

1

UML Model Report

(In support of assignment 1 for CSC407f)

UML Model
Derived from Iconixsw.com example at

http://www.iconixsw.com/UMLworkbook.html

Thanks to Doug Rosenberg for permission to use this material.

Adapted by Mathew Zaleski

Note: After BACKGROUND section comments added by Zaleski are in Italics.

 UML Model

Au t h o r : i c o n n i x / za l e s k i R ev n u m 1 . 8 P ag e 2 o f 2 8

F i l e N a me : u ml _ mo d e l . d o c

Table of Contents

TABLE OF CONTENTS ..2

PREFACE ..3

GOAL OF ASSIGNMENT 1 ..3

BACKGROUND..3

TASK OF ASSIGNMENT 1...4

HOW WILL YOU LEARN UML IN TIME?...4

USE CASE MODEL REPORT..5
USE CASE MODEL..5

Actor - Customer...5
Use Case - Add Item to Shopping Cart...6
Use Case - Cancel Order..6
Use Case - Edit Contents of Shopping Cart ...7
Use Case - Log In ...10
Use Case - Open Account ...13
Use Case - Search by Author..15
Use Case – Add item to shopping cart..19
Use Case - Track Recent Orders ..19

DOMAIN MODEL ..22
STATIC OBJECT MODEL ...24

 UML Model

Au t h o r : i c o n n i x / za l e s k i R ev n u m 1 . 8 P ag e 3 o f 2 8

F i l e N a me : u ml _ mo d e l . d o c

PREFACE

This preface and the following introduction added by Mathew Zaleski in support of the first assignment of
CSC407 at the University of Toronto for the fall semester of the 2003 academic year.

This document illustrates one way in which the design of an object oriented software system can be captured.

The assumption behind this assignment is that a good design is much easier to follow than to create. No one I
consulted has tried an assignment like this before so only time & effort will tell if this approach is
pedagogically sound.

GOAL OF ASSIGNMENT 1

Our goal is to introduce, you, a seasoned student programmer, to the productivity of implementing from a good
design. Hopefully, in the future, the experience will lead you to create a good design before you code whenever
possible. In any case programming from a model is probably a more interesting way of learning use cases,
robustness diagrams and sequence diagrams than cramming from a book.

BACKGROUND

The “internet bookstore” has been a popular example program for several years. Presumably it was for this
reason Doug Rosenberg chose it as the main example in [2]. The book steps the reader through Rosenberg’s
design method culminating in the design presented below. Rosenberg has kindly allowed us to use this example
in assignment 1. He has expressed interest in your implementations and perhaps, with your permission, will use
them as the basis for another book about implementation experience implementing sound designs. Conceivably
one or several of your solutions will find their way into an upcoming Addison-Wesley book.

A few editorial comments are in order:

• This may be a one shot opportunity. Creating a design as good as this one is difficult and time
consuming.

• In terms of its functionality this is only a small slice of a useful internet bookstore and a somewhat
contrived one to boot. We handle the front end of the system (logging in and searching for a book by
author and adding it to a virtual shopping car) but omit any back-end functions like checking out,
shipping and so on. Rosenberg’s example includes more functionality but we felt it would require too
much effort to implement.

• A real internet bookstore needs a user interface. However, your implementations would be
unnecessarily complicated by a graphical or web interface. A very significant aspect of Rosenberg’s
design is that it identifies “boundary” objects that can conceptually support different user interface
technologies. In our case they will implement a textual interface. In this way we will gain two benefits.
First, we will simplify the implementation considerably. Second, we will learn one approach to
building a test scaffold to drive interactive applications.

 UML Model

Au t h o r : i c o n n i x / za l e s k i R ev n u m 1 . 8 P ag e 4 o f 2 8

F i l e N a me : u ml _ mo d e l . d o c

TASK OF ASSIGNMENT 1

Your task is to build a program that faithfully implements the design presented below. Presumably you will
choose to build the program in Java. We will expect you to name your classes the same as in the design below.1
Do not redesign this system for this assignment!

The classes identified as “boundary” classes (see the Robustness diagrams following) interact directly with the
user. Your program must be tested with every use case and alternate course. Thus, you must find a way to feed
input into and collect output out of the boundary objects such that such testing is possible. The input and output
produced by each test must be presented in a document that your TA can examine to determine whether your
program works. Note we are NOT specifying precisely what this input and output should be so there will be no
attempt made to automatically verify that your programs work on tests other than the ones you provide.

HOW WILL YOU LEARN UML IN TIME?

We will do a crash review of UML in the first few lectures. Though this will be insufficient to teach how to
create a UML design it should suffice to build code from an existing design. There are many good books
available on UML.

You should start by reestablishing reasonable familiarity with UML, perhaps by quickly re-reading a small
UML book like [1]. Then, you should carefully study the robustness and sequence diagrams below. They
provide an important way of moving from domain model concepts to design.

Robustness diagrams are fully described in [3].

1 Several of the classes below include blanks in their names, for instance, “Shopping Cart”. In Java you should drop the

blank, thus naming the class “ShoppingCart”

 UML Model

Au t h o r : i c o n n i x / za l e s k i R ev n u m 1 . 8 P ag e 5 o f 2 8

F i l e N a me : u ml _ mo d e l . d o c

USE CASE MODEL REPORT

Use cases are used to describe how the system should behave under stimuli. The intent is to anchor the process
of domain analysis in actual work that needs to be done by the system. As you will see, the uses cases drive
Rosenberg’s design method at every stage.

Note that use cases are part of the “domain model” NOT the design model. This is to say they record how an
actor might interact with the objects that make up the problem domain. Naturally we will attempt to structure
our design so that some of the classes of our design, the so called “entity” classes, correspond to the problem
domain.

Use Case Model

The following diagram illustrates how actors relate to use cases. In our case, with one actor, it is not
particularly useful

Use Case Diagram - Main

 Actor - Customer

Documentation:

The one actor of the system is the user of the bookstore, the person seeking and eventually
buying books. (Rosenberg’s design had actors representing shipping personnel as well.)

Log In

Edit Contents of Shopping Cart

Search by Author

Track Recent Orders

Open Account

Cancel Order

Customer

 UML Model

Au t h o r : i c o n n i x / za l e s k i R ev n u m 1 . 8 P ag e 6 o f 2 8

F i l e N a me : u ml _ mo d e l . d o c

Use Case - Add Item to Shopping Cart

Documentation:

This use case was not documented presumably because Iconix decided it was too simple. In
any case, it adds little knowledge once the “edit shopping cart” use case is analyzed.. This
use case is “invoked” by other use cases when a selected book is to be added to the shopping
cart. In those cases the shopping cart is not visible so the action is behind the scenes. See Edit
shopping cart for the interesting version.

List of Associations

Search Results Page Communicates with Add Item to Shopping Cart

 Use Case - Cancel Order

Documentation:

Basic Course

The system ensures that the Order is cancelable (in other words, that its status isn't "shipping"
or "shipped"). Then the system displays the relevant information for the Order on the Cancel
Order Page, including its contents and the shipping address. The Customer presses the
Confirm Cancel button. The system marks the Order status as "deleted" and then invokes the
Return Items to Inventory use case.

Alternate Course

If the status of the Order is "shipping" or "shipped," the system displays a message indicating
that it's too late for the Customer to cancel the order.

(Note, since we have dropped all the actors other than customers from Rosenberg’s example
the alternative courses can never occur, as there is no one to ship the book in our system.)

List of Associations

Customer Communicates with Cancel Order

 UML Model

Au t h o r : i c o n n i x / za l e s k i R ev n u m 1 . 8 P ag e 7 o f 2 8

F i l e N a me : u ml _ mo d e l . d o c

Use Case - Edit Contents of Shopping Cart

Documentation:

Basic Course

On the Shopping Cart Page, the Customer modifies the quantity of an Item in the Shopping
Cart and then presses the Update button. The system stores the new quantity and then
computes and displays the new cost for that Item. The Customer presses the Continue
Shopping button. The system returns control to the use case from which it received control.

Alternate Courses

If the Customer changes the quantity of the Item to 0, the system deletes that Item from the
Shopping Cart.

If the Customer presses the Delete button instead of the Update button, the system deletes that
Item from the Shopping Cart.

If the Customer presses the Check Out button instead of the Continue Shopping button, the
system passes control to the Check Out use case.

List of Associations

Customer Communicates with Edit Contents of Shopping Cart

 UML Model

Au t h o r : i c o n n i x / za l e s k i R ev n u m 1 . 8 P ag e 8 o f 2 8

F i l e N a me : u ml _ mo d e l . d o c

Class Diagram - Edit Contents of Shopping Cart Robustness

This is the first example of a “robustness” diagram. Note that in addition to actors, boundary (shopping cart
page), control (delete item, update quantity and cost, display) entity (shopping cart, item) and use case (check
out) domain classes are denoted by specific symbols.

Robustness diagrams are a key intermediate step between the use cases, the domain model and the eventual
static class model (or design).

Shopping Cart

(from Domain with Attributes)

Customer

Check Out

Item

(from Domain with Attributes)

Delete Item
Shopping Cart Page

modify quantity;
press Update

Display

Update Quantity and
Cost

 UML Model

Au t h o r : i c o n n i x / za l e s k i R ev n u m 1 . 8 P ag e 9 o f 2 8

F i l e N a me : u ml _ mo d e l . d o c

Interaction Diagram - Edit Contents of Shopping Cart Sequence

This is the first sequence diagram or the design. Here we begin the process of identifying design classes by
placing methods corresponding to the behavior observed in the use cases and robustness diagram. Note that
many of the “controller” classes robustness diagrams wind up as methods.

1 : Customer
2 :

Shoppin...
3 : Item 4 :

Sho...Basic Course

On the Shopping Cart Page,
the Customer modifies the
quantity of an Item in the
Shopping Cart, and then
presses the Update button.

The system stores the new
quantity, and then computes
and displays the new cost for
that Item.

The Customer presses the
Continue Shopping button.
The system returns control to
the use case from which it
received control.

Alternate Courses

If the Customer changes the
quantity of the Item to 0, the
system deletes that Item from
the Shopping Cart.

If the Customer presses the
Delete button instead of the
Update button, the system
deletes that Item from the
Shopping Cart.

If the Customer presses the
Check Out button instead of the
Continue Shopping button, the
system passes control to the
Check Out use case.

onUpdate()

updateQuantityAndCost()

displayCost()

onContinueShopping()

onDelete()

deleteItem()

onCheckOut() Pass control
to Check Out
use case

destroy()

destroy()

deleteItem()

deleteItem()

getItem()

 UML Model

Au t h o r : i c o n n i x / za l e s k i R ev n u m 1 . 8 P ag e 1 0 o f 2 8

F i l e N a me : u ml _ mo d e l . d o c

Use Case - Log In

Documentation:

Basic Course

The Customer clicks the Log In button on the Home Page. The system displays the Login
Page. The Customer enters his or her user ID and password and then clicks the Log In button.
The system validates the login information against the persistent Account data and then
returns the Customer to the Home Page.

Alternate Courses

If the Customer clicks the New Account button on the Login Page, the system invokes the
Open Account use case.

If the Customer clicks the Reminder Word button on the Login Page, the system displays the
reminder word stored for that Customer, in a separate dialog box. When the Customer clicks
the OK button, the system returns the Customer to the Login Page.

If the Customer enters a user ID that the system does not recognize, the system displays a
message to that effect and prompts the Customer to either enter a different ID or click the
New Account button.

If the Customer enters an incorrect password, the system displays a message to that effect and
prompts the Customer to reenter his or her password.

If the Customer enters an incorrect password three times, the system displays a page telling
the Customer that he or she should contact customer service, and also freezes the Login Page.

List of Associations

Customer Communicates with Log In

 UML Model

Au t h o r : i c o n n i x / za l e s k i R ev n u m 1 . 8 P ag e 1 1 o f 2 8

F i l e N a me : u ml _ mo d e l . d o c

Class Diagram - Log In Robustness

Account

(from Domain wi th Attributes)

Open Account

Validate

Home Page

Login Page

Customer

click Log In

enter data and click Login

Display

Reminder Word Dialog Box

click OK

 UML Model

Au t h o r : i c o n n i x / za l e s k i R ev n u m 1 . 8 P ag e 1 2 o f 2 8

F i l e N a me : u ml _ mo d e l . d o c

Interaction Diagram - Log In Sequence

1 : Customer
2 : Home Page 3 : Login Page 4 : Reminder

Word Dialo...
5 :

Acc...
Basic Course

The Customer clicks the Log In button
on the Home Page.

The system displays the Login Page.

The Customer enters his or her user ID
and password, and then clicks
the Log In button.

The system validates the login
information against the persistent
Account data, and then returns
the Customer to the Home Page.

Alternate Courses

If the Customer clicks the New Account
button on the Login Page, the system
invokes the Open Account use case.

If the Customer clicks the Reminder
Word button on the Login Page, the
system displays the reminder word
stored for that Customer, in a separate
dialog box. When the Customer clicks
the OK button, the system returns the
Customer to the Login Page.

If the Customer enters a user ID that the
system does not recognize, the system
displays a message to that effect and
prompts the Customer to either enter a
different ID or click the New Account
button.

If the Customer enters an incorrect
password, the system displays a
message to that effect and
prompts the Customer to
reenter his or her password.

If the Customer enters an incorrect
password three times, the system
displays a message telling the
Customer that he or she should
contact Customer Service, and also
freezes the Login Page.

onLogin()

display()

onLogin()

validateLoginInfo()

display()

Invoke Open
Account use
case

display()

onOK()

display()

displayErrorAndPrompt()

freeze()

onNewAccount()

onReminderWord()

displayErrorAndPrompt()

 UML Model

Au t h o r : i c o n n i x / za l e s k i R ev n u m 1 . 8 P ag e 1 3 o f 2 8

F i l e N a me : u ml _ mo d e l . d o c

Use Case - Open Account

Documentation:

Basic Course

The system displays the New Account Page. The Customer types his or her name, an e-mail
address, and a password (twice), and then presses the Create Account button. The system
ensures that the Customer has provided valid data and then adds an Account to the Master
Account Table using that data. Then the system returns the Customer to the Home Page.

Alternate Courses

If the Customer did not provide a name, the system displays an error message to that effect
and prompts the Customer to type a name.

If the Customer provided an email address that's not in the correct form, the system displays
an error message to that effect and prompts the Customer to type a different address.

If the Customer provided a password that is too short, the system displays an error message to
that effect and prompts the Customer to type a longer password.

If the Customer did not type the same password twice, the system displays an error message to
that effect and prompts the Customer to type the password correctly the second time.

If the account is already in the master account table, notify the user.

List of Associations

Customer Communicates with Open Account

Login Page Communicates with Open Account

Open Account Communicates with Login Page

 UML Model

Au t h o r : i c o n n i x / za l e s k i R ev n u m 1 . 8 P ag e 1 4 o f 2 8

F i l e N a me : u ml _ mo d e l . d o c

Class Diagram - Open Account Robustness

Get Account Info

Account
(f rom Domain with Attributes)

New Account Page

Home Page

Validate Correct Entry of Account Info

cl ick Create Account

Master Account Table
(f rom Domain)

Dsplay Page

Display Name Missing

Display Password Too Short

Display Bad E-Mail Address

Display Password Mismatch

Customer

Add Account

Error Page

Flag Dupl icate Account

 UML Model

Au t h o r : i c o n n i x / za l e s k i R ev n u m 1 . 8 P ag e 1 5 o f 2 8

F i l e N a me : u ml _ mo d e l . d o c

Interaction Diagram - Open Account Sequence Diagram

1 : Customer 2 : New
Account Page

3 : Error Page 4 :
Acc...

5 :
Mast...

6 : Home Page : Get
Acc...

Basic Course

The system displays the New
Account Page. The Customer
types his or her name, an email
address, and a password
(twice), and then presses the
Create Account button.

The system ensures that the
Customer has provided val id
data, and then adds an Account
to the Master Account Table
using that data. Then the
system returns the Customer to
the Home Page.

Alternate Courses

If the Customer did not provide a
name, the system displays an
error message to that effect and
prompts the Customer to type a
name.

If the Customer provided an
email address that's not in the
correct form, the system
displays an error message to
that effect and prompts the
Customer to type a different
address.

If the Customer provided a
password that is too short, the
system displays an error
message to that effect and
prompts the Customer to type a
longer password.

If the Customer did not type the
same password twice, the
system displays an error
message to that effect and
prompts the Customer to type
the password correctly the sec...

displayPage()

enterText()

onClickCreate()

setName()

setEmail()

setPassword()

validateAccount()

addAccount()
display()

displayNameMissing()

displayBadEmailAddress()

displayBadPassword()

Use Case - Search by Author

Documentation:

Basic Course

The Customer types the name of an Author on the Search Page and then presses the Search
button. The system ensures that the Customer typed a valid search phrase, and then searches
the Catalog and retrieves all of the Books with which that Author is associated. The the
system retrieves the important details about each Book, and creates a Search Results object
with that information.

 UML Model

Au t h o r : i c o n n i x / za l e s k i R ev n u m 1 . 8 P ag e 1 6 o f 2 8

F i l e N a me : u ml _ mo d e l . d o c

Then the system displays the list of Books on the Search Results Page, with the Books listed
in reverse chronological order by publication date. Each entry has a thumbnail of the Book's
cover, the Book's title and authors, the average Rating, and an Add to Shopping Cart button.
The Customer presses the Add to Shopping Cart button for a particular Book. The system
passes control to the Add Item to Shopping Cart use case.

Alternate Courses

If the Customer did not type a search phrase before pressing the Search button, the system
displays an error message to that effect and prompts the Customer to type a search phrase.

If the system was unable to find any Books associated with the Author that the Customer
specified, the system displays a message to that effect and prompts the Customer to perform a
different search.

If the Customer leaves the page in a way other than by pressing an Add to Shopping Cart
button, the system returns control to the use case from which this use case received control.

List of Associations

Customer Communicates with Search by Author

 UML Model

Au t h o r : i c o n n i x / za l e s k i R ev n u m 1 . 8 P ag e 1 7 o f 2 8

F i l e N a me : u ml _ mo d e l . d o c

Class Diagram - Search by Author Robustness

Catalog

(from Domain wi th Attributes)

Add Item to Shopping Cart

Customer

Book

(from Domain with Attributes)

Retrieve Details

Verify Search Phrase

Search Page

type author name;
press Search

Search on Author
Search Results Page

select book

Create

Display

no phrase

no books

Search Results

(from Domain with Attributes)

 UML Model

Au t h o r : i c o n n i x / za l e s k i R ev n u m 1 . 8 P ag e 1 8 o f 2 8

F i l e N a me : u ml _ mo d e l . d o c

Interaction Diagram - Search by Author Sequence

1 : Customer
2 : Search

Page
3 : Search
Results...

4 :
Catalog

5 :
Book

6 :
Sear...Basic Course

The Customer types the
name of an Author on the
Search Page, and then
presses the Search button.

The system ensures that
the Customer typed a search
phrase, and then searches
the Catalog and retrieves all of
the Books with which that
Author is associated.

The system retrieves the
important details about
each Book, and creates a
Search Results object with
that information.

Then the system displays the
list of Books on the Search
Results Page, with
the Books listed in reverse
chronological order by
publication date. Each
entry has a thumbnail of
the Book's cover, the
Book's title and authors,
the average Rating, and an
Add to Shopping Cart button.

The Customer presses the
Add to Shopping Cart button
for a particular Book. The
system passes control to
the Add Item to Shopping Cart
use case.

Alternate Courses

If the Customer did not type a
search phrase before pressing
the Search button, the system
displays an error message to
that effect and prompts the
Customer to type a search
phrase.

If the system was unable to find
any Books associated with the
Author that the Customer
specified, the system displays
a message to that effect and
prompts the Customer to
perform a different search.

If the Customer leaves the page
in a way other than by pressing
an Add to Shopping Cart
button, the system returns
control to the use case from
which this use case received
control.

onSearch()

verifySearchPhrase()

searchOnAuthor()

display()

onAddToShoppingCart()

Pass control to
Add to Shopping
Cart use case

displayErrorAndPrompt()

displayErrorAndPrompt()

retrieveDetails()

create()

 UML Model

Au t h o r : i c o n n i x / za l e s k i R ev n u m 1 . 8 P ag e 1 9 o f 2 8

F i l e N a me : u ml _ mo d e l . d o c

Use Case – Add item to shopping cart

To simply matters assume that it can only be invoked from author search. Thus we learn little
from this use case over what “edit shopping cart” has to offer.

Use Case - Track Recent Orders

Documentation:

Basic Course

The system retrieves the Orders that the Customer has placed within the last 30 days and
displays these Orders on the Order Tracking Page. Each entry has the Order ID (in the form of
a link), the Order date, the Order status, the Order recipient, and the Shipping Method by
which the Order was shipped.

The Customer clicks on a link.The system retrieves the relevant contents of the Order, and
then displays this information, in view-only mode, on the Order Details Page. The Customer
presses OK to return to the Order Tracking Page.

Once the Customer has finished viewing Orders, he or she clicks the Account Maintenance
link on the Order Tracking Page. The system returns control to the invoking use case.

Alternate Course

If the Customer has not placed any Orders within the last 30 days, the system displays a
message to that effect on the Order Tracking Page.

List of Associations

Customer Communicates with Track Recent Orders

 UML Model

Au t h o r : i c o n n i x / za l e s k i R ev n u m 1 . 8 P ag e 2 0 o f 2 8

F i l e N a me : u ml _ mo d e l . d o c

Class Diagram - Track Recent Orders Robustness

Order

(from Domain wi th Attributes)
Customer

Retrieve Order Details

Order Details Page

Order Tracking Page

Order Table

(from Domain wi th Attributes)

Display Retrieve Recent Orders

 UML Model

Au t h o r : i c o n n i x / za l e s k i R ev n u m 1 . 8 P ag e 2 1 o f 2 8

F i l e N a me : u ml _ mo d e l . d o c

Interaction Diagram - Track Recent Orders Sequence

1 : Customer
2 : Order
Trackin...

3 : Order Details
Page

4 :
Orde...

5 :
Order

6 :
Ord...

Basic Course

The system retrieves the Orders
that the Customer has placed
within the last 30 days, and
displays these Orders on the
Order Tracking Page. Each entry
has the Order ID (in the form of a link),
the Order date, the Order status, the
Order recipient, and
the Shipping Method by which the
Order was shipped.

The Customer clicks on a link. The
system retrieves the relevant contents
of the Order, and then creates an
Order Details object. The system
displays the contents of this object,
in view-only mode, on the Order
Details Page.

The Customer presses OK to
return to the Order Tracking Page.

Once the Customer has finished
viewing Orders, he or she clicks
the Account Maintenance link.
The system returns control to
the invoking use case.

Alternate Course

If the Customer has not placed any
Orders within the last 30 days, the
system displays a message to that
effect on the Order Tracking Page.

displayRecentOrders()

onLinkClick()

onAccountMaintenance()

display()

onOK()

display()

retrieveRecentOrders()

displayNoOrderMessage()

create()

retrieveDetails()

getDetails()

 UML Model

Au t h o r : i c o n n i x / za l e s k i R ev n u m 1 . 8 P ag e 2 2 o f 2 8

F i l e N a me : u ml _ mo d e l . d o c

Domain Model

This is a model of the problem domain – not a model of proposed software. The boxes on this diagram
represent concepts in our model of the problem domain. One of the advantages of object oriented techniques, of
course, is that we can build software that mimics the structure of the domain model reasonably naturally. This
domain model includes all the entity classes that we needed to build the robustness diagrams.

Customer ReviewEditorial Review

User Preferences

Login Manager

Billing Info

User
Master Account Table

CatalogSearch Results

Review
Publisher Stock

PriceSchedule

Account

1..3

1

Order Table

Order Details
Status

Shipping Method

Candidate Order

Shopping Cart

Book

Order

Item

Purchase Order

Line Item

 UML Model

Au t h o r : i c o n n i x / za l e s k i R ev n u m 1 . 8 P ag e 2 3 o f 2 8

F i l e N a me : u ml _ mo d e l . d o c

User Preferences

Lo gin Ma na ge r

Bill ing Info
creditCardType
creditCardNumber

User

Catalog

searchOnAuthor()

Publisher
name
publicatio nDate

Stock
replenishThreshold
quantityOnHand

PriceSchedule
price
discountPct

Review
rating

write()

Search Results

create()

Account
userID
password
reminderWord
emailAddress

countBadPasswords()
setName()
setEmail()
setPassword()
validateAccount()

1..3

1

Order Table

retrieveRecentOrders()

Status

Sh ippi ng Method

Order Details

create()
getDetails()

Book
title
price
publishedDate
thumbnail
quantityOnHand
replenishThreshold
discountPct
publisher

retrieveDetails()

Pu rchase Orde r
datePlaced
status
items : Vector

Shopping Cart

deleteItem()
getItem()

Order
ID
datePlaced
dateShipped
recipient
trackingNumber
status
shippingMethod
foreignInventoryDBKey

changeStatus()
retrieveShippingMethod()
retrieveDetails()

Item
quantity
cost

updateQuantityAndCost()
destroy()
getItem()

This is a transitional model showing
the entity classes of the class model.
Thus, it should show the design of all
the entity classes identified on all the
robustness diagrams.

The method placement was identified
during the construction of the
sequence diagrams.

 UML Model

Au t h o r : i c o n n i x / za l e s k i R ev n u m 1 . 8 P ag e 2 4 o f 2 8

F i l e N a me : u ml _ mo d e l . d o c

Static Object Model

Catalog

searchOnAuthor()

Publisher
name
publi cationD ate

Stock
replenishThreshold
quantityOnHand

PriceSchedule
price
discountPct

Review
rating

write()

Book
title
price
publishedDate
thumbnail
quantityOnHand
replenishThreshold
discountPct
publisher

retrieveDetails()

Purchase Order
datePlaced
status
items : Vector

Item
quantity
cost

updateQuantityAndCost()
destroy()
getItem()

Search Results

create()

Order Details Page

display()
onOK()

Shopping Cart

deleteItem()
getItem()

Reminder Word Dialog Box

display()
onOK()

Search Pag e

onSearch()
verifySearchPhrase()
displayErrorAndPrompt()

Search Results Page

display()
onAddToShoppingCart()

Order Tracking Page

displayRecentOrders()
onLinkClick()
display()
onAccountMaintenance()
displayNoOrderMessage()

Error Page

displayNameMissing()
displayBadEmailAddress()
displayBadPassword()

Shopping Cart Page

onUpdate()
displayCost()
onContinueShopping()
onDelete()
onCheckOut()
deleteItem()

New Account Page

displayPage()
enterText()
onClickCreate()

Customer
(from Use Case View)

cli ck OK

type author name;

selec t book

modify quantity;

Home Page

onLogin()
display()
opname()

click Log In

Login Page

display()
onLogin()
displayErrorAndPrompt()
freeze()
onNewAccount()
onReminderWord()

enter data and click Login

This is the first (of 3) pages of our
design. The boxes represent classes
with their attributes and methods to be
implemented in our system.. Equally
important, the relationships between
classes are shown. Note how most of
the boundary classes appearing on the
robustness diagrams are to be
implemented as classes but most
controllers have turned into methods.

 UML Model

Au t h o r : i c o n n i x / za l e s k i R ev n u m 1 . 8 P ag e 2 5 o f 2 8

F i l e N a me : u ml _ mo d e l . d o c

Shipping Station
(from Use Case View)

Purchase Order
datePlaced
status
items : Vector

Order Details Page

display()
onOK()

Item
quantity
cos t

updateQuanti tyAndCos t()
des tr oy()
getI tem() Shipping Method

Order Details

create()
getDetails()

Shopping Cart

deleteItem()
getItem()

Order Tracking Page

displayRecentOrders()
onLinkClick()
display()
onAccountMaintenance()
displayNoOrderMessage()Shopping Cart Page

onUpdate()
displayCost()
onContinueShopping()
onDelete()
onCheckOut()
deleteItem()

Order
ID
datePlaced
dateShipped
recipient
trackingNumber
status
shippingMethod
foreignInventoryDBKey

changeStatus()
retrieveShippingMethod()
retrieveDetails()

Customer
(from Use Case View)

modify quantity ;

Order Table

retrieveRecentOrders()

Home Page

onLogin()
display()
opname()

click Log In

New Account Page

displayPage()
enterText()
onClickCreate()

User

Login Page

display()
onLogin()
displayErr orAndPrompt()
freeze()
onNewAccount()
onReminderWor d()

enter data and click Login

Account
userID
password
reminderWord
emailAddress

countBadPasswords()
setName()
setEmail()
setPassword()
validateAccount()

Log in Manager

 UML Model

Au t h o r : i c o n n i x / za l e s k i R ev n u m 1 . 8 P ag e 2 6 o f 2 8

F i l e N a me : u ml _ mo d e l . d o c

This page intentionally left blank

(to ensure that three pages of the static design appear on separate leaves when printed double sided.)

 UML Model

Au t h o r : i c o n n i x / za l e s k i R ev n u m 1 . 8 P ag e 2 7 o f 2 8

F i l e N a me : u ml _ mo d e l . d o c

Status

Order
ID
datePlaced
dateShipped
recipient
trackingNumber
status
shippingMethod
foreignInventoryDBKey

changeStatus()
retrieveShippingMethod()
retrieveDetails()

User Preferences

User

Order Table
retrieveRecentOrders()

Billing Info
creditCardType
creditCardNumber

Account
userID
password
reminderWord
emailAddress

countBadPasswords()
setName()
setEmail()
setPassword()
validateAccount()

 UML Model

Au t h o r : i c o n n i x / za l e s k i R ev n u m 1 . 8 P ag e 2 8 o f 2 8

F i l e N a me : u ml _ mo d e l . d o c

REFERENCES

1. Martin Fowler and Kendall Scott, UML Distilled Second Edition, A Brief Guide to the Standard
Object Modeling Language, Addison-Wesley, 1999.

2. Doug Rosenberg and Kendall, Scott, Applying Use Case Driven Object Modeling with UML, An
Annotated E-commerce example”, Addison-Wesley, 2001.

3. Doug Rosenberg and Kendall, Scott, Use Case Driven Object Modeling with UML, A Practical
Approach”, Addison-Wesley, 1999.

