
1

05Creational
Oct 7/03

CSC407 1

Creational Patterns

• Patterns used to abstract the process of instantiating
objects.
– class-scoped patterns

• uses inheritance to choose the class to be instantiated
– Factory Method

– object-scoped patterns
• uses delegation

– Abstract Factory
– Builder
– Prototype
– Singleton

05Creational
Oct 7/03

CSC407 2

Importance

• Becomes important as emphasis moves towards
dynamically composing smaller objects to achieve
complex behaviours.
– need more than just instantiating a class
– need consistent ways of creating related objects.
– helps manage compositions of objects implementing abstract

interfaces. Which is an crucial tool for handling complexity.

05Creational
Oct 7/03

CSC407 3

Recurring Themes

• Hide the details about which concrete classes the system
uses.

• Hide the details of how instances are created and
associated.

• Gives flexibility in
– what gets created
– who creates it
– how it gets created
– when it get gets created

05Creational
Oct 7/03

CSC407 4

Running Example

• Building a maze for a computer game.

• A Maze is composed of many instances of the Room.
• A Room knows its neighbours.

– another room
– a wall
– a door

2

05Creational
Oct 7/03

CSC407 5

Maze Example

05Creational
Oct 7/03

CSC407 6

Creating Mazes
public class MazeGame
{

public static void main(String args[]) {
Maze m = new MazeGame().createMaze();

}

public Maze createMaze() {
Room r1 = new Room(1);
Room r2 = new Room(2);
Door d = new Door(r1,r2);

r1.setSide(Direction.North, new Wall());
r1.setSide(Direction.East, d);
r1.setSide(Direction.West, new Wall());
r1.setSide(Direction.South, new Wall());

r2.setSide(Direction.North, new Wall());
r2.setSide(Direction.West, d);
r2.setSide(Direction.East, new Wall());
r2.setSide(Direction.South, new Wall());

Maze m = new Maze();
m.addRoom(r1);
m.addRoom(r2);
return m;

}
}

r1 r2

d

05Creational
Oct 7/03

CSC407 7

Maze Classes
public abstract class MapSite

{

public abstract void enter();

}

public class Wall extends MapSite

{

public void enter() {

}

}

MapSite

enter()

Wall

enter()

05Creational
Oct 7/03

CSC407 8

Maze Classes
public class Door extends MapSite
{

Door(Room s1, Room s2) {
side1 = s1;
side2 = s2;

}

public void enter() {
}

public Room otherSideFrom(Room r) {
if(r == side1)

return side2;
else if(r == side2)

return side1;
else

return null;
}

public void setOpen(boolean b) {
open = b;

}

public boolean getOpen() {
return open;

}

private Room side1;
private Room side2;
boolean open;

}

MapSite

enter()

Room

Door

open: boolean

enter()
otherSideFrom(Room): Room

2

side1, side2

[0..4]

3

05Creational
Oct 7/03

CSC407 9

Maze Classes

public class Direction

{

public final static int First = 0;

public final static int North = First;

public final static int South = North+1;

public final static int East = South+1;

public final static int West = East+1;

public final static int Last = West;

public final static int Num = Last-First+1;

}

05Creational
Oct 7/03

CSC407 10

Maze Classes
public class Room extends MapSite
{

public Room(int r) {
room_no = r;

}

public void enter() {
}

public void setSide(int direction, MapSite ms) {
side[direction] = ms;

}

public MapSite getSide(int direction) {
return side[direction];

}

public void setRoom_no(int r) {
room_no = r;

}

public int getRoom_no() {
return room_no;

}

private int room_no;
private MapSite[] side = new MapSite[Direction.Num];

}

MapSite

enter()

Room

enter()

4

05Creational
Oct 7/03

CSC407 11

Maze Classes
import java.util.Vector;

public class Maze
{

public void addRoom(Room r) {
rooms.addElement(r);

}

public Room getRoom(int r) {
return (Room)rooms.elementAt(r);

}

public int numRooms() {
return rooms.size();

}

private Vector rooms = new Vector();
}

Maze

Room
*

05Creational
Oct 7/03

CSC407 12

Maze Creation

public Maze createMaze() {
Room r1 = new Room(1);
Room r2 = new Room(2);
Door d = new Door(r1,r2);

r1.setSide(Direction.North, new Wall());
r1.setSide(Direction.East, d);
r1.setSide(Direction.West, new Wall());
r1.setSide(Direction.South, new Wall());

r2.setSide(Direction.North, new Wall());
r2.setSide(Direction.East, d);
r2.setSide(Direction.West, new Wall());
r2.setSide(Direction.South, new Wall());

Maze m = new Maze();
m.addRoom(r1);
m.addRoom(r2);
return m;

}

4

05Creational
Oct 7/03

CSC407 13

Maze Creation

• Fairly complex method (just) to create a maze with two
rooms.

• Knows a lot of details (everything?) about Rooms, Doors,
Walls.

• Obvious simplification:
– Room() could initialize sides with 4 new instances of Wall
– That just moves the code elsewhere.

• Problem lies elsewhere: inflexibility
– Hard-codes the maze creation
– Changing the layout can only be done by re-writing, or overriding

and re-writing.

• Promotes code copying which is a Bad Thing.

05Creational
Oct 7/03

CSC407 14

Creational Patterns Benefits

• Will make the maze more flexible.
– easy to change the components of a maze
– e.g., DoorNeedingSpell, EnchantedRoom

• How can you change createMaze() so that it creates mazes with these
different kind of classes?

• Biggest obstacle is hard-coding of class names mixed in with code
that composes a Room from the bits and pieces.

05Creational
Oct 7/03

CSC407 15

Creational Patterns
• If createMaze() calls virtuals to construct components

– Factory Method
• If createMaze() is uses a factory object to create rooms, walls, …

– Abstract Factory
• If createMaze() is passed a object to create and connect-up mazes

– Builder
• If createMaze is parameterized with various exemplars, or prototypes,

of rooms, doors, walls, … which it clones and then adds to the maze
– Prototype

• Need to ensure there is only one maze per game, and everybody can
access it, and can extend or replace the maze without touching other
code.
– Singleton

05Creational
Oct 7/03

CSC407 16

Factory Method

• Define an interface for creating an object, but let
subclasses decide which class to instantiate.

• a.k.a. Virtual Constructor
• e.g., app framework

factory method

Motivating example (pp 107)

5

05Creational
Oct 7/03

CSC407 17

Applicability

• Use when:
– A class can’t anticipate the kind of objects to create.
– Hide the secret of which helper subclass is the current delegate.

05Creational
Oct 7/03

CSC407 18

Structure

• Product
– defines the interface of objects the factory method creates

• ConcreteProduct
– implements the Product interface

05Creational
Oct 7/03

CSC407 19

Structure

• Creator
– declares the factory method which return a Product type.
– [define a default implementation]
– [call the factory method itself]

• ConcreteCreator
– overrides the factory method to return an instance of a

ConcreteProduct

05Creational
Oct 7/03

CSC407 20

Sample Code
public class MazeGame {

public static void main(String args[]) {
Maze m = new MazeGame().createMaze();

}

private Maze makeMaze() { return new Maze(); }
private Wall makeWall() { return new Wall(); }
private Room makeRoom(int r) { return new Room(r); }
private Door makeDoor(Room r1, Room r2) { return new Door(r1,r2); }

public Maze createMaze() {
…

}
}

6

05Creational
Oct 7/03

CSC407 21

Sample Code
public Maze createMaze() {

Room r1 = makeRoom(1);
Room r2 = makeRoom(2);
Door d = makeDoor(r1,r2);

r1.setSide(Direction.North, makeWall());
r1.setSide(Direction.East, d);
r1.setSide(Direction.West, makeWall());
r1.setSide(Direction.South, makeWall());

r2.setSide(Direction.North, makeWall());
r2.setSide(Direction.East, d);
r2.setSide(Direction.West, makeWall());
r2.setSide(Direction.South, makeWall());

Maze m = makeMaze();
m.addRoom(r1);
m.addRoom(r2);
return m;

}

Recall: these were
constructors in “orange
arrow” slide.

05Creational
Oct 7/03

CSC407 22

Sample Code
public class BombedMazeGame extends MazeGame
{

private Wall makeWall() { return new BombedWall(); }
private Room makeRoom(int r) { return new RoomWithABomb(r); }

}

public class EnchantedMazeGame extends MazeGame
{

private Room makeRoom(int r)
{ return new EnchantedRoom(r, castSpell()); }

private Door makeDoor(Room r1, Room r2)
{ return new DoorNeedingSpell(r1,r2); }

private Spell castSpell()
{ return new Spell(); }

}

createMaze will
create mazes
with same
structure but
different
components

05Creational
Oct 7/03

CSC407 23

Sample Code

public static void main(String args[]) {

Maze m = new EnchantedMazeGame().createMaze();

}

public static void main(String args[]) {

Maze m = new BombedMazeGame().createMaze();

}

05Creational
Oct 7/03

CSC407 24

Consequences

• Advantage:
– Eliminates the need to bind to specific implementation classes.

• Can work with any user-defined ConcreteProduct classes.

• Disadvantage:
– Uses an inheritance dimension
– Must subclass to define new ConcreteProduct objects

• interface consistency required

7

05Creational
Oct 7/03

CSC407 25

Consequences

• Provides hooks for subclasses
– always more flexible than direct object creation

• Connects parallel class hierarchies
– hides the secret of which classes belong together
– consistent types of object created by consistent factory methods

05Creational
Oct 7/03

CSC407 26

Implementation

• Two major varieties
– creator class is abstract

• requires subclass to implement
– creator class is concrete, and provides a default implementation

• optionally allows subclass to re-implement

• Parameterized factory methods
– takes a class id as a parameter to a generic make() method.
– (more on this later)

• Naming conventions
– use ‘makeXXX()’ type conventions (e.g., MacApp –

DoMakeClass())
• Can use templates instead of inheritance
• Return class of object to be created

– or, store as member variable

05Creational
Oct 7/03

CSC407 27

Question

• What gets printed?

public class Main {

public static void main(String args[])

{ new DerivedMain(); }

public String myClass()

{ return "Main"; }

}

class DerivedMain extends Main {

public DerivedMain()

{ System.out.println(myClass()); }

public String myClass()

{ return "DerivedMain"; }

}

05Creational
Oct 7/03

CSC407 28

What is printed?
public class Main {

public Main(){ System.out.println(myClass()); }

public static void main(String args[]) {

new DerivedMain();

}

public String myClass() { return "Main"; }

}

class DerivedMain extends Main {

public DerivedMain(){}

public String myClass() {return "DerivedMain"; }

}

8

05Creational
Oct 7/03

CSC407 29

What is printed by C++?
using namespace std;

class Main {
public:

Main(){cout << myClass() << "\n";}
virtual char * myClass() { return "Main"; }

};

class DerivedMain: public Main {
public:

DerivedMain():Main(){ }

virtual char * myClass(){ return "DerivedMain"; }
};

int _tmain(int argc, _TCHAR* argv[]){
new DerivedMain();
return 0;

}

05Creational
Oct 7/03

CSC407 30

Implementation

• Lazy initialization
– In C++, subclass vtable pointers aren’t installed until after parent

class initialization is complete.
• DON’T CREATE DURING CONSTRUCTION!
• can use lazy instatiation:

Product getProduct() {

if(product == null) {

product = makeProduct();

}

return product;

}

05Creational
Oct 7/03

CSC407 31

Abstract Factory
• Provide an interface for creating families of related or dependent objects

without specifying their concrete classes.
• e.g., look-and-feel portability

– independence
– enforced consistency

05Creational
Oct 7/03

CSC407 32

Applicability

• Use when:
– a system should be independent of how its products are created,

composed, and represented
– a system should be configured with one of multiple families of

products.
– a family of related product objects is designed to be used together,

and you need to enforce this constraint.
– you want to provide a class library of products, and you want to

reveal just their interfaces, not their implementations.
– you want to hide and reuse awkward or complex details of

construction
– For instance, GUI applications that compile under X windows and

win32.
• At cost of abstracting some (probably) lowest common denominator

of widgets.

9

05Creational
Oct 7/03

CSC407 33

Structure

• AbstractFactory
– declares an interface for operations that create product objects.

• ConcreteFactory
– implements the operations to create concrete product objects.

05Creational
Oct 7/03

CSC407 34

Structure

• AbstractProduct
– declares an interface for a type of product object.

• Product
– defines a product to be created by the corresponding concrete factory.
– implements the AbstractProduct interface.

05Creational
Oct 7/03

CSC407 35

Structure

• Client
– uses only interfaces declared by AbstractFactory and AbstractProduct

classes.
– This is significant. These interfaces had better be useful abstractions.

05Creational
Oct 7/03

CSC407 36

Sample Code
public class MazeFactory {

Maze makeMaze() { return new Maze(); }

Wall makeWall() { return new Wall(); }

Room makeRoom(int r) { return new Room(r); }

Door makeDoor(Room r1, Room r2) { return new Door(r1,r2);}

}

10

05Creational
Oct 7/03

CSC407 37

Maze Creation (old way)
public Maze createMaze() {

Room r1 = new Room(1);
Room r2 = new Room(2);
Door d = new Door(r1,r2);

r1.setSide(Direction.North, new Wall());
r1.setSide(Direction.East, d);
r1.setSide(Direction.West, new Wall());
r1.setSide(Direction.South, new Wall());

r2.setSide(Direction.North, new Wall());
r2.setSide(Direction.East, d);
r2.setSide(Direction.West, new Wall());
r2.setSide(Direction.South, new Wall());

Maze m = new Maze();
m.addRoom(r1);
m.addRoom(r2);
return m;

}

Recall: these were
constructors in “orange
arrow” slide.

05Creational
Oct 7/03

CSC407 38

Sample Code

public Maze createMaze(MazeFactory factory) {
Room r1 = factory.makeRoom(1);
Room r2 = factory.makeRoom(2);
Door d = factory.makeDoor(r1,r2);

r1.setSide(Direction.North, factory.makeWall());
r1.setSide(Direction.East, d);
r1.setSide(Direction.West, factory.makeWall());
r1.setSide(Direction.South, factory.makeWall());

r2.setSide(Direction.North, factory.makeWall());
r2.setSide(Direction.East, d);
r2.setSide(Direction.West, factory.makeWall());
r2.setSide(Direction.South, factory.makeWall());

Maze m = factory.makeMaze()
m.addRoom(r1);
m.addRoom(r2);
return m;

}

Now call methods
on factory
object

05Creational
Oct 7/03

CSC407 39

Sample Code
public class EnchantedMazeFactory extends MazeFactory {

public Room makeRoom(int r) {

return new EnchantedRoom(r, castSpell());

}

public Door makeDoor(Room r1, Room r2) {

return new DoorNeedingSpell(r1,r2);

}

private protected castSpell() {

// randomly choose a spell to cast;

…

}

}

05Creational
Oct 7/03

CSC407 40

Sample Code
public class MazeGame

{

public static void main(String args[]) {

Maze m = new MazeGame().createMaze(new MazeFactory());

}

}

public class MazeGame

{

public static void main(String args[]) {

Maze m = new MazeGame().createMaze(new EnchantedMazeFactory());

}

}

11

05Creational
Oct 7/03

CSC407 41

Consequences

• It isolates concrete classes
– Helps control the classes of objects that an application creates.
– Isolates clients from implementation classes
– Clients manipulate instances through abstract interfaces
– Product class names are isolated in the implementation of the

concrete factory
• they do not appear in the client code

– You had better be happy with those abstract interfaces!
• Wouldn’t even know what class to cast to!
• Once upon a time this caused me Major Grief when I found I had to

hack into “least common denominator” widget behind abstract
interface.

05Creational
Oct 7/03

CSC407 42

Consequences

• It makes exchanging product families easy
– The class of a concrete factory appears only once in the app.

• where it’s instantiated
– Easy to change the concrete factory an app uses.
– The whole product family changes at once

05Creational
Oct 7/03

CSC407 43

Consequences

• It promotes consistency among products
– When products are designed to work together, it’s important that

an application use objects only from one family at a time.
– AbstractFactory makes this easy to enforce.

05Creational
Oct 7/03

CSC407 44

Consequences

• Supporting new kinds of products is difficult.
– Extending AbstractFactory to produce new product types isn’t easy

• extend factory interface
• extend all concrete factories
• add a new abstract product
• + the usual (implement new class in each family)

12

05Creational
Oct 7/03

CSC407 45

Implementation

• Factories as Singletons
– An app typically needs only one instance of a ConcreteFactory per

product family.
– Best implemented as a Singleton

05Creational
Oct 7/03

CSC407 46

Implementation

• Defining extensible factories
– Hard to extend to new product types
– Add parameter to operations that create products

• need only make()
• less safe
• more flexible
• easier in languages that have common subclass

– e.g. java Object
• easier in more dynamically-typed languages

– e.g., Smalltalk
• all products have same abstract interface

– can downcast – not safe
– classic tradeoff for a very flexible/extensible interface

05Creational
Oct 7/03

CSC407 47

Implementation

• Creating the products
– AbstractFactory declares an interface for product creation
– ConcreteFactory implements it. How?

• Factory Method
– virtual overrides for creation methods
– simple
– requires new concrete factories for each family, even if they only

differ slightly
• Prototype

– concrete factory is initialized with a prototypical instance of each
product in the family

– creates new products by cloning
– doesn’t require a new concrete factory class for each product

family
– variant: can register class objects

05Creational
Oct 7/03

CSC407 48

Singleton

• Ensure a class only has one instance, and provide a global
point of access to it.
– Many times need only one instance of an object

• one file system
• one print spooler
• …

– How do we ensure there is exactly one instance, and that the
instance is easily accessible?

• Global variable is accessible, but can still instantiate multiple
instances.

• make the class itself responsible

13

05Creational
Oct 7/03

CSC407 49

Applicability

• Use when:
– there must be exactly one instance accessible from a well-known

access point
– the sole instance should be extensible via subclassing

• clients should be able to use the extended instance without modifying
their code

05Creational
Oct 7/03

CSC407 50

Structure

• Singleton
– defines a class-scoped instance() operation that lets clients access

its unique instance
– may be responsible for creating its own unique instance

05Creational
Oct 7/03

CSC407 51

Sample Code
package penny.maze.factory;
public class MazeFactory {

MazeFactory() { }

private static MazeFactory theInstance = null;
public static MazeFactory instance() {

if(theInstance == null) {
String mazeKind =

AppConfig.getProperties().getProperty("maze.kind");
if(mazeKind.equals("bombed")) {

theInstance = new BombedMazeFactory();
} else if(mazeKind.equals("enchanted")) {

theInstance = new EnchantedMazeFactory();
} else {

theInstance = new MazeFactory();
}

}
return theInstance;

}
…

}

