Behavioral Patterns

¢ Chain of Responsibility (requests through a chain of candidates)

Observer

* Define a one-to-many dependency between objects so that
when one object changes state, all its dependents are
notified and updated automatically.

— A common side-effect of partitioning a system into a collection of
cooperating classes is
* the need to maintain consistency between related objects

— You don't want to achieve consistency by making the classes
tightly coupled, because that reduces their reusability.

— ak.a. Publish-Subscribe
— Common related/special case use: MVC
* Model-View-Controller pattern

v' Command (encapsulates a request)
° I-Q-ﬁ%ﬁpEﬁtﬁL (grammar as a class hierarchy)
v’ Iterator (abstracts traversal and access)
¢ Mediator (indirection for loose coupling)
* Memento (externalize and re-instantiate object state)
¢ Observer (defines and maintains dependencies)
e State (change behaviour according to changed state)
v Strategy (encapsulates an algorithm in an object)
o Template-Method————(step-by-step algorithm w/ inheritance)
v’ Visitor (encapsulated distributed behaviour)
week 9 Nov 6/03 - CSC407
Behavioral
Motivation
observers
i 5] s e 5] | BT E)
= lI!L :
ek :

——= change notification
———-= requests, modification

subject

» Separate presentation aspects of the UI from the underlying
application data.
— e.g., spreadsheet view and bar chart view don't know about each other
* they act as if they do: changing one changes the other.

week 9 Nov 6/03 - CSC407
Behavioral

week 9 Nov 6/03 - CSC407 2
Behavioral
Structure
Subject observers Observer
Attach(Observer) Update()
Detach(Observer) A
; for all o in observers [
Motifyl) o----- =-| o-=Update()
i
4 ConcreteObserver
i \bject suBlect [y odatel) o
St G- =] obsenverSta
Secsine) retum subjeciSats cosenerdate
subjectSiate
» Subject

— knows its observers
— any number of Observers may observe one subject
» Observer

— defines an updating interface for objects that should be notified of
changes to the subject

week 9 Nov 6/03 - CSC407 4
Behavioral

Subject wbservers Observer
Attach(Observer) Update()
Detac .)
L}elc:uw(ouservér, for all 0 in observers Eh
Notifyl) & —-—-- - o-=Update()
i

4 ConcreteObserver
i \bject suBlect [y odatel) o
GelState() G---f-- = obsenverStat
Getstetel) retum subjectState ohserverstare
subjectSiate

* Concrete Subject
— stores the state of interest to ConcreteObservers
— send notification when its state changes

* Concrete Observer
— maintains a reference to the ConcreteSubject objects
— stores state that should remain consistent with subject's
— implements the Observer updating interface

week 9 Nov 6/03 - CSC407 5

Behavioral

Collaborations

aConcreteSubject aConcreteObserver anotherConcreteObserver

J‘ SetState() J}

Matify() —

Update() |

GelState() }
Update() il
GetState() J

L

» subject notifies its observers whenever a change occurs that would
make its observers' state inconsistent with its own

* After being informed, observer may query subject for changed info.
— uses query to adjust its state

week 9 Nov 6/03 - CSC407
Behavioral

Applicability

* When an abstraction has two aspects, one dependent upon
the other
— e.g., view and model
Encapsulating these aspects into separate objects lets you
vary them independently.

» when a change to one object requires changing others, and
you don't know ahead of time how many there are or their
types

— when an object should be able to notify others without making
assumptions about who these objects are,

— you don't want these objects tightly coupled

week 9 Nov 6/03 - CSC407
Behavioral

Consequences

* Abstract coupling

— no knowledge of the other class needed

— Viewer knows model. Model doesn’t know Viewer.
* Supports broadcast communications

— Model doesn’t care how many Viewers there are
* Spurious updates a problem

— can be costly

— unexpected interactions can be hard to track down

— problem aggravated when simple protocol that does not say what
was changed is used

— need a well thought out strategy for when notify/update should
occur.

week 9 Nov 6/03 - CSC407
Behavioral

Implementation

* Mapping subjects to observers
— table-based or subject-oriented
» Observing more than one subject
— interface must tell you which subject
— data structure implications (e.g., linked list)
» Who triggers the notify()
— subject state changing methods
+ > update for a complex change
 update on inconsistent state.
— clients
» complicates API & error-prone
 can group operations and send only one update
— transaction-oriented API to client

week 9 Nov 6/03 - CSC407 9

Behavioral

Implementation

» dangling references to deleted subjects/Observables

— send 'delete message' to detach before destruction.

— complex code
* must ensure subject state is self-consistent before sending

update

* push versus pull

— push: subject sends info it thinks observer wants

— pull: observer requests info when it needs it

— registration: register for what you want

» when observer signs up, states what interested in

» ChangeManager

— if observing more than one subject to avoid spurious updates
» Can combine subject and observer

java.util.Observable

public class Model extends java.util.Observable{

int propl;
int prop2;

void setPropl(int propl){this.propl
void setProp2(int prop2){this.prop2

propl; setChanged(); }
prop2; setChanged(); }

int getPropl(Q{ return this.propl; }
int getProp2(Q{ return this.prop2; }

public String toString(Q{
return “Model.propl=" + getPropl() + “, prop2=" + getProp2() ;
}

week 9 Nov 6/03 - CSC407 11
Behavioral

week 9 Nov 6/03 - CSC407 10
Behavioral
java.util.Observer
public class Viewer implements java.util.Observer {
public void update(java.util.Observable o, Object arg){
Model m = (Model)o;
System.out.println(“update gets Model instance=" + m);
}
}
week 9 Nov 6/03 - CSC407 12
Behavioral

First Java Demo

public class Demol {
public static void main(String[] args){
Model m = new Model();
Viewer v = new Viewer();
m.addObserver(v);

m.setPropl(42);
m.setProp2(24);

m.notifyObservers(); //but where should this go?

java.util.Observable with notify..

public class ModelWithNotify extends java.util.Observable {

int propl;
int prop2;

void setPropl(int propl){
this.propl = propl;
setChanged(Q);
notifyObservers(Q);

void setProp2(int prop2){
this.prop2 = prop2;
setChanged();
notifyObserversQ);

}

int getPropl(){ return this.propl; }
int getProp2(){ return this.prop2; }

public String toString(){
return “ModelWithNotify.propl=" + getPropl() +

«

, prop2=" + getProp2() ;
}

week 9 Nov 6/03 - CSC407 14
Behavioral

}
}
What does this program print?
week 9 Nov 6/03 - CSC407 13
Behavioral
Second Java Demo
public static void main(String[] args){
//second demo
ModelWithNotify mn = new ModelWithNotify();
mn.addObserver(v);
mn.setPropl(420);
mn.setProp2(240);
}
What does this program print?
week 9 Nov 6/03 - CSC407 15

Behavioral

Observables gotcha

» For very simple examples the second scheme seems
reasonable.

» What if there is some invariant relationship that exists
between propl and prop2?

* Naively, we add a method like

void setPropl2(int pl, int p2) throws SomeBadThing {
checkInvariant(pl,p2); //throws
setPropl(pl);
setProp2(p2);
}
* And bad things may happen if the Viewer assumes that the

invariant holds..

* It’s not that this is impossible code to write. It’s just that the
pattern has added a gotcha.

week 9 Nov 6/03 - CSC407 16
Behavioral

Chain Of Responsibility

* Avoid coupling the sender of a request to its receiver by
giving more than one object a chance to handle the
request.

— Chain the receiving objects and pass the request along the chain
until an object handles it.

Motivation

handler

I: HelpHandier
HandleMHelp(l od----- handler—=HandlieHalp(}

1 [=

j it can handle |
| Dialog | Button ShawHelp()
Yelse {
HandleHelp{} o~F---- Handigr:HandleHalp()
ShowHelp() !

* Context-sensitive help
— User can obtain information on any part of a UI by clicking on it.

— Ifno help available (e.g., for a button), system should display a more
general help message about the context (e..g, the dialog box containing
the button).

week 9 Nov 6/03 - CSC407 18
Behavioral

week 9 Nov 6/03 - CSC407 17
Behavioral
Motivation
aSaveDialog
aPrintButton anApplication
aPrintDialog
anQKButten j
spacific general
aPrintButton aPrintDialog anApplication
* Objects forward the request
until there is one that can HandieHelp()
handle it.

* The key is that the client
does not know the object that
will eventually handle the
request.

HandleHelp()

week 9 Nov 6/03 - CSC407
Behavioral

Applicability

* More than one object may handle a request, and the
handler isn't known a priori.

— The handler should be ascertained automatically.

* You want to issue a request to one of several objects
without specifying the receiver explicitly.

* The set of objects that can handle a request should be
specified dynamically.

week 9 Nov 6/03 - CSC407 20
Behavioral

Structure Structure

SUCCessor
Handler G

HandleRequeast(}

!—A—\

ConcreteHandler1 ConcreteHandler2

(_ o
aClient HandlsRequast() HanaleRequest()
[aConcreteHandler]
aHandler = | If aConcreteHandier | * Handler

SUCCESSON @
SUCCESSOr — defines an interface for handling requests
— implements the successor list (optional)
* ConcreteHandler
— handles requests for which it is responsible
— can access its successor
— forward to successor if it can't handle the request
* Client
— initiates the request to the first ConcreteHandler in the chain.

week 9 Nov 6/03 - CSC407 21 week 9 Nov 6/03 - CSC407 22
Behavioral Behavioral

Consequences State

* reduced coupling

— receiver and sender have no explicit knowledge of each other

— can simplify object interactions * Allow an object to alter its behavior when its
+ added flexibility internal state changes.
— can add or change responsibilities by changing the chain at run- — The object will appear to change its class.
time.

* receipt is not guaranteed.
— request may fall off the end of the chain

week 9 Nov 6/03 - CSC407 23 week 9 Nov 6/03 - CSC407 24
Behavioral Behavioral

TCPConnection

Opent) O------
Closa()
Acknowladge()

state->0pen()

1
i
1
i
1
i
|
e

slate

Motivation

| TcPstate

Opanf}
Close()
Acknowledge(}

TCPEstablished TCPListen TCPClosed
Open{) Cpen() Open(}

Close() Close() Close()
Acknowledge() Acknowledge() Acknowiedge()

* A TCPConnection object that responds differently to
requests given its current state.

» All state-dependent actions are delegated.

Applicability

* An object's behavior depends on its state, and it must
change its behavior at run-time depending on that state.

» Operations have large, multipart conditional statements
that depend on the object's state.

— This state is usually represented by one or more enumerated
constants.

— Often, several operations will contain this same conditional
structure.

— The State pattern puts each branch of the conditional in a separate
class.

— This lets you treat the object's state as an object in its own right
that can vary independently from other objects.

week 9 Nov 6/03 - CSC407 26
Behavioral

week 9 Nov 6/03 - CSC407 25
Behavioral
Structure
Context C; tate State
Request) 7 Handle{}

i A

= | _____
state-=Handle(}
C A Concr
Handle() Handle{)
* Context

— defines the interface of interest to clients.

— maintains an instance of a ConcreteState subclass that defines the current
state.

e State

— defines an interface for encapsulating the behavior associated with a
particular state of the Context.

¢ ConcreteState subclasses

— each subclass implements a behavior associated with a state of the
Context.

week 9 Nov 6/03 - CSC407 27
Behavioral

Consequences

+ It localizes state-specific behavior and partitions behavior
for different states.

— The State pattern puts all behavior associated with a particular
state into one object.

— Because all state-specific code lives in a State subclass, new
states and transitions can be added easily by defining new
subclasses.

» It makes state transitions more explicit
— State is represented by the object pointed to.
» It protects the object from state-related inconsistencies.

— All implications of state changed wrapped in the atomic change
of 1 pointer.

» State object can be shared

— if no data members they can be re-used across all instances of the
Context

week 9 Nov 6/03 - CSC407 28
Behavioral

Mediator

» Defines an object that encapsulates how a set of objects
interact.

— promotes loose coupling by keeping objects from referring to each

other explicitly
— lets you vary their interaction independently

Motivation

51 Font Chooser s

= [mi3)

The quick brown fox...

Family |

Weight Cmedium ®bold O demibold
| Stant Groman ®italic cobligue
Size [Cleondenscd
Cancel

* A collection of widgets that interact with one another.
— e.g., certain families may not have certain weights

« disable ‘demibold’ choice

week 9 Nov 6/03 - CSC407 29
Behavioral
Motivation
aListBox
aClient direcior
aFontDialogDirector
aButton
a_nEntryFisld
» Create a mediator to control and coordinate the
interactions of a group of objects.
31

week 9 Nov 6/03 - CSC407
Behavioral

week 9 Nov 6/03 - CSC407 30
Behavioral
Motivation
Mediator Colleagues
aClient aFontDialogDirector alistBox anEntryField
ShowDialog()
WidgetChanged{)
GetSelection()
SetText()
e eg,
— user selects different line of list box.
— list box sends widgetChanged message to director
— director knows list box contains selected font.
— director knows to push name of new font into entryfield
— entry field does not need to know about list box and vice-versa
week 9 Nov 6/03 - CSC407 32
Behavioral

DialogDirector

ShowDialog()
CreateWidgets()

WiagelChanged(Widget)

FonlDialogDirector

list

Motivation
director Widget
Changed(} ™q----- ~{ di|c-:tor—:sh'JidgctChangcd{thisH
ListBox EntryField

CrealeWidgets()

WidgetUhanged{Widget)

field

GetSelection() ’—- SetText()

Applicability
* A set of objects communicate in a well-defined but
complex manner with a hierarchical structure.
* I don’t know how to generalize this very well.

» This is how we coordinate the enabling (dimming or
greying out) of widgets that work together in a GUL

week 9 Nov 6/03 - CSC407 33
Behavioral
Structure
aColleague
mediator
aColleague
aColleague
mediator
[
aColleague
aColleague
week 9 Nov 6/03 - CSC407 35

Behavioral

week 9 Nov 6/03 - CSC407 34
Behavioral
Structure
mediator

Ci i J] ConcreteColleaguel | ﬂ ConcreteColleague2

* Mediator

— defines an interface for communicating with Colleague objects
e ConcreteMediator

— knows and maintains its colleagues

— implements cooperative behavior by coordinating Colleagues
* Colleague classes

— each Colleague class knows its Mediator object

— each colleague communicates with its mediator whenever it would have
otherwise communicated with another colleague

week 9 Nov 6/03 - CSC407 36
Behavioral

Consequences

* decouples colleagues
— can vary and reuse colleague and mediator classes independently
» simplifies object protocols
— replaces many-to-many interactions with one-to-many
— one-to-many are easier to deal with
» abstracts how objects cooperate
— can focus on object interaction apart from an object’s individual
behaviour
» centralizes control

— mediator can become a monster.
— Widget control is hard. At least all the mess is in the Director.
* limits subclassing

— localizes behaviour that otherwise would need to be modified by
subclassing the colleagues

week 9 Nov 6/03 - CSC407 37
Behavioral

