Structural Patterns

* How classes and objects are composed to form larger structures
v’ Adapter
« interface converter
v’ Bridge
¢ decouple abstraction from its implementation
v Composite
« compose objects into tree structures, treating all nodes uniformly
v" Decorator
« attach additional responsibilities dynamically

Facade
« provide a unified interface to a subsystem

Flyweight

« using sharing to support a large number of fine-grained objects efficiently
— Proxy
« provide a surrogate for another object to control access

Facade

e Provide a unified interface to a set of interfaces in a
subsystem.

— Facade defines a higher-level interface that makes the subsystem
easier to use

client classes

subsystem classes

week 9b Nov 6/03 - CSC407
Structural

week 9b Nov 6/03 - CSC407 1
Structural
Facade
Compiler
Compiiel)

E—Il{ Scanner |———I-| Token |-—
-—-ﬁ Parser | | Symbol I-I—
T S e

- StatementNode

[steckMachineCodeGenerator | [RISCCodeGenerator | VariableNode

BytecodeStream

CodeGenerator

week 9b Nov 6/03 - CSC407 3
Structural

Applicability

+ you want a simple interface to a complex subsystem
— Subsystems often get more complex as they evolve
+ this makes the subsystem more reusable and easier to customize,

* but it also becomes harder to use for clients that don't need to
customize it

— A fagade can provide a simple default view of the subsystem that
is good enough for most clients

* Only clients needing more customizability will need to look beyond
the fagade

* there are many dependencies between clients and the
implementation classes of an abstraction

— Introduce a fagade to decouple the subsystem from clients and
other subsystems

* you want to layer your subsystems
— Use a fagade to define an entry point to each subsystem level

week 9b Nov 6/03 - CSC407
Structural

Structure

Facade

* Fagade
— knows which subsystem classes are responsible for a request
— delegates client requests to appropriate subsystem objects
* subsystem classes
— implement subsystem functionality
— handle work assigned by the Fagade object
— have no knowledge of the facade

week 9b Nov 6/03 - CSC407 5

Structural

Consequences

» shields clients from subsystem components
— reduces the # of objects clients see
* casier to use subsystem
* promotes weak coupling between the subsystem and its client
— can vary the components of a subsystem without affecting clients
— reduces compilation dependencies

+ doesn't prevent applications from using subsystem classes if
they need to.

— you can choose between ease of use and generality

week 9b Nov 6/03 - CSC407 6
Structural

Proxy

* Provide a surrogate or placeholder for another object to control access
to it
— e.g, on-demand image loading
* so that opening a document is fast (since screen res much lower than print res)

D i Graphic

Image f-— oo ImageProxy if (image == 0} { ™
. image = Loadimage{fileName)
Drawi() mage| praw() L LR LS - Draw(}
GetExent() GetExlent(} o-F---—1 Image->Draw()
Stored) Store() !
3 i 1 if {image == 0) {
Load() Load() L return extent;
imagefmp fileName el image - GetExient();
axtent extent 1
week 9b Nov 6/03 - CSC407

Structural

Proxy - CORBA remote proxy

Clients send messages

Client class to local proxy.

o
ProxyClass
O— .
Proxy serializes parms and
transmits to server
CORBA client
ctwork:
CORBA server
Server deserializes and sends
message to Class. O—
Class
o
week 9b Nov 6/03 - CSC407 8
Structural

Applicability

» whenever there is a need for a more versatile or
sophisticated reference to an object than a simple pointer
— Aremote proxy provides a local representative for an object in a
different address space
— One of main ideas behind “distributed objects”.
— Avirtual proxy creates expensive objects on demand
— A protection proxy controls access to the original object.

— Protection proxies are useful when objects should have different
access rights

— A smart reference is a replacement for a bare pointer that
performs additional actions when an object is accessed
» counting the number of references to the real object (smart pointer)
* loading a persistent object into memory when it's first referenced

+ checking that the real object is locked before it's accessed to ensure
that no other object can change it

— COW (copy-on-write)

Structure

Subject

Requesty)

p

Proxy

raalSubject

Request(} Requesti) o realSubject->Request();

Subject

— defines the common interface for RealSubject and Proxy so that a Proxy can
be used anywhere a RealSubject is expected

RealSubject
— defines the real object that the proxy represents

week 9b Nov 6/03 - CSC407 10
Structural

week 9b Nov 6/03 - CSC407 9
Structural
Structure
Subject
Requesty)
|
raalSubject Proxy

Request(} Requesti) o realSubject->Request();

Proxy
— maintains a reference that lets the proxy access the real subject
— provides an interface identical to Subject's so that a proxy can by substituted for the
real subject
— controls access to the real subject and may be responsible for creating and deleting it
* remote proxies are responsible for encoding a request and its arguments and for sending the
encoded request to the real subject in a different address space
* virtual proxies may cache additional information about the real subject so that they can
postpone accessing it
* protection proxies check that the caller has the access permissions required to perform a
request

week 9b Nov 6/03 - CSC407 11
Structural

Flyweight

» Use sharing to support large numbers of fine-grained
objects efficiently

* Reduce the space consumed by many objects by reusing a
reasonably sized pool of them many times.

» We have been over and over this example. It’s simply the
best one.

* Next up is one of those pictures that is worth a thousand
words..

week 9b Nov 6/03 - CSC407 12
Structural

Flyweight zoom in Flyweight
=]
e
= F-xk
= Tl
== —
it . - character
\\ 3 objects
\\ Glyph
Y |§| i n |;T‘| Draw(Cortext)
\ =l Al pyar fefr | mam <> 2%?;‘:18 Intersects{Foint. Context)
N
\ A
\ <
Y 3 column [[|
object Row Character Column
childran childran
Draw(Context) Draw({Context) Draw{Context)
Intersects{Point, Context) Intersects{Paint, Context) Intersacts(Peint, Context)
char ¢
abm
(L]]
fiyweight pool
week 9b Nov 6/03 - CSC407 13 week 9b Nov 6/03 - CSC407 14
Structural Structural
Applicability Structure
R .
Use when: FlyweightFactory |21 Fiyweight
— An application uses a]arge number of objects GetFtyweignkey) @ Operation(extrinsicState)
— Storage costs are high because of the sheer quantity of objects p (,W;ka” s
retum existing flyweight;
— Most object state can be made extrinsic velse|
. . 23 1o abal f Hywoigns
— Many groups of objects may be replaced by relatively few shared Totum fha new fyweights
objects once extrinsic state is removed.
* e.g. the letter “Z”..
ConcreteFlyweight UnsharedConcreteFlyweight
L , L .
- The apphcatlon dOCSHt depend on Ob_] ect ldentlty Operation(extrinsicState) Operation(extrinsicState)
* Since flyweight objects may be shared, identity tests will return true ntrinsicState alistate
for conceptually distinct objects —
. P Y i J. . Client
— This sounds a lot easier than it is.
+ Atleast a few Stanford Phd’s written out as Linton et al worked out . Flywei ght
how to build interactive apps this way.
} PP y.) — declares an interface through which flyweights can receive and act
* Trick appears to.be to ﬁnd.an abstra';tlon that allows most Flyweights on extrinsic state
to collaborate without storing any private state. .
— This may well be the hard part!
week 9b Nov 6/03 - CSC407 15 week 9b Nov 6/03 - CSC407 16
Structural Structural

Structure

fyweaights

FlyweightFactory Flyweight

GelFlyweight(key) 7 OperationfextrinsicState}
T
'

i (fyweienikey] exisis) { o
retum existing flyweight;

yelse |
create new flywelght
add il to pool of fiyweights;
retum the new fiyweight;

o

Tyweight Iyweigh

Operation{extrinsicState) Operation(extrinsicState)

intrinsicState allState:

Client

* ConcreteFlyweight
— implements the Flyweight interface and adds storage for intrinsic state, if
any
— must be sharable
* Any state it stores must be intrinsic (independent of context)

FiyweightFactory Leiafts Flyweight
GelFtyweightikey) 7 Operation(exinnsicState)

i (fyweienikey] exisis) { o
retum existing flyweight;

yelse |
create new flywelght
add il to pool of fiyweights;
retum the new fiyweight;

ConcreteFlyweight UnsharedConcreteFlyweight
Operation{extrinsicState) Operation(extrinsicState)
intrinsicState allState

Client

* UnsharedConcreteFlyweight
— not all Flyweight subclasses need to be shared.
— The Flyweight interface enables sharing; it doesn't enforce it

week 9b Nov 6/03 - CSC407 17
Structural
Structure
FiyweightFactory Leiafts Flyweight
GelFtyweightikey) 7 OperationfextrinsicState)

i (fyweienikey] exisis) { o
retum existing flyweight;

yelse |
create new flywelght
add il to pool of fiyweights;
retum the new fiyweight;

c Tyweigh lyweigh
Operation{extrinsicState) Operation(extrinsicState)
intrinsicState allState

Client

* FlyweightFactory
— creates and manages flyweight objects
— ensures that flyweights are shared properly

* when a client requests a flyweight, the FlyweightFactory object supplies an
existing instance or creates one, if none exists

week 9b Nov 6/03 - CSC407 19
Structural

week 9b Nov 6/03 - CSC407 18
Structural
FiyweightFactory Leiafts Flyweight
GelFlyweighiikey) Operation(exinnsicState)
j
i (fyweienikey] exisis) { o
retum existing flyweight
yelse |
craate new flywelght
add it 1o pool of fiyweights;
ratum the new fiyweight,
ConcreteFiyweight UnsharedConcreteFlyweight
Operation{extrinsicState) Operation(extrinsicState)
IntrinsicState alstate

Client

* Client
— maintains a reference to flyweights
— computes or stores the extrinsic state of flyweights
— computation is likely delegated to the flyweights.

week 9b Nov 6/03 - CSC407 20
Structural

Structure

L))

aFlyweightFactory [(ac tyweight | [aConcreteFiyweight |

flyweights % Iuntrlnsw\,sldie J r&nlrinswsmle J

» Clients typically should not instantiate ConcreteFlyweights directly for
fear of needlessly duplicating instances.

* Clients should obtain ConcreteFlyweight objects from the
FlyweightFactory object to ensure they are shared properly.

week 9b Nov 6/03 - CSC407 21
Structural

Consequences

» Flyweights introduce run-time costs associated with
transferring, finding, and/or computing extrinsic state.
» Costs are offset by space savings
— (which also save run-time costs)
— depends on
» the reduction in the total number of instances that comes from sharing
* the amount of intrinsic state per object
» whether extrinsic state is computed or stored
» Often coupled with Composite to represent a hierarchical
structure as a graph with shared leaf nodes
— flyweight leaf nodes cannot store a pointer to their parent
— parent pointer is passed to the flyweight as part of its extrinsic
state
+ profound effect on object collaboration
* probably limits the domains for which flyweight is appropriate.

week 9b Nov 6/03 - CSC407 22
Structural

Implementation

+ Extrinsic State e.g., Document editor

— character font, fype style, and
— try to use containment when possible.
— e.g. All children of this node are bold.

— store a map that keeps track of runs of characters with the same
typographic attributes

* Shared Objects

— FlyweightFactory can use an associative array to find existing
instances.

— need reference counting for garbage collection (in C++)

week 9b Nov 6/03 - CSC407 23
Structural

