
03 - OOD Sept 25/03 CSC407 1

OOA/OOD/OOP Example

See http://www.cs.toronto.edu/~matz/instruct/csc407/eg

03 - OOD Sept 25/03 CSC407 2

Introduction

• This was David Penny’s research topic.
• Want a (Java) program to help a software company plan

new releases of their software (340 refers to person-days):
$ java Plan features.xml Planetaria 340

• xml file contains sized (in coder days), prioritized
(hi,med,low), feature requests for various products
– includes list of requesting customers with how much they want it

(1-10).

• Suggest an "optimal" release plan given the available
capacity (in coder days).

• Sample output

03 - OOD Sept 25/03 CSC407 3

OOA

• See ~matz/csc407/eg/ooa/index.html
• Introduction

– why are we doing this
– what is the current document for
– where did the information come from
– general points (change & XML file in this case)

• Use Cases
– what is the bigger problem
– how does this particular program fit into it

• Class Diagrams
– restate information from the requirements statement in UML
– (mostly you have no "requirements statement")
–

03 - OOD Sept 25/03 CSC407 4

03 - OOD Sept 25/03 CSC407 5

multiplicity review

Polygon

Point

Style

Circle

3..*

*
1

*

1

1isFilled
colour

From Fowler, pp 86

Sometimes detailed multiplicity has important
things to tell the reader about the domain model.

Often not..

03 - OOD Sept 25/03 CSC407 6

Features

Misleading??

03 - OOD Sept 25/03 CSC407 7

Employees

03 - OOD Sept 25/03 CSC407 8

Customers

03 - OOD Sept 25/03 CSC407 9

OOD

• See ood document
• David’s presentation is excellent.

• Package design
– what rationale for the package breakdown

• Main driver
– sequence diagram explaining how (one) use case is executed

• For each package
– a collection of class diagrams

• shows important methods
• shows important attributes
• shows association navigability
• indicates how associations are implemented
• indicates inheritance and interface implementation

important = helps in
understanding the
design

03 - OOD Sept 25/03 CSC407 10

About Source and Javadoc

• Javadoc is a tool that extracts comments formatted in a
certain manner and produces Web pages documenting the
details of a class design.
– See example

•
• To display source code, I used a tool called java2html for

pretty-printing Java source to HTML.
– See example

03 - OOD Sept 25/03 CSC407 11

Experiments show..

 /** Suggests a release of this software product.
 * @param capacity number of person-days of effort available to work release
 * @return a Release containing a suggested list of features
 */

public Release planRelease(double capacity) {
 double inplan = 0.0;

//Sort in order of desirability somehow

 sortFeatures(ReverseFeaturePlanningOrder.get());
 Release r = new Release();
 for (Iterator i = featureIterator(); i.hasNext();) {
 Feature f = (Feature)i.next();
 if (inplan + f.getSizing() <= capacity) {
 r.addFeature(f);
 inplan += f.getSizing();
 }
 }
 return r;
 }

03 - OOD Sept 25/03 CSC407 12

Top Package

jdoc

 ood

03 - OOD Sept 25/03 CSC407 13

Package Plan

jdoc

package documentation

 ood

03 - OOD Sept 25/03 CSC407 14

03 - OOD Sept 25/03 CSC407 15

src

sample

03 - OOD Sept 25/03 CSC407 16

Package Report

jdoc src

sample

No equivalent OOA classes

 ood

03 - OOD Sept 25/03 CSC407 17

Package Input

jdoc src

• No equivalent OOA classes
• Sequence diagram for readFile is fairly clear just
from the class description (see also Report class)

 ood

03 - OOD Sept 25/03 CSC407 18

Package dom

• For "Domain Object Model"
•
• Coad's "Problem Domain Component"
•
• Implements an in-memory, object-oriented data model

reflecting the OOA
•
• Must be modified/extended to work in a program

jdoc

 ood

03 - OOD Sept 25/03 CSC407 19

Implementing Associations

• Decide on navigability
– The direction in which the association can be efficiently

navigated
• If you have one object of the Left class, can you in O(n) time access

all objects of the Right class linked to that Left object.

• Decide on interface for
– Navigating the links

• usually get method for 1 side, iterator for * side.

– Adding new links

– Deleting links (if necessary)

• Decide on implementation
– Simple pointer to implement the [0..1] side

• (if required by navigatability)

– Array, Vector, Map, Linked List to do the [*] side
• (if required by navigatability)

–

03 - OOD Sept 25/03 CSC407 20

Features (from OOA)

03 - OOD Sept 25/03 CSC407 21

DOM Company
jdoc src ood

These associations do not
exist in the OOA, but are
required by this Company-
rooted implementation
concept.
Should we add to OOA?
Maybe.

03 - OOD Sept 25/03 CSC407 22

jdoc src

 ood Does not exist in OOA.
Introduced for
implementation
convenience. Should we
add? No.

Implementation
inheritance!

03 - OOD Sept 25/03 CSC407 23

jdoc src

 ood

03 - OOD Sept 25/03 CSC407 24

Employees
(from
OOA)

03 - OOD Sept 25/03 CSC407 25

Customers (from OOA)

03 - OOD Sept 25/03 CSC407 26

jdoc src

 ood

No need to
navigate in the
reverse
direction

