
week 9 Nov 6/03 -

Behavioral

CSC407 1

Behavioral Patterns

• Chain of Responsibility (requests through a chain of candidates)

! Command (encapsulates a request)

• Interpreter (grammar as a class hierarchy)

! Iterator (abstracts traversal and access)

• Mediator (indirection for loose coupling)

• Memento (externalize and re-instantiate object state)

• Observer (defines and maintains dependencies)

• State (change behaviour according to changed state)

! Strategy (encapsulates an algorithm in an object)

• Template Method (step-by-step algorithm w/ inheritance)

! Visitor (encapsulated distributed behaviour)

week 9 Nov 6/03 -

Behavioral

CSC407 2

Observer

• Define a one-to-many dependency between objects so that

when one object changes state, all its dependents are

notified and updated automatically.

– A common side-effect of partitioning a system into a collection of

cooperating classes is

• the need to maintain consistency between related objects

– You don't want to achieve consistency by making the classes

tightly coupled, because that reduces their reusability.

– a.k.a. Publish-Subscribe

– Common related/special case use: MVC

• Model-View-Controller pattern

week 9 Nov 6/03 -

Behavioral

CSC407 3

Motivation

• Separate presentation aspects of the UI from the underlying
application data.

– e.g., spreadsheet view and bar chart view don't know about each other
• they act as if they do: changing one changes the other.

week 9 Nov 6/03 -

Behavioral

CSC407 4

• Subject

– knows its observers

– any number of Observers may observe one subject

• Observer

– defines an updating interface for objects that should be notified of
changes to the subject

Structure

week 9 Nov 6/03 -

Behavioral

CSC407 5

• Concrete Subject
– stores the state of interest to ConcreteObservers

– send notification when its state changes

Structure

• Concrete Observer
– maintains a reference to the ConcreteSubject objects

– stores state that should remain consistent with subject's

– implements the Observer updating interface

week 9 Nov 6/03 -

Behavioral

CSC407 6

Collaborations

• subject notifies its observers whenever a change occurs that would
make its observers' state inconsistent with its own

• After being informed, observer may query subject for changed info.

– uses query to adjust its state

week 9 Nov 6/03 -

Behavioral

CSC407 7

Applicability

• When an abstraction has two aspects, one dependent upon

the other

– e.g., view and model

Encapsulating these aspects into separate objects lets you

vary them independently.

• when a change to one object requires changing others, and

you don't know ahead of time how many there are or their

types

– when an object should be able to notify others without making

assumptions about who these objects are,

– you don't want these objects tightly coupled

week 9 Nov 6/03 -

Behavioral

CSC407 8

Consequences

• Abstract coupling

– no knowledge of the other class needed

– Viewer knows model. Model doesn’t know Viewer.

• Supports broadcast communications

– Model doesn’t care how many Viewers there are

• Spurious updates a problem

– can be costly

– unexpected interactions can be hard to track down

– problem aggravated when simple protocol that does not say what

was changed is used

– need a well thought out strategy for when notify/update should

occur.

week 9 Nov 6/03 -

Behavioral

CSC407 9

Implementation

• Mapping subjects to observers

– table-based or subject-oriented

• Observing more than one subject

– interface must tell you which subject

– data structure implications (e.g., linked list)

• Who triggers the notify()

– subject state changing methods

• > 1 update for a complex change

• update on inconsistent state.

– clients

• complicates API & error-prone

• can group operations and send only one update

– transaction-oriented API to client

week 9 Nov 6/03 -

Behavioral

CSC407 10

Implementation

• dangling references to deleted subjects/Observables

– send 'delete message' to detach before destruction.

– complex code

• must ensure subject state is self-consistent before sending
update

• push versus pull

– push: subject sends info it thinks observer wants

– pull: observer requests info when it needs it

– registration: register for what you want

• when observer signs up, states what interested in

• ChangeManager

– if observing more than one subject to avoid spurious updates

• Can combine subject and observer

week 9 Nov 6/03 -

Behavioral

CSC407 11

java.util.Observable

public class Model extends java.util.Observable{

 int prop1;

 int prop2;

 void setProp1(int prop1){this.prop1 = prop1; setChanged(); }

 void setProp2(int prop2){this.prop2 = prop2; setChanged(); }

 int getProp1(){ return this.prop1; }

 int getProp2(){ return this.prop2; }

 public String toString(){

 return “Model.prop1=” + getProp1() + “, prop2=” + getProp2() ;

 }

}

week 9 Nov 6/03 -

Behavioral

CSC407 12

java.util.Observer

public class Viewer implements java.util.Observer {

 public void update(java.util.Observable o, Object arg){

 Model m = (Model)o;

 System.out.println(“update gets Model instance=” + m);

 }

}

week 9 Nov 6/03 -

Behavioral

CSC407 13

First Java Demo

public class Demo1 {

 public static void main(String[] args){

 Model m = new Model();

 Viewer v = new Viewer();

 m.addObserver(v);

 m.setProp1(42);

 m.setProp2(24);

 m.notifyObservers(); //but where should this go?

 }

}

What does this program print?

week 9 Nov 6/03 -

Behavioral

CSC407 14

java.util.Observable with notify..

public class ModelWithNotify extends java.util.Observable {

 int prop1;

 int prop2;

 void setProp1(int prop1){

 this.prop1 = prop1;

 setChanged();

 notifyObservers();

 }

 void setProp2(int prop2){

 this.prop2 = prop2;

 setChanged();

 notifyObservers();

 }

 int getProp1(){ return this.prop1; }

 int getProp2(){ return this.prop2; }

 public String toString(){

 return “ModelWithNotify.prop1=” + getProp1() + “, prop2=” + getProp2() ;

 }

}

week 9 Nov 6/03 -

Behavioral

CSC407 15

Second Java Demo

 public static void main(String[] args){

 //second demo

 ModelWithNotify mn = new ModelWithNotify();

 mn.addObserver(v);

 mn.setProp1(420);

 mn.setProp2(240);

 }

What does this program print?

week 9 Nov 6/03 -

Behavioral

CSC407 16

Observables gotcha

• For very simple examples the second scheme seems

reasonable.

• What if there is some invariant relationship that exists

between prop1 and prop2?

• Naively, we add a method like

 void setProp12(int p1, int p2) throws SomeBadThing {

 checkInvariant(p1,p2); //throws

 setProp1(p1);

 setProp2(p2);

 }

• And bad things may happen if the Viewer assumes that the
invariant holds..

• It’s not that this is impossible code to write. It’s just that the
pattern has added a gotcha.

week 9 Nov 6/03 -

Behavioral

CSC407 17

Chain Of Responsibility

• Avoid coupling the sender of a request to its receiver by

giving more than one object a chance to handle the

request.

– Chain the receiving objects and pass the request along the chain

until an object handles it.

week 9 Nov 6/03 -

Behavioral

CSC407 18

Motivation

• Context-sensitive help

– User can obtain information on any part of a UI by clicking on it.

– If no help available (e.g., for a button), system should display a more
general help message about the context (e..g, the dialog box containing
the button).

week 9 Nov 6/03 -

Behavioral

CSC407 19

Motivation

• Objects forward the request
until there is one that can
handle it.

• The key is that the client
does not know the object that
will eventually handle the
request.

week 9 Nov 6/03 -

Behavioral

CSC407 20

Applicability

• More than one object may handle a request, and the

handler isn't known a priori.

– The handler should be ascertained automatically.

• You want to issue a request to one of several objects

without specifying the receiver explicitly.

• The set of objects that can handle a request should be

specified dynamically.

week 9 Nov 6/03 -

Behavioral

CSC407 21

Structure

week 9 Nov 6/03 -

Behavioral

CSC407 22

Structure

• Handler

– defines an interface for handling requests

– implements the successor list (optional)

• ConcreteHandler

– handles requests for which it is responsible

– can access its successor

– forward to successor if it can't handle the request

• Client

– initiates the request to the first ConcreteHandler in the chain.

week 9 Nov 6/03 -

Behavioral

CSC407 23

Consequences

• reduced coupling

– receiver and sender have no explicit knowledge of each other

– can simplify object interactions

• added flexibility

– can add or change responsibilities by changing the chain at run-

time.

• receipt is not guaranteed.

– request may fall off the end of the chain

week 9 Nov 6/03 -

Behavioral

CSC407 24

State

• Allow an object to alter its behavior when its

internal state changes.

– The object will appear to change its class.

week 9 Nov 6/03 -

Behavioral

CSC407 25

Motivation

• A TCPConnection object that responds differently to
requests given its current state.

• All state-dependent actions are delegated.

week 9 Nov 6/03 -

Behavioral

CSC407 26

Applicability

• An object's behavior depends on its state, and it must

change its behavior at run-time depending on that state.

• Operations have large, multipart conditional statements

that depend on the object's state.

– This state is usually represented by one or more enumerated

constants.

– Often, several operations will contain this same conditional

structure.

– The State pattern puts each branch of the conditional in a separate

class.

– This lets you treat the object's state as an object in its own right

that can vary independently from other objects.

week 9 Nov 6/03 -

Behavioral

CSC407 27

Structure

• Context

– defines the interface of interest to clients.

– maintains an instance of a ConcreteState subclass that defines the current
state.

• State

– defines an interface for encapsulating the behavior associated with a
particular state of the Context.

• ConcreteState subclasses

– each subclass implements a behavior associated with a state of the
Context.

week 9 Nov 6/03 -

Behavioral

CSC407 28

Consequences

• It localizes state-specific behavior and partitions behavior
for different states.

– The State pattern puts all behavior associated with a particular
state into one object.

– Because all state-specific code lives in a State subclass, new
states and transitions can be added easily by defining new
subclasses.

• It makes state transitions more explicit

– State is represented by the object pointed to.

• It protects the object from state-related inconsistencies.

– All implications of state changed wrapped in the atomic change
of 1 pointer.

• State object can be shared

– if no data members they can be re-used across all instances of the
Context

week 9 Nov 6/03 -

Behavioral

CSC407 29

Mediator

• Defines an object that encapsulates how a set of objects

interact.

– promotes loose coupling by keeping objects from referring to each

other explicitly

– lets you vary their interaction independently

week 9 Nov 6/03 -

Behavioral

CSC407 30

Motivation

• A collection of widgets that interact with one another.

– e.g., certain families may not have certain weights

• disable ‘demibold’ choice

week 9 Nov 6/03 -

Behavioral

CSC407 31

Motivation

• Create a mediator to control and coordinate the

interactions of a group of objects.

week 9 Nov 6/03 -

Behavioral

CSC407 32

Motivation

• e.g.,

– user selects different line of list box.

– list box sends widgetChanged message to director

– director knows list box contains selected font.

– director knows to push name of new font into entryfield

– entry field does not need to know about list box and vice-versa

week 9 Nov 6/03 -

Behavioral

CSC407 33

Motivation

week 9 Nov 6/03 -

Behavioral

CSC407 34

Applicability

• A set of objects communicate in a well-defined but

complex manner with a hierarchical structure.

• I don’t know how to generalize this very well.

• This is how we coordinate the enabling (dimming or

greying out) of widgets that work together in a GUI.

week 9 Nov 6/03 -

Behavioral

CSC407 35

Structure

week 9 Nov 6/03 -

Behavioral

CSC407 36

Structure

• Mediator

– defines an interface for communicating with Colleague objects

• ConcreteMediator

– knows and maintains its colleagues

– implements cooperative behavior by coordinating Colleagues

• Colleague classes

– each Colleague class knows its Mediator object

– each colleague communicates with its mediator whenever it would have
otherwise communicated with another colleague

week 9 Nov 6/03 -

Behavioral

CSC407 37

Consequences

• decouples colleagues

– can vary and reuse colleague and mediator classes independently

• simplifies object protocols

– replaces many-to-many interactions with one-to-many

– one-to-many are easier to deal with

• abstracts how objects cooperate

– can focus on object interaction apart from an object’s individual

behaviour

• centralizes control

– mediator can become a monster.

– Widget control is hard. At least all the mess is in the Director.

• limits subclassing

– localizes behaviour that otherwise would need to be modified by

subclassing the colleagues

