
2 - Crash Review CSC407 1

• How many programmed during summer (again)

– I cannot believe the results of my little poll!

• Customer hands over design. What do you do first?

– Should you assume design is perfect?

• Anecdote:

– regexp test scaffold. Scaffold does only what testing requires.

– two team metaphor. GUI team and model team.

• Code generation?

• A1 issues:

– try and follow the design. Nothing is perfect.

– my goof: remove references to “check out” use case.

– iconix goof: back to home page not login page after add account

– iconix goof: really need “add item to shopping cart”.

• Otherwise you miss an important method on ShoppingCart..

Sept 17 Anecdotes/Housekeeping

2 - Crash Review CSC407 2

• The transition between Analysis (Domain) and OO

Design has been the stumbling block.

• Many authors have contributed and many agree at some

level.

• Use cases are used to capture the sequence of operations

the system must support. Related to requirements.

– Identify many domain classes

• I like Doug Rosenberg’s ICONIX approach.

– Robustness diagrams identify classes that support the user

interface (boundary) and control logic of a system

• Often find missed domain classes. Hence name.

• In many cases crude notion of the UI is required to proceed.

• http://www.iconixsw.com/uml_for_e-commerce.ppt

• say around slide 10-17

Linkage between Domain, Design

Las
t

Lec
tu

re

2 - Crash Review CSC407 3

• No 340?

– no waiver unless you can show me real UML models

• No 378?

– I’ll accept it as a co-req

• I need your name and sid to fill in the form

– I haven’t had many emails

– John H

– Ann D

• I expected an email message from the “three amigos” by

now.

Waivers

2 - Crash Review CSC407 4

UML

• Unified Modeling Language

– In early 90s, there were many competing
graphical notations all used for OOA.

– Three of the major players got together in
Booch’s company

• Rational Software Corporation

– Booch, Rumbaugh, Jacobson

• Merged their ideas to produce

– UML (public domain)

– Associated tools (mainly Rational Rose)

– Rational Software Process (public domain)

Acquired other companies (Purify, Quantify, …

2 - Crash Review CSC407 5

Uses for UML
• OOA

– A visual language for, in the problem domain,
• capturing knowledge about a subject
• expressing knowledge for the purposes of communication

• ..Difficult transition..
• OOD

– A visual language for, in the solution space,
• capturing design ideas
• communicating design ideas

–

• Related, but distinct usages
• Must supplement both with written explanations

and transient diagrams such as robustness,
sequence.

Domain Space

Design Space

2 - Crash Review CSC407 6

This Course and UML

• You will use UML for assignments

– Unfortunately, many of following slides are in

OMT, as is the Design Patterns book.

• UML

– Has its warts

– Good enough when augmented by written

explanation

– NOT FORMAL. Just bubbles, really.

• Cover only the most useful subset of UML

– Mainly class/object/use case/sequence charts.

•

2 - Crash Review CSC407 7

Books on UML

• You must acquire reference materials on UML
– Some of these lecture materials prepared from

• UML In A Nutshell (O’Reilly) by Sinan Si Alhir
– Also

• The Unified Modeling Language User Guide
– Booch et. al

• UML Distilled (second edition)
– Martin Fowler.

– Also
• Reference materials off the Web

• Object Modeling books:
– Object Oriented Analysis and Design

• Booch et.al.
– Designing Object-Oriented Software

• Wirfs-Brock et. al.
– Object-Oriented Modeling and Design

• Rumbaugh et. al.
– Object-Oriented Analysis

• Coad and Yourdon

•

Cheaper, THIN!

2 - Crash Review CSC407 8

UML Definition

• OMG-endorsed standard (Object Management Group)

– UML Semantics Document

• “inside-view”

• specifies semantics of constructs

– UML Notation Guide

• “outside-view”

• specifies notation for expressing constructs

– Object Constraint Language specification document

• definition of a (textual) language for expressing logical constraints

– Zillions of people working on formalizing UML

• Meanwhile it’s just bubbles!

2 - Crash Review CSC407 9

UML is For

• For Problems

– Specifying

– Visualizing

– Promoting Understanding

– Documenting

–

• For Problem Solving

– Capturing Attempts

– Communicating Attempts

– Leveraging Knowledge

For Solutions
Specifying
Visualizing
Evaluating
Constructing
Documenting

Primarily communication aid between people!

2 - Crash Review CSC407 10

Parts of UML
• Class Diagrams

– models

• Object Diagrams
– example models

• Use Case Diagrams
– document who can do what in a system

• Sequence Diagrams
– shows interactions between objects used to implement a use case

• Collaboration Diagrams
– same as above, different style

• Statechart Diagrams
– possible states and responses of a class and what transitions them

• Activity Diagrams
– describe the behaviour of a class in response to internal processing

• Component Diagrams
– Organization of and dependencies amongst software implementation

components

• Deployment Diagrams
– Describe the mapping of software implementation components onto processing

nodes

UML is GIANT
but no robustness..

2 - Crash Review CSC407 11

The World Out There

• The real world is impenetrably complex

– e.g., a complete model of you would include DNA,
behaviour specifications, total history, parents’ history,
influences, …

– for a particular problem, abstracting you as

• last name

• first name

• student number

• course

• final grade

– may be enough.

• The Object-Oriented paradigm is one method for
simplifying the world.

2 - Crash Review CSC407 12

Objects [Rumbaugh]

• An object is

– A concept, abstraction, or thing

– with crisp boundaries and

– meaning for the problem at hand

• Objects

– promote understanding of the real world

– provide a practical basis for computer implementation

• Decomposition of a problem into objects depends on

– Judgment

– The nature of the problem being solved

• Not only the domain: two analyses of the same domain will turn
out differently depending upon the kind of programs we wish to
produce.

Guidance of

domain experts

essential

2 - Crash Review CSC407 13

Classes

• A class describes a group of objects with similar

properties.

– Class: Instructor

• Object: David Penny

• Object: Matthew Zaleski

– Class: Department

• Object: Department of Computer Science

• Object: Department of Electrical Engineering

–

Instructor Department

2 - Crash Review CSC407 14

Attributes

• Data values held by the objects of a class

Instructor

name: string

age: integer

weight: integer

2 - Crash Review CSC407 15

Operations

• A function or a transformation that may be applied to or
by objects in a class.

– Not often used (not often terribly useful) in an OOA

Instructor

name

age

weight

teach

mark

listen_to_complaints

2 - Crash Review CSC407 16

Links and Associations

• The means for establishing relationships among

objects and classes.

– link: a connection between two object instances

– association: a collection of links with common

structure and semantics.

Instructor Departmentteaches for

By default, read association names left to right and top to

bottom (override with or)

2 - Crash Review CSC407 17

Object Diagrams

• Models instances of things contained in class diagrams.

• Shows a set of objects and their links at a point in time

• Useful preparatory to deciding on class structures.

• Useful in order to better explain more complex class

diagrams by giving instance examples.

i: Instructor

name = “Penny”

j: Instructor

name = “Zaleski”

: Department

name = “DCS”

: Department

name = “ECE”

2 - Crash Review CSC407 18

Multiplicity

• Used to indicate the number of potential instances

involved in the association when the other associated

classes are fixed.

Instructor Departmentteaches for

A given instructor

can teach for

potentially many

departments (or

none)

**

A given department

employs zero or

more instructors

2 - Crash Review CSC407 19

Multiplicities Carry Important Messages

• Used to indicate the number of potential instances

involved in the association when the other associated

class is fixed.

Instructor Departmentteaches for

1..* 0..1

A given instructor can teach

for at most one department at

a time, or may not be

currently teaching for any

department

All departments

have at least one

instructor, but

probably more
Don’t sweat them too much too early

2 - Crash Review CSC407 20

N-Ary Associations

Instructor Departmentteaches

1 1

Course

*

A given instructor

teaching for a given

department may

teach zero or more

courses for that

department.

There is exactly one

instructor teaching

a given course for a

given department

Try to avoid them!

2 - Crash Review CSC407 21

Attributes on Associations

Instructor Department

teaches for

pay

2 - Crash Review CSC407 22

Aggregation Indicators (Part-Of)

Department

Student

Implied

multiplicity of 1

Window

Frame

Composition

(strong ownership,

coincident lifetime)

Aggregation

(no associated semantics)

Don’t sweat them too much too early

2 - Crash Review CSC407 23

Generalization (a.k.a. Inheritance, is-a)

Shape

Rectangle Circle Triangle

Square

2 - Crash Review CSC407 24

 Inheritance can be a trap..

• Analysis shown below may not be a good choice,

• instances of class 407Instructor (me) may teach different things next

term.

• Point is meant to be that just because a concept can be

viewed as a generalization of another doesn’t mean you

should use inheritance. It has to makes sense as objects

change.

Instructor

407Instructor

2 - Crash Review CSC407 25

Example

• We are asked to build a system for keeping track

of the time our workers spend working on

customer projects.

• We divide projects into activities, and the

activities into tasks. A task is assigned to a

worker, who could be a salaried worker or an

hourly worker.

• Each task requires a certain skill, and resources

have various skills at various level of expertise.

2 - Crash Review CSC407 26

Steps

• Analyze the written requirements

– Extract nouns: make them classes

– Extract verbs: make them associations

– Draw the OOA UML class diagrams

– Determine attributes

– Draw object diagrams to clarify class diagrams

• Determine the system’s use cases

– Identify Actors

– Identify use case

– Relate use cases

• Draw sequence diagrams

– One per use case

– Use to assign responsibilities to classes

• Add methods to OOA classes

Preliminary Design:
Robustness Diagrams

2 - Crash Review CSC407 27

Example

• We are asked to build a system for keeping track

of the time our workers spend working on

customer projects.

Worker

Customer

Project

Time

assigned to

against

spends *

1*

*

*

**

1
contracts

2 - Crash Review CSC407 28

Example

• We divide projects into activities, and the

activities into tasks. A task is assigned to a

worker, who could be a salaried worker or an

hourly worker.

Project

Worker

SalariedWorker HourlyWorker

Activity

1..*

Task

1..*

*

1

Assignment

Time
spent on

assi
gned to

2 - Crash Review CSC407 29

Example

• Each task requires a certain skill, and workers

have various skills at various level of expertise.

Worker

Skill

Task

requires
has

SkillLevel

1..*

* *

1..*

2 - Crash Review CSC407 30

Steps

• Analyze the written requirements

– Extract nouns: make them classes

– Extract verbs: make them associations

– Draw the OOA UML class diagrams

– Determine attributes

– Draw object diagrams to clarify class diagrams

• Determine the system’s use cases

– Identify Actors

– Identify use case

– Relate use cases

• Draw sequence diagrams

– One per use case

– Use to assign responsibilities to classes

• Add methods to OOA classes

Preliminary Design:
Robustness Diagrams

2 - Crash Review CSC407 31

Example

Customer

companyName

primeContact

address

phone

fax

Project
contracts

N.B.

• Project has no attribute in Customer

• association is enough

• no database id for Customer shown

• in an OOA, only include an id if visible to users

• may include such things during database design or OOD

2 - Crash Review CSC407 32

Example

Project

name

description

startDate: date
Customer

contracts

Activity

name

description

startDate: date

estHours: int

deliverable: string

Task

2 - Crash Review CSC407 33

Example

Task

description

startDate: date

estHours: int

Activity

Skill

Worker

requires

assigned to

has

Constraint: A task may only

be assigned to a worker who

has the required skill.

2 - Crash Review CSC407 34

Example

Worker

name: string

SalariedWorker

salary: real

vacationDays: int

HourlyWorker

hourlyWage: real

SkillLevel

level: int

rateMultiplier: real

Task
assigned to

Skill

name: string

has

2 - Crash Review CSC407 35

Example

Time

start: dateTime

end: dateTime

hours: real

Assignment

Task Workerassigned to

spent on

2 - Crash Review CSC407 36

Steps

• Analyze the written requirements

– Extract nouns: make them classes

– Extract verbs: make them associations

– Draw the OOA UML class diagrams

– Determine attributes

– Draw object diagrams to clarify class diagrams

• Determine the system’s use cases

– Identify Actors

– Identify use case

– Relate use cases

• Draw sequence diagrams

– One per use case

– Use to assign responsibilities to classes

• Add methods to OOA classes

Preliminary Design:
Robustness Diagrams

2 - Crash Review CSC407 37

Object Diagrams

:Time

start: Jan.23, 2002, 8:00

end: Jan.23, 2002, 18:00

hours: 4.2

:Assignment

:Task

description: “develop class diagrams”

:Worker

name: “Matt”

2 - Crash Review CSC407 38

Steps

• Analyze the written requirements

– Extract nouns: make them classes

– Extract verbs: make them associations

– Draw the OOA UML class diagrams

– Draw object diagrams to clarify class diagrams

– Determine attributes

• Determine the system’s use cases

– Identify Actors

– Identify use case

– Relate use cases

• Draw sequence diagrams

– One per use case

– Use to assign responsibilities to classes

• Add methods to OOA classes

Preliminary Design:
Robustness Diagrams

2 - Crash Review CSC407 39

Use Cases

• Actors:

– Represent users of a system

• human users

• other systems

• Use cases

– Represent functionality or services

provided by a system to its users

2 - Crash Review CSC407 40

Use Case Diagrams

Time & Resource Management System

(TRMS)

project

manager

resource

manager

worker

<<actor>>

Backup

System

Manage

Resources

Log Time

Manage

Projects

Administer

System

system

administrator

2 - Crash Review CSC407 41

Resource Manager Use Cases

resource

manager

Add

Skill

Remove

Skill

Update

Skill

Find

Skill

<<uses>
>

<<uses>>

Or..
 <<invokes>>

2 - Crash Review CSC407 42

More Resource Manager Use Cases

resource

manager

Add

Worker

Remove

Worker

Update

Worker

Find

Worker

Find

Skill

Assign Skill

to Worker
Unassign Skill

from Worker

<<uses>>

<<extends>>

<<extends>>

<<uses>>

<<uses>
>

<<invoke>>

<<invoke>>

<<invoke>>

<<invoke>>

<<invoke>>

<<The difference is not
particularly enlightening>>

2 - Crash Review CSC407 43

• The system displays the “New Skill Editor” page, which

the clerk fills in. When satisfied the clerk presses the

“Submit” button and the system processes the new Skill

and returns to the “Skill Manager” page.

• Alternative courses

– clerk changes mind and cancels edit

– new skill fails edit checks

Add Skill Use case

2 - Crash Review CSC407 44

Steps

• Analyze the written requirements

– Extract nouns: make them classes

– Extract verbs: make them associations

– Draw the OOA UML class diagrams

– Draw object diagrams to clarify class diagrams

– Determine attributes

• Determine the system’s use cases

– Identify Actors

– Identify use case

– Relate use cases

• Draw sequence diagrams

– One per use case

– Use to assign responsibilities to classes

• Add methods to OOA classes

Preliminary Design:
Robustness Diagrams

2 - Crash Review CSC407 45

• Not part of UML, really.

• Jacobson saw the need for a preliminary design stage in

which use cases “drive” or “simulate” the system

interacting with the just completed domain model.

– Flushes out omissions (hence robustness?)

– Finds new objects and classes that are not in the domain but will

obviously be required in design

• Boundary classes

• Controller classes

• General idea is that robustness diagrams are a transitional

diagram between the first cut at a domain model and the

real software design that occurs during the construction of

a sequence diagram.

Robustness Diagrams

2 - Crash Review CSC407 46

• Sanity check model, use case text

• Completeness Check on use cases, especially alternate

courses

• Discover more domain classes

• Start uncovering Design classes

– Hard to progress without some notion of user interface.

– Perhaps this is where lessons learned building a GUI prototype

feed back in to design process?

– I try to have screen shots available at this point.

• Crossover point.

– Still a lot of information in use cases that needs to be considered.

Preliminary Design

2 - Crash Review CSC407 47

• Definition, such as it is:

– Entity object are domain.

– Boundary Objects are used by Actors.

– Controllers are glue. Largely placeholders for methods.

• Classification implies some limitations:

– Actors talk only to Boundary objects

– Boundary objects talk to Controllers and Actors

– Entity objects talk only to Controllers

– Controllers send messages to Boundary objects and Entity objects

but not Actors.

Robustness Diagrams

2 - Crash Review CSC407 48

• The system displays the “New Skill Editor” page, which

the clerk fills in. When satisfied the clerk presses the

“Submit” button and the system processes the new Skill

and returns.

– Alternate Course: If the data entered into the new skill page fails

to edit check the system returns the user to the new skill editor

but with a message inserted into the editor’s message area.

• Whoa! “processes the new skill”? Missing stuff!

• The system displays the “New Skill Editor” page, which

the clerk fills in. When satisfied the clerk presses the

“Submit” button and the system adds the new Skill to the

Skills Inventory and returns.

Add Skill Use case

2 - Crash Review CSC407 49

Robustness Diagram

clerk

Skill

SkillValidator

New Skill
Entry Page

Display

SkillInventory

2 - Crash Review CSC407 50

Steps

• Analyze the written requirements

– Extract nouns: make them classes

– Extract verbs: make them associations

– Draw the OOA UML class diagrams

– Draw object diagrams to clarify class diagrams

– Determine attributes

• Determine the system’s use cases

– Identify Actors

– Identify use case

– Relate use cases

• Draw sequence diagrams

– One per use case

– Use to assign responsibilities to classes

• Add methods to OOA classes

Preliminary Design:
Robustness Diagrams

2 - Crash Review CSC407 51

Sequence Diagram – Assign Skill to Worker Use Case

resource

manager

Res. Mgr. Win: UI :Worker :Skill :SkillLevel

find worker

find skill

assign skill

to worker

find worker

by name

find skill by name

[worker does not currently have skill]

assign skill to worker

2 - Crash Review CSC407 52

Steps

• Analyze the written requirements

– Extract nouns: make them classes

– Extract verbs: make them associations

– Draw the OOA UML class diagrams

– Draw object diagrams to clarify class diagrams

– Determine attributes

• Determine the system’s use cases

– Identify Actors

– Identify use case

– Relate use cases

• Draw sequence diagrams

– One per use case

– Use to assign responsibilities to classes

• Add methods to OOA classes

Preliminary Design:
Robustness Diagrams

2 - Crash Review CSC407 53

Add Methods

• Read sequence diagrams to identify necessary methods

Worker

name: string

+ static Worker findWorker(String name);

+ static list of Workers getWorkers();

2 - Crash Review CSC407 54

In Design

• Bring methods closer to implementation

Worker

name: string

+ static Worker findWorker(String name);

+ static int getNWorkers();

+ static Worker getWorker(int);

2 - Crash Review CSC407 55

In Design

• Bring methods closer to implementation

Worker

name: string

+ static Worker findWorker(String name);

WorkList

Int getNumListElements();

String getListElement(int n);
ListModel

int getNumListElements();

String getListElement(int n);

