

fork

program

fork

1 source code

forked processes start out with a copy of parent’s
address space. Sharing harder and more coarse grained
hence fewer synchronization issues.

week 10 - Monolithic
Nov 13/03

CSC407 7

Concurrency

• distributed processing

• different programs cooperating.

program 1
program 2

many source codes

week 10 - Monolithic
Nov 13/03

CSC407 8

Concurrency

• Why multi-threading?

– Throughput (when you have access to multiple CPUs)

– A design philosophy for dealing with asynchronous events

• interrupts

• GUI events

• communications events

– Maintain interactivity

• can continue to interact with user despite time-consuming operations

• e.g., msword green grammer squigglies

– performance

• pre-load, network initializations

– multi-tasking (lets the user do many tasks at once)

• e.g., downloads from the net

• You probably will have to multi-thread your program

– ..so start early in the design process

week 10 - Monolithic
Nov 13/03

CSC407 9

Concurrency

• Why symmetric multi-processing?

– you need parallelism

• throughput

• interactivity..

– a program is not written to be multi-threaded

• many unix systems lacked good thread implementations until recently

– modern fork implementations good, hence cost may be

inexpensive relative to amount of work to be done by slaves.

– Course grained parallelism.

• Many (unix) system mechanisms support communication

between processes:

– signals, pipes, named pipes, shared memory regions, message

queues, etc.

– Mostly outside programming language purview.

week 10 - Monolithic
Nov 13/03

CSC407 10

Monolithic Architecture

• A monolithic system is therefore characterized by

– 1 source code

– 1 program generated

– but… may contain concurrency

week 10 - Monolithic
Nov 13/03

CSC407 11

Data

• In a monolithic architecture

– data is read into application memory

– data is manipulated

– reports may be output

– data may be saved back to the same source or different

• Multi-user access is not possible

week 10 - Monolithic
Nov 13/03

CSC407 12

Multi-User Access

• Can changes by one user be seen by another user?

– not if each copy of the application reads the data into memory

– only sequential access is possible

shared data

week 10 - Monolithic
Nov 13/03

CSC407 13

Multi-User Access

• Allowing multiple users to access and update volatile data

simultaneously is difficult.

• Big extra cost

– require relational database expertise or other heavyweight

infrastructure.

• More on this later.

week 10 - Monolithic
Nov 13/03

CSC407 14

Advantages of Monolithic Systems

• Performance

– Reading and writing of data can be optimized for performance

without regard to issues such as multi-user data sharing.

– read data directly from the disk via file system

– read data less directly from the disk via layers of intervening

software (e.g., RDBMS, OODBMS, distributed data server).

– modifying data needn’t worry about writers in other address

spaces.

• in-memory is massively quicker

• caching would present many subtle issues for shared data systems

– No IPC overhead

• Simplicity

– less code to write

– fewer issues to deal with

• locking, transactions, integrity, performance, geographic distribution

week 10 - Monolithic
Nov 13/03

CSC407 15

Disadvantages of monolithic systems

• Lack of support for shared access

– forces one-at-a-time access

– mitigate:

• allowing datasets that merge multiple files

• hybrid approaches

– complex monolithic analysis software

– simple data client/server update software

• Quantity of data

– when quantity of data is too large to load into memory

• too much time to load

• too much virtual memory used

– Depending on which is possible

• sequential access (lock db or shadow db)

• selective access

week 10 - Monolithic
Nov 13/03

CSC407 16

Red Herring

• Monolithic systems are “less modular” ??

• monolithic exterior obscures potential modularity of

isolated layers or other software structure.

week 10 - Monolithic
Nov 13/03

CSC407 17

Red Herring

• The code for distributed systems will need to share common objects.

– The fact that the system has been sliced into distributed programs doesn’t

mean that modules are nicely decoupled.

week 10 - Monolithic
Nov 13/03

CSC407 18

Red Herring (sort of)

• Distributed systems require architects to define and

maintain interfaces between components

– stub generator need to know the distributed interface.

– overmuch coupling shows up as performance problem.

– even for RDBMS systems

• relational schema + stored procedures define an important interface

– by default: nothing is visible

• must work to expose interface

• For monolithic systems, this is “optional”

– because there are no process boundaries, any tiny component can

depend on (use, invoke, instantiate) any other in the entire

monolithic system. e.g.,

 extern void a_routine_I_should_not_call(int a, int b);

– default: everything is visible

• must work to hide non-interface

week 10 - Monolithic
Nov 13/03

CSC407 19

Module Structure

• To preserve the architectural integrity of a monolithic

system, we must work to define and maintain (typically)

extra-linguistic sub-system boundaries.

– recall façade pattern

week 10 - Monolithic
Nov 13/03

CSC407 20

Library Structure (unix)

cl/lib/link for windows

foo.c

gcc

foo.o
01010010010101
100
10100100101000
1001000210010001
1001010100100101
011010100100101
011010101010101
01101010101010
010
1010100100101

ar/ln

lib.a/lib.so
01010010010101
100
10100100101000
1001000210010001
1001010100100101
011010100100101
011010101010101
01101010101010
010
1010100100101

bar.o
01010010010101
100
10100100101000
1001000210010001
1001010100100101
011010100100101
011010101010101
01101010101010
010
1010100100101

main.o
01010010010101
100
10100100101000
1001000210010001
1001010100100101
011010100100101
011010101010101
01101010101010
010
1010100100101

lib2.a
01010010010101
100
10100100101000
1001000210010001
1001010100100101
011010100100101
011010101010101
01101010101010
010
1010100100101

ln

main
01010010010101
100
10100100101000
1001000210010001
1001010100100101
011010100100101
011010101010101
01101010101010
010
1010100100101

week 10 - Monolithic
Nov 13/03

CSC407 21

Library Structure in C/C++

• Decide

– how many libraries to have

– their names

– which subsystems go into which libraries
• wise to align library structure with a subsystem or layer

• not necessary to do so

– I’ve seen libs organized by alphabetic split of objects.

• rationale

• Why?

– reduce compilation dependencies
• can be changing a bunch of .c’s and .h’s and others can keep using the library

• but… don’t change any.h’s exported beyond the library

• “poor man’s” configuration management system

– often most practical

– Reduces link time (libraries often pre-linked)

– Shipping libraries
• Common library supports many apps

• Hopefully libraries are reusable.

