05

UML/OOA/OOD crash course

Universal Modeling Language 1s a collection of standards
for diagram of various aspects of problem domains and
software systems.

By itself, 1t doesn’t help us build software any better.
As part of a methodical approach it 1s useful.

Assignment 1 presents a design and asks you to
implement 1it.

— So you ought to understand the bubbles.

I assume that many of you know UML well enough now.
— Show of hands?

The goal of the crash course 1s thus to understand one
“methodical approach” the UML diagrams fit into.

- O0OA CSC407



Evolution of Object-Oriented Development

| Methods
e Mid to late 1980s

— Object-Oriented Languages (esp. C++) were very much in vogue

— However, there was little guidance on how to divide a problem
into OO classes.

* 1990: Object Modeling

— All at around the same time, many were borrowing an argument
from structured design:

» The best organization for a software systems is one that is cohesive
in the problem domain, not in the solution space

— Tends to isolate changes
— Tends to make the program easier to understand
— Developed methods for applying this concept to OO design.
« Rumbaugh, Coad, Wirfs-Brock, Booch, Jacobson ...

05 - OOA CSC407



Object Modeling Method
e Step 1: O0OA

— Analyze the problem domain

 Identify problem domain classes and relationships between
classes

 Identify attributes and methods
 Identify states and transitions
« Sample object structures and interactions

— Not programming! Abstracting the real-world.
* Step 2: OOD
— Use the OOA as the core of a solution to:

« User interface design
« Database design
* OO program design

05 - OOA CSC407



05

Time for Big Think

If we spend the rest of this lecture on this slide, so be it.
— Prepare yourself for some interaction! Please argue with me.
We want to build a system whose construction in some
way corresponds to the world, or problem domain, in
which the system will operate.

We want to align the concepts we use 1n the
implementation as best we can with the concepts held by
the most expert users of our system.

We want to describe what our system should do 1n terms
of these domain objects. (use cases)

We want to design our software in a traceable, methodical
way from what the system should do.

OO programming 1s just syntax without these things.

_00A CSC407 | g



05

Linkage between Domain, Design

The transition between Analysis (Domain) and OO
Design has been the stumbling block.

Many authors have contributed and many agree at some
level.

Use cases are used to capture the sequence of operations
the system must support. Related to requirements.

— Identify many domain classes

I like Doug Rosenberg’s ICONIX approach.

— Robustness diagrams identify classes that support the user
interface (boundary) and control logic of a system
» Often find missed domain classes. Hence name.
* In many cases crude notion of the Ul 1s required to proceed.
* http://www.iconixsw.com/uml for e-commerce.ppt
* say around slide 10-17

- O0OA CSC407





