YETI: A GRADUALLY EXTENSIBLE TRACE INTERPRETER

Mathew Zaleski

A thesis submitted in conformity with the requirements
for the degree of Doctor of Philosophy
Graduate Department of Computer Science
University of Toronto

Copyright(© 2007 by Mathew Zaleski

Abstract

YETI: a graduallY Extensible Trace Interpreter

Mathew Zaleski
Doctor of Philosophy
Graduate Department of Computer Science
University of Toronto

2007

The implementation of new programming languages benefita fnterpretation because it is
simple, flexible and portable. The only downside is speedxetetion, as there remains a
large performance gap between even efficient interpretetsgstems that include a just-in-
time (JIT) compiler. Augmenting an interpreter with a Jidwever, is not a small task. Today,
Java JITs are typically method-based. To compile whole au=ththe JIT must duplicate much
functionality already provided by the interpreter, leagio a “big bang” development effort

before the JIT can be deployed. Adding a JIT to an interpreterd be easier if we could more

gradually shift from dispatching virtual instructions leslimplemented for the interpreter to
running instructions compiled into native code by the JIT.

We show that virtual instructions implemented as lightwéiallable routines can form the
basis for a very efficient interpreter. Our new techniquigrpreted traces, identifies hot paths,
or traces, as a virtual program is interpreted. By exploitivegway traces predict branch desti-
nations our technique markedly reduces branch mispredtaused by dispatch. Interpreted
traces are a high-performance technique, running aboutfasg4r than direct threading.

We show that interpreted traces are a good starting poird foace-based JIT. We extend
our code generator so traces may contain a mixture of cothpdde for some virtual instruc-
tions and calls to virtual instruction bodies for others. Bynpiling about 50 integer and object
virtual instructions to machine code we improve perforngabg about 30% over interpreted

traces, running about twice as fast as the direct threadstdraywith which we started.

Acknowledgements

My supervisor, Angela Demke Brown uncomplainingly drew thers straw when she was
handed me, a middle-aged electrical engineer turned assimen, as her first doctoral student.
Overcoming many obstacles she has taught me the subtletsfftems research.

| thank my advisory committee of Michael Stumm, David Wortnaand Tarek Abdelrah-
man for their input and guidance on our research. Speciakthare also due to Kevin Stoodley
of IBM, without whose insight this research would not haverbpessible.

My family must at some level be to blame for my decision torinipt (even jeopardize?) a
reasonably successful and entirely enjoyable career tuigpe last several years retraining as
aresearcher. Leonard, my father, would have been pleagdaunéten this dissertation twenty
years ago. If | had, he would have been alive to read it. My mtihma, has written several
books on religion while | completed my studies. Her love obkitedge, and the process of
writing it down, has been impetus for my less ethereal work.féher-in-law, Harry Eastman,
advised me throughout the process of returning to schoaubtl would have had the nerve
to carry it through without his support. | wish he were stilthwus to pull his academic hood
out of mothballs and see me over the threshold one more time.

My wife, Harriet Eastman, has been a paragon of support atielhga while | enjoyed the
thrills and chills of the PhD program. Without her love and@mragement | would have given
up long ago. Our children, Sam and Jacob, while occasiohehefiting from my flexible
hours, were more often called upon to be good sports when ek#ifity simply meant |

worked all the time.

Contents

1 Introduction
1.1 Challenges of Method-based JIT Compilation
1.2 Challenges of Efficient Interpretation
1.3 WhatWeNeed e
1.4 OverviewofOurSolution.
1.5 ThesisStatement
1.6 Contributions

1.7 Outlineof Thesis

2 Background

2.1 High Level Language Virtual Machine
2.1.1 Overviewofa Virtual Program
2.1.2 Interpretation
2.1.3 EarlyJustinTime Compilers.

2.2 ChallengestoHLL VM Performance
2.2.1 Polymorphism and the Implications of Object-oridff@ogramming
2.22 Llatebinding

2.3 Early Dynamic Optimization
2.3.1 Manual Dynamic Optimization.

2.3.2 Application specific dynamic compilation

2.3.3 Dynamic Compilation of Manually Identified Static Retgo. 24
2.4 Dynamic Object-oriented optimization 25

2.4.1 Finding the destination of a polymorphic callsite 25

242 Smalltalkkand Self 27
2.4.3 Java JIT as Dynamic Optimizer 29
2.4.4 JIT Compiling Partial Methods 30
25 TraCes 31
2.6 Hotpath 33
27 ChapterSummary 34
Dispatch Techniques 35
3.1 SwitchDispatch 36
3.2 DirectCall Threading 38
3.3 DirectThreading e 38
3.4 Dynamic Hardware Branch Prediction 40
3.5 TheContextProblem 14
3.6 SubroutineThreading 43
3.7 Optimizing Dispatch 44
3.7.1 Superinstructions 44
3.7.2 Selectivelnlining 44
3.7.3 Replication 46
3.8 ChapterSummary 46
Design and Implementation of Efficient Interpretation 47
4.1 UnderstandingBranches 49
4.2 Handling Linear Dispatch, 51
4.3 Handling Virtual Branches 52
4.4 Handling Virtual Calland Return 56

Vi

4.5 ChapterSummary e e e
Evaluation of Context Threading 61
5.1 Experimental Set-up e 62

5.1.1 Virtual Machines and Benchmarks 62

5.1.2 Performance and Pipeline Hazard Measurements 64

5.2 Interpretingthedata., 65
5.2.1 Effecton Pipeline BranchHazards 69
5.2.2 Performance 70

53 Inlining 74

5.4 Limitations of Context Threading 76
5.4.1 Heavyweight Virtual Instruction Bodies 76
5.4.2 Context Threadingand Profiling 77
5.4.3 Developmentusing SablevM 8 7

55 ChapterSummary e 79

Design and Implementation of YETI 81

6.1 Structure and OverviewofYeti 82

6.2 RegionSelection 6 8
6.2.1 Initiating Region Discovery 86
6.2.2 Linear Block Detection 87
6.2.3 Trace Selection 89

6.3 TraceExitRuntime 09
6.3.1 TracelLinking 92

6.4 Generatingcodefortraces i, 93
6.4.1 InterpretedTraces 4 9
6.4.2 JITCompiledTraces 95
6.4.3 Trace Optimization 99

vii

6.5 Otherimplementationdetails

6.6 ChapterSummary

7 Evaluation of Yeti
7.1 Experimental Set-up
7.2 Effect of region shapeondispatch
7.3 Effect of region shape on performance
7.4 EarlyPentumResults.
7.5 ldentificationof StallCycles,
7.5.1 Identifying Causesof StallCycles
752 StallCycleresults
753 Trends.

7.6 ChapterSummary e e

8 Conclusions and Future Work
8.1 Conclusions and Lessons Learned

8.2 Futurework e

8.2.1 Virtual instruction bodies as nested functions
8.2.2 Extension to Runtime Typed Languages
8.2.3 Newshapesofregionbody
8.2.4 \Vision for new language implementation
8.3 Summary e e e
Bibliography

viii

List of Tables

5.1 Description of OCaml benchmarks. Raw elapsed time anctbhiaazard data

5.2

5.3
5.4

7.1

7.2
7.3

for direct-threadedruns. 63
Description of SPECjvm98 Java benchmarks. Raw elapseddaid branch
hazard data for direct-threaded runs. 64
(a) Guide to Technique description. 66
Detailed comparison of selective inlining (SABLEVM) vEIB+BI+AR and
TINY. Numbers are elapsed time relative to direct threadidgcontext is

the the difference between selective inlining and SUB+BI+ARiny is the
difference between selective inlining and TINY (the conabion of context
threading and tiny inlining). o 76
SPECjvm98 benchmarks including elapsed time for baselamVM (i.e.,
without any of our modifications), Yeti and Sun HotSpot. 107

Guide to labels which appear on figures and referenceshmigue descriptions.107

GPUL categories o i e e 241

List of Figures

2.1

2.2

3.1

3.2

3.3

Example Java Virtual Program showing source (on th¢ deftl Java virtual

instructions, or bytecodes, ontheright. 15

Example of Java method containing a polymorphic callsit. 20

A switch interpreter loads each virtual instruction agtual opcode, or token,
corresponding to the case of the switch statement that mmalés it. Virtual
instructions that take immediate operands, lik@nst , must fetch them from
thevPCand adjust th& PC past the operand. Virtual instructions which do not

need operands, likeadd, do not need to adjustthePC. 37

A direct call-threaded interpreter packages eachaliitstruction body as a
function. The shaded box highlights the dispatch loop shgwiow virtual
instructions are dispatched through a function pointere®icall threading
requires the loaded representation of the program to poihigiaddresof the

function implementing each virtual instruction. 39

Direct-threaded Interpreter showing how Java Sourde compiled to Java
bytecode is loaded into the Direct Threading Table (DTT)e Vintual instruc-

tion bodies are written in a single C function, each iderdifily a separate
label. The double-ampersan&&) shown in the DTT is gcc syntax for the

addressofalabel.

Xi

3.4

4.1

4.2

4.3

4.4

Machine instructions used for direct dispatch. On bdditfgrms assume that
some general purpose registex,, has been dedicated for théC. Note that
on the PowerPC indirect branches are two part instructioatsfirst load the

ctr register and then branchtoitscontents. 40

Subroutine Threaded Interpreter showing how the CTTamoesibne generated
direct call instruction for each virtual instruction andwheéhe first entry in
the DTT corresponding to each virtual instruction pointgémerated code to
dispatch it. Callable bodies are shown here as nested fusdiio illustration
only. All maintenance of th& PC must be done in the bodies. Hence even
virtual instructions that take no arguments, likadd, must bumpvPC past
the virtual opcode. Virtual instructions, likel oad, that take an argument

must bumpvPCpast the argumentaswell. 50

Direct threaded bodies retrofitted as callable routmeserting inline as-
sembler return instructions. This example is for Pentiunmd hence ends
each body with & et instruction. Theasmstatement is an extension to the C

language, inline assembler, provided by gcc and many othmapders. 51

Subroutine Threading does not not address branchatistng. Unlike straight
line virtual instructions, virtual branch bodies end withiadirect branch, just
like direct threading. (Note: When a body is called theC always points
to the slot in the DTT corresponding to its first argument,ifothere are no

operands, to the following instruction.) 53

Context threading with branch replication illustratthg “replicated” indirect
branch (a) in the CTT. The fact that the indirect branch cpoads to only one
virtual instruction gives it better prediction context.érheavy arrow from (a)
to (b) is followed when the virtual branch is taken. Predietproblems remain

in the code compiled from thef statementlabelled(c) 54

Xii

4.5

4.6

5.1

5.2

5.3

5.4

5.5

5.6

5.7

6.1

Context-threaded VM Interpreter: Branch Inlining. Thaltad arrow (a) il-
lustrates the inlined conditional branch instruction, nolly exposed to the
branch prediction hardware, and the heavy arrow (b) ilkdes a direct branch
implementing the not taken path. The generated code (shadedmes the
vPCisinregisteresi and the Java expression stack pointer is in regeiér.
(In reality, we dedicate registers in the way shown for SéMeon the Pow-

erPC only. On the Pentium4, due to lack of registersytP€ is actually stored

onthestack.)

Context Threading Apply-Return Inlining on Pentium. Tlengrated code
callsthei nvokest at i ¢ virtual instruction body bujumps(instruction at

(c)isaj np)tothereturnbody. oL

OCaml Pipeline Hazards Relative to Direct Threading

Java Pipeline Hazards Relative to Direct Threading

OCaml Elapsed Time Relative to Direct Threading

SableVM Elapsed Time Relative to Direct Threading
PPC970 Elapsed Time Relative to Direct Threading

Reproduction of [77, Figure 1] showing cycles run pemdtinstructions dis-

patched for various Tcl and OCaml benchmarks .

Elapsed time of subroutine threading relative to diteeading for OCaml on

UltraSPARCIIIL.

Virtual program loaded into Yeti showing how dispatck&uctures are ini-
tially shared between all instances of a virtual instrutti®he dispatch loop,
shaded, is similar the dispatch loop of direct call thregaircept that another
level of indirection, through the the dispatcher structinaes been added. Pro-

filing instrumentation is called before and after the dispatf the body.

Xiii

71

72

73

77

85

6.2

6.3

6.4

6.5

7.1

7.2

7.3

7.4

Shows a region of the DTT during block recording mode. bbey of each
block discovery dispatcher points to the correspondini&lrinstruction body
(Only the body for the first iload is shown). The dispatcheeg/load field

points to instances of instruction payload. The threadedrdtruct is shown

Shows a region of the DTT just after block recording moaefiished. . .. 89

Schematic of a trace illustrating how trace exit tabla®d) in trace payload

has recorded the on-trace destination of each virtualbranc. 93

PowerPC code for a portion of a trace region body, shodetgils of a trace
exit and trace exit handler. This code assumes that r26 leasdeslicated for
thevPC. In addition the generated code in the trace exit handlesni3e, the

stack pointer as defined by the ABI, to store the trace exittoltile TCS. . . . 99

Number of dispatches executed vs region shape. Thesyhasia logarithmic
scale. Numbers above bars, in scientific notation, give thebler of regions

dispatched. The X axis lists the SPECjvm98 benchmarks irahkpiical order. 109

Number of virtual instructions executed per dispatahefach region shape.
The y-axis has a logarithmic scale. Numbers above bars araumber of
virtual instructions executed per dispatch (rounded to gigaificant figures).
SPECjvm98 benchmarks appear along X axis sorted by the avatagber of

instructions executedbyalB. 110

Percentage trace completion rate as a proportion ofithelinstructions in
a trace and code cache size for as a percentage of the virtialdgtions in all

loaded methods. For the SPECjvm98 benchmarks and scitest. 112

Performance of each stage of Yeti enhancement from D@Tpirgter to trace-
based JIT relative to unmodified JamVM-1.3.3 (direct-tde=l) running the
SPECjvm98 benchmarks (sorted by LB length).1l14

Xiv

7.5

7.6

1.7

7.8

7.9

Performance of Linear Blocks (LB) compared to subroutimeaded JamVM-

1.3.3 (SUB) relative to unmodified JamVM-1.3.3 (direct-tued) for the SPECjvm98
benchmarks. 115
Performance of JamVM interpreted traces (i-TR) and seéialined SableVM

1.1.8 relative to unmodified JamVM-1.3.3 (direct-thregdedthe SPECjvm98
benchmarks. 116
Performance of JamVM interpreted traces (i-TR) reldbwenmodified JamVM-

1.3.3 (direct-threaded) and selective inlined SableVM@8Lreélative to direct
threaded SableVM version 1.1.8 for the SPECjvm98 benchmarks. 117
Elapsed time performance of Yeti with JIT compared to Java 1.05.0 6 64
relative to JamVM-1.3.3 (direct threading) running SPEC@&benchmarks. . 119
Performance of Gennady Pekhimenko’s Pentium portivel&d unmodified

JamVM-1.3.3 (direct-threaded) running the SPECjvm98 beracks. 121

7.10 Cycles relative to JamVM-1.3.3 (direct threading) ingrEPECjvm98 bench-

MarksS. . . . 123

7.11 Stall breakdown for SPECjvm98 benchmarks relative no\dd-1.3.3 (direct

threading). e 125

XV

XVi

Chapter 1

Introduction

Modern computer languages are commonly implemented in taio parts — a compiler that
targets a virtual instruction set, and a so-cahéagh-level language virtual machir(er simply
language VM) to run the resulting virtual program. This aygmh simplifies the compiler
by eliminating the need for any machine dependent code gBoer Tailoring the virtual
instruction set can further simplify the compiler by prawigl operations that perfectly match

the functionality of the language.

There are two ways a language VM can run a virtual program.sithplest approach is to
interpret the virtual program. An interpreter dispatchesraual instruction bodyto emulate
each virtual instruction in turn. A more complicated, bugté, approach deploys a dynamic,
or just in time (JIT), compiler to translate the virtual ingttions to machine instructions and
dispatch the resulting native codelixed-modesystems interpret some parts of a virtual pro-
gram and compile others. In general, compiled code will rwecihnmore quickly than virtual
instructions can be interpreted. By judiciously choosingohtparts of a virtual program to

JIT compile, a mixed-mode system can run much more quicldy the fastest interpreter.

Currently, although many popular languages depend on Virtaahines, relatively few JIT
compilers have been deployed. Notable exceptions inclesearch languages like Self and

several Java Virtual Machines (JVM). Consequently, useimpbrtant computer languages,

2 CHAPTER1. INTRODUCTION

including JavaScript, Python, and many others, do not eh@yperformance benefits of mixed-

mode execution.

The primary goal of our research is to make it easier to extanahterpreter with a JIT
compiler. To this end we describe a new architecture for guage VM that significantly
increases the performance of interpretation at the sane dsnt reduces the complexity of

extending it to be a mixed-mode system. Our technique hasain features.

First, our JIT identifies and compiles hot interproceduedhp, or traces. Traces are single
entry multiple exit regions that are easier to compile tHas methods compiled by current
systems. In addition, hot traces help predict the destinaif virtual branches. This means
that even before traces are compiled they provide a simpiletwamprove the interpreted

performance of virtual branches.

Second, we implement virtual instruction bodies as lighgive callable routines, and at the
same time, we closely integrate the JIT compiler and in&tgpr This gives JIT developers a
simple alternative to compiling each virtual instructid@ither a virtual instruction is translated
to native code, or instead, a call to the corresponding bedgnerated. The task of JIT devel-
opers is thereby simplified by making it possible to deploylby/ffunctional JIT compiler that
compiles only a subset of virtual instructions. In additioallable virtual instruction bodies
have a beneficial effect on interpreter performance bedhyesnable a simple interpretation
technique, subroutine threading, that very efficientlycetes straight-line, or non-branching,

regions of a virtual program.

We prototype our ideas in Java because there exist manyduiglity Java interpreters and
JIT compilers with which to compare our results. We are ablddtermine that the perfor-
mance of our prototype compares favourably with statdiefart interpreters like JamVM and
SableVM. An obvious next step would be to apply our technsggoeesnhance the performance

of languages that currently do not offer a JIT.

The discussion in the next few sections refers to many teaehterms and techniques that

are described in detail in Chapter 2, which introduces theltancepts and related work, and

1.1. CHALLENGES OFMETHOD-BASED JIT COMPILATION 3

Chapter 3, which provides a tutorial-like description ofes@V interpreter techniques.

1.1 Challenges of Method-based JIT Compilation

Today, the usual approach taken by mixed-mode systemsdemtify frequently executed, or
hot, methods. Hot methods are passed to the JIT compiler whitipibes them to native code.
Then, when the interpreter sees an invocation of a compileithoal, it dispatches the native

code instead.

Up Front Effort This method-oriented approach has been followed for maaysyéut re-
quires a large up-front investment in effort. Such a systamrmot improve the performance of
a method until it can compile every feature of the language déippears in it. For significant
applications this requires the JIT to compile essenti@léwhole language, including compli-
cated features already implemented by high-level virtagiruction bodies, such as those for

method invocation, object creation, and exception hagdlin

Compiling Cold Code Just because a method is frequently executed does not negaallth
the instructions within it are frequently executed also.fdat, regions of a hot method may
be cold, that is, they may have never executed. Compiling cold codentiae implications
than simply wasting compile time. Except at the very highegtls of optimization, where
analyzing cold code may prove useful facts about hot regithrese is little point compiling
code that never runs. A more serious issue is that cold cantedses the complexity of dy-
namic compilation. We give three examples. First, for latedimg languages such as Java,
cold code likely contains references to external symbolghvare not yet bound. Thus, when
the cold code does eventually run, the generated code andittieme that supports it must
deal with the complexities of late binding [73]. Secondtaierdynamic optimizations are not
possible without runtime profiling information. Foremost@ngst these is the optimization of

virtual function calls. Since there is no profiling infornmat for cold code, the JIT may have

4 CHAPTER1. INTRODUCTION

to generate relatively slow, conservative code. This iss@wen more important for runtime
typed languages, like Python, in which the type of the opasarf a virtual instruction may not
be known until run time. Without runtime information neitteestatic, nor a dynamic, Python
compiler may be able to determine whether the inputs of grapthmetic operations such as
addition are integers, floats, or strings. Third, as exeaytroceeds, some of the formerly cold
regions in compiled methods may become hot. The conseevasisumptions made during the
initial compilation may now be a drag on performance. Thaightforward-sounding approach
of recompiling the method containing the formerly cold cachelermines the profitability of
compilation. Furthermore, it is complicated by problemshsas what to do about threads that

are still executing in the method or that will return to thethwal in the future.

1.2 Challenges of Efficient Interpretation

After a virtual program isoadedby an interpreter into memory it can be executedlispatch-

ing each virtual instruction body (or jusiody) in the order specified by the virtual program.
This is not a typical workload because the control transi@mfone body to the next is data
dependent on the sequence of instructions making up theal/ptogram. This makes the dis-
patch branches hard for a processor to predict. Ertl andgzsbgerved that the performance
of otherwise efficient interpretation is limited by pipaistalls and flushes due to extremely

poor branch prediction [28].

1.3 What We Need

The challenges we identified above suggest that the artiméeof agradually extensible

mixed-mode virtual machine should have three importanp@ries.

1. Virtual instruction bodies should be callable. ThisakalIT implementors to compile

only some instructions, and fall back on the emulation fiometlity already implemented

1.4. OVERVIEW OF OUR SOLUTION 5
by the virtual instruction bodies for others.

2. The unit of compilation must be dynamically determined an flexible shape. This

allows the JIT compiler to translate hot regions while awaiccold code.

3. As new regions of hot code reveal themselves and are cedy@l way is needed of

gracefully linking them on to previously compiled hot code.

Callable Virtual Instruction Bodies Packaging bodies as callable can also address the pre-
diction problems observed in interpreters. Any straigh-Isequence of virtual instructions
can be translated to a very simple sequence of generatedmaacstructions. Corresponding

to each virtual instruction we generate a single directwhich dispatches the corresponding
virtual instruction body. Executing the resulting genedatode thus emulates each virtual in-
struction in the linear sequence in turn. No branch misjgtexhis occur because the destination
of each direct call is explicit and the return instructiomiery each body is predicted perfectly

by the return branch predictor present in most modern psass

Traces Our system compiles frequently executed, dynamicallytified interprocedural paths,
or traces. Traces contain no cold code, so our system ledvibe @omplexities of running
cold code to the interpreter. Since traces are paths thrthegbirtual program, they explicitly
predict the destination of each virtual branch. As a coneege even a very simple imple-
mentation of traces can significantly improve performangcedolucing branch mispredictions
caused by dispatching virtual branches. This is the bas@miohew techniqueinterpreted

traces

1.4 Overview of Our Solution

In this dissertation we describe a system that supportsmignaompilation units of vary-

ing shapes. Just as a virtual instruction body implementstaaV instruction, aregion body

6 CHAPTER1. INTRODUCTION

implements a region of the virtual program. Possible rediodies include single virtual in-
structions, basic blocks, methods, partial methods, eédlimethod nests, and traces. The key
idea is to package every region body as callable, regardfeb® size or shape of the region
of the virtual program that it implements. The interpretan then execute the virtual program

by dispatching each region body in sequence.

Region bodies corresponding to longer sequences of virtgalictions will run faster than
those compiled from short ones because fewer dispatcheequeéed. In addition, larger
region bodies should offer more opportunities for optirtiaa However, larger region bodies
are more complicated and so we expect them to require momagewent effort to detect
and compile than short ones. This suggests that the penfmenaf a mixed-mode VM can
be gradually extended by incrementally increasing the s@dpegion bodies it identifies and
compiles. Ultimately, the peak performance of the systeoukhbe at least as high as current
method-based JIT compilers since, with basically the samgeeering effort, inlined method

nests could be compiled to region bodies also.

The practicality of our scheme depends on the efficiency sfatching bodies by calling
them. Thus, the first phase of our research, described in @sagtands, was to retrofit
SableVM [32], a Java virtual machine, andamni r un, an OCaml interpreter [14], to a new
hybrid dispatch technique we calbntext threadingWe evaluated context threading on Pow-
erPC and Pentium 4 platforms by comparing branch predictdrrantime performance of
common benchmarks to unmodified, direct-threaded versibribe virtual machines. We
show that callable bodies can be dispatched more efficidmly dispatch techniques currently
thought to be very efficient. For instance, on a Pentium 4 sobroutine threaded version of

SableVM runs the SPECjvm98 benchmarks about 19% faster thect threading.

In the second phase of this research, described in Chapteds B ave gradually extended
JamVM, a cleanly implemented and relatively high perforoedava interpreter [53], to create
Yeti (graduallY Extensible Trace Interpreter). We decidedtart afresh because it proved

difficult to cleanly add trace detection and profiling instrentation to our implementation

1.4. OVERVIEW OF OUR SOLUTION 7

of context threading. We chose JamVM as the starting pom¥&ti, rather than SableVM,

because it is simpler.

We built Yeti in five stages with the explicit intention of ptiding a design trajectory from a
simple system to a high performance implementation. Rirstrepackaged all virtual instruc-
tion bodies as callable. Our initial implementation exedubnly single virtual instructions
which were dispatched via an indirect call from a simple dish loop. This is slow compared
to context threading but very easy to instrument. Seconddestifiedlinear blocks or se-
qguences of virtual instructions ending in branches. Thirel extended our system to identify
and dispatchnterpreted tracesor sequences of linear blocks. Traces are significantlyemor
complex region bodies than linear blocks because they nmgsinamodate virtual branch in-
structions. Fourth, we extended our trace runtime systdmkdraces together. In the fifth and
final stage, we implemented a naive, non-optimizing compdeompile the traces. An inter-
esting feature of the JIT is that it performs simple commlatind register allocation for some
virtual instructions but falls back on calling virtual ingttion bodies for others. Our compiler

currently generates PowerPC code for about 50 integer gedtohrtual instructions.

We chose traces as our unit of compilation because tracesseaeral attractive properties:
(i) they can extend across the invocation and return of nusthand thus have an interproce-
dural view of the program, (ii) they contain only hot codéi) fhey are relatively simple to
compile as they arsingle-entry multiple-exitegions of code, and (iv), it is straightforward to

generate new traces and link them onto existing ones as niepatits reveal themselves.

Instrumentation built into our prototype shows that on tiaerage, traces accurately pre-
dict paths taken by the Java SPECjvm98 benchmark progranisrddult corroborates those
reported by Bala et al [8] and Duesterwald and Bala [26] for Cfaordran programs. Perfor-
mance measurements show that the overhead of trace idatndifics reasonable. Even with

our naive compiler, Yeti runs about twice as fast as unmatifaanVM.

8 CHAPTER1. INTRODUCTION
1.5 Thesis Statement

The implementation of a new high-level language virtual hiae should be extensible to a
high performance mixed-mode system as the language mafloreshieve this, an interpreter
should be designed to dispatch virtual instructions byirgglthem. This achieves efficient
dispatch, and hence high performance interpretation, byingdt easy to eliminate branch
mispredictions caused by the dispatch of straight-lineigircode. Callable virtual instruction
bodies also facilitate extending the interpreter with a ddmpiler because the bodies can be
called from generated code. The unit of compilation traesldy the JIT compiler should be
a dynamically identified region containing only hot code t kiderprocedural paths, or traces,
are a good choice. Hot traces predict the destination afalittranch instructions so they can
improve the dispatch of virtual branch instructions. Teaaee simple to JIT compile because
they contain no cold code and no merge points. Thus, a traseelinterpreter performs better

than current interpreter techniques and also is more eadignded with a JIT compiler.

1.6 Contributions

We show that if virtual instruction bodies are implementsdallable routines a family of dis-
patch techniques becomes possible, from very simple,lgeréand slow, to somewhat machine
dependent but much faster. Since the implementation of ithéal instruction bodies makes
up a large portion of an interpreter, an attractive aspetttisfapproach is that there is no need
to modify the bodies as more complex, and higher perforrmmgghanisms are implemented
to dispatch them.

The simplest, and most portable, way to build an interpreiign callable bodies is to
to write a dispatch loop in C that dispatches each instraocti@ a function pointer. This
technique, called direct call threading, or DCT, performsudtthe same as a switch threaded
interpreter. DCT is a good starting point for our family ofte@ues because it is simple to

code and as portable gec. Our strategy is to extend DCT by inserting profiling code into

1.6. CONTRIBUTIONS 9

the dispatch loop. The instrumentation dynamically idesgiregions of the virtual program
and translates them into callable region bodies. Thesemdgpdies can then be called from

the same dispatch loop, increasing performance.

We introduce a new technique, interpreted traces, to aslithr@smch mispredictions caused
by dispatch. As virtual instructions are dispatched, owfifing instrumentation uses well
known heuristics to identify hot, interprocedural pathstraces. We say the traces are inter-
preted because virtual instruction bodies do all the reakw&traight-line portions of each
trace are implemented using subroutine threading, wheaelisect call machine instruction is
generated to call the virtual instruction body implemegiach virtual instruction. We follow
the dispatch of each virtual branch instruction with tragi eode that exploits the fact that
traces predict the destination of virtual branches. Imetgal traces require the generation of
only three machine instructions: direct call, compare irdia, and conditional jump. Thus,

the machine dependency of the technique is modest.

We use micro-architectural performance counter measurente show that interpreted
traces result in good branch prediction. We show that inédegl traces improve the perfor-
mance of our prototype relative to direct threading aboasiime amount as selective inlining
gains over direct threading in SableVM. This means thatjméted traces are competitive with
the highest performing techniques to optimize the dispptaformance of an interpreter. We
achieve this level of performance despite the fact that pstesn performs runtime profiling as

traces are detected.

Finally, we show that interpreted traces are a good stapwigt for a trace-based just
in time (JIT) compiler. We extend our code generator forroteted traces such that traces
may contain a mixture of compiled code for some virtual mstions and subroutine threaded
dispatch for others. By compiling about 50 integer and oby&ttial instructions to register
allocated compiled code we improve the performance of oatopype by about 30% over

interpreted traces to run about twice as fast as the diregaded system with which we started.

Taken together, direct call threading, interpreted traaed our trace-based JIT provide a

10 CHAPTER1. INTRODUCTION

design trajectory for a language VM with a range of perforogainom switch threading, a very
widely deployed entry level technique, to about double ttdggmance of a direct threaded
interpreter. The fact that interpreted traces are gragleatiensible in this way makes them a

good strategic design option for future language virtuatinnzes.

Summary of Contributions

1. If virtual instruction bodies are implemented as cakafwutines straight-line sections
of virtual programs can be efficiently interpreted by loade generated sequences of
subroutine threaded code. We show that on modern procetsoextra path length
of the call and return instructions used by subroutine tfirgpais more than made up
for by the elimination of stalls caused by mispredictediedi branches used by direct

threading.

2. We introduce a new technique, interpreted traces, whiehtifies traces, or hot paths,
to predict the destination of virtual branch instructioe implement interpreted traces
in JamVM, a high performance Java interpreter, and showtkiegt outperform direct
threading by 25%. This is about the same speedup achievedlddg\BM'’s implementa-

tion of selective inlining.

3. The code generator for interpreted traces can be gradextnded to be a trace-based
JIT by adding support for virtual instructions one at a tifilaces are simple to compile
as they contain no cold code or merge points. Our trace-b#3edurrently compiles

about 50 virtual instructions and obtains a speed up of ak@it over interpreted traces.

1.7 Outline of Thesis

We describe an architecture for a virtual machine integorittat facilitates the gradual exten-

sion to a trace-based mixed-mode JIT compiler. We demdgstra feasibility of this approach

1.7. QUTLINE OF THESIS 11

in a prototype, Yeti, and show that performance can be gigduagproved as larger program
regions are identified and compiled.

In Chapters 2 and 3 we present background and related workenpiaters and JIT com-
pilers. In Chapter 4 we describe the design and implementaficontext threading. Chapter
5 describes how we evaluated context threading. The desidnnaplementation of Yeti is
described in Chapter 6. We evaluate the benefits of this apiprioaChapter 7. Finally, we

discuss possible avenues for future work and conclude int€h8p

12

CHAPTER .

INTRODUCTION

Chapter 2

Background

Researchers have investigated how virtual machines shgatdite high-level language pro-
grams for many years. The research has been focused on a fevareas. First, innovative
virtual machine support can play a role in the deployment udlitptively new and differ-
ent computer languages. Second, virtual machines provid#rmastructure by which ordinary
computer languages can be more easily deployed on manyetiffieardware platforms. Third,
researchers continually devise new ways to enable lang¢ilgeo run virtual programs faster.
This chapter will describe research which touches on afieéhssues. We will briefly dis-
cuss interpretation in preparation for a more in-depthttneat in Chapter 3. We will describe
how modern object-oriented languages depend on the vimaghine to efficiently invoke
methods by following the evolution of this support from tleelg efforts to modern speculative
inlining techniques. Finally, we will briefly describe tebased binary optimization to set the

scene for Chapter 6.

2.1 High Level Language Virtual Machine

A static compiler is probably the best solution when perfance is paramount, portability is
not a great concern, destinations of calls are known at dertipie and programs bind to ex-

ternal symbols before running. Thus, most third generddaguages like C and FORTRAN

13

14 CHAPTER 2. BACKGROUND

are implemented this way. However, if the language is oljeieinted, binds to external refer-
ences late, and must run on many platforms, it may be advaotsgo implement a compiler

that targets a fictitioubigh-level language virtual machir&iLL VM) instead.

In Smith’s taxonomy, an HLL VM is a system that provides a psxwith an execution
environment that does not correspond to any particulantenel platform [65]. The interface
offered to the high-level language application processsiglly designed to hide differences
between the platforms to which the VM will eventually be gaokt For instance, UCSD Pascal
p-code [79, 17] and Java bytecode [52] both express virtsdtuctions as stack operations
that take no register arguments. Gosling, one of the desigrighe Java virtual machine, has
said that he based the design of the JVM on the p-code madiinBralltalk [36], Self [74]
and many other systems have taken a similar approach. Tlkesitaeasier to port the VM
between hardware platforms that have variously sized tergiides. A VM may also provide
virtual instructions that support peculiar or challendiegtures of the language. For instance, a
Java virtual machine has specialized virtual instructi@gsi nvokevi r t ual) in support of
virtual method invocation. This allows the compiler to geate a single, relatively high-level

virtual instruction instead of a sequence of complex mazhimd ABI dependent instructions.

This approach has benefits for the users as well. For instapgications can be dis-
tributed in a platform neutral format. In the case of the Jelaas libraries or UCSD Pascal
programs, the amount of virtual software far exceeds treedithe VM. The advantage is that
the relatively small amount of effort required to port the \fd/la new platform enables a large

body of virtual applications to run on the new platform also.

There are various approaches a HLL VM can take to actuallgwgren virtual program. An
interpreter fetches, decodes, then emulates each virtstaliction in turn. Hence, interpreters
are slow but can be very portable. Faster, but less portaldgnamic compiler can translate
to native code and dispatch regions of the virtual applicatA dynamic compiler can exploit
runtime knowledge of program values so it can sometimes detterjob of optimizing the

program than a static compiler [68].

2.1. HGH LEVEL LANGUAGE VIRTUAL MACHINE 15

Java Source Java Bytecode
int f (boolean) ;
iload a
int £ () { iload b
int a,b,c; javac compiler iconst 1
.. iadd
c=a+ b+ 1; iadd
istore c

.

Figure 2.1: Example Java Virtual Program showing sourcetljeneft) and Java virtual in-
structions, or bytecodes, on the right.

2.1.1 Overview of a Virtual Program

A virtual program, as shown in Figure 2.1, is a sequence ab@airinstructions and related
meta-data. The figure introduces an example program we séllas a running example, so we
will briefly describe it here. First, a compilgravac in the example, createsdcass filede-
scribing the virtual program in a standardized format. (Wavsonly one method, but any real
Java example would define a whole class.) Our example certdigiist one Java expression
{c=a+b+1} which adds the values of two Java local variables and a coingtal stores the
result in a third. The compiler has translated this to thaisage of virtual instructions shown
on the right. The actual semantics of the virtual instrutdiare not important to our example

other than to note that none are virtual branch instructions

The distinction between a virtual instruction and iastanceof a virtual instruction is
conceptually simple but sometimes hard to clearly distislgin prose. We will always refer
to a specific use of a virtual instruction as an “instance™ &le, the first instruction in
our example program is an instancea ¢foad. On the other hand, we might also use the term
virtual instruction to refer to a kind of operation, for explethat the | oad virtual instruction

takes one parameter.

Java virtual instructions may take implicit arguments #rat passed on a expression stack.

For instance, in Figure 2.1, theadd instruction pops the top two slots of the expression stack

16 CHAPTER 2. BACKGROUND

and pushes their sum. This style of instruction set is vergact because there is no need to
explicitly list parameters of most virtual instructions. i@@quently many virtual instructions,
like i add, consist of only the opcode. Since there are fewer than 2&6\udual instructions,
the opcode fits in a byte, and so Java virtual instruction®ties referred to abytecode

In addition to arguments passed implicitly on the stackatewirtual instructions take im-
mediate operands. In our example, tleonst virtual instruction takes an immediate operand
of 1. Immediate operands are also required by virtual bramgthuctions (the offset of the des-
tination) and by various instructions used to access data.

The bytecode in the figure depends on a stack frame orgammazhtit distinguishes between
local variables and the expression statkcal variable arrayslots, orlva slots, are used to
store local variables and parameters. The simple funchows in the figure needs only four
local variable slots. The first slot, Iva[0], stores a hidgmwameter, the object handl®
the invoked-upon object and is not used in this example. &uent slots, Iva[l1], Iva[2] and
Iva[3] storea, b andc respectively. The expression stack is used to store tempsifar most
calculations and parameter passing. In general “load” foytecodes push values in Iva slots
onto the expression stack. Bytecodes with “store” in theiemanic typically pop the value

on top of the expression stack and store it in a named Iva slot.

2.1.2 Interpretation

An interpreter is the simplest way for an HLL VM to execute &giwvirtual program. Whereas
the persistent format of a virtual program conforms to soxteraal specification, when it
is read by an interpreter the structure ofldaded representatiois chosen by the designers
of the interpreter. For instance, designers may prefer eeseptation that word-aligns all
immediate parameters regardless of their size. This waelléss compact, but more portable
and potentially faster to access, than the original byte@dmost architectures.

An abstraction implemented by most interpreters is theonadf avirtual program counter

1lva[0] stores the local variable known &ki s to Java (and C++) programmers.

2.1. HGH LEVEL LANGUAGE VIRTUAL MACHINE 17

or vPC. It points into the loaded representation of the programsamdes two main purposes.
First, thevPCis used by dispatch code to indicate where in the virtual Enogexecution has
reached and hence which virtual instruction to emulate.ri&tond, the PCis conventionally

referred to by virtual instruction bodies to access immtedigerands.

Interpretation is not efficient

We do not expect interpretation to be efficient compared &xetting compiled native code.
Consider Java’s add virtual instruction. On a typical processor an integer add be per-
formed in one instruction. To emulate a virtual additiontinstion requires three or more
additional instructions to load the inputs from and stoeerésult to the expression stack.

However, it is not just the path length of emulation that esuperformance problems.
Also important is the latency of the branch instructionsdusetransfer control to the virtual
instruction body. To optimize dispatch. researchers havpgsed varioudispatchtechniques
to efficiently branch from body to body. Recently, Ertl and @reshowed that on modern
processors branch mispredictions caused by dispatchhmarare a serious drain on perfor-
mance [28, 29].

When emulated by most current high-level language virtuathimes, the branching pat-
terns of the virtual program are hidden from the branch ptexh resources of the underlying
real processor. This is despite the fact that a typical &intmachine defines roughly the same
sorts of branch instructions as does a real processor ana thaning virtual program exhibits
similar patterns of virtual branch behaviour as does a egtregram running on a real CPU.
In Section 3.5 we discuss in detail how our approach to dispdéals with this issue, which

we have dubbed theontext problem.

2.1.3 Early Justin Time Compilers

A faster way of executing a guest virtual program is to comtd virtual instructions to native

code before it is executed. This approach long predates pextaaps first appearing for APL

18 CHAPTER 2. BACKGROUND

on the HP3000 [48] as early as 1979. Deutsch and Schiffmatraljuist in time (JIT) compiler
for Smalltalk in the early 1980’s that ran about twice as &ssinterpretation [24].

Early systems were highly memory constrained by moderrdsias. It was of great con-
cern, therefore, when translated native code was found abbat four times larger than the
originating bytecode Lacking virtual memory, Deutsch and Schiffman took thewtkat dy-
namic translation of bytecode was a space time trade-offpace was tight then native code
(space) could be released at the expense of re-translétioe) (Nevertheless, their approach
was to execute only native code. Each method had to be fefotveda native code cache or
else re-translated before execution. Today a similaudgiprevails except that it has also been
recognized that some code is so infrequently executedtthaed not be translated in the first
place. The bytecode of methods that are not hot can simplgtbgoreted.

A JIT can improve the performance of a JVM substantially. Redty early Java JIT
compilers from Sum Microsystems, as reported by the devedop team in 1997, improved
the performance of the Javaayt r ace application by a factor of 2.2 anclonpr ess by
6.8 [19F. More recent JIT compilers have increased the performamtesf [2, 4, 70]. For
instance, on a modern personal computer Sun’s Hotspotrséyywamic compiler currently
runs the entire SPECjvm98 suite more than 4 times faster tiefastest interpreter. Some
experts suggest that in the not too distant future, systessdon dynamic compilers will run

fasterthan the code generated by static compilers [68, 67].

2.2 Challenges to HLL VM Performance

Modern languages offer users powerful features that angdlé/M implementors. In this sec-

tion we will discuss the impact of object-oriented methoebration and late binding of ex-

2This is less than one might fear given that on a RISC machiedypical arithmetic bytecode will be naively
translated into two loads (pops) from the expression st register-to-register arithmetic instruction to do the
real work and a store (push) back to the new top of the exessack.

3These benchmarks are singled out because they eventuatyadiepted by the SPEC consortium to be part
of the SPECjvm98 [66] benchmark suite.

2.2. (HALLENGES TOHLL VM P ERFORMANCE 19

ternal references. There are many other issues that affeatperformance which we discuss
only briefly. The most important amongst them are memory mameent and thread synchro-
nization.

Garbage collectiorrefers to a set of techniques used to manage memory in Java (as
Smalltalk and Self) where unused memory (garbage) is deteaitomatically by the system.
As a result, the programmer is relieved of any respongjtfitit freeing memory that he or she
has allocated. Garbage collection techniques are somemdegiendent of dynamic compila-
tion techniques. The primary interaction requires thatdls can be stopped in a well-defined
state prior to garbage collection. So-calkafe pointanust be defined at which a thread pe-
riodically saves its state to memory. Code generated by aaiipder must ensure that safe
points occur frequently enough that garbage collectiorotsumduly delayed. Typically this
means that each transit of a loop must contain at least orgsdit.

Java provides explicit, built-in, support for thread$iread synchronizatiorefers mostly
to the functionality that allows only one thread to entetaarregions of code at a time. Thread
synchronization must be implemented at various points laadeichniques for implementing it

must be supported by code generated by the JIT compiler.

2.2.1 Polymorphism and the Implications of Object-oriented Program-
ming

Over the last few decades, object-oriented developmemt f@m a vision, to an industry
trend, to a standard programming tool. Object-orientetnipies stressed development sys-
tems in many ways, but the one we need to examine in detaiiitite challenge of polymor-
phic method invocation.

The destination of a callsite in an object-oriented languegnot determined solely by
the signature of a method, as in C or FORTRAN. Instead, it isrd@hed at run time by a

combination of the method signature and the class of thekedkupon object. Callsites are

said to bepolymorphicas the invoked-upon object may turn out to be one of potéytiaany

20 CHAPTER 2. BACKGROUND

voi d sanpl e(Cbj ect[] otab)({
for(int i=0; i<otab.length; i++){
otab[i].toString(); //polynorphic callsite
}

Figure 2.2: Example of Java method containing a polymorpaiisite

classes.

Most object-oriented languages categorize objects inferatthy ofclasses Each object
is aninstanceof a class which means that the methods and data fields defyrtbdtxclass are
available for the object. Each class, except the root clessasuper-clasor base-clasgrom
which itinheritsfields and methods.

Each class may override a method and so at run time the systistrdmpatch the definition
of the method corresponding to the class of the invoked-ugpect. In many cases it is not
possible to deduce the exact type of the object at compile.tim

A simple example will make the above description concrete.ekVihis time to debug a
program almost all programmers rely on facilities to vieweattial description of their data.
In an object-oriented environment this suggests that ehtoshould define a method that
returns a string description of itself. This need was recghby the designers of Java and

consequently they defined a method in the root dlagsect :

public String toString()

to serve this purpose. TheSt ri ng* method can be invoked on every Java object. Consider
an array of objects in Java. Suppose we code a loop thateseoaer the array and invokes the
t oSt ri ng method on each element as in Figure 2.2.

There are literally hundreds of definitions bbSt ri ng in a Java system and in many
cases the compiler cannot discern which one will be the mitsdin of the callsite. Since it

is not possible to determine the destination of the callsiteompile time, it must be done

41t is the text returned by oSt r i ng that appears in various views of an interactive debugger

2.2. (HALLENGES TOHLL VM P ERFORMANCE 21

when the program executes. Determining the destinatie@stp&rformance in two main ways.
First, locating the method to dispatch at run time requitesputation. This will be discussed
in Section 2.4.1. Second, the inability to predict the dedion of a callsite at compile time
reduces the efficacy of interprocedural optimizations and tesults in relatively slow systems.

This is discussed next.

Impact of Polymorphism on Optimization

Optimization can be stymied by polymorphic callsites. Atngule time, an optimizer cannot
determine the destination of a call, so obviously the tacgeinot be inlined. In fact, stan-
dard interprocedural optimization as carried out by anmizing C or FORTRAN compiler is
simply not possible [55].

In the absence of interprocedural information, an optimizenot guess what calculations
are made by a polymorphic callee. Knowledge of the destinaif the callsite would permit
a more precise analysis of the values modified by the call.if&tance, with runtime infor-
mation, the optimizer may know that only one specific versibthe method exists and that
this definition simply returns a constant value. Code cordlgeculatively under the assump-
tion that the callsite remains monomorphic could constaopagate the return value forward
and hence be much better than code compiled under the cafiserassumption that other
definitions of the method may be called.

Given the tendency of modern object-oriented software tdabtored into many small
methods which are called throughout a program, even in fiterimost loops, these optimiza-
tion barriers can significantly degrade the performancénefgenerated code. A typical ex-
ample might be that common subexpression elimination daooimbine identical memory
accesses separated by a polymorphic callsite becausenibtcarove that all possible callees
do not kill the memory location. To achieve performance caraple to procedural compiled
languages, interprocedural optimization techniques sstehow be applied to regions laced

with polymorphic callsites.

22 CHAPTER 2. BACKGROUND

Section 2.4 describes various solutions to these issues.

2.2.2 Late binding

A basic design issue for any language is when external mefesare resolved. Java binds
references very late in order to support flexible packagirgeneral and downloadable code in
particular. (This contrasts with traditional languagés IC, which rely on a link-editor to bind
to external symbols before they run.) The general idea tsstiava program may start running
before all the classes that it needs are locally availabldaVva, binding is postponed until the
last possible moment, when the virtual instruction makimg teference executes for the first
time. Then, during the first execution, the reference iseeitsolved or a software exception
is raised. This means that the references a program attéongtsolve depends on the path of
execution through the code.

This approach is convenient for users and challenging fuydage implementors. When-
ever Java code is executed for the first time the system mustpared to handle unresolved
external references. An obvious, but slow, approach iswplyicheck whether an external ref-
erence is resolved each time the virtual instruction execuor good performance, only the
first execution should be burdened with any binding overh€&atk way to achieve this is for
the virtual program to rewrite itself when an external refere is resolved. For instance, sup-
pose a virtual instructionjop, takes an immediate parameter that names an unresolved clas
or method. When the virtual instruction is first executed theermmal name is resolved and
an internal VM data structure describing it is created. Tdagled representation of the virtual
instruction is then rewritten, say Wmp_r esol ved, which takes the address of the data struc-
ture as an immediate parameter. The implementatioropf r esol ved can safely assume
that the external reference has been resolved succes§fulbgequentlyop_r esol ved will
execute in place ofop with no binding overhead

The process of virtual instruction rewriting is relativedynple to carry out when instruc-

5This roughly describes how JamVM and SableVM handle latdibmn

2.3. EARLY DYNAMIC OPTIMIZATION 23

tions are being interpreted. For instance, it is possiblaltdack on standard thread support
libraries to protect overwriting from multiple threadsiragto rewrite the instruction. Itis more

challenging if the resolution is being carried out by dyneaily compiled native code [73].

2.3 Early Dynamic Optimization

Early efforts to build dynamic optimizers were embeddedppligations or C or FORTRAN

run time systems.

2.3.1 Manual Dynamic Optimization

Early experiments with dynamic optimization indicatedttlaage performance improvements
are possible. Typical early systems were applicationiipeRather than compile a language,
they dynamically generated machine code to calculate the#i@o to a problem described by
application specific data. Later, researchers built sertoraatic dynamic systems that would
re-optimize regions of C programs at run time [51, 5, 34, 3§, 3

Although the semi-automatic systems did not enable drampatiformance improvements
across the board, this may be a consequence of the perfogrbaseline to which they com-
pared themselves. The prevalent programming languagée tihbe were supported by static
compilation and so it was natural to use the performancegiilhioptimized binaries as the
baseline. The situation for modern languages like Javansesdat different. Dynamic tech-
niques that do not pay off relative to statically optimizeddde may be beneficial when applied
to code naively generated by a JIT. Consequently, a shortipisi of a few early systems

seems worthwhile.

2.3.2 Application specific dynamic compilation

In 1968 Ken Thompson built a dynamic compiler which acce@eadxtual description of a

regular expression and dynamically translated it into nreecbode for an IBM 7094 computer

24 CHAPTER 2. BACKGROUND

[49]. The resulting code was dispatched to find matches tuick

In 1985 Pike et al. invented an often-cited technique to gereegood code for quickly
copying, or bitblt'ing, regions of pixels from memory ontodésplay [57]. They observed
that there was a bewildering number of special cases (cdwsedrious alignments of pixels
in display memory) to consider when writing a good generappse bitblit routine. Instead
they wrote a dynamic code generator that could produce a @maa optimal) set of machine
instructions for each special case. At worst, their systeeceted only about 400 instructions

to generate code for a bitblit.

2.3.3 Dynamic Compilation of Manually Identified Static Regions

In the mid-1990’s Lee and Leone [51] built FABIUS, a dynamidimyjzation system for the
research language ML [34]. FABIUS depends on a particularo@iserrried functions.Cur-
ried functions take one or more functions as parameters etadnra new function that is a
composition of the parameters. FABIUS interprets the cadl biinction returned by a curried
function as a clue from the programmer that dynamic re-aptition should be carried out.
Their results, which they describe as preliminary, indidhaiat small, special purpose, applica-
tions such as sparse matrix multiply or a network packet fittey benefit from their technique
but the time and memory costs of re-optimization are diffitolrecoup in general purpose
code.

More recently it has been suggested that C and FORTRAN pragcan benefit from
dynamic optimization. Auslander et al [5], Grant et al [38] and others have built semi-
automatic systems to investigate this. Initially theseeys required the user to identify re-
gions of the program that should be dynamically re-optimhias well as the variables that are
runtime constant. Later systems allowed the user to ideatify the program variables that
are runtime constants and could automatically identifyclhriegions should be re-optimized
at run time.

In either case, the general idea is that the user indicaggsn® of the program that may

2.4. DYNAMIC OBJECTORIENTED OPTIMIZATION 25

be beneficial to dynamically compile at run time. The dynareigion is precompiled into
template code. Then, at run time, the values of runtime eostcan be substituted into the
template and the dynamic region re-optimized. Auslandsistem worked only on relatively
small kernels like matrix multiply and quicksort. A good waylook at the results was in
terms ofbreak even pointin this view, the kernels reported by Auslander had to etesfrom
about one thousand to a few tens of thousand of times befererthrovement in execution
time obtained by the dynamic optimization outweighed theetispent re-compiling and re-

optimizing.

Subsequent work by Grant et al. created the DyC system [38D§TC simplified the pro-
cess of identifying regions and applied more elaboratar@pétions at run time. This system
can handle real programs, although even the streamlineggs®f manually designating only
runtime constants is reported to be time consuming. Theihoa®logy allowed them to eval-
uate the impact of different optimizations independentigjuding complete loop unrolling,
dynamic zero and copy propagation, dynamic reduction ehgth and dynamic dead assign-
ment elimination to name a few. Their results showed thag todp unrolling had sufficient
impact to speed up real programs and in fact without loopllingathere would have been no

overall speedup at all.

2.4 Dynamic Object-oriented optimization

Some of the challenges to performance discussed abovelsedchy new, more dynamic lan-
guage features. Consequently, optimizations that haviitmaally been carried out at compile
time are no longer effective and must be redeployed as dynaptimizations carried out at

run time. The best example, polymorphic method invocatiat pe discussed next.

26 CHAPTER 2. BACKGROUND

2.4.1 Finding the destination of a polymorphic callsite

Locating the definition of a method for a given object at rumetis a search problem. To search
for a method definition corresponding to a given object thetesy must search the classes in
the hierarchy. The search starts at the class of the objemteeds to its super class, to the
super class of its super class, and so on, until the root aflétss hierarchy is reached. If each
method invocation requires the search to be repeated, toess will be a significant tax on
overall performance. Nevertheless, this is exactly whatumin a naive implementation of
Smalltalk, Self , Java, JavaScript or Python.

If the language permits early binding, the search may beexted to a table lookup at
compile-time. For instance, in C++, all the possible destms of a callsite are known when
the program is loaded. As a result, a C++ virtual callsite canntiplemented as an indirect
branch via a virtual table specific to the class of the obj@abked on. This reduces the cost
to little more than a function pointer call in C. The constroictand performance of virtual
function tables has been heavily studied, for instance lgden [25].

Real programs tend to have |@ffective polymorphisnirhis means that the average call-
site has very few actual destinations. If fact, most catsaresffectively monomorphjenean-
ing they always call the same method. Note that low effeqiviymorphism does not imply
that a smart compiler should have been able to deduce thieatest of the call. Rather, itis
a statistical observation that real programs typically enlglss use of polymorphism than they

might.

Inlined Caching and Polymorphic Inlined Caching

For late-binding languages it is seldom possible to geeaegéficient code for a callsite at
compile time. In response, various researchers have igaéstl how it might be done at run
time. In general, it pays to cache the destination of a ¢allshen the callsite is commonly
executed and its effective polymorphism is low. Tihdine cache invented by Deutsch and

Schiffman [24] for Smalltalk more than 20 years ago, repdate polymorphic callsite with

2.4. DYNAMIC OBJECTORIENTED OPTIMIZATION 27

the native instruction to call the cached method. The proogf all methods is extended with
fix-up code in case the cached destination is not correcttdok@and Shiffman reported hitting
the in-line cache about 95% of the time for a set of Smalltatigpams.

Holzle [43] extended the in-line cache to bpa@ymorphic in-line cach@IC) by generat-
ing code that successively compares the class of the involigedt to a few possible destina-
tion types. The implementation is more difficult than animelcache because the dynamically
generated native code sequence must sequentially compareoaditionally branch against
several possible destinations. A PIC extends the perfocen@enefits of an in-line cache to
effectively polymorphic callsites. For example, on a SPAR@Sh-2 Hoblzle's lookup would
cost only 8 + 2n cycles, where n is the actual polymorphisnhefallsite. A PIC lookup costs
little more than an in-line cache for effectively monomarpballsites and is much faster for

callsites that are effectively polymorphic.

2.4.2 Smalltalk and Self

Smalltalk adopted the position that essentially everygafe entity should be represented as
an object. A fascinating discussion of the qualitative fignanticipated from this approach
appears in Goldberg’s book [35].

The designers of Self took an even more extreme positiony Tieéd that even control
flow should be expressed using object-oriented congeptey understood that this approach
would require them to invent new ways to efficiently optimimessage invocation if the perfor-
mance of their system was to be reasonable. Their reseavghapn was extremely ambitious
and they explicitly compared the performance of their syste optimized C code executing
the same algorithms.

In addition, the Self system aimed to support the most iotem programming environ-

ment possible. Self supports debugging, editing and redmgpnethods while a program

6In Self, two blocks of code are passed as parameters to dseifi@essage sent to a boolean object. If the
object is true the first block is evaluated, otherwise th@sdc

28 CHAPTER 2. BACKGROUND

is running with no need to restart. This requires very latelinig. The combination of the
radically pure object-oriented approach and the ambitgneds regarding development envi-
ronment made Self a sort of trial-by-fire for object-orightlynamic compilation techniques.
Ungar, Chambers and Holzle have published several paperd4183, 45] that describe
how the performance of Self was increased from more thandar of magnitude slower than
compiled C to only twice as slow. A readable summary of théanegues are given by Ungar
et al [74]. A thumbnail summary would be that effective momophism can be exploited
by a combination of type-checking guard code (to ensure sbate object’s type really is
known) and static inlining (to expose the guarded code terjmmbcedural optimization). To
give the flavor of this work we will briefly describe two specitiptimizations: customization

and splitting.

Customization

Customization is a relatively old object-oriented optinti@a introduced by Craig Chambers
in his dissertation [15] in 1988. The general idea is thatlgirporphic callsite can be turned
into a static callsite (or inlined code) when the type of ebn which the method is invoked
is known. The approach taken by a customizing compiler iplicate methods with type
specialized copies so as to produce callsites where typdsiamn.

Ungar et al. give a simple, convincing example in [74]. InfSeis usual to write generic
code, for instance algorithms that can be shared by integkfl@ating point code. An example
is a method to calculate minimum. The n method is defined by a class calledgni t ude.
All concrete number classes, likeit eger andFl oat, thus inheritthem n method. A cus-
tomizing compiler will arrange that customized definitiaisn n are compiled fot nt eger
andFl oat . Inlining the customized methods replaces the polymorpalf to < within the

original M n method by the appropriate arithmetic compare instructiomgach of the cus-

’In Self even integer comparison requires a message send.
8j.e. the integer customized versionmifn can issue an arithmetic integer compare and the float cuztion
can issue a float comparison instruction.

2.4. DYNAMIC OBJECTORIENTED OPTIMIZATION 29

tomized versions of integer and flaatn.

Method Splitting

Oftentimes, customized code can be inlined only when ptetely a type guard. The guard
code is essentially an if-then-else construct where thiag€gts the type of an object, the “then”
inlines the customized code and the “else” performs thermalgolymorphic method invoca-
tion of the method. Chambers [15] noted that the predicatéeim@nted by the guard estab-
lishes the type of the invoked object for one leg of the ifr@tse, but following the merge
point, this knowledge is lost. Hence, he suggested thaiviitig code be “split” into paths
for which knowledge of types is retained. This suggestsitisiead of allowing control flow
to merge after the guard, a splitting compiler can replidatl®ewing code to preserve type
knowledge.

Incautious splitting could potentially cause exponert@le size expansion. This implies
that the technique is one that should only be applied toivelgtsmall regions where it is

known that polymorphic dispatch is hurting performance.

2.4.3 Java JIT as Dynamic Optimizer

The first Java JIT compilers translated methods into natisguctions and improved polymor-
phic method dispatch by deploying techniques inventeddiscpreviously for Smalltalk. New
innovations in garbage collection and thread synchroioizahot discussed in this review, were
also made. Despite all this effort, Java implementationse\séll slow. More aggressive op-
timizations had to be developed to accommodate the perfarenehallenges posed by Java’s
object-oriented features, particularly the polymorphgpdtch of small methods. The writers

of Sun’s Hotspot compiler white paper note:

In the Java language, most method invocationsvateal (potentially poly-
morphic), and are more frequently used than in C++. This meah®nly that
method invocation performance is more dominant, but alab skatic compiler

30 CHAPTER 2. BACKGROUND

optimizations (especially global optimizations such dsing) are much harder
to perform for method invocations. Many traditional optoations are most effec-
tive between calls, and the decreased distance betwesrnircétlie Java language
can significantly reduce the effectiveness of such optitiing, since they have
smaller sections of code to work with.[2, pp 17]

Observations similar to the above led Java researchersrtorpespeculative optimizations
to transform the program in ways that are correct at somet,pbirt may be invalidated by
legal computations made by the program. For instance, Bfesmhski and Sarkar speculatively
generate code for a method with only one loaded definitionabksumes it will never be over-
ridden. Later, if the loader loads a class that providestaratdefinition of the method, the
speculative code may be incorrect and must not run againhisncase, the entire enclosing
method (or inlined method nest) must be recompiled undeemealistic assumptions and the

original compilation discarded [56].

In principle, a similar approach can be taken if the spetdatode is correct but turns out

to be slower than it could be.

The infrastructure to replace a method is complex, but isn@dmental requirement of
speculative optimization in a method-oriented dynamic giben It consists of roughly two
parts. First, meta data must be produced when a method miaptl that allows local variables
in the stack frame and registers of a running method to beatadrto a recompiled version.
This is somewhat similar to the problem of debugging optedizode [44]. Later, at run time,
the meta data is used to convert the stack frame of the invati@ to that of the recompiled
code. Fink and Qian describe a technique called on stackagepient (OSR) that shows how
to restrict optimization so that recompilation is alwaysgible [31]. The key idea is that
values that may be dead under traditional optimization &semust be kept alive so that a

less aggressively optimized replacement method can aantin

2.4. DYNAMIC OBJECTORIENTED OPTIMIZATION 31

2.4.4 JIT Compiling Partial Methods

The dynamic compilers described thus far compile entirdnogis or inlined method nests. The
problem with this approach is that even a hot method may oootdd code. The cold code
may never be executed or perhaps will later become hot otdy lbéing compiled.

Compiling cold code that never executes can have only indéféects such as allowing the
optimizer to prove facts about the portions of the methotldhahot. This can have a positive
impact on performance, by enabling the optimizer to proetsfabout hot regions that enable
faster code to be produced. Also, it can have a negative ithaat¢he cold code may contain
code that forces the optimizer to generate more conseeyatiower, code for the hot regions.
Thus, various researchers have investigated how compuitdg code can be avoided.

Whaley described a prototype that compiled partial methsldpping cold code. He mod-
ified the compiler to generate glue code stubs in the placeldf @ode. The glue code had
two purposes. First, to the optimizer at compile time, theegtode included annotations so
that it appeared to use the same variables as the cold codse@antly the optimizer has a
true model of variables used in the cold regions and so getecarrect code for the hot ones.
Second, when run, the glue code interacted with the runtysies to exit the code cache and
resume interpretation. Hence, if a cold region was enta@utrol would simply revert to the
interpreter. His results showed a large compile time sayitegading to modest speed ups for
certain benchmarks [78].

Suganuma et al. investigated this issue further by modjfgimethod-based JIT to specu-
latively optimize hot inlined method nests. Their techmgulines only hot regions, replacing
cold code with guard code [71]. The technique is specul@i@eause conservative assumptions
in the cold code are ignored. When execution triggers guade,db exposes the speculation
as wrong and hence is a signal that continued execution ahtimed method nest may be
incorrect. On stack replacement and recompilation are teseztover. They also measured a
significant reduction in compile time. However, only a mddgseedup was obtained, suggest-

ing either that conservative assumptions stemming froradlebcode are not a serious concern

32 CHAPTER 2. BACKGROUND

or their recovery mechanism is too costly.

2.5 Traces

HP Dynamo [8, 26, 7] is a same-ISA binary optimizer. Dynami@alty interprets a binary
executable program, detecting hot interprocedural pathisaces through the program as it
runs. These traces are then optimized and loaded itrecca cache Subsequently, when the
interpreter encounters a program location for which a teagsts, it is dispatched from the
trace cache. If execution diverges from the path taken whertrace was generated then a
trace exitoccurs, execution leaves the trace cache and interpretasumes. If the program
follows the same path repeatedly, it will be faster to execatde generated for the trace rather
than the original code. Dynamo successfully reduced theutxa time of many important
benchmarks. Several binary optimization systems, inolyddynamoRIO [13], Mojo [16],
Transmeta’s CMS [23], and others, have since used traces.

Dynamo uses a simple heuristic, called Next Executing NHT), to identify traces. NET
starts generating a trace from the destination of a hotseuaianch, since this location is likely
to be the head of a loop, and hence a hot region of the progrékeig to follow. If a given
trace exit becomes hot, a new trace is generated startingifsalestination.

Software trace caches are efficient structures for dynamign@ation. Bruening and
Duesterwald [10] compare execution time coverage and dadda three dynamic optimiza-
tion units: method bodies, loop bodies, and traces. Thewghat method bodies require
significantly more code size to capture an equivalent amotigixecution time than either
traces or loop bodies. This result, together with the priggeoutlined in Section 1.4, suggest

that traces may be a good choice for a unit of compilation.

DynamoRIO Bruening describes a new version of Dynamo which runs on tte 86 ar-
chitecture. The current focus of this work is to provide dicient environment to instrument

real world programs for various purposes such as to improgesécurity of legacy applica-

2.5. TRACES 33

tions [13, 12].

One interesting application of DynamoRIO was by Sullivan lef7a]. They ran their
own tiny interpreter on top of DynamoRIO in the hope that it Vdobie able to dynamically
optimize away a significant proportion of interpretatioredwead. They did not initially see
the results they were hoping for because the indirect dibdatanches confounded Dynamao’s
trace selection. They responded by creating a small irderfey which the interpreter could
programatically give DynamoRIO hints about the relatiopdtetween the virtual pc and the
hardware pc. This was their way around what we call the congeblem in Section 3.5.
Whereas interpretation slowed down by almost a factor of taiagiregular DynamoRIO,
after they had inserted calls to the hint API, they saw speedfiabout 20% on a set of small
benchmarks. Baron [9] reports similar performance resuhiging a similarly modified Kaffe

JVM [80].

Last Executed Iteration (LEI)

Hiniker, Hazelwood and Smith performed a simulation studgi@ating enhancements to the
basic Dynamo trace selection heuristics [41]. They obsetw® main problems with Dy-

namo’s NET heuristic. The first probletnace separationoccurs when traces that turn out to
often execute sequentially happen to be placed far apdreitrdce cache, hurting the locality
of reference of code in the instruction cache. LEI maintariganch history mechanism as
part of its trace collection system that allows it to do adrgttb handling loop nests, requiring
fewer traces to span the nest. The second problem, excessleeduplication, occurs when
many different paths become hot through a region of code. prbblem is caused when a
trace exit becomes hot and a new trace is generated thajes/&pm the preexisting trace for
only one or a few blocks before rejoining its path. As a consege, the new trace replicates
blocks of the old trace from the place they rejoin to their cwon end. Combining several such
observed traces together forms a region with multiple patfisless duplication. A simulation

study suggests that using their heuristics, fewer, sma#égcted traces will account for the

34 CHAPTER 2. BACKGROUND

same proportion of execution time.

2.6 Hotpath

Gal, Probst and Franz describe the Hotpath project [33].p&tbtextends JamVM (one of
the interpreters we use for our experiments) to be a traemt@d mixed-mode system. They
focus on traces starting at loop headers and do not compiegrother than those in loops.
Thus, they do not attempt trace linking as described by Dyndmt rather “merge” traces
that originate from side exits leading back to loop head&rss technique allows Hotpath to
compile loop nests. They describe an interesting way of minagiéraces using single static
assignment (SSA) [22] that exploits the constrained flowooitiol present in traces. This both
simplifies their construction of SSA and allows very efficieptimization. Their experimental
results show excellent speedup, within a factor of two of SHtSpot, for scientific style loop
nests like those in the LU, SOR and Linpack benchmarks, aneé modest speedup, around
a factor of two over interpretation, for FFT. No results aneeg for tests in the SPECjvm98
suite, perhaps because their system does not yet sup @ firerging across (inlined) method
invocations” [33, page 151]. The optimization techniguesytdescribe seem complimentary

to the overall architecture we propose in Chapter 6.

2.7 Chapter Summary

In this chapter we briefly traced the development of higlelléanguage virtual machines from
interpreters to dynamic optimizing compilers. We saw tim&tripreter designs may perform
poorly on modern, highly pipelined processors, becauseetidispatch mechanisms cause
too many branch mispredictions. This will be discussed imemtetail in Section 3.5. Later, in
Chapter 4, we describe our solution to the problem.

Currently, JIT compilers compile entire methods or inlineethod nests. Since hot meth-

2.7. CHAPTER SUMMARY 35

ods may contain cold code, this forces the JIT compiler amtime system to support late
binding. Should the cold code later become hot, a methodebdl§ must recompile the con-
taining method or inlined method nest to optimize the nevdiydode. These issues add com-
plexity to a method oriented system that could be avoidedniigiled code contained no cold
code. The HP Dynamo binary optimizer project defines a slgitedndidate for a dynamically
identified unit of compilation, namely the hot interprocemiypath, or trace. In Chapter 6, we
describe how a virtual machine can compile traces to incnéatlg compile code as it becomes

hot.

36

CHAPTER 2. BACKGROUND

Chapter 3

Dispatch Techniques

In this chapter we expand on our discussion of interpratabip examining several dispatch
techniques in detail. In Chapter 2 we defined dispatch as tlvhanésm used by a high level
language virtual machine to transfer control from the caderhulate one virtual instruction
to the next. This chapter has the flavor of a tutorial as weetthe evolution of dispatch

techniques from the simplest to the highest performing.

Although in most cases we will give a small C language exartpliustrate the way the
interpreter is structured, this should not be taken to meandall interpreters are hand written
C programs. Precisely because so many dispatch mechamsstisseme researchers argue
that the interpreter portion of a virtual machine should beegated from some more generic

representation [30, 69].

Section 3.1 describes switch dispatch, the simplest dibp&ichnique. Section 3.2 in-
troduces call threading, which figures prominently in ourkvoSection 3.3 describes direct
threading, a common technique that suffers from branchnexkgtion problems. Section 3.4
briefly describes branch prediction resources in moderogasors. Section 3.5 defines the
context problemour term for the challenge to branch prediction posed brpretation. Sub-
routine threading is introduced in Section 3.6. Finallyct®® 3.7 describes related work that

eliminates dispatch overhead by inlining or replicatingual instruction bodies.

37

38 CHAPTER 3. DISPATCH TECHNIQUES
3.1 Switch Dispatch

Switch dispatch, perhaps the simplest dispatch mechamssitystrated by Figure 3.1. Al-
though the persistent representation of a Java class idastisidefined, the representation of
a loaded virtual program is up to the VM designer. In this caseshow how an interpreter
might choose a representation that is less compact thambfossr simplicity and speed of
interpretation. In the figure, the loaded representatiggeags on the bottom left. Each virtual
opcode is represented as a full word token even though a byaévguffice. Arguments, for
those virtual instructions that take them, are also stanefuill words following the opcode.
This avoids any alignment issues on machines that penatakguaed loads and stores.

Figure 3.1 illustrates the situation just before the statetm=a+b+1 is executed. The box
on the right of the figure represents the C implementatiomefinterpreter. The PC points
to the word in the loaded representation correspondingedithkt instance of | oad. The
interpreter works by executing one iteration of the dispabop for each virtual instruction it
executes, switching on the token representing each virtgaliction. Each virtual instruction
is implemented by aase intheswi t ch statement. Virtual instruction bodies are simply the
compiler-generated code for each case.

Every instance of a virtual instruction consumes at leastward in the internal represen-
tation, namely the word occupied by the virtual opcode.0édtinstructions that take operands
are longer. This motivates the strategy used to maintairvB@ The dispatch loop always
bumps thevPC to account for the opcode and bodies that consume operanags thevPC
further, one word per operand.

Although no virtual branch instructions are illustratedhe figure, they operate by assign-
ing a new value to the PC for taken branches.

A switch interpreter is relatively slow due to the overheddh® dispatch loop and the
switch. Despite this, switch interpreters are commonlgus@roduction (e.g. in the JavaScript
and Python interpreters). Presumably this is becauselsdigpatch can be implemented in

ANSI standard C and so it is very portable.

3.1. SwVITCH DISPATCH

Java
source

Java
Bytecode

Loaded
representation
of virtual
program

Virtual operations
are identified by
tokens.

Figure 3.1: A switch interpreter loads each virtual instirt as a virtual opcode, or token,
corresponding to the case of the switch statement that mmgaiés it. Virtual instructions that

c=a+b+1;

Y

iload a
ilocad b
iconst 1
iadd
iadd
istore c

A

ILOAD

a

ILOAD

b

ICONST

1

IADD

IADD

ISTORE

C

39

interp () {
int *vPC;

while (1) {
switch (*vPC++) {

case ICONST:
//fetch immed arg and
//move vPC to next opcode
int ¢ = *VPC++;
//push c
break;

case IADD:
//pop 2 inputs, add
//push result
break;

case ISTORE: //pop, store to local

}
}
}

----» case ILOAD: //push local var..

take immediate operands, likeeonst , must fetch them from the PC and adjust thesPC
past the operand. Virtual instructions which do not needamis, likei add, do not need to

adjust thevPC.

40 CHAPTER 3. DISPATCH TECHNIQUES
3.2 Direct Call Threading

Another portable way to organize an interpreter is to wrdehevirtual instruction as a func-
tion and dispatch it via a function pointer. Figure 3.2 sh@ash virtual instruction body
implemented as a C function. While the loaded representated by the switch interpreter
represents the opcode of each virtual instruction as a takestt call threading represents each
virtual opcode as the address of the function that implesiénthus, by treating thePC as a
function pointer, a direct call-threaded interpreter cagcaite each instruction in turn.

In the figure, thevrPC is a static variable which means that er p function as shown is
not re-entrant. Our example aims only to convey the flavoradiftoreading. In Chapter 6 we
will show how a more complex approach to direct call thregdian perform about as well as
switch threading (described in Section 3.1).

A variation of this technique is described by Ertl [27]. Fastbrical reasons the name
“direct” is given to interpreters which store thedressof the virtual instruction bodies in the
loaded representation. Presumably this is because the{dirantly” obtain the address of a
body, rather than using a mapping table (or switch statenmeibnvert a virtual opcode to the
address of the body. However, the name can be confusing asth& machine instructions
used for dispatch are indirect branches. (In this casedirect call).

Next we will describe direct threading, perhaps the most-lwabwn high performance

dispatch technique.

3.3 Direct Threading

Like in direct call threading, a virtual program is loadetbia direct-threaded interpreter as a
list of body addresses and operands. We will refer to thesigheDirect Threading Tablgor
DTT, and refer to locations in the DTT aots.

Interpretation begins by initializing thePC to the first slot in the DTT, and then jumping

to the address stored there. A direct-threaded interpdetes not need a dispatch loop like

3.3. DIRECT THREADING 41

vPC
int * vPC;
/7” void iload() { .. }
Loaded representation iload void iconst(){ .. }
of virtual program a L~
iload void iadd() { .. }
b / . .
void istore(){ .. }
Virtual operations iconst /
are identified by 1 VPC = &dtt (0]
addresses of functions iadd)
: : interp () {
implementing each iadd
virtual instruction body - while (1) {
istore (*vPC++) ();
c }
}

Figure 3.2: A direct call-threaded interpreter packages e&tual instruction body as a func-
tion. The shaded box highlights the dispatch loop showing faistual instructions are dis-
patched through a function pointer. Direct call threadieguires the loaded representation of
the program to point to thaddressof the function implementing each virtual instruction.

Java source _ _ _
Virtual Instruction Bodies
DTT
vPe interp(){
c=a+b+1;)
a [l push var..
l w && | oad got 0 *VPC++;
Javac ?D» b
Compiler | 8 &&i const i const :
l ® 1 /I push const ant
—
o "
iload a % & add got o *VPC+H+;
i10ad b % | [&&add |~ |
iconst 1 j &&i store 4 iadd://add 2 slots
i add]
istore c i store://pop,store
}

Java Bytecode

Figure 3.3: Direct-threaded Interpreter showing how Jamar& code compiled to Java byte-
code is loaded into the Direct Threading Table (DTT). Thaaakinstruction bodies are written
in a single C function, each identified by a separate labet dduble-ampersandé&) shown

in the DTT is gcc syntax for the address of a label.

42 CHAPTER 3. DISPATCH TECHNIQUES

mov %ax = (% X) ; rxisvPC | Iwz r2 = 0(rx)
addl 4, % x nctr r2
jmp (%eax) addi rx,rx, 4
bctr
(a) Pentium 4 assembly (b) Power PC assembly

Figure 3.4: Machine instructions used for direct dispat€n both platforms assume that
some general purpose registex,, has been dedicated for th@C. Note that on the PowerPC
indirect branches are two part instructions that first |¢eett r register and then branch to its
contents.

direct call threading or switch dispatch. Instead, as casdes in Figure 3.3, each body ends
with got o * vPC++, which transfers control to the next instruction.

In C, bodies are identified by a label. Common C language extesgiermit the address
of this label to be taken, which is used when initializing tI€T. GNU’s gcc, as well as C
compilers produced by Intel, IBM and Sun Microsystems allpgurpthe label-as-value and
computed goto extensions, making direct threading quiteapte.

Direct threading requires fewer instructions and is faikten direct call threading or switch
dispatch. Assembler for the dispatch sequence is showngur&i3.4. When executing the
indirect branch in Figure 3.4(a) the Pentium 4 will speduiy dispatch instructions using a
predicted target address. The PowerPC uses a differetgggtri@r indirect branches, as shown
in Figure 3.4(b). First the target address is loaded int@sster, and then a branch is executed
to this register address. Rather than speculate, the Powstel€ until the target address is
known', although other instructions may be scheduled betweerotiekdnd the branch (like

theaddi in Figure 3.4) to reduce or eliminate these stalls.

3.4 Dynamic Hardware Branch Prediction

There is a rich body of research on branch prediction, sineedhes are otherwise very costly

on pipelined architectures. In this thesis we care only atemhniques adopted by real micro-

1In addition, the PPC970 implements a small count cache ¢ma¢mbers the target address for the 32 previ-
ously executed indirect branches.

3.5. THE CONTEXT PROBLEM 43

processors.

The primary mechanism used to predict indirect branches odemm computers is the
branch target buffe(BTB). The BTB is a hardware table in the CPU that associates tie de
nation of a small set of branches with their address [40]. idlka is to simply remember the
previous destination of each branch. This is the same asasgthat the destination of each
indirect branch is correlated with the address in memoryefdranch instruction itself.

The Pentium 4 implements a 4K entry BTB [42]. (Instead of a BT&RowerPC 970 has
a much smaller 32 entry count cache [46].) Direct threadmf@unds the BTB because all
instances of a given virtual instruction compete for thes&MB slot.

Another kind of dynamic branch predictor is used for comai#il branch instructions. Con-
ditional branches are relative, or direct, branches scethez only two possible destinations.
The challenge lies in predicting whether the branch willddeet or fall through. For this pur-
pose modern processors implemebtanch history tableThe PowerPC 7410, as an example,
deploys a 2048 entry 2 bit branch history table [54]. Diractading also confounds the branch
history table as all the instances of each conditional brasmtual instruction compete for the
same branch history table entry. In this case, the hard @igireranch is not an explicit dis-
patch branch but rather the result ofiain statement in a virtual branch instruction body. This
will be discussed in more detail in Section 4.3.

Return instructions can be predicted perfectly using a sthaddresses pushed by call
instructions. The Pentium 4 has a 16 emntrjurn address stacld2] whereas the PPC970 uses

a similar structure called tHank stack[46].

3.5 The Context Problem

Mispredicted branches pose a serious challenge to modecessors because they threaten to
starve the processor of instructions. The problem is thetrbehe destination of the branch

is known the execution of the pipeline may run dry. To perfaifull speed, modern CPU’s

44 CHAPTER 3. DISPATCH TECHNIQUES

need to keep their pipelines full by correctly predictingiteh targets.

Ertl points out that the assumptions underlying the desfgndirect branch predictors are
usually wrong for direct-threaded interpreters [28, 29].aldirect-threaded interpreter, there
is only oneindirect jump instruction per virtual instruction. For emple, in the fragment of
virtual code illustrated in Figure 2.1, there are two ins&s10fi | oad followed by an instance
of i const . The indirect dispatch branch at the end of tHeoad body will execute twice.
The first time, in the context of the first instanceidfoad, it will branch back to the entry
point of the thei | oad body, whereas in the context of the secarldbad it will branch
toi const. Thus, the hardware will likely mispredict the second execuof the dispatch

branch.

The performance impact of this can be hard to predict. Fdant®, if a tight loop in a
virtual program happens to contain a sequence of uniqueaVimstructions, the BTB may
successfully predict each one. On the other hand, if theesegucontains duplicate virtual

instructions, the BTB may mispredict all of them.

This problem is even worse for direct call threading and dwdispatch. For these tech-
niques there is only one dispatch branch and so all dispasitee the same BTB entry. Direct
call threading will mispredict all dispatches except whie@ same virtual instruction body is

dispatched multiple times consecutively.

Another perspective is that the destination of the indidégpatch branch is unpredictable
because its destination is not correlated with the hardwarénstead, its destination is corre-
lated to thev PC. We refer to this lack of correlation between the hardwsreandv PC as the
context problemWe choose the tereontextfollowing its use incontext sensitive inlininf9]
because in both cases the context of shared code (in theirmsathods, in our case virtual

instruction bodies) is important to consider.

3.6. SUBROUTINE THREADING 45
3.6 Subroutine Threading

Forth is organized as a collection of callable bodies of amalkedwords Words can be user
defined or built into the system. Meaningful Forth words asmposed of built-in and user-
defined words and execute by dispatching their constituendsvin turn. A Forth implemen-
tation is said to besubroutine-threadedf a word is compiled to a sequence pétive call
instructions,one call for each constituent word. Since a built-in Fortlrdvis loosely analo-
gous to a callable virtual instruction body, we could appipreutine threading at load time
to a language virtual machine that implements virtual ington bodies as callable. In such
a system the loaded representation of a virtual method woaldde a sequence of generated
native call instructions, one to dispatch each virtualringion in the virtual method.

Curley [21, 20] describes a subroutine-threaded Forth 68000 CPU. He improves the
resulting code by inlining small opcode bodies, and cosvertual branch opcodes to single
native branch instructions. He credits Charles Moore, thentor of Forth, with discovering
these ideas much earlier. Outside of Forth, there is litttedugh literature on subroutine
threading. In particular, few authors address the problemhere to store virtual instruction
operands. In Section 4.2, we document how operands aredthmdbur implementation of
subroutine threading.

The choice of optimal dispatch technique depends on thealzeiedplatform, because dis-
patch is highly dependent on micro-architectural featutasearlier hardwaresall andreturn
were both expensive and hence subroutine threading relguiecostly branches, versus one
in the case of direct threading. Rodriguez [62] presents #uketoffs for various dispatch types
on several 8 and 16-bit CPUs. For example, he finds directdhrgas faster than subrou-
tine threading on a 6809 CPU, becausejtle andr et instruction require extra cycles to
push and pop the return address stack. On the other handyGouied subroutine thread-
ing faster on the 68000 [20]. On modern hardware the costeoféturn is much lower, due
to return branch prediction hardware, while the cost ofditereading has increased due to

misprediction. In Chapter 5 we quantify this effect on a fewdexm CPUSs.

46 CHAPTER 3. DISPATCH TECHNIQUES
3.7 Optimizing Dispatch

Much of the work on interpreters has focused on how to opgmdigpatch. In general dispatch
optimizations can be divided into two broad classes: thdsehwefine the dispatch itself, and
those which alter the bodies so that they are more efficiesingpoly require fewer dispatches.
Switch dispatch and direct threading belong to the firsts;las does subroutine threading.
Kogge remains a definitive description of many threaded clisj@atch techniques [50]. Next,

we will discuss superinstruction formation and replicatiwhich are in the second class.

3.7.1 Superinstructions

Superinstructionseduce the number of dispatches. Consider the code to addséanbim-
teger to a variable. This may require loading the variabl® ¢ine expression stack, loading
the constant, adding, and storing back to the variable. VBigiers can instead extend the
virtual instruction set with a single superinstructionttparforms the work of all four virtual
instructions. This technique is limited, however, becahsevirtual instruction encoding (of-
ten one byte per opcode) may allow only a limited number afutsions, and the number of
desirable superinstructions grows large in the number b$smed atomic instructions. Fur-
thermore, the optimal superinstruction set may changedoas¢éhe workload. One approach
uses profile-feedback to select and create the superitistractatically (when the interpreter

is compiled [30]).

3.7.2 Selective Inlining

Piumarta [60] presentselective inlining Selective inlining constructs superinstructions when
the virtual program is loaded. They are created in a relgtipertable way, bymentpy’ing

the compiled code in the bodies, again using GNU C labelgaasges. The idea is to construct
(new) super instruction bodies by concatenating the Mitbodies of the virtual instructions

that make them up. This works only when the code in the vittodies igposition independent

3.7. OPTIMIZING DISPATCH 47

meaning that the destination of any relative branch in a bedyain in that body. Typically
this excludes bodies making C function calls. This techamyas first documented earlier [64],
but Piumarta’s independent discovery inspired many otr@epts to exploit selective inlining.
Like us, he applied his optimization to OCaml, and reportsifitant speedup on several micro
benchmarks. As we discuss in Section 5.3, our techniqueparate from, but supports and

indeed facilitates, inlining optimizations.

Languages, like Java, that require runtime binding corafdiche implementation of se-
lective inlining significantly because at load time litteeknown about the arguments of many
virtual instructions. When a Java method is first loaded somenaents are left unresolved.
For instance, the argument of anvokevi r t ual instruction will initially be a string nam-
ing the callee. The argument will be re-written the first tithe virtual instruction executes to
point to a descriptor of the now resolved callee. At the same,tthe virtual opcode is rewrit-
ten so that subsequently a “quick” form of the virtual instran body will be dispatched. In
Java, if resolution fails, the instruction throws an exaaptind is not rewritten. The process
of rewriting the arguments, and especially the need to goiatnew virtual instruction body,
complicates superinstruction formation. Gagnon dessrébeechnique that deals with this ad-

ditional complexity which he implemented in SableVM [32].

Selective inlining requires that the superinstructiomtstat a virtual basic block, and ends
at or before the end of the block. Erttlynamic superinstruction29] also userentpy, but
are applied to effect a simple native compilation by inlgnlodies for nearly every virtual in-
struction. Ertl shows how to avoid the basic block constgiso dispatch to interpreter code is
only required for virtual branches and unrelocatable badiatale and Abdelrahman describe
a technique called catenation, which (i) patches Spareenatide so that all implementations
can be moved, (ii) specializes operands, and (iii) conwertsal branches to native branches,

thereby eliminating the virtual program counter [76].

48 CHAPTER 3. DISPATCH TECHNIQUES

3.7.3 Replication

Replication— creating multiple copies of the opcode body—decreasesuh#er of contexts

in which it is executed, and hence increases the chancesoéssfully predicting the succes-
sor [29]. Replication combined with inlining opcode bodieduces the number of dispatches,
and therefore, the average dispatch overhead [60]. In tinere®, one could create a copy for
each instruction, eliminating misprediction entirely.iFtechnique results in significant code

growth, which may [76] or may not [29] cause cache misses.

3.8 Chapter Summary

In summary, branch mispredictions caused by the contextigmolimit the performance of a
direct-threaded interpreter on a modern processor. We deseribed several recent dispatch
optimization techniques. Some of the techniques improvéopaance of each dispatch by
reducing the number of contexts in which a body is executetthe@ reduce the number of
dispatches, possibly to zero.

In the next chapter we will describe a new technique for pregation that deals with the
context problem. Our technique, context threading, peréowell compared to the interpreta-

tion techniques we have described in this chapter.

Chapter 4

Design and Implementation of Efficient

Interpretation

This chapter will describe how to efficiently implement anenrpreter thatalls its virtual

instruction bodies. This investigation was motivated kg sliggestion we made in Chapter 1,
namely that such an interpreter will be easier to extend @ifiT than an interpreter that is
direct-threaded or uses switch dispatch. Before tackliegisign of our mixed-mode system

we need to ensure that the interpreter is efficient.

An obvious, but slow, way to use callable virtual instruntimodies is to build a direct call
threaded (DCT) interpreter (see Section 3.2 for a detailsdrgsion of the technique.) In a
DCT interpreter all bodies are dispatched by the sardeect call instruction. The destination
of the indirect call is data driven (i.e. by the sequence dfrai instructions that make up the
virtual program) and thus impossible for the hardware taljgte As a result, a DCT interpreter

suffers a branch misprediction for almost every dispatch.

The main realization driving our approach is that to callrebaody without misprediction
dispatch branches must biect call instructions. Since these can only be generated when
virtual instructions are loaded, we generate them oursel¥d load time, each straight-line

section of virtual instructions is translated to a sequeiabrect call native instructions, each

49

50 CHAPTER4. DESIGN AND IMPLEMENTATION OF EFFICIENT INTERPRETATION

dispatching the corresponding virtual instruction bodye Toaded program is run by jumping
to the beginning of the generated sequence of native codehwen emulates the virtual
program by calling each virtual instruction body in turn. iSlpproach is very similar to a

Forth compile-time technique called subroutine threaditegcribed in Section 3.6.

Subroutine threading dispatches straight-line sequeotestual instructions very effi-
ciently because no branch mispredictions occur. The gtatkdirect calls pose no prediction
challenge because each has only one explicit destinatio& d€stination of the return ending
each body is perfectly predicted by the return branch ptedatack implemented by modern
processors. In the next chapter we present data showingubabutine threading runs the

SPECjvm98 suite about 20% faster than direct threading.

Subroutine threading handles straight-line virtual coffieiently, but does nothing to im-
prove the dispatch of virtual branch instructions. We idtrcecontext threadingwhich, by
generating more sophisticated code for virtual branchraetibns, eliminates the branch mis-
predictions caused by the dispatch of virtual branch isimas as well. Context threading im-
proves the performance of the SPECjvm98 suite by about and%ever subroutine thread-
ing.

Generating and dispatching native code obviously makesmulementation of subroutine
threading less portable than many dispatch techniques.etAmwsince subroutine threading
requires the generation of only one type of machine instvacta direct call, its hardware
dependency is isolated to a few lines of code. Context thngadiquires much more machine

dependent code generation.

In Chapter 6 we will describe another way of handling virtuarzhes that requires less
complex, less machine dependent code generation, burescadditional runtime infrastruc-

ture to identify hot runtime interprocedural paths, or é®c
Although direct-threaded interpreters are known to haw poanch prediction properties,
they are also known to have a small instruction cache faatf8B8]. Since both branch mispre-

dictions and instruction cache misses are major pipelizardis, we would like to retain the

4.1. UNDERSTANDING BRANCHES 51

good cache behavior of direct-threaded interpreters wnibeoving the branch behavior. Sub-
routine threading minimally affects code size. This is imttast to techniques like selective
inlining, described in Section 3.7, which improve brancediction by replicating entire bod-
ies, in effect trading instruction cache size for bettembhaprediction. In Chapter 7 we will
report data showing that subroutine threading causes garadlditional stall cycles caused by
instruction cache misses as compared to direct threading.

In Section 4.1 we discuss the challenge of virtual branclruotons in general terms.
In Section 4.2 we show how to replace straight-line dispatith subroutine threading. In
Section 4.3 we show how to inline conditional and indireatps, and in Section 4.4 we discuss

handling virtual calls and returns with native calls andires.

4.1 Understanding Branches

Before describing our design, we start with two observatioRsst, a virtual program will
typically contain several types of control flow: conditibaad unconditional branches, indirect
branches, and calls and returns. We must also consider spatdh of straight-line virtual
instructions. For direct-threaded interpreters, straligie execution is just as expensive as
handling virtual branches, sined virtual instructions are dispatched with an indirect bifanc
Second, the dynamic execution path of the virtual prograthasintain patterns (loops, for
example) that are similar in nature to the patterns foundnnhecuting native code. These
control flow patterns originate in the algorithm that thewad program implements.

As described in Section 3.4, modern microprocessors hav&derable resources devoted
to identifying these patterns in native code, and explgitimem to predict branches. Direct
threading uses only indirect branches for dispatch andialtiee context problem, the patterns
that exist in the virtual program are largely hidden from tfieroprocessor.

The spirit of our approach is to expose these virtual corikowl patterns to the hardware,

such that the physical execution path matches the virtiedwgion path. To achieve this goal,

52 CHAPTER4. DESIGN AND IMPLEMENTATION OF EFFICIENT INTERPRETATION

DTT interp ()
&ctt [0] ~ vPC CTT e[void iload () {
a //push var. .
sctt [1] - call iload -—”:x” VPC++; ;;past arg ;
— : PC++; t
b [——F call iload -1 ‘}’ T past opcode
sctt[2] +—1 call iconst -p...
. call iadd - “tr---b void icomst () {
1 / : //push constant
&ctt[3] //” call %add VPC+=2;
sctefe] — —f It fstore §.)
&ctt [5] -] ‘\“‘ N ::Zg,)void iadd () {
C *, //add 2 slots
s, vPC++; //past opcode
loaded data generated code | //p p

“w»lvoid istore() |
//store var
vPC+=2;

}

}

Figure 4.1: Subroutine Threaded Interpreter showing havGAT contains one generated
direct call instruction for each virtual instruction andvwhthe first entry in the DTT corre-
sponding to each virtual instruction points to generatedkedm dispatch it. Callable bodies
are shown here as nested functions for illustration only.n#dintenance of the PC must be
done in the bodies. Hence even virtual instructions that takk arguments, likeadd, must
bumpvPC past the virtual opcode. Virtual instructions, liké oad, that take an argument
must bumpv PC past the argument as well.

we generate dispatch code at load time that enables theethiffgypes of hardware prediction
resources to predict the different types of virtual contimy transfers. We strive to maintain
the property that the virtual program counter is preciselyalated with the physical program
counter and in fact, when all our techniques are combinegtetis a one-to-one mapping

between them at most control flow points.

4.2. HANDLING LINEAR DISPATCH 53

interp(){

i | oad:
/I push | ocal var

asm ("ret");
goto *VvPCt+,;

i const:
/I push const ant

asm ("ret");
goto *VPCt+;

}

Figure 4.2: Direct threaded bodies retrofitted as callatgimes by inserting inline assembler
return instructions. This example is for Pentium 4 and hesmds each body with aet
instruction. Theasmstatement is an extension to the C language, inline assgmpbieided
by gcc and many other compilers.

4.2 Handling Linear Dispatch

The dispatch of straight-line virtual instructions is tlaegest single source of branches when
executing an interpreter. Any technique that hopes to inghbsanch prediction accuracy must

address straight-line dispatch.

Rather than eliminate dispatch, we propose an alternatya&naation for the interpreter
in which native call and return instructions are used. Tipraach is conceptually elegant
because the subroutine is a natural unit of abstractiongoess the implementation of virtual

instruction bodies.

Figure 4.1 illustrates our implementation of subroutine#ding, using the same example
program as Figure 3.3. In this case, we show the state of theamachineafter the first
virtual instruction has been executed. We add a new strei¢tuthe interpreter architecture,
called theContext Threading Tabl@CTT), which contains a sequence of native call instruc-
tions. Each native call dispatches the body for its virtustruction. Although Figure 4.1

shows each body as a nested function, in fact we implemenbyhending each non-branching

54 CHAPTER4. DESIGN AND IMPLEMENTATION OF EFFICIENT INTERPRETATION

opcode body with a native return instructtaas shown in Figure 4.2.

The handling of immediate arguments to virtual instructisperhaps the biggest differ-
ence between our implementation of subroutine threadingth@ approach used by Forth.
Forth words pop all their arguments from the expressiorksta¢here is no concept of an im-
mediate operand. Thus, there is no need for a structurel&B®TT. The virtual instruction set
defined by a Java virtual machine includes many instructidmsh take immediate operands.
Hence, in Java, we need both the direct threading table (@md)he CTT. (In Section 3.3 we
described how the DTT is used to store immediate operandistoacorrectly resolve virtual
control transfer instructions.) In direct threading, exgin the DTT point to virtual instruction
bodies, whereas in subroutine threading they refer to itali 81 the CTT.

It may seem counterintuitive to improve dispatch perforogdoy calling each body because
the latency of a call and return may be greater than an intdwew. This is not the real issue.
On modern microprocessors the extra cost of the call (if &g outweighed by the benefit of
eliminating a large source of unpredictable branches,addta presented in the next chapter

will show.

4.3 Handling Virtual Branches

Subroutine threading handles the branches that implerherdispatch of straight-line virtual
instructions; however, the control flow of the virtual pragris still hidden from the hardware.
That is, bodies that perform virtual branches still have oitext. There are two problems, the
first relating to shared indirect branch prediction resesyand the second relating to a lack of
history context for conditional branch prediction res@as.c

Figure 4.3 introduces a new Java example, this time inctudinirtual branch. Consider
the implementation of f eq, shaded in the figure. Prediction of the indirect branch a}™(

may be problematic, becaua# instances of f eq instructions in the virtual program share

1The goto’s remain to work around the fact that currently C pidens like gcc do not recognize that the inline
assembler is a branch. This is discussed in Section 6.5

4.3. HANDLING VIRTUAL BRANCHES

Java source

boolean notZero (int pl)

if (pl!=0)
return true;
else

return false;

l

55

interp () {
? iload 1:
//push const 1
vPC++; //no arg
asm ("ret")
» 1feq:
if (*sp)
vPC = *vPC;
else
vPC+=2;
goto *vPC; (a)
iconst 1: //push 1
iconst 0 //push 0
ireturn:
//vPC = return
goto *vPC;
}

boolean notZero (int) ;
Code:
0: iload_1
.->1: ifeqg 6
’ 4: iconst 1
5: ireturn
6: iconst 0
7: ireturn
Java Bytecode +
DTT
0:\| &ctt[0] CTT
sctt [1] \ < T
- \ call iload 1 - ,"'
3:| sctt[2] — call ifeq
4. sctt[3] \ call 1const_1-.~~~
5: scttra] b call ireturn -. | ™. .
6:| s&ctt[5] — call iconst_ O0--. S T
call ireturn --}. ™~ 7
~~~::11»
loaded data generated code

virtual instruction bodies

Figure 4.3: Subroutine Threading does not not address biastructions. Unlike straight line
virtual instructions, virtual branch bodies end with aniradt branch, just like direct threading.
(Note: When a body is called thePC always points to the slot in the DTT corresponding to
its first argument, or, if there are no operands, to the falgvinstruction.)



56 CHAPTER4. DESIGN AND IMPLEMENTATION OF EFFICIENT INTERPRETATION

interp () {

.- iload 1:
/s //push local 1
DTT '," vPC++;
o asm ("ret")
&ctt [0] o CTT P
> ireq:
&ctt [1] \ : .
> call iload 1 (C,)x' s (59 )
6 i — . vPC = *VPC;
sctt [2] 3 call ifeqg else
] % PC+=2;
sccc 3] | Jme_(8vEC) e
i \\\call :!_COl’lSt_l 8
&ctt [5] ~call ireturn iconst 1: //push 1
jmp (%vPC) iconst 0 //push 0
~call iconst 0 -
. ireturn:
call 1return //vPC = return
jmp (%vPC) asm("ret");
}
loaded data generated code virtual instruction bodies

Figure 4.4: Context threading with branch replication titaing the “replicated” indirect
branch (a) in the CTT. The fact that the indirect branch cpoads to only one virtual in-
struction gives it better prediction context. The heavyarfrom (a) to (b) is followed when
the virtual branch is taken. Prediction problems remainhm ¢ode compiled from thef
statement labelled (c)

the same indirect branch instruction (and hence have aesprgtiction context).

Figure 4.4 illustratebranch replication a simple solution to the first of these problems.
The idea is to generate an indirect branch instruction inGfi& immediately following the
dispatch of the virtual branch. Virtual branch bodies hagerbmodified to end with a native
return instruction and the only result of dispatching a bhabody is the side effect of setting
thevPCto the destinationThe result is that each virtual branch instruction has its owlirect
branch predictor entry. Branch replication is an appropriatm because the indirect branch

ending the branch body has been copied to potentially mageplin the CTT.)

Branch replication is attractive because it is simple andipeces the desired context with

a minimum of new generated instructions. However, it hasraber of drawbacks. First, for



4.3. HANDLING VIRTUAL BRANCHES 57

branching opcodes, we execute three hardware controfféran@ call to the body, a return,
and the replicated indirect branch), which is an unnecgssarhead. Second, we still use the
overly general indirect branch instruction, even in cagesdot o where we would prefer a
simpler direct native branch. Third, by only replicating ttispatch part of the virtual instruc-
tion, we do not take full advantage of the conditional brapadictor resources provided by
the hardware. This is because thfe statement in the body, marked (c) in the figure, is shared
by all instances of f eq. Due to these limitations, we only use branch replicatiariridirect

virtual branches and exceptidns

Branch inlining illustrated by Figure 4.5, is a technique that generatds éor the bodies
of virtual branch instructions into the CTT. In the figure we@athow our system inlines the
i f eq instruction. The generated native code, shaded in the figngdements the same if-
then-else logic as the original direct-threaded virtuatnnction body. The inlined conditional
branch instructionj(ne, “(a)” in the figure) is thus fully exposed to the Pentium’'siddional

branch prediction hardware.

On the Pentium, branch inlining reduces pressure on thebranget buffer, or BTB, since
conditional branches use the conditional branch predidgtestead. The virtual conditional
branches now appear as real conditional branches to thevaigrd The dispatch of the body

has been entirely eliminated.

The primary cost of branch inlining is increased code siz this is modest because, at
least for languages like Java and OCaml, virtual branchuostns are simple and have small
bodies. For instance, on the Pentium 4, most branch ingingctan be inlined with no more

than 10 words, at worst a few additional i-cache lines.

The obvious challenge of branch inlining, apart from thedHabor required to implement
it, is that the generated code is not portable and assumasedeknowledge of the virtual

bodies it must interoperate with.

20Caml defines explicit exception virtual instructions



58 CHAPTER4. DESIGN AND IMPLEMENTATION OF EFFICIENT INTERPRETATION

vPC
CTT
DTT //’call iload 1
&ctt [0] L,subl $4, %edi
N sctt [1] ] movl (%edi), %eax interp () {
6 (.Zmpl ¥0, %eax BN iload 1:
&ctt [2] jne nt e, (a) //push local 1
&ctt [3] movl (%esi), %esi 3 VPC++;
sctt [4] jmp cttdest asm ("ret")
sctt [5] Snt: addl $4, %esik b iconst 1: |
Scall iconst 1 :
call ireturn ~t>_iconst 0 |
jmp (%vPC) [ ireturn:
call iconst 0 -7 ’ //vPC = return
call ireturn asm("ret") ;
jmp (%vPC) }
loaded data generated code virtual instruction bodies

Figure 4.5: Context-threaded VM Interpreter: Branch InlninThe dashed arrow (a) illus-
trates the inlined conditional branch instruction, nowyfudxposed to the branch prediction
hardware, and the heavy arrow (b) illustrates a direct bramplementing the not taken path.
The generated code (shaded) assumesgB@is in registeresi and the Java expression stack
pointer is in registeedi . (In reality, we dedicate registers in the way shown for 84 on
the PowerPC only. On the Pentium4, due to lack of registkes;PCis actually stored on the
stack. )

4.4 Handling Virtual Call and Return

The only significant source of control transfers that remaithe virtual program is virtual
method invocation and return. For successful branch piiedicthe real problem is not the
virtual call, which has only a few possible destinationst taiher the virtual return, which
potentially has many destinations, one for each callsitthhefmethod. As noted previously,
the hardware already has an elegant solution to this probiehe form of the return address
stack. We need only to deploy this resource to predict Viretarns.

We describe our solution with reference to Figure 4.6. Thiei&l method invocation body,
Java’s nvokest at i ¢ in the figure, must transfer control to the first virtual instion of the

callee. Our goal is to generate dispatch code so that thespmnding virtual return instruction



4.4, HANDLING VIRTUAL CALL AND RETURN 59

vPC CTT
DTT ,call 1nvokestat1c__~_\ interp () {
call (*vPC) (a)
X “t--» invokestatic:
&ctt [0] Grrnnnnn,, ) //build Frame
u,‘ vPC = *vVPC;
"\ asm ("ret")
V7l "-_> return:
/" Ca”ee (‘p)—" ‘_‘ //pop frame
&ctt[calleel] _ . vPC ="ret1':1rn
jmp return -- (c) *eane @sm( "ret"); d)
}
loaded data generated code virtual instruction bodies

Figure 4.6: Context Threading Apply-Return Inlining on Penti The generated codmlls
thei nvokest at i ¢ virtual instruction body bujumps(instruction at (c) is g np) to the
return body.

makes use of the hardware’s return branch predictors.

We begin at the virtual call instruction (just before lab@)” in the figure). The body of the
i nvokest at i c creates a new frame for the callee and then setgBi@to the entry point of
the callee (“(b)” in the figure) before returning back to theTC®imilar to branch replication,
we insert a new nativeall indirectinstruction following “(a)” in the CTT to transfer control to
the start of the callee, shown as a solid arrow from “(a)” t®*(n the figure. The call indirect
has the desired side effect of pushing CTT location (a) oret#rdware’s return address stack.
The first instruction of the callee is then dispatched. Atehd of the callee, we modify the
virtual return instruction as follows. In the CTT, at “(c)”,enemit a native diregump, an
x86 | np in the figure, to dispatch the body of the virtual return. Tehisect branch avoids
perturbing the return address stack. The body of the viratatn now returns all the way back
to the instruction following the original virtual call. This shown as the dotted arrow from

“(d)” to following “(a)”. We refer to this technique aapply/return inlining.

S“apply” is the name of the (generalized) function call opead OCaml where we first implemented the
technique.



60 CHAPTER4. DESIGN AND IMPLEMENTATION OF EFFICIENT INTERPRETATION

With this final step, we have a complete technique that alahsirtual program control
flow with the corresponding native flow. There are, howeveme practical challenges to
implementing our design for apply/return inlining. Firsthe must take care to match the
hardware stack against the virtual program stack. Formestan OCaml, exceptions unwind
the virtual machine stack; the hardware stack must be unevgua corresponding manner.
Second, some runtime environments are extremely sengitivardware stack manipulations,
since they use or modify the machine stack pointer for them purposes. In such cases, it
is possible to create a separate stack structure and swapdyethe two at virtual invocation
and return points. This approach would introduce significaerhead, and is only justified if

apply/return inlining provides a substantial performabegefit.

4.5 Chapter Summary

The code generation described in this chapter is carriedloeh each virtual method is loaded.
The idea is to generate relatively simple code that expdeedispatch branch instructions to
the hardware branch predictors of the processor.

In the next chapter we present data showing that our appisadfective in the sense that
branch mispredictions are reduced and performance is wagdroSubroutine threading is by
far the most effective, especially when its relatively siicify and small amount of machine
dependent code are taken into account. Branch inlining igrtbst complicated and least
portable.

Our implementation of context threading has at least twemtal problems. First, effort
is expended at load time for regions of code that may nevexutge This could penalize per-
formance when large amounts of cold code are present. Semondawkward to interpose
profiling instrumentation around the virtual instructioodtes dispatched from the CTT. The
difficulty stems from the fact that subroutine threadinkge Idirect threading, does not need a

dispatch loop. This means that calls to profiling code mugidreerated in amongst the gener-



4.5. CHAPTER SUMMARY 61

ated dispatch code in the CTT. Removing instrumentation #fiteneeded requires generated
code to be rewritten or regenerated.

In Chapter 6 we describe a different approach to efficientpnétation that addresses these
two problems. There, we describe a different approach #a¢igates simple code for hot inter-
procedural paths, or traces. This allows us to exploit thieagly and simplicity of subroutine
threading for straight-line code at the same time as elitaitfae mispredictions caused by

virtual branch instructions.



62 CHAPTER4. DESIGN AND IMPLEMENTATION OF EFFICIENT INTERPRETATION



Chapter 5

Evaluation of Context Threading

In this chapter we evaluate context threading by compatsgarformance to direct threading
and direct-threaded selective inlining. We evaluate theaioh of each of our techniques on
Pentium 4 and PowerPC processors by measuring the perfoentdra modified version of

SableVM, a Java virtual machine and ocamirun, an OCaml iregegp We explore the dif-

ferences between context threading and SableVM’s segettlining further by measuring a
simple extension of context threading we call tiny inlinirignally, we illustrate the range of
improvement possible with subroutine threading by conmggtfie performance of subroutine-

threaded Tcl and subroutine-threaded OCaml to direct timgamh Sparc.

The overall results show that dispatching virtual instits by calling virtual instruction
bodies is very effective for Java and OCaml on Pentium 4 andeF®@ platforms. In fact,
subroutine threading outperforms direct threading by dtlmeanargin of about 20%. Con-
text threading is almost as fast as selective inlining adempnted by SableVM. Since these
are dispatch optimizations, they offer performance benefpending on the proportion of
dispatch to real work. Thus, when a Tcl interpreter is modif@ebe subroutine-threaded, per-
formance relative to direct threading increases only byuab&6. Subroutine threaded Ocaml

is 13% faster than direct threading on the same Sparc pracess

We begin by describing our experimental setup in Section B/& investigate how effec-

63



64 CHAPTERS. EVALUATION OF CONTEXT THREADING

tively our techniques address pipeline branch hazardsetid®e5.2.1, and the overall effect
on execution time in Section 5.2.2. Section 5.3 demonsttats context threading is comple-
mentary to inlining and results in performance comparabl8dbleVM'’s implementation of

selective inlining. Finally, Section 5.4 discusses a fewhef limitations of context threading
by studying the performance of Vitale’s subroutine-thiesghdicl [77, Figure 1] and OCaml, on
Sparc.

5.1 Experimental Set-up

We evaluate our techniques by modifying interpreters feadmd OCaml to run on Pentium
4, PowerPC 7410 and PPC970. The Pentium and PowerPC are smscesed by PC and
Macintosh workstations and many types of servers. The tardnd PowerPC provide differ-
ent architectures for indirect branches (Figure 3.4 ithatsts the differences) so we ensure our
techniques work for both approaches.

Our experimental approach is to evaluate performance bysuneg elapsed time. This
is simple to measure and always relevant. We guard agatesiriittent events polluting any
single run by always averaging across three executionsobf lganchmark.

We report pipeline hazards using the performance measuteroanters of each proces-
sor. These vary widely not only between the Pentium and theeFRC but also within each
family. This is a challenge on the PowerPC, where IBM’s modewd?PC 970 is a desirable
processor to measure, but has no performance countersafigrcused by indirect branches.
Thus, we use an older processor model, the PowerPC 741Qudseitanplements performance

counters that the PowerPC 970 does not.

5.1.1 Virtual Machines and Benchmarks

We choose two virtual machines for our experiments. OCamlgsrple, very cleanly im-

plemented interpreter. However, there is only one impldaten to measure and only a few



5.1. EXPERIMENTAL SET-UP 65

Table 5.1: Description of OCaml benchmarks. Raw elapsed tmdebaanch hazard data for
direct-threaded runs.

Pentium 4 PowerPC 7410 PPC970| Lines
Branch Branch Elapsed of
Time Mispredicts Time Stalls Time Source

Benchmark | Description (TSC*108)  (MPT*106) | (Cycles*10®)  (Cycles*109) (sec) Code
boyer Boyer theorem prover 3.34 7.21 1.8 43.9 0.18 903
fft Fast Fourier transform 31.9 52.0 18.1 506 1.43 187
fib Fibonacci by recursion 2.12 3.03 2.0 64.7 0.19 23
genlex A lexer generator 1.90 3.62 1.6 27.1 0.11 2682
kb A knowledge base program 17.9 42.9 9.5 283 0.96 611
nucleic nucleic acid’s structure 14.3 19.9 95.2 2660 6.24 3231
quicksort Quicksort 9.94 20.1 7.2 264 0.70 91
sieve Sieve of Eratosthenes 3.04 1.90 2.7 39.0 0.16 55
soli A classic peg game 7.00 16.2 4.0 158 0.47 110
takc Takeuchi function (curried) 4.25 7.66 3.3 114 0.33 22
taku Takeuchi function (tuplified) 7.24 15.7 5.1 183 0.52 21

relatively small benchmark programs are available. Farbason we also modified SableVM,

a Java Virtual Machine.

OCaml We chose OCaml as representative of a class of efficient, -bi@akd interpreters
that use direct-threaded dispatch. The bytecode bodieleointerpreter, in C, have been
hand-tuned extensively, to the point of using gcc inlineeadder extensions to hand-allocate
important variables to dedicated registers. The impleatamt of the OCaml interpreter is

clean and easy to modify [14, 1].

OCaml Benchmarks The benchmarks in Table 5.1 make up the standard OCaml berichma
suitét. Boyer, kb, qui cksort andsi eve do mostly integer processing, whiteicl ei ¢
andf f t are mostly floating point benchmarkSol i is an exhaustive search algorithm that
solves a solitaire peg gamEi b, t aku, andt akc are tiny, highly-recursive programs which
calculate integer values.

Fi b, t aku, andt akc are unusual because they contain very few distinct virtugthiic-
tions, and in some cases use only one instance of each. Thisvbamportant consequences.

First, the indirect branch in direct-threaded dispatcleiatively predictable. Second, even mi-

Ytp://ftp.inria.fr/1NRI A Projects/cristal/Xavier.Leroy/ benchmarks/ obj canl . tar.

gz



66 CHAPTERS. EVALUATION OF CONTEXT THREADING

Table 5.2: Description of SPECjvm98 Java benchmarks. Ravsethjpme and branch hazard
data for direct-threaded runs.

Pentium 4 PowerPC 7410 PPC970

Branch Branch Elapsed
Time Mispredicts Time Stalls Time
Benchmark | Description (TSC*10't)  (MPT*10%) | (Cycles*10'Y)  (Cycles*108) (sec)
compress Modified Lempel-Ziv compression 4.48 7.13 17.0 493 127.7
db performs multiple database functions 1.96 2.05 7.5 240 65.1
jack A Java parser generator 0.71 0.65 2.7 67 18.9
javac the Java compiler from the JDK 1.0.2 1.59 1.43 6.1 160 44.7
jess Java Expert Shell System 1.04 1.12 4.2 110 29.8
mpegaudio | decompresses MPEG Layer-3 audio files ~ 3.72 5.70 14.0 460 106.0
mtrt two thread variant of raytrace 1.06 1.04 5.3 120 26.8
raytrace a raytracer rendering 1.00 1.03 5.2 120 31.2
scimark performs FFT SOR and LU, 'large’ 4.40 6.32 18.0 690 118.1
soot java bytecode to bytecode optimizer 1.09 1.05 2.7 71 35.5

nor changes can have dramatic effects (both positive aratimepbecause so few instructions

contribute to the behavior.

SableVM SableVM is a Java Virtual Machine built for quick interprigda. SableVM imple-
ments multiple dispatch mechanisms, including switctedaithreading, and selective inlining
(which SableVM callgnline threading[32]). The support for multiple dispatch mechanisms
facilitated our work to add context threading and allowsdomparisons against other tech-
nigues, like inlining, that also address branch misprestist Finally, as part of its own inlining
infrastructure, SableVM builds tables describing whiatiual instruction bodies can be safely

inlined using memcpy. This made our tiny inlining implemegidgn very simple.

Java Benchmarks SableVM experiments were run on the complete SPECjvm98 @63 s
(conpr ess, db, npegaudi o, raytrace, ntrt, j ack, j ess andj avac), one large
object-oriented applicatiorspot [75]) and one scientific applicatiors€i mar k [61]). Ta-

ble 5.2 summarizes the key characteristics of these benksma

5.1.2 Performance and Pipeline Hazard Measurements

On both platforms we measure elapsed time averaged overiime to mitigate noise caused

by intermittent system events. We necessarily use platBmthoperating systems dependent



5.2. INTERPRETING THE DATA 67

methods to estimate pipeline hazards.

Pentium 4 Measurements The Pentium 4 (P4) processor speculatively dispatchesigist
tions based on branch predictions. As discussed in Sectritfe indirect branches used for
direct-threaded dispatch are often mispredicted due tdattieof context. Ideally, we could
measure the cycles the processor stalls due to mispratictibthese branches, but the P4
does not provide a performance counter for this purposéeadswe count the number wiis-
predicted taken branchdMPT) to measure how our techniques effect branch predictige
measure time on the P4 with the cycle-accutat® stamp countefTSC) register. We count
both MPT and TSC events using our own Linux kernel modulectvicollects complete data

for the multithreaded Java benchmaktks

PowerPC Measurements We need to characterize the cost of branches differentlyhen t
PowerPC than on the P4. On the PPC architecture split brararleeused (as shown in Fig-
ure 3.4(b)) and the PPC stalls until the branch destinaidmowr?. Hence, we would like

to count the number of cycles stalled due to link and counstegdependencies. Unfortu-
nately, PPC970 chips do not provide a performance countethierpurpose; however, the
older PPC7410 CPU has a counter (counter 15, “stall on LR/CTRmilgmey”) that provides

exactly the information we need [54]. On the PPC7410, we atsatlue hardware counters to
obtain overall execution times in terms of clock cycles. \eext that the branch stall penalty
should be larger on more deeply-pipelined CPUs like the PPQ8X@ever, we cannot directly

verify this. Instead, we report only elapsed execution tiarehe PPC970.

5.2 Interpreting the data

2MPT events are counted with performance counter 8 by settimg4 CCCR to 0x0003b000 and the ESCR
to value 0xc001004 [47]

3In addition, the PPC970 implements a small count cache émembers the branch destination for the 32
previously executed indirect branches.



68 CHAPTERS. EVALUATION OF CONTEXT THREADING

Table 5.3: (a) Guide to Technique description.

| Technique | Key | Description
Subroutine Threading SUB Section 4.2
Branch Inlining SUB+BI Section 4.3
Context Threading SUB+BI+AR | Section 4.4
Tiny Inlining TINY Section 5.3
Selective Inlining (sablevm) SABLEVM Section 3.7

(b) Guide to performance data figures.

P4/PPC7410

Interpreter Hazards PPC970 time
Performance

Figure 5.1 on . Figure 5.5 (@)

OCaml the facing Figure 5.3 on on page 73

page 71
page

Figure 5.2 on | Figure 5.4 on| Figure 5.5 (b)

Java (SableVM) page 68 page 72 on page 73

In presenting our results, we normalize all experimenthéodirect threading case, since
it is considered a state-of-the art dispatch techniquee @durce distributions of both OCaml
and SableVM configure for direct threading.) We give the &lis@xecution times and branch
hazard statistics for each benchmark and platform usirggtiihreading in Tables 5.1 and 5.2.
Bar graphs in the following sections show the contributiohsach component of our tech-
nique: subroutine threading only (labeled SUB); subroutmeading plus branch inlining and
branch replication for exceptions and indirect branchasglled SUB+BI); and our complete
context threading implementation which includes apptweinlining (labeled SUB+BI+AR.
We include bars for selective inlining in SableVM (label8ABLEVM) and our own simple
inlining technique (labeledINY') to facilitate comparisons, although inlining results ace
discussed until Section 5.3. We do not show a bar for dirgettiting because it would, by
definition, have height 1.0. Table 5.3 provides a key to theraens used as labels in the

following graphs.



5.2. INTERPRETING THE DATA

MPT relative to Direct

LR/CTR stall cycles Relative to Direct

[] sus [ sus+si  [] sus+Bi+AR TINY

=
o

o
©

o
o

o
NN
]

o o
o N
]

[(XXA

—

AN
TavavavavaaY4]
—
AANRAANNA |

]

]

A
= T

RN |

1

NN

—1
RAXXXA

]

N

|-||-| [Rimla] |-|r|r|r;| |-||_||3|
+ c

o} ) g 3 o ) ) 8

() (9] =
+= o = o - ~ > ~ =~

g £ & g xx v $§ & g ® ® 2

o] o z 5 ) +— — 2
(o (@]

Ocaml benchmark

(a) Pentium 4 Mispredicted Taken Branches

[] sus [ sus+si  [] sus+Bi+AR TINY

kb
soli

taku BE=
N}

o
o
boyer
N
fib %
genlex
AN
nucleic
AN AN
quicksort
sieve
RN N
takc B
ASSN]

OCaml benchmark
(b) PPC 7410 LR/CTR stall cycles

Figure 5.1: OCaml Pipeline Hazards Relative to Direct Thregdi

geoMean

69



70

MPT relative to Direct

LR/CTR stall cycles Relative to Direct

CHAPTERS. EVALUATION OF CONTEXT THREADING

[ ] saeLevm [ ] sus 5] sus+si  [] sus+Bi+AR TINY

1.0

0.8

0.6

0.4 §

0.2 Tl .
0.0 Llla A8 E HHE Meee J HH

=1
—

Q2
©

compress

jack

javac
jess

mpeg
mtrt
ray

scimark

soot

Java benchmark
(a) Pentium 4 Mispredicted Taken Branches

geoMean

|:| SABLEVM |:| SUB |:| SUB+BI |:| SUB+BI+AR TINY

1.0

0.8

AN |
1]
a |
1]
N

Hﬂﬂﬂﬂ

RSSSSNN]

o o o
o N I
— 1
]
—
|
SSSN
| [
SIS <1
| |
jess ===
Saas q
| Sa e S
| [
SN
—
m]

compress
db
jack
javac
mpeg
mtrt

raytrace :
scimark
soot

Java benchmark
(b) PPC7410 - LR/CTR stall cycles

Figure 5.2: Java Pipeline Hazards Relative to Direct Thregadi

geoMean ==




5.2. INTERPRETING THE DATA 71

5.2.1 Effect on Pipeline Branch Hazards

Context threading was designed to align virtual programestath physical machine state to
improve branch prediction and reduce pipeline branch hiszawe begin our evaluation by
examining how well we have met this goal.

Figure 5.1 reports the extent to which context threadingiced pipeline branch hazards
for the OCaml benchmarks, while Figure 5.2 reports thesdtssfeu the Java benchmarks on
SableVM. At the top of both figures, the graph labeled (a)gmesthe results on the P4, where
we count mispredicted taken branches (MPT). At bottom ofithees, the graphs labeled (b)
present the effect on LR/CTR stall cycles on the PPC7410. Thellaster of each bar graph
reports the geometric mean across all benchmarks.

Context threading eliminates most of the mispredicted tdlkanches (MPT) on the Pen-
tium 4 and LR/CTR stall cycles on the PPC7410, with similar oNeféects for both inter-
preters. Examining Figures 5.1 and 5.2 reveals that submotitreading has the single greatest
impact, reducing MPT by an average of 75% for OCaml and 85%édbte/M on the P4, and
reducing LR/CTR stalls by 60% and 75% on average for the PPC71iresult matches our
expectations because subroutine threading addressesdbstlsingle source of unpredictable
branches—the dispatch used for straight-line sequencestadl instructions. Branch inlin-
ing has the next largest effect, since conditional branelneghe most significant remaining
pipeline hazard after applying subroutine threading. @r#, branch inlining cuts the remain-
ing MPTs by about 60%. On the PPC7410 branch inlining has alemgét still significant
effect, eliminating about 25% of the remaining LR/CTR staltles. A notable exception to the
MPT trend occurs for the OCaml micro-benchmakd, t akc andt aku. These tiny recur-
sive micro benchmarks contain few duplicate virtual instians and so the Pentium’s branch
target buffer (BTB) mostly predicts correctly and inlininggtbonditional branches cannot help.

Interestingly, the same three OCaml micro benchm&ilis, t akc andt aku that chal-
lenge branch inlining on the P4 also reap the greatest bdrafit apply/return inlining, as

shown in Figure 5.1(a). (This appears as the significantorgment of SUB+BI+AR relative



72 CHAPTERS. EVALUATION OF CONTEXT THREADING

to SUB+BI.) Due to the recursive nature of these benchmarks, performance is dominated
by the behavior of virtual calls and returns. Thus, we expeeticting the returns to have
significant impact.

For SableVM on the P4, however, our implementation of apetyfn inlining is restricted
by the fact that gcc-generated code touches the processp’segister. Rather than imple-
ment a complicated stack switching technique, as discussgelction 4.4, we allow the virtual
and machine stacks to become misaligned when SableVM nlategithessp directly. This
increases the overhead of our apply/return inlining img@etation, presumably by reducing
the effectiveness of the return address stack predictoth®RPC7410, the effect of apply/re-
turn inlining on LR/CTR stalls is very small for SableVM.

Having shown that our techniques can significantly redupelie branch hazards, we now

examine the impact of these reductions on overall exectitiog

5.2.2 Performance

Context threading improves branch prediction, resultingatter use of the pipelines on both
the P4 and the PPC. However, using a natigé/return pair for each dispatch increases in-
struction overhead. In this section, we examine the nettreSthese two effects on overall
execution time. As before, all data is reported relativeitead threading.

Figures 5.3 and 5.4 show results for the OCaml and SableVMHearks, respectively.
They are organized in the same way as the previous figurds Piresults at the top, labeled
(a), and PPC7410 results at the bottom, labeled (b). Figwestows the performance of
OCaml and SableVM on the PPC970 CPU. The geometric means (nghthster) in Figures
5.3, 5.4 and 5.5 show that context threading significanttp@dorms direct threading on both

virtual machines and on all three architectures. The geutnetean execution time of the



5.2. INTERPRETING THE DATA

TSC relative to Direct

Cycles Relative to Direct

[] sus ] suwer [[] sue+Bi+ar 7] TiNY

1.4

1.2 —
1.0 ~ ~ =
__r M | _ M _
0.8 AT — b h— — [
7] —
- 7 M g Vi —
0.6 [ H—HE— Mt = b e B e
5 ] v
; 4 [1 3 % : 9 %
0.4 [ I P EIE— A T A A EE— e 0 1 A
V1 /
0.2 |H A B A A 1 e e e e i A
Vi 4 4 [1 9 VI v 5 [ 7 9
0.0
+ c
Y () 5 ©
5 ¢ 2 € o 2 8 % 5 g 3 ¢
2 ¥ & § x © $ 2 g ® € 2
o — n +— +—
(=] c =) ]
oy o))

Ocaml benchmark

(a) Pentium 4

I:I SuUB |:| SUB+BI |:| SUB+BI+AR TINY

73

sl Bl M M I M7
/ = |IAm 1 / _ -
— s 1 — — _
0.8 H = AEm — /— — ‘'m — ‘_ =
“ 7 A N Pl 7] 9
9 ; / # A 11
? Y 4 v Y
0.6 H — U — 4— ‘E — V— — t— — "
M ¢ I 9 ;‘ 4
W 7 A vl ¢ A N
2 / 0 9
1 A /]
0.4 | A A pa-{ A e A R e
3 “ Vi ? A
2 1 ; ;
¢
W # A g / vl 7 A ;
0.2 [H A KA A A 0 A i R e
W v A “ ; A “
4 v 5 1 ’
] Y
; ’ v ’ V] ;: A ’
OO w‘ 4 4
= o] x o] (&) o (] = (@) > C
L E = () ~ o o > o) ~ = I
= — N (O] 2 © © Q
o [&) ~ = + +
o (] S 3] %] =
[@)] = (]
[
=] )
o o))

OCaml benchmark
(b) PPC7410

Figure 5.3: OCaml Elapsed Time Relative to Direct Threading



74

TSC Relative to Direct

Cycles Relative to Direct

CHAPTERS. EVALUATION OF CONTEXT THREADING

[] saeLevm [ ] sus 5] sus+si  [] sus+Bi+AR TINY

1.0 —
Al _ Arp MMy M _
- o Y .
0.8 o1 e ilii’mt i
_____ __3 i 1 - __7'
1 # ~ — ~
0.6 u mElclvmitc ettt/ e u
_'7 /. 4
_ g Yl / 4 v 4
0.4 e ) e e e T e e e
4 Y Y
11 / Y
Y |
0.2 ) A e e ) A e e e —
5
VI A v
11 / v
Y 1 A v
0.0
7 g S & ? > 5 = = <] T
o ° 8, > Q o S = o 2 3]
o .S e £ P
£ o o
(@] 2] 8)
o
Java benchmark
(a) Pentium 4
I/
[] smeLevm [ ] sus 5] sus+ei  [[] sus+BI+AR TINY
1.0 — - — -
M s ____ = __7 ___1 r— -
— M Y 7 7l ¢ __:; -
I B ’-_ "_ — — /_ — 7—
0.8 H= / g I 9 I / '
1 1 1 / =5l
/ ¢ 4 / 7 4
06 0 o A G G G
) 1 g / ’ 4 ] 4 /
¢ g # 1
1 g 4 ; F /4
/
0.4 [ ERE 1) P B R e ) e R B e
11 N v % (] Y / 5
V1 :: ¢ 4 H V1
4 ’ ] Y /
0.2 [ E—E 1A} R G e e R e e e e—
g / ] 4
? “ v v [ % A
g / ’ v
OO % v |4 I—
[7)] o) 4 (&) 7] (@) < (] 4 = C
17} O © 0 b} = O P = ©
¢ ° &8 £ 8 &8 E @8 @ g 8
o 8, £ = S =
> ) o
e © 3 3
O S
O (@)]

Java benchmark
(b) PPC 7410

Figure 5.4: SableVM Elapsed Time Relative to Direct Thregdin




5.2. INTERPRETING THE DATA

Elapsed Time Relative to Direct

Elapsed Time Relative to Direct

I:I SUB I:I SUB+BI |:| SUB+BI+AR TINY

1.0

0.8

0.6

0.4

75

Ocaml benchmark
(a) OCaml PPC970 elapsed (real) seconds

CH Pl
. M- 1
— M M A
_ 1 mlla mAam ~ 4 4 M-
I gl — . —
~ 4 g _ 0 R E I ] 9
/ ’ / g Al | AR
— 1l A A — i A — — — 1 — 1
(1 [ [ g g
4 4 4 b 5 4
/ / / ¢ ¢
— 1 el 1 o = 1 — o4 — i —
’ ’ g g s
’ / 4 b 45 4
11 1 1% [ |4 [ 4
+ c
@ ) s S o o S o
] 0 =
= o —= el - v = ~ =
> E & T = s $ 2 g ®@ & =2
Q — 7)) s )
(@) c =] Q
o o))

[] smeevm [ ] sus 7] sus+ei  [[] sus+BI+AR TINY

1.0

0.8

0.6

0.4

Java benchmark
(b) SableVM PPC970 elapsed (real) seconds

Figure 5.5: PPC970 Elapsed Time Relative to Direct Threading

Me [T ) M- 71 i -
- 7] =T ‘IR — —
Pl Ml — Pl I
. i 5 - -
| —~
~ M N 7
— Vi —
|| 4 ’ / 7 Y
__ 1 1 /_ '/_ 1 __ A | /_ -
— 1 7 Y - N a 4
; % N ‘ A
g 1 I 5 /
V| V1
| | - /_ 1 | | ‘_ A | . [
¢ 2 [1 A /
Vi
/ g r 4 g 4
1 [1 A
v 9 v 5 / 4 ’
- - /- — - - - 4 - - -
’ g ¢ g ’
2 9 N
V| V1
/ ‘ A
2 [1 A
0
3 o o) < G
= o = © n () = > © 6 Q
o Q S 0 o = © = o =
© o] Q e b =
= = 1] = = S n 8
5 =
o o o




76 CHAPTERS. EVALUATION OF CONTEXT THREADING

OCaml VM is about 19% lower for context threading than direceading on P4, 9% lower on
PPC7410, and 39% lower on the PPC970. For SableVM, SUB+BI+AR, acedwith direct
threading, runs about 17% faster on the PPC7410 and 26% ¢astmth the P4 and PPC970.
Although we cannot measure the cost of LR/CTR stalls on the P@GB& greater reductions
in execution time are consistent with its more deeply-pif@el design (23 stages vs. 7 for the
PPC7410).

Across interpreters and architectures, the effect of ocinrtigues is clear. Subroutine
threading has the single largest impact on elapsed time.cBriaatining has the next largest
impact eliminating an additional 3—7% of the elapsed tinmegéneral, the reductions in exe-
cution time track the reductions in branch hazards seergur€s 5.1 and 5.2. The longer path
length of our dispatch technique are most evident in the OG@eméhmarkd i b andt akc
on the P4 where the improvements in branch prediction {vel& direct threading) are minor.
These tiny benchmarks compile into unique instances of aviual instructions. This means
that there is little or no sharing of BTB slots between insésend hence fewer mispredictions.

The effect of apply/return inlining on execution time is i@l overall, changing the geo-
metric mean by only-1% with no discernible pattern. Given the limited performabenefit
and added complexity, a general deployment of apply/reiming does not seem worth-
while. ldeally, one would like to detect heavy recursionoamutically, and only perform ap-
ply/return inlining when needed. We conclude that, for gahasage, subroutine threading
plus branch inlining provides the best trade-off.

We now demonstrate that context-threaded dispatch is @mggitary to inlining tech-

niques.

5.3 Inlining

Inlining techniques address the context problem by reffigebytecode bodies and removing

dispatch code. This reduces both instructions executegiaetine hazards. In this section we



5.3. INLINING 77

show that, although both selective inlining and our contiese¢ading technique reduce pipeline
hazards, context threading is slower due to the overhead ekira dispatch instructions. We

investigate this issue by comparing our oty inlining technique with selective inlining.

In Figures 5.2, 5.4 and 5.5(b), the bar labeled SABLEVM showsmeasurements of
Gagnon'’s selective inlining implementation for SableVN2[.3From these figures, we see that
selective inlining reduces both MPT and LR/CTR stalls sigaifity as compared to direct
threading, but it is not as effective in this regard as sutimeuthreading alone. The larger
reductions in pipeline hazards for context threading, h@mnedo not necessarily translate into
better performance over selective inlining. Figure 5.4l{a¥trates that SableVM'’s selective
inlining beats context threading on the P4 by roughly 5%, neae on the PPC7410 and the
PPC970, both techniques have roughly the same execution disnghown in Figure 5.4(b)
and Figure 5.5(a), respectively. These results show tloatcieg pipeline hazards caused by
dispatch is not sufficient to match the performance of seleatlining. By eliminating some
dispatch code, selective inlining can do the same real watkfewer instructions than context

threading.

Context threading is a dispatch technique, and can be easilgioed with an inlining strat-
egy. To investigate the impact of dispatch instruction beadd and to demonstrate that context
threading is complementary to inlining, we implementaady Inlining, a simple heuristic that
inlines all bodies with a length less than four times the tergf our dispatch code. This elim-
inates the dispatch overhead for the smallest bodies amdllasn the CTT are replaced with
comparably-sized bodies, tiny inlining ensures that thal ttode growth is low. In fact, the
smallest inlined OCaml bodies on P4 waraallerthan the length of a relative call instruction
(five bytes). Table 5.4 summarizes the effect of tiny inlgi©n the P4, we come within 1%
of SableVM's selective inlining implementation. On Pow€trRve outperform SableVM by
7.8% for the PPC7410 and 4.8% for the PPC970.



78 CHAPTERS. EVALUATION OF CONTEXT THREADING

Table 5.4: Detailed comparison of selective inlining (SABIM) vs SUB+BI+AR and TINY.
Numbers are elapsed time relative to direct threadihgontext is the the difference between
selective inlining and SUB+BI+ARAtiny is the difference between selective inlining and
TINY (the combination of context threading and tiny inligin

Arch Context Selective Tiny Acontext Atiny
(SUB+BI+AR) (SABLEVM) (T) (SABLEVM - SUB+BI+AR) (SABLEVM -TINY)
P4 0.762 0.721 0.731 -0.041 -0.010
PPC7410 0.863 0.914 0.839 0.051 0.075
PPC970 0.753 0.739 0.691 -0.014 0.048

5.4 Limitations of Context Threading

We discuss two limitations of our technique. The first ddssihow our technique, like most
dispatch optimizations, can have only limited impact otual machines that implement large
virtual instructions. The second issue describes the diffiave experienced adding profiling

to our implementation of context threading.

5.4.1 Heavyweight Virtual Instruction Bodies

The techniques described in this chapter address dispaticheance have greater impact as the
frequency of dispatch increases relative to the real wornkezhout. A key design decision for
any virtual machine is the specific mix of virtual instructgo A computation may be carried
out by many lightweight virtual instructions or fewer heasgight ones. Figure 5.6 shows
that a Tcl interpreter typically executes an order of magtet more cycles per dispatched
virtual instruction than OCaml. Another perspective is tB&aml executes proportionately
more dispatch because its work is carved up into smallenaliinstructions. In the figure,
we see that many OCaml benchmarks average only tens of cyalegpatched instruction.
Thus, the time OCaml spends executing a typical body is of dngesorder of magnitude as
the branch misprediction penalty of a modern CPU. On the dthed most Tcl benchmarks
execute hundreds of cycles per dispatch, many times therexiispion penalty. Thus, we

expect subroutine threading to speed up Tcl much less thamDG&gure 5.7 reports the



5.4. LIMITATIONS OF CONTEXT THREADING 79

105
' . o Tcl
r 2 Ocaml 1
104 ? ?
- 3 ° 1
o °
@ I o o ]
2 10°F ¢ .
?} 'i‘ 'o.. ‘”;.o ".:
b ° °
2 100N T et
L) E ° ‘s &
[&) £ ° )
>
o ‘E N . A A A A R ]
101 ? A ?
10°

Tcl or Ocaml Benchmark

Figure 5.6: Reproduction of [77, Figure 1] showing cycles pam virtual instructions dis-
patched for various Tcl and OCaml benchmarks .

performance of subroutine threaded OCaml on an UltraSPARCAH shown in the figure,
subroutine threading speeds up OCaml on the UltraSPARC byt dl38@. In contrast, the
geometric mean of 500 Tcl benchmarks speeds up only by od®%s 577].

Another issue raised by the Tcl implementation was that abh2% of the 500 program
benchmark suite slowed down. Very few of these dispatcherk rtian 10,000 virtual in-
structions. Most were tiny programs that executed as ke few dozen dispatches. This
suggests that for programs that execute only a small nunfbérteal instructions, the load

time overhead of generating code in the CTT may be too high.

5.4.2 Context Threading and Profiling

Our original scheme for extending our context threadedpnéter with a JIT was to detect
hot paths of the virtual program by generating calls to prafiinstrumentation amongst the

dispatch code in the CTT. We persevered for some time withajhysoach, and successfully

4We leveraged Vitale’s Tcl infrastructure, which only rums®parc, to implement subroutine threading. Thus,
to compare to Tcl we ported OCaml to Sparc also.



80 CHAPTERS. EVALUATION OF CONTEXT THREADING

UltraSPARC IlI

[N
=}
|
o
©
~
o
©
)

0.87 0.87 0.87

o
[ee]
o
Y
©
E
N
|2
N

o o
» (o2}

Elapsed Time Relative to Direct

o
)

0.0

Ke)
x

boyer
genlex
nucleic
uicksort
sieve

soli

takc

taku
geomean

Ocaml Benghmark

Figure 5.7: Elapsed time of subroutine threading relatvelitect threading for OCaml on
UltraSPARC 1.

implemented a system that identified traces [81]. The nesuitnplementation, though effi-
cient, was fragile and required the generation of more nmecspecific code for profiling than
we considered desirable. In the next chapter we describech moare convenient approach

based on dispatch loops.

5.4.3 Development using SableVM

SableVM is a very well engineered interpreter. For instar®a&bleVM’s infrastructure for
identifying un-relocatable virtual instruction bodies ageaimplementing our TINY inlining
experiment simple. However, its heavy usedfandcpp macros, used to implement multiple
dispatch mechanisms and achieve a high degree of poryahilitkes debugging awkward. In
addition, our efforts to add profiling instrumentation tontext threading made many changes
that we subsequently realized were ill-advised. Hence,awegded to start from clean sources.

For the next stage of our experiment, our trace-based JI'flewrled to abandon SableVM in



5.5. CHAPTER SUMMARY 81

favour of JamVM.

5.5 Chapter Summary

Our experimentation with subroutine threading has esthéd that calling virtual instruction
bodies is an efficient way of dispatching virtual instrun8o Subroutine threading is partic-
ularly effective at eliminating branch mispredictions sed by the dispatch of straight-line
regions of virtual instructions. Branch inlining, thougtbda intensive to implement, elimi-
nates the branch mispredictions caused by most virtuachemn Once the pipelines are full,
the latency of dispatch instructions becomes significansukable technique for addressing
this overhead is inlining, and we have shown that contexatiing is compatible with our
“tiny” inlining heuristic. With this simple approach, cant threading achieves performance
roughly equivalent to, and occasionally better than, sekemlining.

Our experiments also resulted in some warnings. First, tiemgts to finesse the imple-
mentation of virtual branch instructions using branchicgion (Section 4.3) and apply/re-
turn inlining (Section 4.4) were not successful. It was omhen we resorted to the much less
portable branch inlining that we improved the performanteidual branches significantly.
Second, the slowdown observed amongst a few Tcl benchmatksH dispatched very few
virtual instructions) raises the concern that even the toad overhead of subroutine thread-
ing may be too high. This suggests that we should investigateapproaches so we can delay
generating code until it is needed.

These results inform our design of a gradually extensilikerjoneter, to be presented next.
We suggested, in Chapter 1, that a JIT compiler would be simplbuild if its code genera-
tor has the option of falling back on calling virtual insttion bodies. The resulting fall back
code is very similar to code generated at load time by a stibethreaded interpreter. In this

chapter we have seen that linear sequences of virtual atigtng program can be efficiently

SWe planned to build our prototype JIT for PPC only. Thus, tlgaaization of SableVM, so highly geared
towards portability, was more infrastructure than we ndede



82 CHAPTERS. EVALUATION OF CONTEXT THREADING

dispatched using subroutine threading. This suggestdtibeg would be little or no perfor-
mance penalty, relative to interpretation, when a JIT fadlsk on calling sequences of virtual
instructions that it chooses not to compile.

We have shown that dispatching virtual branch instructeffisiently can gain 5% or more
performance. We have shown that branch inlining, thoughpodable, is an effective way of
reducing branch mispredictions. However, our experiesgeen that branch inlining is time
consuming to implement. In the next chapter we will show ttlantifying hot interprocedural
paths, or traces, at runtime enables a much simpler way ¢ihdeaith virtual branches that

performs as well as branch inlining.



Chapter 6

Design and Implementation of YETI

This chapter describes our graduadktensible tace _nterpreter, or Yeti for short. The main
goal of this part of our research is to design and implemeanguage VM that allows for a
simple, efficient interpreter and yet can be convenientiy gradually, extended with a JIT

compiler.

As we argued in Chapter 1, we believe the key ingredients feratte threefold. First, the
system should implement callable virtual instruction lesdhat can be dispatched both by the
interpreter and from JIT compiler generated code. Secdmdsystem should compile, then
run, dynamically identified regions of code that containydrdt code. We pointed out that hot
interprocedural paths, or traces, seem like a good choibed,Tthe JIT compiler should be
able to fall back on generating dispatch code to virtualruttion bodies when it encounters
virtual instructions that it does not fully support. The damation of these features enables a
gradual style of JIT development where compiler supporvidual instructions can be added

one instruction at a time.

A similar argument can be made that the code generated forledaegion of the virtual
program should also be callable and should update intempsthte before returning so that
interpretation may resume immediately. We call thiggion bodybecause it essentially is a

generated virtual instruction body for a newly createdtima identified, virtual instruction.

83



84 CHAPTERG6. DESIGN AND IMPLEMENTATION OF YETI

Region bodies are to be called with interpreter state as thsieviintual instruction in the
region would have seen it and return with the interpretdesta the last the virtual instruction
would have left it. Within the region, body interpreter staieed not be kept up-to-date. A
region body can have multiple return points due to except{amstraight-line code) or trace
exits.

Packaging generated code as callable also aims to supportr@mental style of devel-
opment, in this case allowing new and presumably larger aerhighly optimized regions of
the virtual program to be identified, compiled and dispadict@@urrently, Yeti dispatches single
virtual instruction bodies, subroutine-threaded regiodibs for straight-line sections of code,
and interpreted and compiled traces.

Section 6.1 gives an overview of our implementation. Sedi@ describes how regions are
identified. The runtime environment of a trace is describbesiaction 6.3. Section 6.4 describes
how region bodies are generated for interpreted and JIT dedhfraces. Finally, Section 6.5
describes ways in which our implementation is challengedheysoftware environment in

which it is implemented.

6.1 Structure and Overview of Yeti

Our system starts operating as a simple direct call threfid€d) interpreter as discussed
in Section 3.2. After each instruction has run once, insemitation called from the dispatch
loop identifies straight line sections of the virtual pragréSimple subroutine-threaded region
bodies are generated. These are installed by overwriten®I slot corresponding to the first
virtual instruction in the region with the entry point of thew region body. Subsequently, the
subroutine-threaded code executes. The system, up todimt [$ operating as a lazy loaded
subroutine-threaded interpreter. This alone can speedagpgms with long linear blocks (like

conpr ess andnpeq) relative to direct-threaded performance.

As the program executes, profiling associates and updates@wnters in payloadstruc-



6.1. STRUCTURE AND OVERVIEW OF YETI 85

ture corresponding to each region. Eventually, hot tracegdentified and translated to region
bodies. We will describe two ways traces are compiled. pneged traces, described in 6.4.1,
implement traces in the simplest way we could conceive o&reas JIT compiled traces, de-
scribed in 6.4.2, compile the virtual instructions in ea@té to register allocated native code.
A novel aspect of our JIT is that it compiles only a subset disal instructions while falling

back on dispatch for the remainder. Currently, our systeneigees code for about 50 integer
and object virtual instructions, including all of Java’siditional branch instructions. We have
invested no effort in classical optimizations apart fronelatively simple variation on inlining

when the invocation and return of a method occur in the saace tr

Ordinarily, DCT is slow, because it suffers a branch misprigalh penalty for almost every
iteration of the dispatch loop, but this turns out not to beedgfgrmance problem for Yeti.
As hot region bodies are identified, installed, dispatchsdllanked together, execution shifts
almost entirely to within the region bodies and conseqyeh# overhead of the dispatch loop

becomes negligible.

Initial Load  Figure 6.1 shows how our running example (Figure 2.1) iséddualy Yeti. In
the figure, the bodies are the same C coded virtual instrutiialies we show in Figure 4.2.
Initially all instances of an instruction, like the two iasices of | oad in the figure, point to
the same shared region bodies. This makes the initial Iggudiweight, since no code needs
to be generated and a small (static) set of region bodies ssutited profiling payloads are

shared by all instances of virtual instructions.

Like direct threading and regular DCT, Yeti loads each virtnstruction into one or more
slots in the DTT when the virtual program is loaded. Argurseot virtual instructions are
handled exactly the same as DCT or direct threading. How&ehave enhanced the rep-
resentation of the virtual opcode significantly. In Yeti, wed a level of indirection — the
first DTT slot of each instruction points to an instance aligpatcherstructure instead of the

address of a virtual instruction body.



86 CHAPTERG6. DESIGN AND IMPLEMENTATION OF YETI

Dispatcher It is the need to efficiently associate theC with boththe body (for dispatch)
and the payload (for profiling) that motivates the extraiediion in our design. The alternative
would be to maintain a side table associating the payloadv&l@ We chose the current
arrangement over a hash table because it is simpler.

The dispatcher structure contains four key fields. The regaxly to be dispatched is stored
in thebodyfield. Thepreworkerandpostworkerfields store the addresses of instrumentation
functions to be called before and after the dispatch of thgmrebody respectively. Finally, the
dispatcher has a payload field, which is a region of profilingtber data that the instrumenta-
tion needs to associate with the region body. The most obwige of the payload is to count
events associated with each region body. We define spexgbayload structures to describe
virtual instructions, linear blocks, and traces.

When a dispatcher is created, specific preworker and poséwéuhkctions are chosen de-
pending on the type of region body the dispatcher describ&ég design is object-based in
the sense that the choice of a given preworker and postwdgtermines the behavior of the
instrumentation for the given region body. In our desigmr wWorkers assume that they are

always associated with a specific type of payload.

Dispatch Loop The dispatch loop, shaded in Figure 6.1, requires an exted ¢é indirec-
tion to call each body. The overhead of the extra indirecisoof little concern as any given
instruction will be executed only a few times using this genmechanism.

Figure 6.1 also illustrates how instrumentation code ferr#tgion is called before (thwre-
worker) and after (thg@ostworke) the instruction body is executed. Initially instrumerdatis
interposed around the dispatch of each virtual instrucfidms is convenient as it puts the run-
time in control when the destination of each virtual branek heen determined but before it
is dispatched. Later, as larger region bodies are installsttumentation is dispatched before

and after the execution of the region body (no longer afteh éastruction).

An interesting feature omitted from the figure is that Yetiuatly has several specialized



6.1. STRUCTURE AND OVERVIEW OF YETI 87

Java
c=a+b+1;
source
2 dispatcher structures ,
Java iload a interp () {
Bytecode iload b Instruction *vPC = &dtt[0]
iconst 1 vPC .
iadd while (1) {
iadd B body — d = vPC->dipatcher;
istore c payload pay = d->payload;
pre (*d->pre) (VPC, pay, &tcs) ;
post (*d->body) () ;
(*d->post) (vPC, pay, &tcs) ;
DTT > body — }
Loaded payload
representation a pre N iload:
of virtual post //1iload virtual body
program asm volatile("ret");
b > body — |
Virtual operations payload \\> foonst: //-
are identified by 1 pre — iadd: // ..
addresses of — post | —istore: //..
dispatcher % G oody _//
structures payload }
pre
c — post

Figure 6.1: Virtual program loaded into Yeti showing howpditcher structures are initially
shared between all instances of a virtual instruction. Tiepadch loop, shaded, is similar the
dispatch loop of direct call threading except that anotbeell of indirection, through the the
dispatcher structure, has been added. Profiling instruatientis called before and after the
dispatch of the body.

dispatch loops. For instance, when a trace is dispatchednllyeremaining event to monitor
is the emergence of a hot trace exit. Overhead can be sigrilfic@duced by providing a
specialized dispatch loop exclusively for traces thanedi only the required instrumentation.

In general, profiling can be optimized, or turned off altdwget by changing dispatch loops.

Thread Context Structure  Modern virtual machines support multiple threads of execut
Our design, like many modern interpreters, requires thett @aw interpreter thread runs in a
separatgt hr ead starting with a new invocation of thent er p function. This means that
any local variables declared imt er p are thread-private data. The DTT, dispatchers and

region bodies, on the other hand, are shared by all threads.

Yeti needs a small additional amount of thread-private @@atés own purposes. To keep



88 CHAPTERG6. DESIGN AND IMPLEMENTATION OF YETI

all thread-private data together, we have added a new steutt thei nt er p function called
the thread context structureor TCS. The TCS contains only a few fields, mostly in support
of the region identification and trace exit profiling. Fortarsce, in support of region identifi-
cation, the TCS provides theecor dMode bit, which indicates whether the current thread is
actively recording a region; and théstory list,that records region bodies as they are executed.
Section 6.4.2 describes the role played by the TCS in profitece exits.

A pointer to the TCS is passed to preworker and postworketst@ae they are called. For
simplicity, the TCS was omitted from Figure 6.1 but appearsigure 6.2 where it is the root

of the history list.

6.2 Region Selection

Our strategy for identifying hot regions of the program isrieal out by preworkers and post-
workers in conjunction with state information passed in Ti&S. When the profiling instru-
mentation discovers the beginning of a new region to be cleahto a region body it sets the
r ecor dMode bit in the TCS. As described below, this may be done by the piesvdas for
linear blocks) or the postworker (as for traces). Once theor dMode bit is set, the thread is
actively collecting a region of the program. In this mode pheworker appends the payload of
each region body about to be executed to the thread-privgttaylist in the TCS.

Eventually a preworker or postworker will recognize thaé@xtion has reached the end
of the region to be collected and clearscor dvbde. At this point a new region body is

generated from the history list.

6.2.1 Initiating Region Discovery

We ignore the first execution of each instance of a virtuatutsion before considering it for
inclusion in a region body. First, as discussed in Sectign23.late binding languages like

Java may rewrite some virtual instructions the first time/teecute. We should delay region



6.2. REGION SELECTION 89

selection until after these instructions have been reswitSecond, some virtual instructions,
for instance static class initialization blocks in Javdyaxecute once. This suggests that we
should always wait until the second execution before camsid a virtual instruction.

The obvious way of implementing this is to increment a coutfite first time an instruction
executes. However, this cannot be implemented with ourimhgastrategy because a shared
dispatcher has no simple way of counting how many times aifegp@tstance has been dis-
patched. For example, in Figure 6.1 both instanceisl afad share the same dispatcher and
payload, so there is no place to maintain a counter for eathrnoe.

Hence, after the first execution, the preworker replacestiaeed dispatcher with a new,
non-shared, instance oftdock discovery dispatcheThe second time the instruction is dis-

patched, the block discovery dispatcher sets about igamgifinear blocks as described next.

6.2.2 Linear Block Detection

Alinear block is a runtime approximation of a basic blockyady a straight-line section of the
virtual program ending with a branch. The process of idgimtif linear regions of the program
is carried out by the block discovery preworker based orestdbrmation it is passed in the
TCS.

We start our explanation of how the block discovery workdwaidetailed walk-through of
how the block discovery preworker identifies a new lineacckloSuppose a block discovery
preworker is called for an instance of virtual instructiat vPC. A block discovery dispatcher
was installed foi after it executed for the first time. Hence, whenever the lbldiscovery
preworker is called there are two possibilitiesr #cor dMbde is set theri should simply be
appended to the history list (in the TCS) and thus added toittleard region currently being
recorded. Otherwise, ifr ecor dMbde is clear, then must begin a new linear block. (If there
already was a linear region startingvd®C, then a dispatcher for that region body would have

executed instead.)

1There are corner cases, for instancéjsfencountered while a trace is being collected.



90 CHAPTERG6. DESIGN AND IMPLEMENTATION OF YETI

block discovery dispatcher interp () {

N ost

pay = d->payload;
(*d->pre) (vPC,pay, &tcs) ;
(*d->body) () ;

(*d->post) (vPC, pay, &tcs) ;

}

tcs Instruction *vPC;
payload thread context struct \
f bzdﬁlfoad oad mode Ib_record _\\ iload: //push var
pay ~ ;ttoa \ history list i VPC++;
DTT pre | asm volatile("ret") ;

post ;

/i ! .
Bona || iload 4] ; iconst:

a gggt / \ iadd:

A istore:

§§§¥oad iconst /
b — : / "7t _thread context tcs;
Ae—
1 / E%%Woad iadd
P = < vPC = &dtt[0];
< while (1) { //dispatch loop

pa3foaa iadd d = vpc->dipatcher;

bod¥ .
payload ——4 1store
ost

‘7‘ 3 goto }

Figure 6.2: Shows a region of the DTT during block recordirade The body of each block
discovery dispatcher points to the corresponding virtestiruction body (Only the body for the
first iload is shown). The dispatcher’s payload field pointgistances of instruction payload.
The thread context struct is shown as tcs.

The preworker recognizes the end of the linear region whendbunters a virtual branch
instruction. At this point ecor dvbde is cleared, and a new subroutine-threaded region body
is generated from the instructions on the history list. Feg6.2 illustrates an intermediate
stage during the identification of the linear block of ourming example. The preworker has
appended the payload of each instruction onto the threastsri list, rooted in the TCS. In
the figure, a branch instructiongat o, will end the current linear block.

Figure 6.3 illustrates the situation just after the coll@tbf the linear block. The dispatcher
corresponding to the entry point of the linear block has heghaced by a newnear block
dispatcherwhose job it will be to search for traces. The linear blockpdisher points to a
new payload created from the history list; its body field p®it® a subroutine-threading-style
region body that has been generated for the linear blocke Nhat linear blocks are not basic
blocks because they do not end at labels. If the virtual puoglater branches to a virtual

address that happens to be in the middle of a linear blockymtem will create a new linear



6.2. REGION SELECTION 91

DTT linear block dispatcher
” bod
7 payil/oad—\—/» lb_payload | generated code
2 pre call iload
post i
call iload
D call iconst
1 call iadd
call iadd
call istore
call goto
c return
e R

Figure 6.3: Shows a region of the DTT just after block reacagdinode has finished.

block that replicates the tail of the original.

6.2.3 Trace Selection

The postworker of a linear block dispatcher is called after last virtual instruction of the
linear block has executed. Since, by definition, linear kéceend with branches, after executing
the last instruction the PC has been set to the destination of the branch and hence points
one of the successors of the linear block. The postworkes atiexactly the right moment to
profile edges of the control flow graph, namely after eachdiratestination is known, and yet
before the destination is executed.

If the vPC of the destination isessthan thevPC of the virtual branch instruction itself,
this is a reverse branch — a likely candidate for the latchlobp. According to the heuristics
developed by Dynamo (see Section 2.5), hot reverse brarareegood places to start the
search for hot code. Accordingly, when our system deteatserse branch that has executed
100 time$ it enterstrace recording mode In trace recording mode, similar to linear block

recording mode, the postworker adds each linear block paytimthe thread’s history list. The

2Performance does not seem sensitive to the particular vetuere chose a round number in the vicinity of
the value used by Dynamo.



92 CHAPTERG6. DESIGN AND IMPLEMENTATION OF YETI

situation is very similar to that illustrated in Figure 6eXcept the history list describes linear
blocks instead of virtual instructions. Our system, likenlayno, ends a trace (i) when it reaches
areverse branch or finds a cycle, or (ii) when it contains taayr{currently 100) linear blocks.

When trace generation ends, a nieace dispatchels created and installed. This is quite
similar to Figure 6.3 apart from the need to support tracesexihe payload of a trace dis-
patcher includes a table tface exit descriptorsone for each linear block in the trace. See
Figure 6.4.

Although code could be generated for the trace at this paiatpostpone code genera-
tion until the trace has run a few times, currently five, irc&rdraining mod& Trace training
mode uses a specialized dispatch loop that calls additiosaumentation before and after
dispatching each virtual instruction in the trace. Therinsientation is passed pointers to var-
ious interpreter variables (top of the expression stacleszmption of the currently executing
method, etc). In principle, almost any detail of the virtoachine’s state can be recorded.
Currently, we record the class of every Java object upon wéntual method is invoked.

Once the trace has been trained, we generate and instalicm fegdy. We have imple-
mented two different mechanisms for generating code foaeetr Early in the project we
implemented a simple approacimterpreted tracesthat generates very simple subroutine-
threaded style code for each trace. Then, with a great dead eftort, we implemented our
trace-based JIT compiler. Both approaches are describeztiios 6.4.

Before we discuss code generation, we need to describe ttimeunt the trace system and

especially the operation of trace exits.

6.3 Trace Exit Runtime

One of the properties that make traces a desirable shapgiohreody is that they predict hot

paths through the virtual program. If the predictions aredy@and the Dynamo results suggest

3As almost all the callsites in the SPECjvm98 benchmarks ameomorphic, a smaller number of training
runs would have been sufficient but unrealistic.



6.3. TRACE EXIT RUNTIME 93

that they are, we assume that most trace exits are not takes.trdce exits that are taken,
however, quickly become hot and hence new traces must beagedand linked. This means
that it will likely pay to burden the implementation of a teaexit with some extra overhead if
this makes the path through the trace more efficient.

We use a combination of code generation (in the region bodyhi trace) and runtime
profiling instrumentation (in the postworker called aftacke trace returns to the dispatch loop)
to detect which trace exits are occurring and what to do aibout

Trace exits occur when execution diverges from the patlectdt during trace generation,
or in other words, when the destination of a virtual branditrirction in the trace is different
from what was recorded during trace generation. Genereded exit code in the trace detects
the divergence and branches ttrace exit handler Generated code in the trace exit handler
records which trace exit has occurred by storing, into the, TilsSaddress of the trace payload
(to identify the trace) and the index of the trace exit (toniifg the specific branch). The
trace exit handler then returns to the dispatch loop, whashysual, calls the postworker. The
postworker uses the information in the TCS to update the ggit@rofiling information in the
trace payload.

This scheme minimizes overhead for traces that completmbrat the expense of cold

trace exits. Conceptually, the postworker has only a fewrsté/e to chose from:

1. If the trace exit is still cold, increment the counter esponding to the trace exit in the

trace payload.

2. Notice that the counter has crossed the hot thresholdrasolge to generate a new trace.

3. Notice that a trace already exists at the destinationiakdHe trace exit handler to the

destination trace.

Alternative 1 is trivial, the postworker increments a carrdnd returns. Alternative 2 is also

simple, the postworker simply sets thecor dMbde bit in TCS and the destination trace will



94 CHAPTERG6. DESIGN AND IMPLEMENTATION OF YETI

start being collected immediately. Alternative 3 is moralt@nging and will be described in

the next section.

6.3.1 Trace Linking

The goal of trace linking is to rewrite the trace exit hanaiea hot trace exit to branch directly
to the destination trace rather than return to the dispatop.| The actual mechanism we use
depends on the underlying virtual branch instruction. €hse two main cases, branches with

only one off-trace destination and branches with multigferace destinations.

Regular conditional branches, like Javafs_i cnp, are quite simple. The branch has only
two destinations, one on the trace and the other off. Whenr#ioe &xit becomes hot a new
trace is generated starting with the off-trace destinatibhen, the next time the trace exit
occurs, the postworker links the trace exit handler to the trace by rewriting the branch
instruction in the trace exit handler to jump directly to thesstination trace instead of returning
to the dispatch loop. Subsequently, execution stays in ¢tkie cache for both paths of the
program.

Multiple destination branches, like method invocation egtdrn, are more complex. When
a trace exit originating from a multi-way branch occurs, we faced with two additional
challenges. First, profiling multiple destinations is merpensive than just maintaining one
counter. Second, when one or more of the possible destisatie also traces, the trace exit

handler needs some mechanism to jump to the right one.

The first challenge we essentially ignore. We use a simpleteowand trace generate
all destinations of a hot trace exit that arise. The danger sfdinategy is that we could trace
generate superfluous cold destinations and waste traceagiendime and code cache memory.

The second challenge concerns the efficient selection osSandéion trace to which to
link, and the mechanism used to branch there. To choose iaa@&st, we follow the heuristic

developed by Dynamo for regular branches — that is, we lirdketinations in the order they



6.4. GENERATING CODE FOR TRACES 95

trace dispatcher generated code
for straight line
/ portion of IbO
trace
payload / trace / texit out-of-line
K exitd handler0 trace
Il exit
b0 ] handlers
trace EEr— for
- trace exit] / texit trace
{ exit table 5l handler1 exits
Ib1
texit in-Iing trace
DTT handler } trace exit handler

at end of trace

Figure 6.4: Schematic of a trace illustrating how trace &@bte (shaded) in trace payload has
recorded the on-trace destination of each virtual branch

are encountered. The rational is that the highest probaliitice exits will occur first At
link time, we rewrite the code in the trace exit handler witlde that checks the value of the
vPC. If it equals thevPC of a linked trace, we branch directly to that trace; otheewise
return to the dispatch loop. Because the specific values of Biaefor each destination trace
are visible to the postworker, we can hard-wire the commhmanhe generated code. In fact,
we can generate a sequence of compares checking for eachratitiple destinations in turn.
Eventually, a sufficiently long cascade would perform nddyethan a trip around the dispatch
loop. Currently we limit ourselves to two linked destinasguer trace exit. This mechanism is

similar to the technique used for interpreted traces, destmext.

6.4 Generating code for traces

Generating code for a trace is made up of two main tasks, gengithe main body of the trace

and generating a trace exit handler for each trace exitr Atiee selection the TCS history list

4This is also the reasoning behind Dynamo’s handing of itlineanches.



96 CHAPTERG6. DESIGN AND IMPLEMENTATION OF YETI

contains a list of linear block payloads that were selecBgtraversing the list we can visit
each virtual instruction in the trace.

We describe two different strategies for compiling a tra8mth schemes use the same
runtime and carry out trace linking identically. Interméttraces, described next, represent
our simplest approach to generating code for a trace. JlTpdedhtraces, described in Sec-
tion 6.4.2, contain a mixture of compiled code and dispatch.

Figure 6.4 gives a schematic for a hypothetical trace. Awsho the figure, the dispatcher
is the root of the data structure and points to the payloadtadntry point of the region body.
The payload contains a counter (not shown in the figure) anace exit table. The trace exit
table is an array of trace exit descriptors, one for eacletexit in the trace. Each trace exit
descriptor contains a counter (not shown) and a pointeraddrétte exit handler for each trace
exit. The counter is used to determine when a trace exit besdrat. The pointer to the trace

exit handler is used to mark the location that will be rewrittor trace linking.

6.4.1 Interpreted Traces

Interpreted traces require only slightly more complex cgeeeration than subroutine thread-
ing, but are about as effective as branch inlining (See &edti3) at reducing the overhead of
dispatching virtual branch instructions. We call themipteted because no virtual instruction
bodies are compiled in-line, rather, an interpreted traggadches all virtual instruction bodies
including virtual branches.

The trace payload identifies each linear block in the trackeath linear block payload
lists every virtual instruction. Hence, by iterating ovee tlinear block payloads the straight
line portions of a trace can be easily implemented as regibasbroutine-threaded code.

Trace exits require only slightly more complicated codeagation. A trace is a hot path
through the virtual program, or put another way, a traceiptethe value of the PCafter each
of its constituent virtual branch instructions has exedut&aking this view, the purpose of

each trace exit is to ensure that the branch it guards haseseP€ to the on-trace destination.



6.4. GENERATING CODE FOR TRACES 97

The on-trace destination of each virtual branch is recordéide trace payload as the trace is
generated. Hence, the simplest possible implementati@nti@zfce exit must do three things.
First, it dispatches the virtual branch body. Second, it gares the value of thePC, the
destination of the branch, to the on-tradeC predicted by the trace. A compare immediate can
be used, since the on-trace value of #RC is known and is constant. Third, it conditionally
branches to the trace exit handler if the comparison fails.

This code is somewhat reminiscent of the branch replicagehnique we described in
Section 4.3 except that instead of following the dispatcithefvirtual branch body with an
expensivandirect branch we generate a compare immediate followed Byest conditional
branch to the trace exit handler. We expect this technigueetgquite easy for the branch
predictors of the underlying processor to predict becauselirect conditional branch is fully
exposed to the branch history predictors. As we shall shothennext chapter, interpreted

traces achieve a level of performance similar to subrodtireading plus branch inlining.

6.4.2 JIT Compiled Traces

Our JIT does not perform any classical optimizations and ¢ build any internal represen-
tation before compiling a trace. As traces contain no meggetg, we perform a single pass
through each trace allocating expression stack slots tetezg and generating code.

An important aspect of our JIT design is that it can generatke dor a trace before it sup-
ports all virtual instructions. Our JIT generates regisircated machine code for contiguous
sequences of virtual instructions it recognizes. When aaraitifar virtual instruction is en-
countered, code is generated to flush any temporary valuésrheegisters back to the Java
expression stack. Then, the bodies of any uncompilable famuihar virtual instructions are
dispatched using subroutine threading. This significagtlges development as the compiler
can be extended one virtual instruction at a time. The sactesacan be used for virtual
instructions that the JIT partially supports. When the cdengncounters an awkward corner

case it can simply give up and fall back to subroutine didpatstead.



98 CHAPTERG6. DESIGN AND IMPLEMENTATION OF YETI

Expression stack slots are assigned to registers, freleengdanerated code from maintain-
ing the expression stack. Immediate arguments to virtugiuctions, normally loaded from
the DTT, are loaded into registers using load immediateucsbns whenever possible. This
frees the generated code from maintaininguR€E.

Machine code generation is performed usingdbg [58] runtime assembler.

Dedicated Registers

The code generated by Yeti must be able to load and storesvadibe same Java expression
stack and local variable array referred to by the C code imptging the virtual instruction
bodies. Our current PowerPC implementation side-stepdglifficulty by dedicating hardware
registers for the values that must be shared between ourajedeode and C generated bodies.
At present we dedicate registers for tHeC, the top of the Java expression stack and the pointer
to the base of the local variables. Code is generated to ablpisalue of the dedicated registers
as part of the flush sequence, described below.

On targets with fewer registers, notably Intel's Pentiuneré may not be enough general
purpose registers to dedicate three of them for our own p@goThere, we plan to generate

code that accesses the variables in memory.

Register Allocation

Java virtual instructions, and those of many other virtuathines, pop arguments off and push
results onto an expression stack (See Section 2.1.1). Nawgilation of the pushes and pops
would result in many redundant loads, stores and adjussradrihe pointer to the top of the
expression stack. Our JIT assigns the temporary valuegjistees instead.

Our register allocator and code generator are combined aridrm only one pass. As
we examine each virtual instruction we maintain a compiteetstructure we call thehadow
stack. The shadow stack associates each value in an expressi@rskitwith the register to

which it has been assigned. Whenever a virtual instructiomdvpop one of its inputs we first



6.4. GENERATING CODE FOR TRACES 99

check if there already is a register for that value in the esponding shadow stack slot. If
so, we use the register instead of generating any code tohgogxpression stack. Similarly,
whenever a virtual instruction would push a new value oneekpression stack we assign a
new register to the value and push this on the shadow. We fpggerating any code to push
the value onto the expression stack.

A convenient property of this approach is that every valisgga®ed to a register always has
ahome locatioron the expression stack. If we run out of registers we simpily the register
whose home location is deepest on the shadow stack (as al@tilewer values will be needed

sooner [59]).

Flushing Registers to Expression Stack

The simple strategy for assigning expression stack slotgiisters we have described assumes
that execution remains on the trace and that all instrustltave been compiled. However,
when a trace exit is taken, or when the JIT needs to fall baadaling a virtual instruction
body, all values in registers must be saved back to the esiprestack.

Flush code is generated by scanning the shadow stack to fergl expression stack slot
currently assigned to a register. A store is generated t@ €ach such live register to its
home location on the expression stack. Then, the shadowistesinitialized to empty and all
registers are marked as free.

Generated code typically does not need to maintain the disdicegisters, for instance the
top of the expression stack, or th@C, until it is about to return to the interpreter. Generated

flush code updates the values held by the dedicated regastevsl|.

Trace Exits and Trace Exit Handlers

The virtual branch instruction ending each block is congpilgo a trace exit. We follow two
different strategies for trace exits. The first case, regqudaditional branch virtual instructions,

are compiled by our JIT into machine code that conditionailgnches to a trace exit handler



100 CHAPTER 6. DESIGN AND IMPLEMENTATION OF YETI

when execution would leave the trace. The generated codenmepts the semantics of the
virtual instruction body, and compares and conditionaligneches on the values in registers.

It does not access thePC. PowerPC code for this case appears in Figure 6.5. The sense
of the conditional branch is adjusted so that the branchwsays not-taken for the on-trace
path. The second case, for more complex virtual branchucistns, such as for method
invocation and return, which may have multiple destinatjosre handled as for interpreted
traces. (Polymorphic method dispatch is also handled thig Wit cannot be optimized as

described in Section 6.4.3.)

Trace exit handlers have two further roles. First, sincemited traces contain compiled
code, it may be necessary to flush values held in registersipaate the values of dedicated
registers. For instance, in Figure 6.5, the trace exit learatljusts the’ PC. Flush code is the
only difference between trace exit handlers for intergtetied compiled traces. Second, trace
linking is achieved by overwriting code in the trace exit ti@n. (This is the only situation in
which we rewrite code.) To link traces, the tail of the trag@ kandler is rewritten to branch

to the destination trace rather than return to the dispakap. |

The trace link branch occurs after the flush code, which mézatsregisters are flushed
only to be reloaded by the destination trace. We have notnypleimented any optimization
to address this redundancy. However, if the shadow stadkeatrace exit were to be saved
aside, it could be used to prime the compilation of the datitn. Then, the trace link could

be inserted before the flush code.

Most trace exit handlers are reached only when a conditivae¢ exit is taken. The only
exception occurs when a trace executes to completion. Theairol must return to the dispatch
loop. To implement this, each trace ends with an in-linegm@at handler. Like any other trace

exit handler, it may later be linked to its destination tréame becomes hot.



6.4. GENERATING CODE FOR TRACES 101

OPC ILOAD 3 lwz r3,12(r27) }
< compiled from iloads
OPC ILOAD 2 lwz r4,8(r27)
gpc TF ICMPGE +12l~»\-f;- ggzwtg’lér‘l trace exit compiled from if_icmpge
DTT T teho :
TEH stores trace exit number (0) and hardwired .----» addi r26,r26,112 //adjust vpc

address of trace payload into thread context struct r1li r0,0

stw r0,916 (r30)

lis r0,1090

ori r0,r0,11488

stw r0,912(r30)

blr //return to dispatch loop

vPC adjusted upon leaving JIT compiled region

if this trace exit becomes hot, trace linking overwrites . g
this instruction with branch to destination trace ’

Figure 6.5: PowerPC code for a portion of a trace region bslggywing details of a trace exit
and trace exit handler. This code assumes that r26 has bdmaigel for thes PC. In addition
the generated code in the trace exit handler u€s the stack pointer as defined by the ABI,
to store the trace exit id into the TCS.

6.4.3 Trace Optimization

We describe two optimizations here: how loops are handledhamw the training data can be

used to optimize method invocation.

Inner Loops

An intrinsic property of Dynamo’s trace selection heudoss that the innermost loops of a
program are often selected into a single trace ending wéloibp closing reverse branch. This
occurs because trace generation starts at the target ofeeveanches and ends whenever it
reaches a reverse branch. Note that there may be many bsamatiading calls and returns,
along the way. When the trace is compiled, the loop is trivadind because the last virtual
instruction in the trace is a virtual conditional branchlbaxits entry.

Inner loops expose a problem with the way we end a trace. Niyradrace exit is com-
piled as a branch taken to the trace exit handler for theraffet path and a fall-through for the
on-trace path. If this approach were followed, each iteratif a hot inner loop would execute
to the inline trace exit handler at the end of the trace anafmetb the dispatch loop. Soon

this trace exit would become hot and trace linking would maithe inline trace exit to branch



102 CHAPTER 6. DESIGN AND IMPLEMENTATION OF YETI

back to the head of the trace. To avoid the extra branch andless trace linking, the trace
JIT compiles a reverse branch differently — reversing tmse®f the trace exit and generating

a reverse conditional branch back to entry point of the trace

Thus far, we have not exploited this information to optimike body of the trace. For
example, it would be relatively easy to detect loop invariastructions and move them to a
newly constructed loop preheader. However, the flow grapheofesulting unit of compilation
would then include a merge point because the head of the loojfvhave two inbound edges
(the back edge and the edge from the preheader). The reglkieation scheme we have

described does not support merge points.

Virtual Method Invocation

So far, all the trace exits we have described have beenatsns of virtual branch instructions.
However, a trace exit can be used to guard other speculgtfirmiaations as well. Our strategy
for optimizing virtual method invocation is to generate aglitrace exit that is much cheaper
than a full method dispatch. If the guard code falls throwgdnknow execution should continue

along the trace.

Specifically, if the class of the invoked-upon object iseliént than recorded when the trace
was generated, a trace exit must occur. At trace generatienwe know the on-trace desti-
nation of each call. From the training profile, we know thesslaf each invoked-upon object.
Thus, we can easily generatgigual invoke guardhat branches to the trace exit handler if the
class of the object on top of the expression stack is not tivee ses recorded during training.
Then, we can generate code to perform a faster, stripped dergion of method invocation.
The savings are primarily the work associated with lookipghe destination given the class

of the receiver. This technique was independently invehte@al et al [33].



6.5. OTHER IMPLEMENTATION DETAILS 103
Inlining

Traces are agnostic towards method invocation and reteatjg them like any other multiple-
destination virtual branch instructions. However, wheatam corresponds to an invoke in the
same trace, the trace compiler can sometimes remove althosttaod invocation overhead.
Consider when the code between a method invocation and tlohimgreturn is relatively sim-
ple; for instance, it does not touch the callee’s stack fréotieer than the expression stack), it
cannot throw an exception and it makes no further methodcemvons. Then, we can elimi-
nate the invoke altogether, and the only method invocatientead that remains is the virtual
invoke guard. If the inlined method body contains any tragtsgethe situation is slightly more
complex. In this case, in order to prepare for a return soneesvbff-trace, the trace exit han-
dlers for the trace exits in the inlined code must modify tkpression stack exactly as the

(optimized away) method invocation would have done.

6.5 Other implementation details

Our system, as described in this chapter, generates codeotdsts with virtual instruction
bodies written in C. Consequently, the generated code mugilbémaccess a few interpreter
variables like thev PC, the top of the expression stack, and the base of the locablararray.
For these heavily used interpreter variables, on machiitbsswfficient general purpose regis-
ters, we take the obvious approach of assigning the vasabldedicated registers. Dedicating
the register might even improve the quality of code gendraiethe compiler for the inter-
preter. We note that on the PowerPC OCaml dedicates registettse vPC and a few other
commonly used values, presumably because it performs bieigevay.

A related challenge arises in our implementation of tracelandlers. We want on-trace
execution to be free of trace exit related overhead. At theesame, we need a way of record-
ing which trace exit has occurred so that we can determinehwtnace exits are hot. This

means that each trace exit handler, which is a region of cpeefs to a trace exit generated



104 CHAPTER 6. DESIGN AND IMPLEMENTATION OF YETI

by Yeti, must have a way of writing into the TCS. On the PowerRCoould dedicate yet an-
other register to point to the TCS. However, this could onlgt the performance of the virtual
instruction bodies, since they never refer to the TCS. Inst@a indulge in some unwarranted
chumminess with gcc. Using a trick invented by Ben Vitale, we gcc inlineas mstatements
to obtain a string containing assembler gcc would genecasetess the desired field in the
TCS [77]. Then, we parse the string and extract all the inféionave need to generate code
to access the field.

Our use of a dispatch loop, similar to Figure 6.2, in conjiorctvith making virtual bodies
callable by inserting inlined assembler return instrutsiaesults in a control flow graph that is
not apparent to the optimizer. First, the optimizer canmatkthat the label at the head of each
virtual instruction body can be reached by the function faicall in the dispatch loop. (The
compiler assumes, quite reasonably, that the functiont@oaall only reaches the entry point
of functions.) Second, the optimizer does not know thatrabriiows from the inlined return
instruction back to the dispatch loop. We work around théffiewlties by inserting computed

goto’s (which never actually execute) to simulate the miggdges.

6.6 Chapter Summary

In this chapter we have described the design trajectoryliggtalevel language virtual machine
that extends from a very simple interpreter through a higliggmance trace-based interpreter,
to a extensible trace-based JIT compiled system. Our dggigls are much more ambitious
than in the preceding two chapters. There, we concentraiddw an interpreter can be made
more efficient. In this chapter we presented a design thgtastgpthe evolution of a high-level
language VM from a simple interpreter to a JIT. Thus, we favofrastructure that supports
the development of a JIT, for instance our dispatcher-bexsticdimentation, over infrastructure
that merely speeds up interpretation.

An aspect of context threading that is somewhat unpalataltkat the effort invested im-



6.6. CHAPTER SUMMARY 105

plementing branch inlining, apply/return inlining andytinlining does nothing to facilitate the
later addition of a JIT compiler. For instance, implemegtomanch inlining in the interpreter
runs the risk of being a throw-away effort — if evolving perfance requirements eventually
lead to the implementation of a JIT, then a good deal of theeffeat spent building branch

inlining will have to be duplicated.

In contrast to this, Yeti builds its advanced interpretatiechniques on top of infrastructure
that is intended to facilitate the addition of a JIT. For amste, interpreted traces require trace-
based profiling that is also required to support the tracetdIT. As we will show in the next

chapter, interpreted traces perform just as well as brarichnig.

With the resources at our disposal, it is not feasible to stiat/the performance potential
of our trace-based JIT compiler is equal to an optimizingrodtbased JIT like those deployed
by Sun or IBM. Our design is intended to support any shape abindgpdy, so in a sense, the
peak performance of traces is not a limiting factor, sincthwsufficient engineering effort,

peak performance could always be achieved by compilingedlimethod nests.

Instead, we concentrated our JIT compiler design effortaw to support only a subset
of virtual instructions, added one at a time. We found this waonvenient way to work, much
easier than bringing up a regular compiler, since intevastibbetween code generation bugs
were much reduced. Currently our JIT consists of only abo002@atements of C source code,
about half machine dependent, and compiles about 50 integeal instructions. Neverthe-
less, as we will show in the next chapter, our JIT improvegp#rormance of the SPECjvm98

benchmarks by about 24% over interpreted traces.

The main problem with the implementation of our prototypehiat our generated code
depends too heavily on gcc. There are two main issues. Busgjenerated code occasionally
needs to access interpreter values. On the PowerPC we wleréoadide-step the potential
difficulties by dedicating registers for key interpreterigales, but clearly another approach
will be necessary for 32 bit Intel processors, which havefévogeneral purpose registers to

dedicate to any interpreter variables. Second, the way we packaged virtual instruction



106 CHAPTER 6. DESIGN AND IMPLEMENTATION OF YETI

bodies, and called them via a function pointer, (Figure Bidgs the true control flow of the
interpreter from the C optimizer. We will discuss how thisgii be avoided by packaging
bodies as nested functions in Chapter 8.

Next, in Chapter 7, we will evaluate the performance of outqiype.



Chapter 7

Evaluation of Yeti

In this chapter we evaluate Yeti from three main perspestivéirst, we evaluate the effec-
tiveness of traces for capturing the execution of region¥awh programs, and verify that the
frequency of dispatching region bodies does not burderadiygrformance. Second, we con-
firm that the performance of the simplest, entry level, \@r%f our system is reasonable, and
that performance improves as more sophisticated shapegiofirbodies are identified and ef-
fortis invested in compiling them. The goal here is to detaamvhether the first few stages of
our extensible system are viable deployment candidatemfarcrementally evolving system.
Third, we attempt to measure the extent to which our tecteigaffected by various pipeline

hazards, especially branch mispredictions and instmuci@che misses.

We prototyped Yeti in a Java VM (rather than a language thasamt have a JIT) in order
to compare our techniques against high-quality implentemts on well-known benchmarks.
We show that through four stages of extending our systenm &@imple direct call-threaded
(DCT) interpreter to a trace based JIT compiler, performangeoves steadily. Moreover,
at each stage, the performance of our system is comparalihéo Java implementations
based on different, more specific techniques. Thus, DCT, niwy éevel of Yeti, is roughly
comparable to switch threading. Interpreted traces aterfdgat direct threading and our trace

based JIT is 27 % faster than selective inlining in SableVM.

107



108 CHAPTER 7. EVALUATION OF YETI

These results indicate that our design for Yeti is a goodistapoint for an extensible
infrastructure whose performance can be incrementallyorgw, in contrast to techniques like
those described in Chapters 3 and 4 which are end points wilehififrastructure to support
the next step up in performance.

Section 7.1 describes the experimental set-up. We reperextent to which different
shapes of region enable execution to stay within the codleecacSection 7.2. Section 7.3
reports how the performance of Yeti is effected by differesgion shapes. Section 7.4 de-
scribes preliminary performance results on the Pentiumalfy, Section 7.5 studies the effect

of various pipeline hazards on performance.

7.1 Experimental Set-up

The experiments described in this section are simpler thasetdescribed in Chapter 5 because
we have modified only one Java virtual machine, JamVM. Alnadisbur performance mea-
surements are made on the same PowerPC machine, exceptétmanary look at interpreted
traces on Pentium.

We took a different tack to investigating the micro-arctitgal impact of our techniques
than the approach presented in Chapter 5. There, we meagp@@ticsperformance monitor-
ing counters, for instance, the number of mispredictedrtdikanches that occurred during the
execution of a benchmark. Here, we evaluate Yeti’'s impac¢hemipelines using a much more

sophisticated infrastructure which determines the caoesrious stall cycles.

Virtual Machines Yeti is a modified version of Robert Lougher’s JamVM 1.1.3, evhi
is a very neatly written Java Virtual Machine [53]. On allfiéems (OSX 10.4, PowerPC and
Pentium Linux) we built both our modifications to JamVM andn3&v as distributed using
gcc 4.0.1.

We compare the performance of Yeti to several other JVM candigpns:



7.1. EXPERIMENTAL SET-UP 109

Table 7.1: SPECjvm98 benchmarks including elapsed timedeelne JamVM (i.e., without
any of our modifications), Yeti and Sun HotSpot.

Elapsed Time
(sec)
Benchmark Description JamVM Yeti HotSpot
1.3.3 1.05 6_64
direct threaded trace JIT| optimizing JIT
compress | Lempel-Ziv 98 44 8.0
db Database functions 56 35 23
jack Parser generator 22 14 54
javac JDK 1.0.2 33 24 9.9
jess Expert Shell System 29 19 4.4
mpeg read MPEG-3 87 36 4.6
mtrt Two thread raytracer 30 25 2.1
raytrace raytracer renderer 29 17 2.3
scimark FFT, SOR,LU, 'large’ 145 58 16

Table 7.2: Guide to labels which appear on figures and reteseto technique descriptions.

Technique Lgbel on Section describing

Figures .

Technique

Subroutine Threading SUB Section 4.2
Direct Call Threading DCT Section 6.1
Linear Blocks LB Section 6.2.2
Interpreted Traces I-TR Section 6.4.1
Interpreted Traces with linking OFF| i-TR-nolink as above
Yeti - Trace JIT TR-JIT Section 6.4.2
SablevM 1.1.8 SABLEVM Section 3.7.2

1. JamVM configured for direct threading (its default confagion) is our baseline because

direct threading is a commonly deployed high performanspatch technique.

2. JamVM configured to be switch threaded as an example of iay+lenel interpretation
technique. Many production language virtual machines hmeen usefully deployed

using switch threading.
3. A subroutine threaded version of JamVM.
4. SableVM with selective inlining as an example of an adeanaterpreter technique.

5. Sun’s Hotspot JVM version 1.05 as a state of the art Java JIT



110 CHAPTER 7. EVALUATION OF YETI

Elapsed Time Data Elapsed time performance data was collected on a dual CPU 2 GHz
PowerPC 970 processor with 512 MB of memory running Apple A8X4. Pentium perfor-
mance was measured on a Intel Core 2 Duo E6600 2.40GHz 4M withd@&emory under
Linux 2.6.9. Performance is reported as the average of thessurements of elapsed time, as

printed by thet i me command.

Benchmarks Table 7.1 briefly describes each SPECjvm98 benchmark [66§ ahdar K,
a scientific program. Since the rest of the figures in this tdrapill report performance relative
to unmodified JamVM 1.1.3, Table 7.1 includes, for each berak, the raw elapsed time for
JamVM, Yeti (running our JIT), and version 1.05.0_6_64 oh $8icrosystems’ Java HotSpot
JIT. (We provide the elapsed time here because below we egbnt performance relative to

direct threaded JamVM.)

Table 7.2 provides a key to the acronyms used as labels irotloeving graphs and indi-

cates the section of this thesis each technique is discussed

Pipeline Hazards In Section 7.5 we describe how Yeti is effected by common gssor
pipeline hazards, such as branch mispredictions and oigtrucache misses. We use a new
infrastructure, built and operated by Azimi et al, colleagidrom the Electrical Engineering
Computer Group, that heuristically attributes stall cydlesvarious causes[6]. Livio Soares
provided us with a port of their infrastructure to Linux 2.8. We collected the stall data on a
slightly different model of PowerPC, a 2.3 GHz PowerPC 970RKple G5 Xserve) running
Linux version 2.6.18. The 970FX part is a 90nm implementatd the 130nm 970, more
power efficient but identical architecturally. The platfochange was forced upon us because

Soares’ port requires a system running the new FX versioheoptocessor.



111

7.2. EFFECT OF REGION SHAPE ON DISPATCH

90+ T | BB BB BB BBEEIEEED

80+370'T
80+, /'S | T T T T T T T T T T T T T
60+3T9°¢€ [

V0+9.E'S b

80+96€'S
80+3p'S [T T T T T T TN CTT T T T
OT+9SE'T [

G0+IT6'G || RIS

L0+9vY e
80+39%'9 1

60+9€TC |

90+9.L.[T  RRRRRRRRRRRRRRRRIRRRRIARRRHRIRR

L0+98E°¢C
80#®L1w) [T TTTTT T T T T T T T T T ITTTTTTTTTT]
60+3¢GT [

90+919/8  ERRRRRRR R R R R RRRARRRNA

80+986'T

80+9/ y'9 [T T T T T T T T LT T T TIT
OT+9GT'T [

90+9¢¢ 16

80+9TO0'T
80+89y | I T T T T T T T T T T T TTTT
60+9¥8'T [

L0+3/T'T

L0+9¢1'8
80+8p9ly [T T T TITT T T IT T TTTTTTTTITCTTTTTTTT
60+9607C [

90+98Y'S |k

L0+93€6'Y
80+99¢ T T T T T T T T T T LTI
60+37'T I

S0+988'€

80+3//7T
80+9€819 [T T TTTTT T T T T CTTITTTTTTTTTT
60+999°¢ [

80+980'v
60+9.¢'T [T T T T T T T TN T T T TITT
0T+3GC'T |

1lel0 =
le8
le6
le4
le2
1e0

1unoo yoledsip

scitest geomean

db jack javac jess mpeg mtrt ray

compress

Figure 7.1: Number of dispatches executed vs region shdpey-Bxis has a logarithmic scale.
Numbers above bars, in scientific notation, give the numbeggions dispatched. The X axis

lists the SPECjvm98 benchmarks in alphabetical order.

7.2 Effect of region shape on dispatch

In this section we report data obtained by modifying Yetistrumentation to keep track of how

many virtual instructions are executed from each regiorylal how often region bodies are

dispatched. These data will help us understand to what egiecution remains in the code

cache for differently shaped regions of the program.

For a JIT to be effective, execution must spend most of ite iimcompiled code. We can

easily count how many virtual instructions are executecthfioterpreted traces and so we can

calculate what proportion of all virtual instructions exgad come from traces. F¢rack,

traces account for 99.3% of virtual instructions executeadr all the remaining benchmarks,

traces account for 99.9% or more.

In our

A remaining concern is how often execution enters and letivesode cache.



112

Virtual instructions executed per dispatch

1e6

1e5

le4

1le3

le2

lel

1e0

CHAPTER 7. EVALUATION OF YETI

=

i-TR-nolink B i-TR

3600

74
X4

O

860
—

>
at

o

ba

X

K2
b

O

>
ha

5

X

o,

>
ha

%%

o4

b

22

b

2

b

%

b

O
P0a0. 0.

CRRHRRRKRKRHKKKXK
T
b

e

XRXRXRXRRXRRXR K]
KX

..

TR
%6%%%%%%%% %% %% %% %

.
>

Q>

KD
K2
b

&%

e
QP

25
at

SRR

3
OO
25

%

X3

D
Y,

>

>
X
a

5%

’0
R

b

ot

b

>
S

—
- ’0‘

P>

ray

250000

OG0
XXXA

ava

IR
2

Q

a9,

5

R

.,
at

9400
et

X3
X2

X3

2
.
bl

XX

(XX K2

1300

S
2000

ot %e %0 e e e e %%

202020202026 %% %!

TR
2%

KRR
Q

b

QL

2
at

X3
.
X2

Q2
]

R
%%
R

Q

0'0;0;:‘0;0‘

X2

260
K2
o,
X

..
et

2

%!
Q

%
bl

Q2

et
.,
b

3

hat

d

QO

d 180

e
>

TR
X2
&R

-
B2

o,

e
Q
X3
Q

2
.
ha

SOOR
250

%

,
hat

CRR

.
%
&R

e
QO

2
2

v
..
&R
L9.9.9.9.9.9.9.9_
e

e

X
Q2
hal

2
K2
2

e
Q
X2
%
20

2
K2
X

Q

0o

=
R

..
XD
B2

x>
Q

2
ha

2

Q
(%% %

.
&R

2
2
b

XXX
.,

X

Q

e
Q
2

9.

%
&
..
1Peletete!
X

XX

Q>
—

K
Q

e
2
>

2%

X IKRHKIKIKRKIKKN

2
K2

T3
XX

e
Q2
2

%
S
3

R
o0

.
‘0
2
.

QO

1%0% %% %% %% % %% %% %

SR

2
2
X

.

%
0% %%
3

Q

e
K2
>

o,
2
5
e

%0%0%0% %% %% % %% %% %% %

.
&S

mm—;
5%

X
L4

O

2

"o
P
[RRR

O

pS

db
SPECjvm98 benchmarks (sorted by LB length)

jess jack javac compress mpeg scitest geomean

Figure 7.2: Number of virtual instructions executed pepdish for each region shape. The
y-axis has a logarithmic scale. Numbers above bars are thiewuof virtual instructions
executed per dispatch (rounded to two significant figure®EQvmO8 benchmarks appear
along X axis sorted by the average number of instructionsigre by a LB.

system, execution enters the code cache whenever a regiynibealled from a dispatch

loop. Itis an easy matter to instrument the dispatch loog®tmt how many iterations occur,

and hence how many dispatches are made. These numbers @nteddpy Figure 7.1. The

figure shows how direct call threading (DCT) compares to libdacks (LB), interpreted traces

with no linking (i-TR-nolink) and linked interpreted tracésTR). Note that the y-axis has a

logarithmic scale.

DCT dispatches each virtual instruction body individuadlg,the DCT bars on Figure 7.1

report how many virtual instructions were executed by eaaichmark. For each benchmark,

the ratio of DCT to LB shows the dynamic average linear blocigte (e.g., forconpr ess

the average linear block executé®5 x 10'°/1.27 x 10° = 9.9 virtual instructions). In

general, the height of each bar on Figure 7.1 divided by thghhef the DCT bar gives the



7.2. EFFECT OF REGION SHAPE ON DISPATCH 113

average number of virtual instructions executed per despat that region shape. Figure 7.2
also presents the same data in terms of virtual instruceaasuted per dispatch, but sorts the
benchmarks along the x axis by the average LB length. Heacepfmpress, the LB bar shows

9.9 virtual instructions executed on the average.

Scientific benchmarks appear on the right of Figure 7.2 mx#uey tend to have longer
linear blocks. For instance, the average block@ t est has about 24 virtual instructions
whereag avac, j ess andj ack average about 4 instructions. Comparing the geometric
mean across benchmarks, we see that LB reduces the numbspaiicthes relative to DCT by
a factor of 6.3. On long basic block benchmarks, we expetttktigaperformance of LB will
approach that of direct threading for two reasons. Firstefetrips around the dispatch loop
are required. Second, we showed in Chapter 5 that subrotitieading is better than direct

threading for linear regions of code.

Traces do predict paths taken through the program. Thenniggtt cluster on Figure 7.2
show that, even without trace linking (i-TR-nolink), the eage trace executes about 5.7 times
more virtual instructions per dispatch than a LB. The improgat can be dramatic. For in-
stancg avac executes, on average, about 22 virtual instructions pee tdsspatch. This is
much longer than its dynamic average linear block lengthoftdal instructions. This means
that forj avac, on the average, the fourth or fifth trace exit is taken. Ofttipg it another

way, forj avac a trace typically correctly predicts the destination of Hwirtual branches.

This behavior confirms the assumptions behind our appraad¢tandling virtual branch
instructions in general and the design of interpreted teags in particular. We expect that
most of the trace exits, four fifths in the casg @fvac, will not exit. Hence, we generate code
for interpreted trace exits that should be easily preditigdhe processor’s branch history
predictors. In the next section we will show that this immsperformance, and in Section 7.5

we show that it also reduces branch mispredictions.

Adding trace linking completes the interpreted trace (i-T@@hnique. Trace linking makes

the greatest single contribution, reducing the numbemoés execution leaves the trace cache



114 CHAPTER 7. EVALUATION OF YETI

dynamic properties of traces
450

[m] %complete
400 38t = %loaded

per cent

99

SPECivm98 benchmarks (sorted in order of LB len)

Figure 7.3: Percentage trace completion rate as a proparfithe virtual instructions in a
trace and code cache size for as a percentage of the virgialétions in all loaded methods.
For the SPECjvm98 benchmarks and scitest.

by between one and 3adtders of magnitude Trace linking has so much impact because it
links traces together around loops. A detailed discussidrow inner loops depend on trace

linking appears in Section 6.4.3.

Although this data shows that execution is overwhelmingiyrf the trace cache, it gives
no indication of how effectively code cache memory is beisgdiby the traces. A thorough
treatment of this, like the one done by Bruening and Duesldri#4], is beyond the scope of
this thesis. Nevertheless, we can relate a few anecdoted bagdata that our profiling system

already collects.

Figure 7.3 describes two aspects of traces. First, in thedjgloe %complete bars report the
extent to which traces typically complete, measured as @epéage of the virtual instructions
in a trace. For instance, forayt r ace, the average trace exit occurs after executing 59% of
the virtual instructions in the trace. Second, the %loaded keport the size of the traces in the
code cache as a percentage of the virtual instructions ihelloaded methods. For raytrace

we see that the traces contain, in total, 131% of the codesinniderlying loaded methods.



7.3. EFFECT OF REGION SHAPE ON PERFORMANCE 115

We observe that for an entire run of thei t est benchmark, all generated traces contain
only 24% of the virtual instructions contained in all loade@thods. This is a good result
for traces, suggesting that a trace-based JIT needs to ofapier virtual instructions than
a method-based JIT. Also, we see that $ai t est , the average trace executes almost to
completion, exiting after executing 99% of the virtual mstions in the trace. This is what
one would expect for a program that is dominated by innerdamith no conditional branches
— the typical trace will execute until the reverse branchsa¢nd.

On the other hand, fgravac we find the reverse, namely that the traces bloat the code
cache — almost fouimesas many virtual instructions appear in traces than are owdan
the loaded methods. In Section 7.5 we shall discuss the ingp#us on the instruction cache.
Nevertheless, traces jravac are completing only modestly less than the other benchmarks
This suggests thgtavac has many more hot paths than the other benchmarks. What we are
not in a position to measure at this point is the temporatitigion of the execution of the hot

paths.

7.3 Effect of region shape on performance

In this section we report the elapsed time required to eeeeath benchmark. One of our
main goals is to create an architecture for a high level nmecthiat can be gradually extended
from a simple interpreter to a high performance JIT augntesystem. Here, we evaluate the
performance of various stages of Yeti’'s enhancement froimegtccall-threaded interpreter to
a trace based mixed-mode system.

Figure 7.4 shows how performance varies as differently stiapgions of the virtual pro-
gram are executed. The figure shows elapsed time relativeetartimodified JamVM distri-
bution, which uses direct-threaded dispatch. The raw padace of unmodified JamVM and
TR-JIT is given in Table 7.1. The first four bars in each clusggresent the same stage of

Yeti's enhancement as those in Figure 7.1. The fifth bar, TRglves the performance of Yeti



116 CHAPTER 7. EVALUATION OF YETI

[ ] et =i M i-TR-nolink B i-TR B R

o
o S
— ~ I3
ey
n 20 @ _
= 1 8
—

£ — 3
CE, g o Q -
(@) i 2 - -
L _ —
o S 9
= 10 = i
cU —
T 3
bt 2 8

> o
(0] e IN )
S AS RS .
= o
g -
=

:’4

javac db compress mpeg scitest geomean

Figure 7.4: Performance of each stage of Yeti enhancememt DCT interpreter to trace-
based JIT relative to unmodified JamVM-1.3.3 (direct-tdes) running the SPECjvm98
benchmarks (sorted by LB length).



7.3. EFFECT OF REGION SHAPE ON PERFORMANCE 117

[ ] suB =]t

16 |- N
@) ~
— — ™
) ™
2 14 = N
z = - 5
E 12 = o
"E = 2
o — & S
SO10F g 85 & 2 8 & °
(0] @ o [ S o o S o
> o - ®
= — BI=EE ] ] H R N °
< 08| — S S —
() — — I
= —
Q@ 06| —]
£ —|
— —
o 04 —
() —-—
i =
o 02} —]
w —|

0.0 —

mtrt ray jess jack javac db compress mpeg scitest geomean

Figure 7.5: Performance of Linear Blocks (LB) compared to sutine-threaded JamVM-
1.3.3 (SUB) relative to unmodified JamVM-1.3.3 (direct-dated) for the SPECjvm98 bench-
marks.

with our JIT enabled.

Direct Call Threading Our simplest technique, direct call threading (DCT) is slowan
JamVM, as distributed, by about 50%.

Although this seems serious, we note that many productiterpreters are not direct
threaded but rather use the slower and simpler switch thrgadchnique. When JamVM
is configured to run switch threading we we find that its penfance is within 1% of DCT.

This suggests that the performance of DCT is well within thefulsange.

Linear Blocks As can be seen on Figure 7.4, Linear blocks (LB) run roughly &$ter than
DCT, matching the performance of direct threading for bermtgwith long basic blocks like
conpr ess andnpeg. On the average LB runs only 15% more slowly than direct tthrea

The region bodies identified at run time by LB are very simitathe code generated by



CHAPTER 7. EVALUATION OF YETI

118

[] saBLevm B iTR

ERXRRRRRRXRXRXRRXRRRRRRRTTRRRRRRRRS
JRSR555525552505Q5252525252525250525255558 855585

RIS
XRRRIRRRHHHHRRRS
1902 %% % %6 %4 %4264 % % % % % %%

O 020.0.0.9.90.9.9.0.0.0.0.0.9.9.9.9_.0.0.0.0.9.90.9.9.9.0.0.0.0.90.9.0
o000, 0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.000000
[RRRRRRRRRRRRRRRRERRRRRRRRRRRRRRRRRR

9T'T |

29 920.920.0.0.0.9.9.9.9.0_.0.0.0.0.9.9.9.9.9.0.0.0.9.9.9.9.9.0.0_
O 0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.9.0.0.0.0.0.0.0.0.0.000000
RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRK

oJi1sIp-wel 01 aAle|al awi pasde|3

scitest geomean

compress mpeg

ray jess jack javac db

mtrt

Figure 7.6: Performance of JamVM interpreted traces (i-TiR) selective inlined SableVM
1.1.8 relative to unmodified JamVM-1.3.3 (direct-thregdedthe SPECjvm98 benchmarks.

subroutine threading (SUB) at load time so one might expecpérformance of the two tech-
niques to be the same. However, as shown by Figure 7.5 LB itheaverage, about 43%

slower.

This is because virtual branches are much more expensiveBoin SUB, the virtual

branch body is called from the C¥Tthen, instead of returning, it executes an indirect branch
directly to the destination CTT slot. In contrast, in LB a mat branch instruction sets the vPC

and returns to the dispatch loop to call the destinatiororegiody. In addition

, each iteration

of the dispatch loop must loop up the destination body in fepaicher structure (through an

extra level of indirection compared to SUB).

Interpreted Traces Just as LB reduces dispatch and performs better than DCTnko i

disabled interpreted traces (i-TR-nolink) further redurspdtch and run 38% faster than LB.

1See Section 3.6



7.3. EFFECT OF REGION SHAPE ON PERFORMANCE 119

B SABLEVM HI-TR

1.0

0.9

-
a
S

—

—_—

Toss

08

0.7

0.6 |

0.5

0.4

03

0.2

Elapsed Time relative to direct threading

0.1

0.0

mtrt ray jess jack javac db compress mpeg scitest geomean

Figure 7.7: Performance of JamVM interpreted traces (i-ERtive to unmodified JamVM-
1.3.3 (direct-threaded) and selective inlined SableVMalrélative to direct threaded SableVM
version 1.1.8 for the SPECjvm98 benchmarks.

Interpreted traces implement virtual branch instructibetter than LB or SUB. As de-
scribed in Section 6.4.1, i-TR generates a trace exit fon @&tual branch. The trace exit is
implemented as a direct conditional branch that is not takleen execution stays on trace.
As we have seen in the previous section, execution typicattyains on trace for several trace
exits. Thus, on the average, i-TR replaces costly indiratts ¢from the dispatch loop) with
relatively cheap not-taken direct conditional branchasgtiermore, the conditional branches
are fully exposed to the branch history prediction fa@8tof the processor.

Trace linking, though it eliminates many more dispatchebjeves only a modest further
speed up because the specialized dispatch loop for tracmscis less costly than the generic
dispatch loop that runs LB.

We compare the performance of selective inlining, as impiatexd by SableVM, and in-
terpreted traces in two different ways. First, in Figure, @ compare the performance of
both techniques relative to the same baseline, in this cas® W with direct threading. Sec-

ond, in Figure 7.7, we show the speedup of each VM relativéstown implementation of



120 CHAPTER 7. EVALUATION OF YETI

direct threading, that is, we show the speedup of i-TR redath JamVM direct threading and

selective inlining relative to SableVM direct threading.

Overall, Figure 7.6 shows that i-TR and SableVM perform atibe same with i-TR
about 3% faster than selective inlining. SableVM wins ongpams with long basic blocks,
like npeg andsci t est , because selective inlining eliminates dispatch from Iseguences
of simple virtual instructions. However, i-TR wins on sherblock programs lik¢ avac and
] ess by improving branch prediction. Nevertheless, Figure hdws that selective inlining
results in a 2% larger speedup over direct threading foréSdWlthan i-TR. Both techniques
result in very similar overall effects even though i-TR igdised in improving virtual branch

performance and selective inlining on eliminating dispatdthin basic blocks.

Subroutine threading again emerges as a very effectivepmatiation technique, especially
given its simplicity. SUB runs only 6% more slowly than i-TRd&SableVM.

The fact that i-TR runs exactly the same runtime profilingrinsentation as TR-JIT makes
it qualitatively a very different system than SUB or SableV8UB and SableVM are both
tuned interpreters that generate a small amount of codeadttime to optimize dispatch.
Neither includes any profiling infrastructure. In contrimsthis, i-TR runs all the infrastructure
needed to identify hot traces at run time. As we shall see ati&e7.5, the improved virtual
branch performance of interpreted traces has made it pedsibuild a profiling system that

runs faster than most interpreters.

JIT Compiled traces The rightmost bar in each cluster of Figure 7.4 shows theop@idnce

of our best-performing version of Yeti (TR-JIT). Comparingogeetric means, we see that
TR-JIT is roughly 24% faster than interpreted traces. Despipporting only 50 integer and
object virtual instructions, our trace JIT improves thefpenance of integer programs such as
conpr ess significantly. With our most ambitious optimization, oftwial method invocation,
TR-JIT improved the performance ofayt r ace by about 35% over i-TRRaytr ace is

written in an object-oriented style with many small meth@d&ked to access object fields.



7.3. EFFECT OF REGION SHAPE ON PERFORMANCE 121

B rat ] HoTSPOT

09 |-

0.81

0.8 |-

N
™~
o

0.7 |-

0.57

0.6 -

05 |-

04 -

03 |

0.07
0.08

0.1

Elapsed time relative to jam-distro

0.0
mtrt ray jess jack javac db compress mpeg scitest geomean

Figure 7.8: Elapsed time performance of Yeti with JIT consgato Sun Java 1.05.0_6_64
relative to JamVM-1.3.3 (direct threading) running SPEC3&tenchmarks.



122 CHAPTER 7. EVALUATION OF YETI

Hence, even though it is a floating-point benchmark, it iatlyemproved by devirtualizing
and inlining these accessor methods.

Figure 7.8 compares the performance of TR-JIT to Sun Mictesys Java HotSpot JIT.
Our current JIT runs the SPECjvm98 benchmarks 4.3 times skhag HotSpot. Results range
from 1.5 times slower fodb, to 12 times slower font r t . Not surprisingly, we do worse on

floating-point intensive benchmarks since we do not yet glantipe float bytecodes.

7.4 Early Pentium Results

As illustrated earlier, in Figure 3.4, the Intel's Pentiurahatecture takes a different approach
to indirect branches and calls than does the PowerPC. On therP€, we have shown that the
two-part indirect call used in Yeti's dispatch loops penfigrwell. However, the Pentium relies
on its BTB to predict the destination of its indirect call insttion. As we saw in Chapter 5,
when the prediction is wrong, many stall cycles may resultn¢@ovably, on the Pentium, the
unpredictability of the dispatch loop indirect call coushtl to very poor performance.
Gennady Pekhimenko, a fellow graduate student at the Wsityesf Toronto, ported i-TR

to the Pentium platform. Figure 7.9 gives the performanchki®frototype. The results are
roughly comparable to our PowerPC results, though i-TRefitoms direct threading a little
less on the Pentium. The average test case ran in 83% of teedken by direct threading

whereas it needed 75% on the PowerPC.

7.5 ldentification of Stall Cycles

We have shown that Yeti performs well compared to existigrpreter techniques. However,
much of our design is motivated by micro-architectural edesations. In this section, we use
a new set of tools to measure the stall cycles experienceedhny¥it runs.

The purpose of this analysis is twofold. First, we would likeconfirm that we understand



123

IDENTIFICATION OF STALL CYCLES

7.5.

i-TR

LB

PR R R R R R R R R R R R R R R R R R R R R R R RRRXRY

2020220202020 20 2026262222220 242424 20 26 %626 % % % %%

180

BRRRERRRRRRRRRRIIIRIRRRRRHRRIRIRRS

PEKAKARIIRIIIRIRIIRIIIRHR I I I I I I X

880

6.

P IIIIIIIIIIDIIIIRRRN
OeO O eO O IO OIO OO OI0 02000200020 00%0 002000300030 00
0% % %0 % % %66 % %626 % %626 % % %66 % %424 % %% % % %!

PRI,
R3320

%%%%%% %% %"

D0 9.9.0.0.0.0.9.9.9.9.9.0.0.0.0.9.9_9
G0 0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0
RRRRRRRRRRRRRRRRRRKR

e 700 Te e e %0 e %6 T %o T Yo T %o T Yo T Yoo Yo Yo Yo
PRXX KX KX KX KR HKX KX KX KX KX KX K
BRIIGRRIHRHRIIIIIIHIRHKIRHKIRHKRK
OISO I IO II IO

X
2o

'0%0%0%%%%%%% %% %% %% %

$.0.0.0.0.9.0.9.9.0.0.0.9.9.9.9.0.0.0.0.9.9.9.9.0_0_
140a0.0,.0.0.0.0.0.0.0.0.0.90.0.0.0.0.0.0.0.0.0.0.00
PRRRRRRRRRRRRRRRRRRRRRRRRRR

ST e T e Yo TeTe T e AT e e Yo Yo Yoo TaTa e e o
QR R AR RRRRIIIRRRRRRS
GRERERRRRHXHXHRRARRRRRHRHRHRRR
RRRRRRRHHHHRRRRRRRXHHHRARD

|
@
—

©
—

oNsIp

wel 01 aAle|al aw pasde|3

scitest geomean

ray

mpeg  mitrt

jess

javac

jack

db

compress

to unmodified

ive

ko’s Pentiunh natat

imen
JamVM-1.3.3 (direct-threaded) running the SPECjvm98 beracks.

Performance of Gennady Pekh

Figure 7.9



124 CHAPTER 7. EVALUATION OF YETI

why Yeti performs well. Second, we would like to discover anurce of stalls we did not

anticipate, and perhaps find some guidance on how we couldttirb

7.5.1 ldentifying Causes of Stall Cycles

Azimi et al [6] describe a system that uses a statisticalibgeito attribute stall cycles in a
PowerPC 970 processor. They definstall cycleas a cycle for which there is no instruction
that can be completed. Practically speaking, on a PowerPGBigloccurs when the proces-
sor's completion queue is empty because instructions ddeupe or stalled. Their approach,
implemented for a PPC970 processor running K42, a researtiatopg system [18], exploits
performance monitoring hardware in the PowerPC that reézegrwhen the processor’s in-
struction completion queue is empty. Then, the next timenatructiondoescomplete they
attribute, heuristically and imperfectly, all the intervweg stall cycles to the functional unit of
the completed instruction. Azimi et al show statisticaltt their heuristic estimates the true
causes of stall cycles well.

The Linux port runs only on a PowerPC 970FX proce&s®his is slightly different than
the PowerPC 970 processor we have been using up to this pbietonly acceptable machine
we have access to is an Apple Xserve system which was alstlglfgster than our machine,

running at 2.3 GHz rather than 2.0 GHz.

7.5.2 Stall Cycle results

Figure 7.10 shows the results of the Azimi et al’s tools takreéown stall cycles for various
runs of the SPECjvm98 benchmarks.

Five bars appear for each benchmark. From the left to the, fiigh stacked bars represent

2We suspect that the actual requirement is the interruptalbert that Apple packages in newer systems.



125

IDENTIFICATION OF STALL CYCLES

7.5.

oJ1SIp-wel 01 aAle|al S8|2AD

_ Hm______.___ T
i:_:_:: i
[ [TITTTITT0 I X ——
[ — _ _______ - _ ——
[l ENTITTTTITTIT0 I
_ E:_ I
a — “_“_ I
E = LI I
[T =l I
- T P—— - T ——
_ [ $¥eveYe ¥l T I
EXE = EXXXT —
[ I
. T TeTeTeY
T I _
7 [ = NN
_ :
|
= K == I
o S o 2 = — 5 —
o Q 7)) 2 T — 0 I T L T
e c 2 S J B — — ]
o 2 E o 8 5 £ - = I
> § l€ 5 3 9 & [
O P 5B XaL 8 o — _
] -+ £ 0 & & T a o K e |
[ e ]
_ C— _ = _ J—
[ | ==
| | |
2 o o © < N o
— i o o o o o

Lic-d1
ol
Juljou-y L+t
odlisia
ans

Lic-d1
ol
Suljou-y L+
odlisia
ans

Lic-d1
iy}
Juljou-y L+l
odlisia
ans

Lic-d1
L
Juljou-y1-l
odlsia
ans

Lic-d1
=iy}
Juljou-y L+l
odlsia
ans

Lic-d1
L
Juljou-y1-1
odlsia
ans

Lic-d1
=iy}
Sutjou-y L+t
odlsia
ans

Lic-d1
ol
Juljou-y L+l
odlisia
ans

Lic-d1
L
Auljou-y 1-!
odlsia
ans

db jack javac jess mpeg mtrt ray scitest

compress

1.3.3 (direct thregglirunning SPECjvm98 bench-

Figure 7.10: Cycles relative to JamVM

marks.



126 CHAPTER 7. EVALUATION OF YETI

| category name Description |
i-cache Instruction cache misses
br_misp Branch mispredictions
compl Completed instructions. (Cycles in which an instruction dichplete)
other_stall Miscellaneous stalls
fxu Fixed point execution unit
fpu Floating point execution unit
d-cache Data cache
basic_Isu Basic load and store unit stalls

Table 7.3: GPUL categories

subroutine-threaded JamVM 1.1.3 (SUB) , JamVM 1.1.3 (ditletaded as distributed, hence
DISTRO) and three configurations of Yeti, i-TR-no-link, i-Té&d TR-JIT. The y axis, like
many of our performance graphs, reports performance vel&ti JamVM. The height of the
DISTRO bar is thus 1.0 by definition. Figure 7.11 reports @ data as Figure 7.10, but, in
order to facilitate pointing out specific trends, zooms irfaur specific benchmarks.

Each histogram column is split vertically into a stack offoahich illustrates how executed
cycles break down by category. Only cycles listed as “comgiresent cycles in which an in-
struction completed. All the other categories represeilissior cycles in which the processor
was unable to complete an instruction. The “other_staliégary represents stalls to which the
tool was not able to attribute a cause. Unfortunately, therotstall category includes a source
of stalls that is important to our discussion, namely thédsstaused by data dependency be-
tween the two instructions of the PowerPC architectures*part indirect branch mechanidm

See Figure 3.4 for an illustration of two-part branches.

The total cycles executed by each benchmark do not cornpéatectly with the elapsed
time measurements reported earlier in this chapter.
For instance, in Figure 7.4, i-TR runs scitest in 60% of theetbdf direct threading, whereas

in Figure 7.11(c) it takes 80%. There are a few importanedéhces between the runs, namely

3In earlier models of the PowerPC, for instance the 7410gtlgsles were called “LR/CTR stall cycles”, as
reported by Figure 5.1(b)



7.5. IDENTIFICATION OF STALL CYCLES 127

12 1.2
0 fxu

Legend Legend
E fpu

B i-cache B& i-cache
0.8 1 1 . d-cache

br_misp br_misp
. basic_lsu

1.0
|| other_stall — ﬁ | | other_stall
compl

cycles relative to jam-distro
cycles relative to jam-distro

0.2

0.0 o ° - « - @ o x x =
(mpeg) — long int blocks (jess) — short blocks

12

Legend
g i-cache
br_misp
. other_stall
fxu
fpu

10 —

compl

cycles relative to jam-distro
cycles relative to jam-distro

0.4 — — 0.4 — — — -
0.2 0.2
0.0 0.0

(scitest) — long float blocks (javac ) — trace cache bloat

Figure 7.11: Stall breakdown for SPECjvm98 benchmarksivelab JamVM-1.3.3 (direct
threading).



128 CHAPTER 7. EVALUATION OF YETI

the differences between the PowerPC 970FX and PowerPCa¥ @ifterent clock speed (2.3
GHz vs 2.0 GHz) and differences between Linux (with Azimi kg enodifications) and OSX
10.4. We use the data qualitatively to characterize pipdiazards and not to measure absolute

performance.

7.5.3 Trends

Several interesting trends emerge from our examinatiohe€ycle reports.

1. Interpreted traces reduce branch mispredictions camseuitual branch instructions.

2. Simple code we generated for interpreted trace exitss#gethe fixed-point execution

unit (fxu)

3. Our JIT (TR-JIT) does little to reduce Isu stalls, which sugprise since many loads and

stores to the expression stack are eliminated by the regibbeator.
4. As we reduce pipeline hazards caused by dispatch new &fredalls arise.

5. Trace bloat, like we observed for javac, can lead to siganifi stalls due to instruction

cache misses.

Each of these issues will be discussed in turn.

Branch misprediction

In Figure 7.11(mpeg) we see how our techniques affgg, which has a few very hot,
very long basic blocks. The blocks contain many duplicateial instructions. Hence, direct
threading encounters difficulty due to the context problamgiscussed in Section 3.5. (This
is plainly evident in the solid red br_misp stack on the DI®TIBar on all four sub figures.)
SUB reduces the mispredictions that occur runmmpegg significantly — presumably the

ones caused by linear regions. Yeti's i-TR technique effelst eliminates the branch mis-



7.5. IDENTIFICATION OF STALL CYCLES 129

predictions fompeg altogether. Both techniques also reduce other_stall cyelasve to di-
rect threading. These are probably being caused by the P@igetwo-part indirect branches
which are used by DISTRO to dispatch all virtual instruci@md by SUB to dispatch virtual
branches. SUB eliminates the delays for straight-line cak i-TR further eliminates the
stalls for virtual branches. Figures 7.11(javac) and 7ek&] show that traces cannot predict

all branches and some stalls due to branch mispredictiongingfor i-TR and TR-JIT.

Overhead of interpreted Trace EXxits

In all four sub figures of Figure 7.11 we see that fxu stallsease or stay the same relative to
DISTRO for SUB whereas for i-TR they increase. Note also thatxu stalls decrease again
for the TR-JIT condition. This suggests that the fxu stalks ot caused by the overhead of
profiling (since TR-JIT runs exactly the same instrumenta#i® i-TR). Rather, they are caused
by the overhead of the simple-minded trace exit code we géméor interpreted traces.

Recall that interpreted traces generate a compare immeafiatee vPC followed by a
conditional branch. The comparand is the destinatiB&, a 32 bit number. On a PowerPC,
there is no form of the compare immediate instruction thiegdaa 32 bit immediate parameter.
Thus, we generate two fixed point load immediate instrustioioad the immediate argument

into a register. Presumably it is these fixed point instardithat are causing the extra stalls.

TR-JIT and the Expression Stack

Yeti's compiler works hard to eliminate loads and storesrid tom Java’s expression stack.
In Figure 7.11(mpeg) , TR-JIT makes a large improvement o6& by reducing the number

of completed instructions. However, it was surprising rtethat basic_Isu stalls were in fact
not much effected. (This pattern holds across all the otherfigures also.) Presumably the
pops from the expression stack hit the matching pushes in APEStore pending queue and

hence were not stalling in the first place.



130 CHAPTER 7. EVALUATION OF YETI

Exposing stalls from workload

In Figure 7.11(scitest) we see an increase in stalls dueetd-BU for SUB and i-TR. Our
infrastructure makes no use of the FPU at all — so presumaidyhiappens because stalls
waiting on the real work of the application are exposed aslin@reate other pipeline hazards.
This effect makes it hard to draw conclusions about any as®en stalls that occurs, for
instance the increase in fxu stalls caused by i-TR desciibdte previous section, because it

might also be caused by the application.

Trace bloat

The j avac compiler is a big benchmark. The growth of the blue hatched bathe top
of Figure 7.11(javac) shows how i-TR and TR-JIT make this iigamtly worse. Even SUB,
which only generates one additional 4 byte call per virtnainuction, increases i-cache misses.
In the figure, i-TR stalls on instruction cache as much astitegeading stalls on mispredicted
branches.

As we pointed out in Section 7.2, Dynamao’s trace selectiaribgc does not work well for
j avac, selecting traces representing eight times as many viigaiuctions as appear in all
the loaded methods. This happens when many long but sligtitgrent paths are hot through
a body of code. Part of the problem is that the probabilityeafching the end of a long trace
under these conditions is very low. As trace exits becomentwe traces are generated and
replicate even more code. As more traces are generatechtteedache grows huge.

Figure 7.11(javac) shows that simply setting aside a |lai@getcache is not a good solu-
tion. The replicated code in the traces makes the workingfstite program larger than the
instruction cache can hold.

Our system does not, at the moment, implement any mechawoisredlaiming memory
that has been assigned to a region body. An obvious candigatiel be reactive flushing (See
Section 2.5), which occasionally flushes the trace cachieegnt This may result in better

locality of reference after the traces are regenerated .a@wnter-intuitively, reducing the



7.6. CHAPTER SUMMARY 131

size of the trace cache and implementing a very simple tracleecflushing heuristic may lead
to better instruction cache behavior than setting asidege l@ace cache.
Hiniker et al [41] have suggested several changes to the s@lection heuristic that im-

prove locality and reduce replication between traces.

7.6 Chapter Summary

We have shown that traces, and especially linked tracesreeffective shape for region bod-
ies. The trace selection heuristic described by the HP Dyrangject, described in Section 2.5,
results in execution from the code cache for an average d 20tual instructions between
dispatches. This reduces the overhead of region body dispaa negligible level. The amount
of code cache memory required to achieve this seems to vaglyby program, from a very
parsimonious 24% of the virtual instructions in the loadezthnds forsci t est to a rather
bloated 380% foj avac.

We have measured the performance of four stages in the ewolot Yeti: DCT, LB, i-
TR, and TR-JIT. Performance has steadily improved as larggsndodies are identified and
translated. Traces have proven to be an effective shapedmnr bodies for two main reasons.
First, interpreted traces offer a simple and efficient wagftaiently dispatch both straight
line code and virtual branch instructions. Second, com@itraces is straightforward — in part
because the JIT can fall back on our callable virtual instoadbodies, but also because traces
contain no merge points, which makes compilation easy.

Interpreted traces are a fast way of interpreting a progespite the fact that runtime
profiling is required to identify traces. We show that intetpd traces are just as fast as inline-
threading, SableVM’s implementation of selective inlgirSelective inlining eliminates dis-
patch within basic blocks at runtime (Section 3.7) whereserpreted traces eliminate branch
mispredictions caused by the dispatch of virtual branctractions. This suggests that a hy-

brid, namely inlining bodies into interpreted traces (neistent of our TINY inlining heuristic



132 CHAPTER 7. EVALUATION OF YETI

of Section 5.3) may be an interesting intermediate teclanimpiween interpreted traces and the

trace-based JIT.

Yeti provides a design trajectory by which a high level laage virtual machine can be
extended from a simple interpreter to a sophisticated tbased JIT compiler mixed-mode
virtual machine. Our strategy is based on two key assumgptidiirst, that stepping back to
a relatively slow dispatch technique, direct call thregdiDCT), is worthwhile. Second, that
identifying dynamic regions of the program at runtime, éscshould be done early in the life

of a system because it enables high performance intermetat

In this chapter we have shown that both these assumptiomsasenable. Our implemen-
tation of DCT performs no worse than switch threading, comignased in production, and
the combination of trace profiling and interpreted tracemmpetitive with high-performance
interpreter optimizations. This is in contrast to contéxetding, selective inlining, and other
dispatch optimizations, which perform about the same a&spn¢ted traces but do nothing to

facilitate the development of a JIT compiler.

A significant remaining challenge is how best to implemenlabée virtual instruction
bodies. The approach we follow, as illustrated by Figure & 2fficient but depends on C
language extensions and hides the true control flow of tregpreter from the compiler that

builds it. A possible solution to this will be touched uporGhapter 8.

Azimi et al's cycle level performance counter infrastruethas enabled us to learn why our
technique does well. As expected, we find that traces malasiéefor the branch prediction
hardware to do its job, and thus stalls due to branch misptieds reduce markedly. To be
sure, some paths are still hard to predict and traces do inuhake all mispredicted branches.
We find that the extra path length of interpreted trace exassdmatter, but in the balance
reduces stall cycles from mispredicted branches more thaogh to improve performance

overall.

Yeti is early in its evolution at this point. Given the roby&rformance increases we ob-

tained compiling the first 50 integer instructions we bedieruch more performance can be



7.6. CHAPTER SUMMARY 133

easily obtained just by compiling more kinds of virtual mstions. For instance, floating
point multiplication (FMUL or DMUL) appears amongst the méequently executed vir-
tual instructions in four benchmarksdi t est , r ay, npeg andnt rt ). We expect that our
gradual approach will allow these virtual instructions tompiled next with commensurate

performance gains.



134 CHAPTER 7. EVALUATION OF YETI



Chapter 8

Conclusions and Future Work

8.1 Conclusions and Lessons Learned

Interpreters play an important role in the implementatibrc@mputer languages. Initially,
language implementors need a language VM to be simple antléar order to support the
evolution of their language. Later, as their language mses in popularity, performance may

become more of a concern.

Today, commonly implemented interpreter designs do ndtigate the need for more
performance, and justin time (JIT) compiler designs, thocapable of very high performance,
require a great deal of up-front development. These faconspire to prevent, or at least
delay, important language implementations from improypegformance by deploying a JIT.
In this dissertation we have responded to this challengeelsgribing a design for a language
VM that explicitly maps out a trajectory of staged deploynseproviding gradually increasing
performance as development effort is invested.

Our approach is different from most interpreter designsabse we intentionally start out
running a simple dispatch mechanism, direct call threadid@T). DCT is an appropriate
choice not because it is particularly fast — it runs aboutdamme speed as a regular switch

threaded interpreter — but because it is the simplest waispatth callable virtual instruction

135



136

QHAPTER 8. CONCLUSIONS ANDFUTURE WORK

bodies and because it is easy to augment with profiling. Tlake® the early versions of a

language VM simple to deploy.

To gain performance in later releases the DCT interpreterbeaaxtended by inserting

profiling into the dispatch loop and identifying interpretieaces. When more performance is

required interpreted traces can be be enhanced by JIT dompaisubset of virtual instructions.

Our approach is motivated by a few observations:

1. We realized that callable bodies can be very efficiengpatiched by the old technique of

subroutine threading now that processors commonly imphéne¢urn branch predictors.

This is particularly effective for straight-line sectiookthe virtual program.

We realized that although the overhead of a dispatch ®bjgh for dispatching single
virtual instruction bodies, it may be perfectly reasondbledispatching callable region
bodies generated from dozens or hundreds of virtual instmng The basic idea behind
Yeti's extensibility is that development effort should Ineested in identifying and com-
piling larger and more complex regions of the virtual pragrahich are then dispatched

from a profiled dispatch loop.

Optimizing the dispatch of virtual branch instructiofts,instance by selective inlining,
is typically carried out by an interpreter when a method &lked. Instead, we identify
traces at run time using profiling instrumentation calleahfrthe dispatch loop. Hot
traces predict paths through the virtual program which wgl@kto generate simple

trace exit code in otherwise subroutine-threaded intéedrgaces.

. When even better performance is needed, we show how aliesest JIT can be built

to eliminate dispatch and replace the expression stackredfister-to-register compiled
code. The novel aspect of our JIT is that it exploits the faat Yeti’s virtual instruction

bodies are callable. Unsupported virtual instructiongjitficult compiler corner cases
can be side-stepped by dispatching virtual instructiondsithistead. This allows support

for virtual instructions to be added one at a time. The imgrare of the latter point is



8.1. CONCLUSIONS ANDLESSONSLEARNED 137

hard to quantify, but seemed to reduce the difficulty of dejoug the back end of the

compiler significantly.

Most of the elements of our approach are plausible as sodrhas been proved that callable
bodies can be efficiently dispatched. However, actual pedoce improvements depend on
a subtle trade-off between the overhead of runtime profding the reduction of stalls caused
by branch mispredictions. The only way to determine thatideas were viable is to build a
fairly complete prototype. We chose to build a prototypeawalbecause there are commonly
accepted benchmark programs to measure and many highygogliementations to compare
ourselves to.

In the process we learned a number of interesting things:

1. Calling virtual instruction bodies can be very efficientnadern CPUs. Our implemen-
tation of subroutine threading (SUB) is very simple and etiatés most of the branch
mispredictions caused by switch or direct threading, ngrtiedse caused by dispatch-
ing straight-line code. SUB outperforms direct threadiggabout 20%. However, SUB
does not address mispredictions caused by dispatchingbtanch instructions. Also,

it is difficult to interpose runtime instrumentation intdosautine threaded execution.

2. Direct Call Threading (DCT) is simpler than SUB, but much sgwunning about 40%
slower than direct threading. This, however, is not worsa tbwitch, which is widely
implemented by heavily used languages like Python and &aydSDCT is very easy
to augment with profiling, since instrumentation can simpdycalled from the dispatch
loop before and after dispatching each body. Furthermorgroviding multiple dis-

patch loops it is easy to turn instrumentation on and off.

3. Branch inlining, our early and straight-forward approsxcimproving the virtual branch
performance of SUB, is labor intensive and non-portablemfiroves the performance

of subroutine threading by about 5%.



138 QHAPTER 8. CONCLUSIONS ANDFUTURE WORK

4. Interpreted traces are a powerful interpretation tegmi They perform well, as fast
as SableVM’s inline-threading, running Java benchmarkaiaB5% faster than direct
threading on a PowerPC 970. This performance includes steo€the runtime profiling
to identify traces. A system running interpreted traces dlesady implemented the
infrastructure to identify hot regions of a running prograan essential ingredient of a
JIT. This makes interpreted traces a good strategic optiolahguage virtual machines

that may eventually need to be extended with a JIT.

5. Our trace compiler was easy to build, and we attribute phisarily to two factors.
First, traces contain no merge points, so it is easy to tradudravexpression temporary
values are on the expression stack and assign them to regiStcond, callable virtual
instruction bodies enabled us to add compiler support fauai instructions one at a
time. By compiling about 50 integer virtual instructions imstway the performance of

Yeti was increased to about double the performance of dineeading.

The primary weakness of our prototype is the specific meshamwe used to implement
callable virtual instruction bodies. Our approach, asstlated by Figure 4.2, hides the re-
turn branch from the compiler. This means that the optimdme¥s not properly understand
the control flow graph of the interpreter. The workaroundtadle only for a prototype, is to

“fake” the missing control flow by adding computed goto staats that are never executed
immediately following each inline return instruction. Ned functions, a relatively commonly
implemented extension to C, are a promising alternativevtfibbe discussed in the next sec-

tion.

8.2 Future work

Substantial additional performance gains are no doubtigedsy extending our trace-based
JIT to handle more types of instructions (such as the flogiwmigt bytecodes) and by apply-

ing classical optimizations such as common subexpressimination. Improving the per-



8.2. FUTURE WORK 139

formance of compiled code by applying classical optimaadiis relatively well understood.
Hence, on its own, such an effort seems to have relativélly tid contribute to research. More-
over, it would require significant engineering work and Ijkeould only be undertaken by a
well-funded project.

We will discuss four avenues for further research. Firstag te package virtual instruction
bodies as nested functions. Second, how the approach welaeiscSection 6.4.3 to optimize
virtual method invocation could be adapted for runtime tyf@guages. Third, we comment
on how new shapes of region bodies could be derived fromdinieces. Fourth, we describe

our vision of how our design could be used by the implemerdbesnew language.

8.2.1 Virtual instruction bodies as nested functions

An better option for implementing callable virtual insttion bodies might be to define them
as nested functions. Nested functions are a common extettsio, implemented by gcc and
other C compilers, that allows one function to be declaretthiwianother. The idea is that
each virtual instruction body is declared as a separateddéghction, with all bodies nested
within the main interpreter function. Important intergrevariables, like the PC, are defined,
as currently, as local variables in the main interpretecfiom but can be used from the nested
function implementing each virtual instruction body aslwel

The approach is elegant, since functions are a natural waygecess virtual instruction
bodies, and also well supported by the tool chain, includivegdebugger. However, our first
attempts in this direction did not perform well. In short,evha nested function is called via a
function pointer, like from our DCT dispatch loop, gcc addseatra level of indirection and
calls the nested function via a runtime generated trampols a result the DCT dispatch loop
runs very slowly.

We investigated the possible performance of nested fumety hand-modifying the as-
sembler generated by gcc to short-circuit the trampolimethis way, we created a one-off

version of OCaml that declares each virtual instruction bimdigs own nested function and



140 QHAPTER 8. CONCLUSIONS ANDFUTURE WORK

runs a simple DCT dispatch loop like the one illustrated byuFeg3.2. On the PowerPC this
DCT interpreter runs the same OCaml benchmarks used in Chagberus 22% more slowly
than switch threading.

Further improvements to nested function performance shioellinvestigated, possibly in-
cluding modifications to gcc to create a variant of nestedtions more suitable for imple-

menting virtual instruction bodies.

8.2.2 Extension to Runtime Typed Languages

An exciting possibility is to create new speculative dynamptimizations based on the run-
time profile data collected while training a trace (See $ecfi.2.3.) The basic realization is
that a mechanism very similar to a trace exit can be used tal@laost any speculative op-
timization. As a specific example we consider the optimaratf arithmetic operations in a
runtime typed language.

A runtime typed language is a language that does not forcedbeto declare the types
of variables but instead discovers types at run time. A Blpimplementation compiles ex-
pressions to sequences of virtual instructions that areypet specific. For instance, in Tcl
or Python the virtual body for addition will work for integerfloating point numbers or even
strings. Performance tends to be poor as each virtual otgirubody must check the type of
each input before actually calculating its result.

We believe the same profiling infrastructure that we use tovope callsites in Java (Sec-
tion 6.4.3) could be used to improve arithmetic bytecodesrimtime typed language. Whereas
the destination of a Java method invocation depends only tipo type of the invoked-upon
object, the operation carried out by a polymorphic virtueitiuction may depend on the type
of each input. For instance, suppose that a specific inst@inbe addition instruction in Tcl,
Python or JavaScript has integer type. (We would know thits iinputs were observed to be
integers during trace training.) We could generate one aerrace exits, or guards, to ensure

that the inputs are actually integers. Following the guarelsould generate specialized integer



8.2. FUTURE WORK 141

code, or dispatch a version of the addition virtual instarcbody specialized for integers.

8.2.3 New shapes of region body

Just as basic blocks are collected into traces, so tracésloewcollected into yet larger regions
for optimization. An obvious possibility would be to idefiytioop nests amongst the linked
traces, and use these as a higher level unit of compilation.

The data recorded by our trace region payload structureadyrincludes the information
necessary to build a flow graph of the program in the code cdthemains to adapt classical
flow graph algorithms to detect nested loops and create @gyréor compiling the resulting
code.

There seems to be little point, however, in detecting loogtsyevithout any capability of
optimizing them. Thus, this extension of our work would omgke sense for a system that

plans to build an optimizer.

8.2.4 Vision for new language implementation

Our vision for a new language implementation would be totdigrbuilding a direct call
threaded interpreter. Until the issues with nested funetioave been dealt with, the virtual
bodies would have to be packaged as we described in Chaptenélevel of performance
would be roughly the same as a switch-threaded interpreter.

Then, as more performance is called for, we would add linéaokis, interpreted traces,
and trace linking. It would be natural to make these exterssio separate releases of our
implementation. We believe that much of the runtime prdjilinfrastructure we built for
Yeti could be reused as is. Finally, when performance requénts demand a JIT compiler
could be built. Like Yeti, the first implementation would cpite only a subset of the virtual
instructions, perhaps only the ones needed to addressisgesiormance issues with a given

application.



142 (HAPTER 8. CONCLUSIONS ANDFUTURE WORK
8.3 Summary

We have described a design trajectory which describes hagtelével language virtual ma-
chine can be deployed in a sequence of stages, starting vgith@e entry-level direct call
threaded interpreter, followed by interpreted traces amallji a trace-based just in time com-
piler.

We have shown that it is beneficial to implement virtual iastion bodies as callable rou-
tines both from the perspective of efficient interpretatéoml because it allows bodies to be
reused by the JIT. We recognized that on modern computerswirte threading is a very
efficient way to dispatch straight-line sequences of virimstructions. For branches we in-
troduce a new technique, interpreted traces. Our techregpmits the power of traces to
predict branch destinations and hence reduce mispredictiaused by the dispatch of virtual
branches. Interpreted traces are a state-of-the-artitpenrunning about 25% faster than
direct threading. This is about the same speed up as achigvatined-threading, SableVM's
implementation of selective inlining.

We show how interpreted traces can be gradually enhancédantitace-based JIT com-
piler. An attractive property of our approach is that compgupport can be added one virtual
instruction at a time. Our trace-based JIT currently coagpdbout 50 integer virtual instruc-
tions, running about 30% faster than interpreted tracespout double the performance of
direct threading.

Our hope is this work will enable more language implemeaotetito deploy better inter-
preters and JIT compilers and hence deliver better compantguage performance to more

users.



Bibliography

[1] Ocaml. http://www.ocaml.org.

[2] The Java hotspot virtual machine, v1.4.1, technicaltevpaper. 2002.

[3]

[4]

Eric Allman. A conversation with James GoslinrgCM Queue Magazin@(5), July/Au-
gust 2004.

Bowen Alpern, Dick Attanasio, John Barton, Michael Burkerfy Cheng, Jong-Deok
Choi, Anthony Cocchi, Stephen Fink, David Grove, Michael Hi8dsan Flynn Hummel,
Derek Lieber, Vassily Litvinov, Ton Ngo, Mark Mergen, VivSarkar, Mauricio Serrano,
Janice Shepherd, Stephen Smith, VC Sreedhar, Harini &saiy and John Whaley. The

Jalapeno virtual machine. IBM Systems Journals, Java Performance Is20€0.

[5] Joel Auslander, Matthai Philipose, Craig Chambers, SukaBggers, and Brian N.

[6]

Bershad. Fast, effective dynamic compilation. SltGPLAN Conference on Program-
ming Language Design and Implementatiggages 149-159, 1996. Available from:

http://citeseer.nj.nec.confausl ander 96fast. html .

Reza Azimi, Michael Stumm, and Robert W. Wisniewski. Oalperformance analysis
by statistical sampling of microprocessor performancentens. InICS '05: Proceedings
of the 19th annual international conference on Supercomgupages 101-110, New

York, NY, USA, 2005. ACM Press.

143



144 BIBLIOGRAPHY

[7] Vasanth Bala, Evelyn Duesterwald, and Sanjeev Banerji@andparent dynamic op-
timization: The design and implementation of Dynamo. Teécdinreport, Hewlett
Packard, 1999. Available from:htt p://wwv. hpl . hp. conft echreports/
1999/ HPL- 1999- 78. ht i .

[8] Vasanth Bala, Evelyn Duesterwald, and Sanjeev Banerjignano: A transparent dy-
namic optimization system. Rroc. of the ACM SIGPLAN 2000 Conf. on Prog. Language
Design and Imp|.pages 1-12, Jun. 2000.

[9] Iris Baron. Dynamic Optimization of Interpreters using DynamoRIOPhD the-
sis, MIT, 2003. Available from: http://ww. cag.csail.mt.edu/rio/

iris-smthesis. pdf.

[10] Marc Berndl, Benjamin Vitale, Mathew Zaleski, and Ang&amke Brown. Context
threading: A flexible and efficient dispatch technique fatual machine interpreters. In
Proc. of the 3rd Intl. Symp. on Code Generation and Optinozagpages 15-26, Mar.
2005.

[11] Derek Bruening and Evelyn Duesterwald. Exploring ogtirompilation unit shapes for
an embedded just-in-time compiler. Rroc. of the 3rd ACM Workshop on Feedback-
Directed and Dynamic Optimization (FDDO-3Pec. 2000. Available fromhtt p:

/I ww. eecs. harvar d. edu/ f ddo/ paper s/ 108. ps.

[12] Derek Bruening, Evelyn Duesterwald, and Saman Amagh&n Design and implemen-
tation of a dynamic optimization framework for windows.Rroc. of the 4th ACM Work-

shop on Feedback-Directed and Dynamic Optimization (FDO@ec. 2000.

[13] Derek Bruening, Timothy Garnett, and Saman Amarasingmeinfrastructure for adap-
tive dynamic optimization. IfProc. of the 1st Intl. Symp. on Code Generation and Opti-
mization pages 265-275, Mar. 2003. Available froht:t p: / / ww. cag. |l cs. mt.
edu/ dynanori o/ CG203. pdf .



BIBLIOGRAPHY 145

[14] Emmanuel Chailloux, Pascal Manoury, and Bruno PagBeoeloping Applications With
Objective Caml O’Reilly France, 2000.

[15] Craig Chambers.The Design and Implementation of the Self Compiler, an Opithgi
Compiler for Object-Oriented Programming LanguagB&D thesis, Stanford University,
1988.

[16] Wen-Ke Chen, Sorin Lerner, Ronnie Chaiken, and David &lli Mojo: A dynamic
optimization system. IrProc. of the 3rd ACM Workshop on Feedback-Directed and
Dynamic Optimization (FDDO-3)Dec. 2000. Available from:htt p: //ww. cs.

washi ngt on. edu/ hones/ | er ns/ noj o. pdf .
[17] Randy Clark and Stephen Koehl@ihe UCSD Pascal HandbooPRrentice-Hall, 1982.

[18] IBM Corporation. K42 research operating system [onli2€)06. Available fromht t p:

[/ www. research. i bm cont k42.

[19] Timothy Cramer, Richard Friedman, Terrence Miller, BSkeberger, Robert Wilson, and
Mario Wolczko. Compiling Java just in timéEEE Micro, 17(3):36—43, 1997. Available
from:http://ieeexplore.ieee.org/iel1l/40/ 12908/ 00591653. pdf.

[20] Charles Curley. Life in the FastForth lanBorth Dimensions14(4), January-February
1993.

[21] Charles Curley. Optimizing in a BSR/JSR threaded fortrarth Dimensions 14(5),
March-April 1993.

[22] Ron Cytron, Jean Ferrante, B. K. Rosen, M. N Wegman, and Fade&k. Efficiently
computing static single assignment form and the controéddpnce graphACM Trans-

actions on Programming Languages and Systeir@§t):451-490, 1991.

[23] James C. Dehnert, Brian K. Grant, John P. Banning, Richardstm, Thomas Kistler,

Alexander Klaiber, and Jim Mattson. The Transmeta code mogpsoftware: Using



146 BIBLIOGRAPHY

speculation, recovery, and adaptive retranslation toesddreal-life challenges. Froc.

of the 1st Intl. Symp. on Code Generation and Optimizapages 15-24, Mar. 2003.

[24] Peter L. Deutsch and A. M. Schiffman. Efficient implertegion of the Smalltalk-80
system. InConference Record of the Eleventh Annual ACM Symposium oaiplasa of

Programming Languagepages 297-302, Salt Lake City, Utah, Jan. 1984.
[25] Karel Driesen Efficient Polymorphic CallsKlumer Academic Publishers, 2001.

[26] Evelyn Duesterwald and Vasanth Bala. Software profiforghot path prediction: less is
more. ACM SIGPLAN Notices35(11):202-211, 2000.

[27] M. Anton Ertl. Stack caching for interpreters. Rroc. of the ACM SIGPLAN 1995
Conf. on Prog. Language Design and Implages 315-327, June 1995. Available from:

htt p://ww. conpl ang. t uwm en. ac. at/ papers/ertl 95pl di. ps. gz.

[28] M. Anton Ertl and David Gregg. The behavior of efficiemttsal machine interpreters on

modern architectured.ecture Notes in Computer Scien2450, 2001.

[29] M. Anton Ertl and David Gregg. Optimizing indirect bi@nprediction accuracy in virtual
machine interpreters. IRroc. of the ACM SIGPLAN 2003 Conf. on Prog. Language
Design and Imp].pages 278-288, June 2003.

[30] M. Anton Ertl, David Gregg, Andreas Krall, and Bernd Pays VMgen — a generator
of efficient virtual machine interpreterSoftware Practice and Experiencg2:265-294,

2002.

[31] S. Fink and F. Qian. Design, implementation, and ewaueof adaptive recompilation
with on-stack replacement. lim Proceedings of the First Annual IEEE/ACM Interna-
tional Symposium on Code Generation and Optimization (C®@)ych 2003. Avail-
able from: http://ww.research.ibm com peopl e/ s/ sfi nk/ papers/

cgo03. ps. gz.



BIBLIOGRAPHY 147

[32] Etienne Gagnon and Laurie Hendren. Effective inline#ding of Java bytecode using
preparation sequences.Pnoc. of the 12th Intl. Conf. on Compiler Constructjmolume

2622 ofLecture Notes in Computer Scienpages 170-184. Springer, Apr. 2003.

[33] Andreas Gal, Christian W. Probst, and Michael Franz.pdtitvm: an effective jit com-
piler for resource-constrained devicesPlioc. of the 2nd Intl. Conf. on Virtual Execution

Environmentspages 144-153, 2006.

[34] Stephen Gilmore. Programming in standard ML '97: A tigbintroduction. 1997.

Available from:ht t p: / / ww. dcs. ed. ac. uk/ home/ st g.

[35] A. Goldberg.Smalltalk-80: The Interactive Programming Environmekxddison-Wesley,
1984.

[36] Adele Goldberg and David Robso8malltalk-80: The Language and its implementation
Addison-Wesley, 1983.

[37] Brian Grant, Markus Mock, Matthai Philipose, Craig Chamsheand Susan J. Eggers.
DyC: an expressive annotation-directed dynamic compileCfoTheoretical Computer

Science248(1-2):147-199, 2000.

[38] Brian Grant, Matthai Philipose, Markus Mock, Craig Chamsheand Susan.J. Eg-
gers. An evaluation of staged run-time optimizations in Dycln Conference
on Programming Language Design and Implementatidhay 1999.  Available
from: http://ww. cs. washi ngton. edu/ resear ch/ proj ects/ uni sw

DynConp/ wwi Paper s% pl di 99. pdf.

[39] David Grove and Craig Chambers. A framework for call graphstruction algorithms.

ACM Transactions on Programming Languages and Systiims 2001.

[40] J. L. Hennessy and D. A. Patterso@omputer Architecture: A Quantitative Approach

Morgan Kaufmann Publishers, 1990.



148 BIBLIOGRAPHY

[41] David Hiniker, Kim Hazelwood, and Michael D. Smith. Imgving region selection in
dynamic optimization systems. Iroc. of the 38th Intl. Symp. on Microarchitecture

pages 141-154, Nov. 2005.

[42] Glenn Hinton, Dave Sagar, Mike Upton, Darrell Boggs, Ddbarmean, Alan Kyker,
and Patrice Roussel. The microarchitecture of the Pentiumodepsor.Intel Technol-
ogy Journa) Q1, 2001. Available fromht t p: // ww. i nt el . com’ t echnol ogy/
itj/gl2001. htm

[43] Urs Holzle. Adaptive Optimization For Self:Reconciling High Performca With Ex-
ploratory Programming PhD thesis, Stanford University, 1994.

[44] Urs Hoélzle, C. Chambers, and D. Ungar. Debugging optichizede with dynamic deop-
timization. InConference on Programming Language Design and Implemen{di992.
Available from:ht t p: // ww. cs. ucsb. edu/ | abs/ oocsb/ paper s/ pl di 92.

pdf .

[45] Urs Holzle and David Ungar. A third-generation Self ileqmentation: Reconciling re-
sponsiveness with performance. Proceedings of the OOPSLA '94 conference on Ob-
ject Oriented Programming Systems Languages and Appitatl 994. Available from:

http://research. sun. com sel f/ papers/third-generation. htni.
[46] IBM Corporation.IBM PowerPC 970FX RISC Microprocessor, version.2605.

[47] Intel Corporation.A-32 Intel Architecture Software Developer’'s Manual Voug Sys-

tem Programming Guide2004.

[48] Ronald L. Johnston. The dynamic incremental compileapuif 3000. InProceedings
of the international conference on APL: parf fpages 82—-87, 1979. Available from:

http://doi.acm org/ 10. 1145/ 800136. 804442.

[49] Thompson K. Regular expression search algorit@ACM, June 1968.



BIBLIOGRAPHY 149

[50] Peter M. Kogge. An architectural trail to threaded- esgstemslEEE Computerl5(3),
March 1982.

[51] Peter Lee and Mark Leone. Optimizing ML with run-timedeogeneration. II&IG-
PLAN Conference on Programming Language Design and Impletien pages 137—
148, 1996.

[52] Tim Lindholm and Frank Yellin. The Java Virtual Machine SpecificationAddison-
Wesley, 1996.

[53] Robert Lougher. JamVM [online]. Available frorht t p: / / j amvm sour cef or ge.

net/ .

[54] Motorola CorporationMPC7410/MPC7400 RISC Microprocessor User's Manual, Rev.
1. 2002.

[55] Steven S Muchnick Advanced Compiler Design and Constructiadorgan Kaufman,

1997.

[56] Igor Pechtchanski and Vivek Sarkar. Dynamic optingistiterprocedural analysis: A
framework and an application. IRroc. of the 16th ACM SIGPLAN Conf. on Object-
Oriented Programming, Systems, Languages, and Applitatipages 195-210, Oct.
2001. Available fromht t p: / / ww. cs. nyu. edu/ phd_st udent s/ pecht cha/
pubs/ oopsl a01l. pdf.

[57] Rob Pike, Bart Locanthi, and John Reiser. Hardware/soéviade-offs for bitmap
graphics on the blitSoftware - Practice and Experiences(2):131-151, 1985. Available
from: http://citeseer.nj.nec.com 324101. htn .

[58] lan Piumarta. Ccg: A tool for writing dynamic code geniera. INnOOPSLA'99 Work-
shop on simplicity, performance and portability in virtualachine designNov. 1999.

Available from:ht t p: / / pi umart a. coni ccg.



150 BIBLIOGRAPHY

[59] lan Piumarta. The virtual processor: Fast, architecteutral dynamic code generation.

In 2004 USENIX Java Virtual Machine Symposjia04.

[60] lan Piumarta and Fabio Riccardi. Optimizing directelded code by selective inlining.
In Proc. of the ACM SIGPLAN 1998 Conf. on Prog. Language Designliaupdl, pages
291-300, June 1998.

[61] R. Pozo and B. Miller.SciMark: a numerical benchmark for Java and C/C+#998.

Available from:ht t p: / / wwww. mat h. ni st. gov/ Sci Mar k.

[62] Brad Rodriguez. Benchmarks and case studies of forth lgerifiee Computer Journal

60, 1993.

[63] Theodore H. Romer, Dennis Lee, Geoffrey M. Voelker, Algalman, Wayne A. Wong,
Jean-Loup Baer, Brian N. Bershad, and Henry M. Levy. The stracnd performance

of interpreters. IiProc. ASPLOS ,pages 150-159, October 1996.

[64] Markku Rossi and Kengatharan Sivalingam. A survey ofringion dispatch techniques
for byte-code interpreters. Technical Report TKO-C79, hidisUniversity Faculty of
Information Technology, May 1996.

[65] James E. Smith and Ravi Nair. The architecture of virtmathineslEEE-COMPUTER
38(5):32—-38, May 2005.

[66] SPECjvm98 benchmarks [online]. 1998. Available fram:t p: / / www. spec. or g/
osg/jvno8/.

[67] Kevin Stoodley. Productivity and performance: Futuwl@gections in compilers
[online]. 2006. Available from: http://ww. cgo. org/ cgo2006/ htmni/
St oodl eyKeynot e. ppt .



BIBLIOGRAPHY 151

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

Mark Stoodley, Kennth Ma, and Marius Lut. Real-time jayaart 2: Comparing
compilation techniques [online]. 2007. Available frohtt p: // www. i bm cont

devel operworks/javal/library/j-rtj2/index.htm.

Dan Sugalski. Implementing an interpreter [online]lvafable from: ht t p: / / www.
si dhe. or g/ %9 Edan/ pr esent at i ons/ Parr ot %201 npl enent ati on. ppt.
Notes for slide 21.

Toshio Suganuma, Takeshi Ogasawara, Mikio TakeucbgshiBki Yasue, Motohiro
Kawabhito, Kazuaki Ishizaki, Hideaki Komatsu, and ToshidkAtani. Overview of the
IBM Java just-in-time compilerIBM Systems Journals, Java Performance Is89€1),

Feb. 2000.

Toshio Suganuma, Toshiaki Yasue, and Toshio Nakaté&nregion-based compilation
technique for dynamic compilersACM Trans. Program. Lang. Sys28(1):134-174,
2006.

Gregory T. Sullivan, Derek L. Bruening, Iris Baron, TirhgtGarnett, and Saman Ama-
rasinghe. Dynamic native optimization of interpreters. Piioc. of the Workshop on

Interpreters, Virtual Machines and Emulato003.

V. Sundaresan, D. Maier, P Ramarao, and M Stoodley. Eapess with multi-threading
and dynamic class loading in a Java just-in-time compilePrbc. of the 4th Intl. Symp.

on Code Generation and Optimizatigrages 87-97, Mar. 2006.

David Ungar, Randall B. Smith, Craig Chambers, and Urs Kdl@bject, message, and
performance: how they coexist in SElIEEE-COMPUTER25(10):53—-64, Oct. 1992.

Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendpatrick Lam, and Vijay
Sundaresan. Soot - a java bytecode optimization framewnorRroceedings of the 1999
conference of the Centre for Advanced Studies on Collaberatisearchpage 13. IBM

Press, 1999.



152 BIBLIOGRAPHY

[76] Benjamin Vitale and Tarek S. Abdelrahman. Catenation@merand specialization for

Tcl VM performance. IrProc. 2nd IVME pages 42-50, 2004.

[77] Benjamin Vitale and Mathew Zaleski. Alternative disgfatechniques for the Tcl vm
interpreter. InProceeedings of Tcl'2005: The 12th Annual Tcl/Tk Conferer@e-
tober 2005. Available from:htt p://ww. cs. t or ont 0. edu/ sysl ab/ pubs/

tcl 2005- vi t al e- zal eski . pdf.

[78] John Whaley. Partial method compilation using dynaméfife information. InProc. of
the 16th ACM SIGPLAN Conf. on Object-Oriented Programmingie®ys, Languages,
and Applicationspages 166—-179, Oct. 2001.

[79] Wikipedia. Ucsd p-system — wikipedia, the free encypedia, 2007. [Online; accessed
15-May-2007]. Available from:htt p://en. w ki pedi a. or g/ w i ndex. php?
titl e=UCSD _p- Syst en&ol di d=117632578%

[80] Tom Wilkinson. The Kaffe java virtual machine [onlineAvailable from: htt p://

www. kaf fe. org/.

[81] Mathew Zaleski, Marc Berndl, and Angela Demke Brown. Mixaode execution with
context threading. "CASCON '05: Proceedings of the 2005 conference of the Centre

for Advanced Studies on Collaborative reseail@&M Press, 2005.



Revisions from Departmental exam

When | remembered, | added latex labels at each place | changéeelt. By searching for the
labels, a little python script generated the following &k{lf | made a change and forgot to put

in a label starting with rev: there will be no entry in the &bl

153



154

Section Page Number
1.1 4
1.1 4
14 7
15 8
1.6 8
3.3 40
3.4 41
4.5 59
5 61

5.1.2 65
5.4 76
54.1 76
5.4.3 78
??Number-of-virtual: 110
1.7 117
7.3 118
7.6 129
8.1 135
8.3 140

BIBLIOGRAPHY



CVS Version numbers of files

Version numbers of all the lyx and eps files the makefile kndvesia written by cvslog.py.
This is the only way | could think of keeping the functiongldf the cvs version numbers

in the header and footer.

File CVS Version
matzDissertation.lyx 1.16
intro.lyx 1.42
background-related.lyx 1.45
background.lyx 1.34
efficient-interpretation.lyx 1.40
eval-efficient-interpretation.lyx 1.20
implementation-yeti.lyx 1.41
eval-yeti.lyx 1.25
concl.lyx 1.19
figs-cgo/blnline.eps 1.1
figs-cgo/ct.eps 1.1
figs-cgo/directThread.eps 1.1
figs-cgo/dt.eps 1.1
figs-depth/dynamoDLLSimple.eps 1.2
figs/dynamoFigure42.eps 1.1
figs/gradualBb.eps 1.2

155



156

figs/gradualBbRecordMode.eps
figs/javaApplyReturninlining.eps
figs/javaBranchinline.eps
figs/javaBranchRepl.eps
figs/javaContextThread.eps
figs/javaDirectCallThreading.eps
figs/javaDirectCallThreadingExt.eps
figs/javaDirectThread.eps
figs/javaDirectThreadInlineRet.eps
figs/javaRunningExample.eps
figs/javaSubBranch.eps
figs/javaSubThread.eps
figs/javaSwitch.eps
figs/traceExit.eps

figs/traceRegion.eps

graphs-cgo/objcaml|_breakdown_mpt_normalized_dpsct.

graphs-cgo/objcaml_ppc7410_stalls_normalized_dpsct
graphs-cgo/sablevm_mpt_normalized_direct.ps

graphs-cgo/sable_ppc7410_stalls_normalized_direct.p

graphs-cgo/objcaml_breakdown_tsc_normalized_dpect.

graphs-cgo/objcaml_ppc7410_cycles_normalized.ps
graphs-cgo/sable_tsc_normalized_direct.ps
graphs-cgo/sable_ppc7410_cycles_normalized.ps
graphs-cgo/objcaml_ppc970_time_normalized_direct.p
graphs-cgo/sable_ppc970_time_normalized_direct.ps
graphs-tcl/cyclesPerDispatch.eps

graphs-tcl/cycles_per_disp1000-legend.eps

—

[92)

BIBLIOGRAPHY

1.4
1.8
15
15
1.3
1.3
1.3
1.2
1.7
1.3
1.8
1.7
15
1.4
1.8
1.3
1.3
1.3
1.3
1.3
1.3
1.3
1.3
1.3
1.3
11
11




BIBLIOGRAPHY 157

graphs/jam-dloop-no-mutex-PPC970.ps 1.7
graphs/instrPerDispatch.ps 1.2
graphs/gpul-PPC970FX-javac.ps 1.3
graphs/gpul-PPC970FX-jess.ps 1.3
graphs/gpul-PPC970FX-linux.ps 1.4
graphs/gpul-PPC970FX-mpeg.ps 1.3
graphs/gpul-PPC970FX-scitest.ps 1.3
graphs/instrPerDispatch.ps 1.2
graphs/trace-details.ps 1.1
graphs/jam-dloop-no-mutex-PPC970.ps 1.7
graphs/jam-jit-PPC970.ps 1.4
graphs/jam-nosub-PPC970.ps 1.2
graphs/jam-sub-stack-cache-PPC970.ps 1.8
graphs/jamvm-Pentium4.ps 1.3
graphs/logDispatchCount.ps 1.10
graphs/sablevm-PPC970.ps 1.4
graphs/sablevm-sel_vs_jam-i-tr.xls.ps 1.1




