
03 - OOD Sept 25/03 CSC407 1

OOA/OOD Example wrapup

(hour1)

Pattern Intro

(hour2)

See http://www.cs.toronto.edu/~matz/instruct/csc407/eg

05 - Patterns Intro. CSC407 2

• 30 min office hour cum “Q + A” following lecture in

BA1170 so long as no special event needs the room

• Who conveniently reads the newsgroup from home?

– It looks to me like news.cdf.toronto.edu is open for NNTP.

• A2(a) is in final draft.

– part a OOA

– part b OOD

• Tutorials

– Do read the slides over

– This week will feature repeat performance with more detailed

script.

Admin/Housekeeping

03 - OOD Sept 25/03 CSC407 3

• Oftentimes only a small fraction of a system is carried out

in software.

• It’s nice to see how the software fits into the rest of the

workplace.

• Use cases are good for this.

• Oftentimes projects start out ambitious and contract.

– Prioritizing use cases help trim the fat.

Which use cases

03 - OOD Sept 25/03 CSC407 4

03 - OOD Sept 25/03 CSC407 5

• Like almost any complicated effort we need a way of

attacking our design in pieces.

• Packages, over and above any Java implementation

issues, are a way of focusing our design activities.

• Packages are a good way of separating our documentation

into sections.

Divide and Conquer

03 - OOD Sept 25/03 CSC407 6

Top Package

jdoc

 ood

03 - OOD Sept 25/03 CSC407 7

Package Plan

jdoc

package documentation

 ood

03 - OOD Sept 25/03 CSC407 8

Package Report

jdoc src

sample

No equivalent OOA classes

 ood

03 - OOD Sept 25/03 CSC407 9

• In the early stages of an OOA it is usual to create domain

models that are more general than than the design models

that are eventually created.

• To emphasize this point we will consider a few

associations from the point of view of navigability.

• We will see that a design can be simplified considerably if

only the required navigability is built.

• On the other hand the extensibility of a system can be

reduced if this is carried too far.

• Consider “develops” association between Company and

Software.

– For in house application there is only one company..

– A merger or two and.. oh oh.

An OOA can be overly general

03 - OOD Sept 25/03 CSC407 10

• It is often not necessary to implement associations

between classes as generally as the OOA might imply.

• When software actually runs we need to get from one

object to another.

• One of the decisions that can be made at design time is

that a given program only navigates an association in one

direction.

– Whereas the process by which OOAs are done makes it unlikely

to have been noticed. (Remember Point example?)

– Significant opportunity for simplifying design.

Navigation

03 - OOD Sept 25/03 CSC407 11

Implementing Associations

• Decide on interface for
– Navigating the links

• usually get method for 1 side, iterator for * side.

– Adding new links

– Deleting links (if necessary)

• Decide on implementation
– Simple pointer to implement the [0..1] side

• (if required by navigatability)

– Array, Vector, Map, Linked List to do the [*] side
• (if required by navigatability)

• Persistence Warning

– Keeping associations up to date in database can be big source of

complexity.

03 - OOD Sept 25/03 CSC407 12

Features (from OOA)

03 - OOD Sept 25/03 CSC407 13

DOM Company

jdoc src ood

These associations do not exist in the

OOA, but are required by this Company-

rooted implementation concept.
Should we add to OOA? Maybe.

No way of getting
back to Company

03 - OOD Sept 25/03 CSC407 14

• Example: To sort features we need to compare them.

• To compare features we need to compare priority and then

desirability.

• Priority is easy

– David goes to town with discrete value Priority class which

implements Comparator

• Desirability is not so easy

– We need to compare the total desirability of each Feature.

– Thus we need to navigate from each Feature to its (multiple)

CustomerRequests and add up the corresponding desirabilities.

• So, in fact, we need only to get from Features to

CustomerRequests to do the sort.

Navigation of Features

03 - OOD Sept 25/03 CSC407 15

jdoc src

 ood

No need to

navigate in the

reverse

direction

03 - OOD Sept 25/03 CSC407 16

• When you start on a project there are often things that it is

not clear how to accomplish.

• Probably pointless to design software until you know how

to do it!

• Prototyping usually shows how to accomplish the task

and also uncovers challenges to a clean structure for the

software

• This knowledge should be integrated into your design.

• My position is that you ought to prototype to figure out

how to do things, then you toss out most of the prototype

and start working on OOD.

• This is different from RAD, I think.

Prototyping

03 - OOD Sept 25/03 CSC407 17

Experiments show..

 /** Suggests a release of this software product.

 * @param capacity number of person-days of effort available to work release

 * @return a Release containing a suggested list of features

 */

public Release planRelease(double capacity) {
 double inplan = 0.0;

//Sort in order of desirability somehow

 sortFeatures(ReverseFeaturePlanningOrder.get());
 Release r = new Release();
 for (Iterator i = featureIterator(); i.hasNext();) {
 Feature f = (Feature)i.next();
 if (inplan + f.getSizing() <= capacity) {
 r.addFeature(f);
 inplan += f.getSizing();
 }
 }
 return r;
 }

03 - OOD Sept 25/03 CSC407 18

• It’s not just that we hate typing..

• It’s not just that we hate fixing bugs twice..

• It’s not just that we particularly hate looking for cloned

code that has to be kept in sync..

• In fact the techniques we use to factor code has little to do

with the structure of our classes so far.

• Inheritance can be used to explicitly factor out common

behavior

– This is NOT the “is-a” relationships we detected during OOA.

– On the next slide a we don’t mean to say that Releases and

Software (products) are specializations of the same concept

– Rather we are just packaging code in a way that makes sharing of

methods to deal with lists of features explicit.

Design and Code factoring

03 - OOD Sept 25/03 CSC407 19

jdoc src

 ood Does not exist in OOA.
Introduced for

implementation

convenience. Should we

add? No.

Implementation

inheritance!

03 - OOD Sept 25/03 CSC407 20

• Java already has a well thought out infrastructure for

sorting Collections.

• Collections.sort(List l, Comparator c)

• Designing your own from scratch would be silly, right?

• This certainly involves a detailed design that is motivated

by object oriented thinking -- but may have nothing to do

with a particular OOA.

• So our Priority class implements the Java Foundation

Classes Comparator interface.

• We introduce our a class ReverseFeaturePlanningOrder

that implements Comparator.

Taking the lead from existing designs

03 - OOD Sept 25/03 CSC407 21

jdoc src

 ood

03 - OOD Sept 25/03 CSC407 22

• We want our design to adapting to reuse existing object

work?

• This is the motivation behind Software Patterns.

• More next lecture.

• Time for a Break.

Hey, is this interesting?

03 - OOD Sept 25/03 CSC407 23

Patterns

05 - Patterns Intro. CSC407 24

Genesis

• Christopher Alexander, et. al.

– A Pattern Language

– Oxford University Press, 1977

–

– “Each pattern describes a problem which occurs over and over

again in our environment, and then describes the core of a

solution to that problem, in such a way that you can use this

solution a million times over, without ever doing it the same way

twice.”

–

– Talking about buildings, bridges and towns.

• (NB. His communities weren’t all smashing successes.)

• During the last decade, a “pattern community” has

developed in the field of software design.

05 - Patterns Intro. CSC407 25

Design Patterns

• Designing good and reusable OO software is hard.

– Mix of specific + general

– Impossible to get it right the first time

• Experienced designers will use solutions that have worked

for them in the past.

• Design patterns

– Systematically

• names,

• explains,

• and evaluates

– important, recurring designs in OO systems.

05 - Patterns Intro. CSC407 26

Finding Appropriate Objects

• Hard part about OOD is decomposing a system into

objects.

• Many objects come directly from the analysis model or

from the implementation space.

• OO designs often wind up with classes that have no such

counterparts.

– E.g., Composite, Strategy, Sate

•

05 - Patterns Intro. CSC407 27

Determining Object Granularity

• Too large

– Hard to change.

– Procedural program inside an object.

– Large, shared data structure.

– Hard to understand

• Too small

– Inefficiencies

• Copied data

• Method invocation overhead

– Hard to understand

• Whatever the choice, negative consequences can be

mitigated by judicious use of certain patterns:

– Flyweight, Façade, Builder, Visitor, Command, …

–

05 - Patterns Intro. CSC407 28

Using Object Interfaces

• This is how Microsoft COM sees the world.

– Can make the most sophisticated systems with no inheritance.

– Can still use implementation inheritance under the covers.

• Never refer to a class by name. Always use interfaces.

– Callers remain unaware of the specific types they use.

• can extend the type structure

– Callers remain unaware of the classes that implement the

interfaces.

• can dynamically load new implementations

• Sometimes difficult to put into practice.

– Creational patterns help a great deal.

•

05 - Patterns Intro. CSC407 29

Inheritance v.s. Composition

Rectangle

getArea()

Window

getArea()

1

• Composition
– Can change implementations at run-time
– Does not break encapsulation
– Less “uselessly” general

Rectangle

getArea()

Window

getArea()

• Inheritance
– Defined statically
– Easier to modify sub-class (language supported)
– Can affect behavior indirectly

05 - Patterns Intro. CSC407 30

Delegation

• Can implement inheritance using delegation.

• Makes it easier to compose behaviours at run-time

(e.g., Window can become circular at run-time)

• Many design patterns rely on delegation.
•

05 - Patterns Intro. CSC407 31

Design Patterns in General

• Pattern name

– A word or two that increases our design vocabulary

• Problem

– Describes when to apply the pattern.

• Solution

– Describes the elements that make up the design:

• Responsibilities, relationships, collaborations

• A general arrangement of classes

– Must be adapted for each use

• Consequences

– Results and trade-offs of applying the pattern

• Space & time

• Implementation issues

• Impact on flexibility, extensibility, portability

05 - Patterns Intro. CSC407 32

Design Patterns Specifically

• Pattern name and classification

• Intent

– What does it do? What’s its rationale

• Also knows as

• Motivation

– A use scenario

• Applicability

– In what situations can you apply it? How can you recognize these situations.

• Structure

– UML

• Participants

• Collaborations

• Consequences

– Trade-offs in applying this pattern

• Implementation

– Any implementation tips when applying the pattern

• Sample code

• Known uses

• Related patterns

05 - Patterns Intro. CSC407 33

Design Pattern Coverage

• In this course, we will cover a limited number of very

basic design patterns.

• This is only a fraction of what a real expert might know.

05 - Patterns Intro. CSC407 34

Design Pattern Space

Purpose

Creational Structural Behavioral Storage Distributed

Scope Class Factory method Adapter

Template Base

Interpreter

Template Method

Object File

RDB Direct

Object Abstract Factory

Builder

Prototype

Singleton

Adapter

Bridge

Composite

Decorator

Façade

Proxy

Chain of Responsibility

Command

Iterator

Mediator

Memento

Flyweight

Observer

State

Strategy

Visitor

OODB Proxy Attribute Factory

05 - Patterns Intro. CSC407 35

Scope

• Class Patterns

– Relationships between classes and their subclasses

– No need to execute any code to set them up

– Static, fixed at compile-time

• Object Patterns

– Relies on object pointers.

– Can be changed at run-time, are more dynamic.

•

05 - Patterns Intro. CSC407 36

Purpose

• Creational

– Concerns the process of object creation

• Structural

– Concerns the relationships between classes and objects

• Behavioral

– Concerns the ways objects and classes distribute responsibility for

performing some task.

• Storage

– Concerns the ways objects can be made persistent.

• Distributed

– Concerns the ways server objects are represented on a client.

05 - Patterns Intro. CSC407 37

Creational Patterns

• Class

– Factory Method

• Define an interface for creating an object, but let subclasses decide which
class to instantiate.

• Object

– Abstract Factory

• Provide an interface for creating families of related objects without
specifying their concrete classes.

– Builder

• Separate the construction of a complex object from its representation so that
the same construction process can create different representations.

– Prototype

• Specify the kinds of objects to create using a prototypical instance, and create
new objects by copying this prototype.

– Singleton

• Ensure a class only has one instance, and provide a global point of access to
it.

•

• 05 - Patterns Intro. CSC407 38

Structural Patterns
• Class

– Adapter

• Convert the interface of a class into another interface clients expect.

– Template Base

• Use templated base classes to specify associations.

• Object

– Adapter

• Convert the interface of a class into another interface clients expect.

– Bridge

• Decouple an abstraction from its implementation so that the two can vary
independently (run-time inheritance)

– Composite

• Compose objects into tree structures to represent part-whole hierarchies. Composite
lets clients treat individual objects and compositions of objects uniformly.

•

–

05 - Patterns Intro. CSC407 39

Structural Patterns (cont’d)

• Object (cont’d)

– Decorator

• Attach additional responsibilities to an object dynamically.

– Façade

• Provide a unified interface to a set of interfaces in a subsystem.

– Flyweight

• Use sharing to support large numbers of fine-grained objects

efficiently.

– Proxy

• Provide a surrogate or placeholder for another object to control

access to it.

05 - Patterns Intro. CSC407 40

Behavioral Patterns

• Class

– Interpreter

• Given a language, define a representation for its grammar along with an
interpreter that uses the representation to interpret sentences in the language.

– Template Method

• Let subclasses redefine certain steps of an algorithm without changing the
algorithm's structure.

• Object

– Chain of Responsibility

• Avoid coupling the sender of a request to its receiver by giving more than one
object a chance to handle the request.

– Command

• Encapsulate a request as an object.

– Iterator

• Provide a way to access the elements of an aggregate object sequentially
without exposing its underlying representation.

– Mediator

• Define an object that encapsulates how a set of objects interact.

–

•

05 - Patterns Intro. CSC407 41

Behavioral Patterns (cont’d)

• Object (cont’d)

– Memento

• Capture and externalize an object's internal state so that the object
can be restored to this state later.

– Observer

• When one object changes state, all its dependents are notified and
updated automatically.

– State

• Allow an object to alter its behavior when its internal state changes.
The object will appear to change its class.

– Strategy

• Define a family of algorithms, encapsulate each one, and make them
interchangeable.

– Visitor

• Represent an operation to be performed on the elements of an object
structure.

•
05 - Patterns Intro. CSC407 42

Storage Patterns

• Class

– Object File

• Store and retrieve a network of objects to a sequential file.

– RDB Direct

• Store and retrieve a network of objects to a relational database.

• Object

– OODB Proxy

• Store and retrieve objects from an object-oriented database.

05 - Patterns Intro. CSC407 43

Distributed Patterns

• Object

– Attribute Factory

• Generate a lightweight object graph on the client-side of a client-

server system.

05 - Patterns Intro. CSC407 44

Relationships Between Patterns

