
week 9b Nov 6/03 - 

Structural

CSC407 1

Structural Patterns

• How classes and objects are composed to form larger structures

! Adapter

• interface converter

! Bridge

• decouple abstraction from its implementation

! Composite

• compose objects into tree structures, treating all nodes uniformly

! Decorator

• attach additional responsibilities dynamically

– Façade

• provide a unified interface to a subsystem

– Flyweight

• using sharing to support a large number of fine-grained objects efficiently

– Proxy

• provide a surrogate for another object to control access

week 9b Nov 6/03 - 

Structural

CSC407 2

Façade

• Provide a unified interface to a set of interfaces in a 

subsystem.

– Façade defines a higher-level interface that makes the subsystem 

easier to use

week 9b Nov 6/03 - 

Structural

CSC407 3

Façade

week 9b Nov 6/03 - 

Structural

CSC407 4

Applicability

• you want a simple interface to a complex subsystem

– Subsystems often get more complex as they evolve

• this makes the subsystem more reusable and easier to customize, 

• but it also becomes harder to use for clients that don't need to 
customize it

– A façade can provide a simple default view of the subsystem that 
is good enough for most clients

• Only clients needing more customizability will need to look beyond 
the façade

• there are many dependencies between clients and the 
implementation classes of an abstraction

– Introduce a façade to decouple the subsystem from clients and 
other subsystems

• you want to layer your subsystems

– Use a façade to define an entry point to each subsystem level



week 9b Nov 6/03 - 

Structural

CSC407 5

Structure

• Façade

– knows which subsystem classes are responsible for a request

– delegates client requests to appropriate subsystem objects

• subsystem classes

– implement subsystem functionality

– handle work assigned by the Façade object

– have no knowledge of the façade

week 9b Nov 6/03 - 

Structural

CSC407 6

Consequences

• shields clients from subsystem components

– reduces the # of objects clients see

• easier to use subsystem

• promotes weak coupling between the subsystem and its client

– can vary the components of a subsystem without affecting clients

– reduces compilation dependencies

• doesn't prevent applications from using subsystem classes if 

they need to.

– you can choose between ease of use and generality

week 9b Nov 6/03 - 

Structural

CSC407 7

Proxy

• Provide a surrogate or placeholder for another object to control access 
to it

– e.g., on-demand image loading 
• so that opening a document is fast (since screen res much lower than print res)

week 9b Nov 6/03 - 

Structural

CSC407 8

Proxy - CORBA remote proxy

ProxyClass

Class

CORBA client

CORBA server

Network

Proxy serializes parms and 
transmits to server

Client class

Server deserializes and sends 
message to Class.

Clients send messages
to local proxy.



week 9b Nov 6/03 - 

Structural

CSC407 9

Applicability

• whenever there is a need for a more versatile or 
sophisticated reference to an object than a simple pointer

– A remote proxy provides a local representative for an object in a 
different address space

– One of main ideas behind “distributed objects”.

– A virtual proxy creates expensive objects on demand

– A protection proxy controls access to the original object.

– Protection proxies are useful when objects should have different 
access rights

– A smart reference is a replacement for a bare pointer that 
performs additional actions when an object is accessed

• counting the number of references to the real object (smart pointer)

• loading a persistent object into memory when it's first referenced

• checking that the real object is locked before it's accessed to ensure 
that no other object can change it

– COW (copy-on-write)

week 9b Nov 6/03 - 

Structural

CSC407 10

Structure

• Subject

– defines the common interface for RealSubject and Proxy so that a Proxy can 

be used anywhere a RealSubject is expected

• RealSubject

– defines the real object that the proxy represents

week 9b Nov 6/03 - 

Structural

CSC407 11

Structure

• Proxy

– maintains a reference that lets the proxy access the real subject

– provides an interface identical to Subject's so that a proxy can by substituted for the 
real subject

– controls access to the real subject and may be responsible for creating and deleting it
• remote proxies are responsible for encoding a request and its arguments and for sending the 

encoded request to the real subject in a different address space

• virtual proxies may cache additional information about the real subject so that they can 
postpone accessing it

• protection proxies check that the caller has the access permissions required to perform a 
request

week 9b Nov 6/03 - 

Structural

CSC407 12

Flyweight

• Use sharing to support large numbers of fine-grained 

objects efficiently

• Reduce the space consumed by many objects by reusing a 

reasonably sized pool of them many times.

• We have been over and over this example. It’s simply the 

best one.

• Next up is one of those pictures that is worth a thousand 

words..



week 9b Nov 6/03 - 

Structural

CSC407 13

Flyweight zoom in

week 9b Nov 6/03 - 

Structural

CSC407 14

Flyweight

week 9b Nov 6/03 - 

Structural

CSC407 15

Applicability

• Use when:

– An application uses a large number of objects

– Storage costs are high because of the sheer quantity of objects

– Most object state can be made extrinsic

– Many groups of objects may be replaced by relatively few shared 

objects once extrinsic state is removed.

• e.g. the letter “Z”..

– The application doesn't depend on object identity

• Since flyweight objects may be shared, identity tests will return true 

for conceptually distinct objects

– This sounds a lot easier than it is.

• At least a few Stanford Phd’s written out as Linton et al worked out 

how to build interactive apps this way.

• Trick appears to be to find an abstraction that allows most Flyweights 

to collaborate without storing any private state.

week 9b Nov 6/03 - 

Structural

CSC407 16

Structure

• Flyweight

– declares an interface through which flyweights can receive and act 

on extrinsic state

– This may well be the hard part!



week 9b Nov 6/03 - 

Structural

CSC407 17

Structure

• ConcreteFlyweight

– implements the Flyweight interface and adds storage for intrinsic state, if 
any

– must be sharable
• Any state it stores must be intrinsic (independent of context)

week 9b Nov 6/03 - 

Structural

CSC407 18

Structure

• UnsharedConcreteFlyweight

– not all Flyweight subclasses need to be shared.

– The Flyweight interface enables sharing; it doesn't enforce it

week 9b Nov 6/03 - 

Structural

CSC407 19

Structure

• FlyweightFactory

– creates and manages flyweight objects

– ensures that flyweights are shared properly
• when a client requests a flyweight, the FlyweightFactory object supplies an 

existing instance or creates one, if none exists

week 9b Nov 6/03 - 

Structural

CSC407 20

Structure

• Client

– maintains a reference to flyweights

– computes or stores the extrinsic state of flyweights

– computation is likely delegated to the flyweights.



week 9b Nov 6/03 - 

Structural

CSC407 21

Structure

• Clients typically should not instantiate ConcreteFlyweights directly for 

fear of needlessly duplicating instances.

• Clients should obtain ConcreteFlyweight objects from the 

FlyweightFactory object to ensure they are shared properly.

week 9b Nov 6/03 - 

Structural

CSC407 22

Consequences

• Flyweights introduce run-time costs associated with 

transferring, finding, and/or computing extrinsic state.

• Costs are offset by space savings
– (which also save run-time costs)

– depends on

• the reduction in the total number of instances that comes from sharing 

• the amount of intrinsic state per object 

• whether extrinsic state is computed or stored

• Often coupled with Composite to represent a hierarchical 

structure as a graph with shared leaf nodes
– flyweight leaf nodes cannot store a pointer to their parent

– parent pointer is passed to the flyweight as part of its extrinsic 

state

• profound effect on object collaboration

• probably limits the domains for which flyweight is appropriate.

week 9b Nov 6/03 - 

Structural

CSC407 23

Implementation

• Extrinsic State e.g., Document editor

– character font, type style, and colour.

– try to use containment when possible. 

– e.g. All children of this node are bold.

– store a map that keeps track of runs of characters with the same 

typographic attributes

• Shared Objects

– FlyweightFactory can use an associative array to find existing 

instances.

– need reference counting for garbage collection (in C++)


