
some additional material on scaffold
A1 mark scheme

Tutorial announcements

Week 7

week 7 CSC407 Oct 23/03 2

• Old timers had terrible debugging tools and
needed to build small tests for subsystems

• Old timers knew to divide and conquer
subsystems.

• Especially to find blunders causing
regressions.

• Build stand alone tests that show fixes
stay fixed.

scaffold code is not a new idea

week 7 CSC407 Oct 23/03 3

• http://www.gnu.org/directory/regex.html

• Used in many open source tools.

• Written by good people

• includes both static (regression) and interactive tests.

gnu regexp example

week 7 CSC407 Oct 23/03 4

Regexp static test

from test/main.c

int main ()
{
 test_regress ();
 test_others ();
 test_posix_basic ();
 test_posix_extended ();
 test_posix_interface ();
 ...
}

week 7 CSC407 Oct 23/03 5

A Regexp Batch test

 ...from test/tregress.c
void test_regress ()
{
 ...
 /* enami@sys.ptg.sony.co.jp 10 Nov 92 15:19:02 JST */
 buf.translate = upcase;
 SIMPLE_MATCH ("[A-[]", "A");
 buf.translate = NULL;

 /* meyering@cs.utexas.edu Nov 6 22:34:41 1992 */
 simple_search ("\\w+", "a", 0);

 /* jimb@occs.cs.oberlin.edu 10 Sep 92 00:42:33 */
 buf.translate = upcase;
 SIMPLE_MATCH ("[\001-\377]", "\001");
 SIMPLE_MATCH ("[\001-\377]", "a");
 SIMPLE_MATCH ("[\001-\377]", "\377");
 buf.translate = NULL;

week 7 CSC407 Oct 23/03 6

regexp interactive test

 ...from test/iregex.c
main ()
{
 ...
 printf ("String = ");
 gets (str);

/* Now read the string to match against */
 scanstring (str);

 i = re_match (&buf, str, strlen (str), 0, ®s);
 printf ("Match value %d.\t", i);
 if (i >= 0)
 print_regs (regs);
 putchar ('\n');

 i = re_search (&buf, str, strlen (str), 0, strlen (str), ®s);
 printf ("Search value %d.\t", i);
 if (i >= 0) print_regs (regs); putchar ('\n');
 ...

week 7 CSC407 Oct 23/03 7

• Not all the exciting to watch the static test

• The interactive test is primarily useful for
debugging. (that’s where I first met this
code. In 1990 or so.)

• run regex and iregex in regex-0.12/test

• this was slide 6, in case I get lost in laptop..

regexp test demo

week 7 CSC407 Oct 23/03 8

• ClassPathUtil helps deal with CLASSPATH

• Bother to test in running JVM

• ClassPathUtil.main

Java scaffold

public static void main(java.lang.String[] args) {
 System.out.println("called with cwd " +

 new File(".").getAbsolutePath());
 System.out.println("Classpath = " + ClassPathUtil.getClasspath());
 int i=0;
 for(Enumeration e=ClassPathUtil.elements(); e.hasMoreElements();){
 System.out.println("[" + ++i + "] " + (String)e.nextElement());
 }
 }

week 7 CSC407 Oct 23/03 9

• Better to build a test class outside class to
be tested

• If no private methods need to be used..

• Like in a package of test classes

• util.SignalCatcher is really inconvenient to
test in running JVM.

• So create util.test.SignalCatcherTest

Test package

week 7 CSC407 Oct 23/03 10

Java test package
package org.zaleski.util.test;
import org.zaleski.util.SignalCatcher;
public class SignalCatcherTest {
 public static void main(String args[]){
 System.loadLibrary("SignalCatcher"); //force this to happen.
 SignalCatcher sm = new SignalCatcher();
 //arm the signal
 sm.addCatcherToCallback(2 /*SIGINT*/);
 //keep busy..while we fumble about doing a kill -HUP pid
 //in another window
 for(int i=0; i<2000000000; i++){

for(int j=0; j<50000000; j++){
 //keep vm busy to simulate Jootch doing its thing
 }

 System.out.println("i=" +i);
}

 }//main
}

week 7 CSC407 Oct 23/03 11

• ivtools derived from Interviews

• C++ toolkit that was once hoped to
become a standard in form of XC++

• Originally designed as part of a research
program into GUI frameworks.

• lexi will be an important example.

• Meanwhile, here’s the idemo toy program.

Interactive tests

week 7 CSC407 Oct 23/03 12

• build/ivtools-1.0/src/idemo/DARWIN

• That’s not broken. Those are overlays!

• i.e. showing off.

• but it shows how a simple program can be
put together to test drive widgets..

idemo

week 7 CSC407 Oct 23/03 13

idemo

class App {
public:
 App(); ~App();
 int run(int, char**);
 void open(); void save(); //..

private:
 WidgetKit* kit_;
 LayoutKit* layout_; //..
 ApplicationWindow* main_;
 FileChooser* dialog_;
 Menu* menubar();
 Menu* make_menu(Menu*, CommandInfo*, int = 0);
 MenuItem* make_submenu(MenuItem*, Menu*);
 MenuItem* make_item(MenuItem*, Action*);
 void add(const char* label, Glyph*);
};

week 7 CSC407 Oct 23/03 14

Component architecture evident in tests..

 TelltaleGroup* group = new TelltaleGroup;
 add(

"Radio buttons",
layout.vbox(
 kit.radio_button(group, "Able", action),
 vspace4,
 kit_->radio_button(group, "Baker", nil),
 vspace4,
 kit_->radio_button(group, "Charlie", nil)
)

);

just a sample of the general style of iv

running idemo we can see these on the left

week 7 CSC407 Oct 23/03 15

• idraw was a totally incredible program in its
time.

• Remarkably little fuss about IV??

• Can’t resist a little demo..

• This is a lot like the upcoming lexi case
study.

idraw

week 7 CSC407 Oct 23/03 16

• Lesson was supposed to have been that
small inconsistencies are hard to avoid and
relatively easy to work around

• It turned out that test scaffold was real
lesson.

• In isolated, academic environment,
inconsistencies bothered you a lot.

 A1

week 7 CSC407 Oct 23/03 17

A1 marks

Number of marks: 91

 Minimum, Maximum, Range: 0, 40, 40

 Mean: 30.9264
 Std. Dev.: 9.79533

 Quartiles: 29.00, 34.00, 37.00

 Mark Breakdown

 Mark Number Percent

 A 57 63%
 B 17 19%
 C 5 5%
 D 3 3%
 E & F 9 10%

Weird distribution, eh?

week 7 CSC407 Oct 23/03 18

• A1 was about implementation

• Rosenberg et al did

• Analysis

• Use cases and Domain model

• Preliminary Design

• Robustness

• Design

• Sequence

• Static model

• Many people confuse analysis and Design

Analysis vs Design

week 7 CSC407 Oct 23/03 19

A1 mark scheme

marks

10
Understanding the entity design. No flagrant departures from design. if
documented properly you may accept variations. The key is that they
understood the design not that they followed it slavishly.

10
testing covers all use cases and exceptional courses. You should be able to
discern this entirely from the document. If you have to fish around in the code
you can penalize .

10

Quality of test scaffold design. If anyone thought to create a UML for their
scaffold design reward it! Test scaffold must not disturb the entity class
implementation whatsoever. Put another way, the testing must be done from
outside the entity classes. I characterized this by telling them that their entity
class implementations are to be “handed off” to the user interface team
later in this hypothetical project.

10

Implementation quality. This is where the keeners who made
great interactive programs or test scaffold should do a little better. If students
did a really good job of documenting their implementation in a way that
referred to the design you can reward them here also. Particularly
messy implementations can be penalized.

week 7 CSC407 Oct 23/03 20

• Driver Classes

• Like the Java examples presented above

• Interactive Boundary classes

• Hard! A lot of work!

• How effective relative to driver classes?

Approaches to A1 scaffold

week 7 CSC407 Oct 23/03 21

• What did you learn in A1?

• What should we tell Rosenberg?

• How should we have set up the assignment?

A1 comments?

week 7 CSC407 Oct 23/03 22

• Confusion exists about what is analysis

• Not our fault. Confusion exists!

• Analysis is about the domain

• NOT about the proposed software.

• Use cases, Domain classes

• NO robustness or sequence diagrams.

A2

week 7 CSC407 Oct 23/03 23

• John Deere 9560.

• > 300Hp

• Base price $usd 158K

• Greenstar ~$5000

New fangled tractors

week 7 CSC407 Oct 23/03 24

• It’s the software.

• Idea is that if every “quad” of field is
monitored yield can be improved relative to
fixed costs of equipment and energy.

• You are primarily analyzing the historical
data.

• “agricultural analytics” makes fun of financial
derivatives software which is referred to as
“analytics”.

A2 is science fiction

week 7 CSC407 Oct 23/03 25

• Getting language in use cases in sync with
domain model surprisingly difficult.

• Controlling scope of analysis challenging.

• If you find yourself modeling too much
think about scope.

• Remember planaria use case diagram?

• Only required to support a few use cases.

Intended A2 lessons.

week 7 CSC407 Oct 23/03 26

use case scope..

week 7 CSC407 Oct 23/03 27

• (Overview) Crop plan has always been done

• Detailed crop plan feeds the implements.

• “Analytics” totally out of scope.

• Do not design relational database!

• Describe historical data in terms of
classes.

• DB analysts will figure out how to
“persist” your model later, during design.

A2

