
05 - OOA CSC407 1

• Universal Modeling Language is a collection of standards
for diagram of various aspects of problem domains and
software systems.

• By itself, it doesn’t help us build software any better.
• As part of a methodical approach it is useful.
• Assignment 1 presents a design and asks you to

implement it.
– So you ought to understand the bubbles.

• I assume that many of you know UML well enough now.
– Show of hands?

• The goal of the crash course is thus to understand one
“methodical approach” the UML diagrams fit into.

UML/OOA/OOD crash course

05 - OOA CSC407 2

Evolution of Object-Oriented Development
Methods

• Mid to late 1980s
– Object-Oriented Languages (esp. C++) were very much in vogue
– However, there was little guidance on how to divide a problem

into OO classes.

• 1990: Object Modeling
– All at around the same time, many were borrowing an argument

from structured design:
• The best organization for a software systems is one that is cohesive

in the problem domain, not in the solution space

– Tends to isolate changes
– Tends to make the program easier to understand

– Developed methods for applying this concept to OO design.
• Rumbaugh, Coad, Wirfs-Brock, Booch, Jacobson …

05 - OOA CSC407 3

Object Modeling Method
• Step 1: OOA

– Analyze the problem domain
• Identify problem domain classes and relationships between

classes
• Identify attributes and methods
• Identify states and transitions
• Sample object structures and interactions

– Not programming! Abstracting the real-world.

• Step 2: OOD
– Use the OOA as the core of a solution to:

• User interface design
• Database design
• OO program design

05 - OOA CSC407 4

• If we spend the rest of this lecture on this slide, so be it.
– Prepare yourself for some interaction! Please argue with me.

• We want to build a system whose construction in some
way corresponds to the world, or problem domain, in
which the system will operate.

• We want to align the concepts we use in the
implementation as best we can with the concepts held by
the most expert users of our system.

• We want to describe what our system should do in terms
of these domain objects. (use cases)

• We want to design our software in a traceable, methodical
way from what the system should do.

• OO programming is just syntax without these things.

Time for Big Think

05 - OOA CSC407 5

• The transition between Analysis (Domain) and OO
Design has been the stumbling block.

• Many authors have contributed and many agree at some
level.

• Use cases are used to capture the sequence of operations
the system must support. Related to requirements.
– Identify many domain classes

• I like Doug Rosenberg’s ICONIX approach.
– Robustness diagrams identify classes that support the user

interface (boundary) and control logic of a system
• Often find missed domain classes. Hence name.
• In many cases crude notion of the UI is required to proceed.
• http://www.iconixsw.com/uml_for_e-commerce.ppt
• say around slide 10-17

Linkage between Domain, Design

