
week 10 - Architecture

Intro. Nov 13/03

CSC407 1

• A “software architecture” is the structure (or structures) of

a system, which comprise:

– software components,

– the externally visible properties of those components,

– and the relationships among them.

• This is a pretty soft definition

– I don’t think there is any consensus on how to describe an

architecture formally.

• An architecture is primarily an artifact used to

communicate the overarching structure of a system.

– Before, during and after the construction of a system.

– Between various stakeholders.

Architecture Definition

week 10 - Architecture

Intro. Nov 13/03

CSC407 2

• Architecture defines “components”

– an abstraction

– suppresses details not pertinent to its interactions with other

components

• An architecture comprises more than one structure

– modular structure (calls/uses)

– process structure (invokes, communicates with, synchronises with)

– physical structure (libraries, DLL’s, processors)

– …

Components & Structures

week 10 - Architecture

Intro. Nov 13/03

CSC407 3

In Practice

• Divide into two levels:

– System-Level Architecture

– Programming-Level Design

[User Interface

– Sometimes also referred to as “design” (or even

“architecture”)

– Different topic. Not covered in this course.

]

week 10 - Architecture

Intro. Nov 13/03

CSC407 4

Requirements

Architecture

Code
&

Unit
Test

C&ut C&ut C&ut C&ut C&ut C&ut

Integration Test

System Test

Design & Architecture in the Development Process

Design Design Design Design

week 10 - Architecture

Intro. Nov 13/03

CSC407 5

Software Architecture

• Specifying at the highest level the construction of

the system:

– Technology choices

• Platforms, language, database, middleware, …

– System construction

• Overall pattern: Monolithic, RDBMS, client/server, 3-tiered,

n-tiered, distributed, …

• Hardware interfaces (if any)

– Division into programs

• E.g. a program for data entry, another for data analysis, a Web-

oriented interface, …

– Division of programs into major subsystems

• Reuse strategy (shared subsystems)

• Major strategies (e.g., for persistence, IPC, …)

week 10 - Architecture

Intro. Nov 13/03

CSC407 6

Software Design

• Mostly about structure of code and data.

• E.g., Object-Oriented

– What classes? What inheritance amongst the classes?

– What classes will call what other classes?

– How are classes grouped into subsystems (e.g. Java
packages)?

– What data members of classes

• Must decide these things at some point during the
coding process.

– Wish to minimize re-writes now and down the line

– Danger in early over-complexity (c.f. Extreme
Programming)

week 10 - Architecture

Intro. Nov 13/03

CSC407 7

Architecture & Design

• Architecture

– High-level

– Major decisions

– Not even thinking about programming

• Design

– “Laying out” the programming language code used to implement

the architecture

– Organizing programming language concepts

• Both make decisions amongst many unknowns and

attempt to minimize inconsistent invention as construction

continues.

• Largely to help the designers and implementors share a

vision of what they are creating.

week 10 - Architecture

Intro. Nov 13/03

CSC407 8

Documentation of an Architecture

• If it’s not reviewable (written down), it doesn’t exist.

• Architectures sometime suffer from over-elaborate
documentation
– Unnecessary. Simply document your decisions.

– Most systems don’t deserve elaborate architectural documentation

• Dealing with unknowns
– Indicate they are unknown for the present

– Cycle back later and add new decisions taken

– But beware of costs of postponing decisions vs cost of “analysis
paralysis”

• Must religiously keep architecture document up-to-date
– Very hard to do in practice: takes effort.

– Exposes kludges.

– I’m afraid to say I have personally experienced only a few big
projects that released into production with an up-to-date arch
document! (I was development manager in both cases.)

– Therefore keep it simple as possible (but no simpler).

week 10 - Architecture

Intro. Nov 13/03

CSC407 9

Two Main Architectural Structures

• Modular structure

– Purely static

– Not evident at run-time

– May or may not be supported by the

implementation language(s) and/or runtime.

• Structures that survive through execution

– E.g., pipes, processes, networks, objects, files..

• Both views need to be considered (not the

same)

week 10 - Architecture

Intro. Nov 13/03

CSC407 10

The Essence of the Architecture Document
• Imagine after the system has been built attempting to

describe as cogently and in as compact a form as possible

how the system has been put together.

• Your target audience is knowledgeable professionals in the

field, but unfamiliar with the domain.

• Must be distillable into a 1 hour pitch that should suffice to

get across the basic concepts and structure.

• Stakeholder readers will wish to evaluate your choices

• Development team readers will wish to share your vision

of the structure of the system

• Must be clear as a bell.

week 10 - Architecture

Intro. Nov 13/03

CSC407 11

Unfortunate Reality

• Often one of the few documents written by engineers seen

outside the core team.

• Often reviewed when asked if a given infrastructure is

worth investing more in

– For instance when called on carpet to justify further expenditure.

• Especially scrutinized when early drops exhibit

performance problems!

• Unfortunately often are quite political documents,

– written by consultants

• who are supposed to take the spears..

– involve vendor decisions, hence scrutinized by extremely astute

“sales engineers”.

week 10 - Architecture

Intro. Nov 13/03

CSC407 12

Documentation of a Design

• UML (Unified Modeling Language)
– Expresses OO design using diagrammatic notation

– Complete UML for a typical system is very large.

– A selection must be made for presentation
• Choose the most illuminating parts

• Simplify w.r.t. the actual code

• Divide into small sections (< 1 page)

• Add written text to describe the whys and wherefores.

• Danger of UML and code getting out of synch over time
– Automated tools to keep the two in-synch

• E.g., Rational Rose

– Tools are not perfect:
• Steep learning curves to achieve significant automation

• Not literate

• Don’t work as well as we would want, cumbersome to use

• Eliding detail is difficult, simplifying (lying) is difficult

• Selection of parts for presentation is primitive

• Strive to explain (in writing) your choices to another programmer

week 10 - Architecture

Intro. Nov 13/03

CSC407 13

Documentation

• Architecture

– Informal diagrams

– Written explanations

– Bullet points

• Design

– UML is somewhat more formal

– Reflects actual program structure(?)

– Simplify and divide into small chunks for presentation

– Add written explanations.

• lines and bubbles never will replace English

week 10 - Architecture

Intro. Nov 13/03

CSC407 14

The Waterfall Development Process

• Requirements ! Architecture ! Design !

 Code ! Test

– Variations: Spiral, prototyping, …

• All will have architecture and design artefacts

• Dave Parnas: “A Rational Design Process: How

and when to fake it”

– Not important that the steps are followed in this order

– Only important that after the fact, there are documents

that make it appear as though the process was followed

in that order.

– A little like how a math lecture presents discoveries.

week 10 - Architecture

Intro. Nov 13/03

CSC407 15

Documentation In Practice

• As much requirements as you can manage without getting

bogged down.
– Requirements always contain conflicts. Resolving them all is very

desirable but might take a lot of effort.

– How is an important topic of research.

• As much architecture as you can manage without getting

bogged down
– Proposed architecture will probably contain important omissions.

• Some design

• Some code

• More design

• More code

• Refine architecture

• Fix requirement

week 10 - Architecture

Intro. Nov 13/03

CSC407 16

• Manifests pivotal early design decision

– most difficult to get correct and hardest to change

– defines constraints on the implementation

– inhibits or enables quality attributes

• Defines a work-breakdown structure

– organization (especially important for long-distance development)

– estimation

• A vehicle for stakeholder communication

– an architecture is the earliest artefact that enables the priorities among
competing concerns to be analysed

• Reviewable

– architectural errors are vastly more expensive to fix once a system has been
coded

– Can serve as a basis for training new developers

– As an indication of progress

Why is architecture important?

week 10 - Architecture

Intro. Nov 13/03

CSC407 17

Why is design important?

• When dealing with ~100s of packages and ~1000s of
classes, coders lose sight of the forest for the trees.

– Leads to designs that are muddled and inconsistent

• Buggy, requiring constant re-work

• Long learning curve for new developers

• Hard to fix bugs

– Long time to debug, lots of code to fix, introduce new bugs

• Hard to change

– Lots of time to figure out how to change, lots of code to change,
introduce lots of new bugs

• Higher-level design descriptions lead to better designs

– Can grasp the design at its essence and in its entirety

– Can review and correct early

• Can be used to leverage the skills and experience of better
designers across many developers

week 10 - Architecture

Intro. Nov 13/03

CSC407 18

Developing
organization

Architect

Marketing

End Users

Customers

Current technical

environment
previous experience

Where does architecture come from?

week 10 - Architecture

Intro. Nov 13/03

CSC407 19

– The structure of the developing organisation

– The enterprise goals of the developing organisation

– customer requirements for the next system

– influence later architectural decisions

What does architecture affect?

week 10 - Architecture

Intro. Nov 13/03

CSC407 20

• create the business case

• understand the requirements

– They will be inconsistent.

– What does understand mean?

• create the architecture

• represent and communicate the architecture

• evaluate the architecture

• implement based on the architecture

– ensuring conformance

• enhance/maintain based on the architecture

– ensuring conformance

Architecture process steps

week 10 - Architecture

Intro. Nov 13/03

CSC407 21

Functionality & Quality Attributes

• Functionality usually takes 1st place during

development.

• Systems are more frequently re-designed not

because they are functionally deficient, but rather

because

– They are difficult to maintain

– Difficult to port

– Won’t scale

– Too slow

– Too insecure

– Not fault tolerant

week 10 - Architecture

Intro. Nov 13/03

CSC407 22

System Qualities

• Observable via execution

– Performance

– Security

– Availability

• Reliability = mttf = mean time to failure

• Availability = mttf/(mttf + time to repair)

– Functionality

– Usability

• Not observable via execution

– Modifiability

– Portability

– Reusability

– Integrability

– Testability

week 10 - Architecture

Intro. Nov 13/03

CSC407 23

Business Qualities

– Time-to-market

– Cost

– Projected lifetime

– Target market

– Rollout schedule

– Use of legacy systems

– Conformance to corporate

technology standards.

(businessman, eh?)

week 10 - Architecture

Intro. Nov 13/03

CSC407 24

Architectural Qualities

• Conceptual integrity

• Correctness

• Completeness

• Buildability

– Completed by available team in a timely

manner

Elegant?
Clean?

Pragmatic
?

Trendy?

week 10 - Architecture

Intro. Nov 13/03

CSC407 25

Architectural Means of Achieving Quality

• Two questions

– What structure shall I employ to

• Assign workers

• Derive a work breakdown

• Exploit pre-packaged components

• Plan for modification

– What structure shall I employ so that the

system, at runtime, fulfills its behavioral and

quality attributes.

