YETI: A GRADUALLY EXTENSIBLE TRACE INTERPRETER

Mathew Zaleski

A thesis submitted in conformity with the requirements
for the degree of Doctor of Philosophy
Graduate Department of Computer Science
University of Toronto

Copyright(© 2007 by Mathew Zaleski

Abstract

YETI: a graduallY Extensible Trace Interpreter

Mathew Zaleski
Doctor of Philosophy
Graduate Department of Computer Science
University of Toronto

2007

The design of new programming languages benefits from irg&afon, which can provide a
simple initial implementation, flexibility to explore newariguage features, and portability to
many platforms. The only downside is speed of executiome®tremains a large performance
gap between even efficient interpreters and mixed-modemsgsthat include a just-in-time
(JIT) compiler. Augmenting an interpreter with a JIT, hoeevs not a small task. Today, Java
JITs are loosely-coupled with the interpreter, with cédisiof methods being the only transition
point between interpreted and native code. To compile wing#ods, the JIT must duplicate
a sizable amount of functionality already provided by therpreter, leading to a “big bang”
development effort before the JIT can be deployed. Instadding a JIT to an interpreter
would be easier if it were possible to leverage the existimgfionality.

First, we show that packaging virtual instructions as lkgight callable routines is an
efficient way to build an interpreter. Then, we describe hallable bodies help our interpreter
to efficiently identify and run traces. Our closely couplgdamic compiler can fall back on the
interpreter in various ways, permitting a incremental apph in which additional performance
gains can be realized as it is extended in two dimensiongefierating code for more types
of virtual instructions, and (ii) identifying larger conaiion units. Currently, Yeti identifies
straight line regions of code and traces, and generatespiimized code for roughly 50 Java
integer and object bytecodes. Yeti runs roughly twice asaaa direct-threaded interpreter on

SPECjvm98 benchmarks.

Acknowledgements

thanks all yous guys.

Contents

1 Introduction
1.1 Challenges of Evolving to a Mixed-Mode System
1.2 Challenges of Efficient Interpretation
1.3 WhatWeNeed e
1.4 OverviewofOurSolution.
1.5 Thesis Statement
1.6 Contributions

1.7 Outlineof Thesis

2 Background

2.1 High Level Language Virtual Machine
2.1.1 OverviewofaVirtual Program
2.1.2 Interpretation
2.1.3 EarlyJustinTime Compilers.

2.2 ChallengestoHLL VM Performance u.
2.2.1 Polymorphism and the Implications of Object Orierffedgramming .
222 Llatebinding

2.3 Early Dynamic Optimization
2.3.1 Manual Dynamic Optimization.

2.3.2 Application specific dynamic compilation

2.3.3 Dynamic Compilation of Manually Identified Static Retgo. 22
2.4 Dynamic Object-oriented optimization 23

2.4.1 Finding the destination of a polymorphic callsite 23

242 Smalltalkkand Self 25
2.4.3 Java JIT as Dynamic Optimizer 27
2.4.4 JIT Compiling Partial Methods 28
25 TraCes 29
2.6 Hotpath 31
27 ChapterSummary 32
Dispatch Techniques 33
3.1 SwitchDispatch 34
3.2 DirectCall Threading 36
3.3 DirectThreading e 36
3.4 Dynamic Hardware Branch Prediction 38
3.5 TheContextProblem 9 3
3.6 SubroutineThreading 40
3.7 Optimizing Dispatch 42
3.7.1 Superinstructions 42
3.7.2 Selectivelnlining 42
3.7.3 Replication 44
3.8 ChapterSummary 44
Design and Implementation of Efficient Interpretation 45
4.1 UnderstandingBranches 47
4.2 Handling Linear Dispatch, 48
4.3 Handling Virtual Branches 50
4.4 Handling Virtual Calland Return 53

Vi

4.5 ChapterSummary e e e 56

Evaluation of Context Threading 57

5.1 \Virtual Machines, Benchmarks and Platforms 58
511 OCaml e 59
5.1.2 SableVM 59
5.1.3 OCamlBenchmarks 59
5.1.4 SableVvMBenchmarks 60

5.2 Pentium IV Measurements 60

5.3 PowerPC Measurements 60.

5.4 Interpretingthedata 61
5.4.1 Effecton Pipeline BranchHazards 64
5.4.2 Performance 69

55 Inlining e 70

5.6 Limitations of Context Threading 71

5.7 ChapterSummary e e e 73

Design and Implementation of YETI 75

6.1 Instrumentation 76

6.2 Loading e 77

6.3 BasicBlock Detection 07

6.4 Trace Selection 78

6.5 TraceExitRuntime 08

6.6 Generatingcodefortraces 82
6.6.1 Trace Exits and Trace ExitHandlers 82
6.6.2 Code Generation 83
6.6.3 Trace Optimization 85

6.7 Polymorphicbytecodes 86

vii

6.8 Otherimplementationdetails 87

6.9 Packaging and portability 87
7 Evaluation of Yeti 89
7.1 Effect of region shape on region dispatchcount 90
7.2 Effect of region shape on performance 93
7.2.1 JIT Compiledtraces 95
8 Conclusions and Future Work 97
9 Remaining Work 99
9.1 CompileBasicBlocks. 99
9.2 InstrumentCompileTime 100
9.3 AnotherRegisterClass, 100
9.4 Measure Dynamic Proportion of JIT Compiled Instructions. 100
Bibliography 101

viii

Chapter 1

Introduction

Modern computer languages are commonly implemented in taio parts — a compiler that
targets a virtual instruction set, and a so-calégh level language virtual machir(er simply
language VM) to run the resulting virtual program. This aygmh simplifies the compiler
by eliminating the need for any machine dependent code gBoer Tailoring the virtual
instruction set can further simplify the compiler by prawigl operations that perfectly match

the functionality of the language.

There are two ways a language VM can run a virtual program.sithplest approach is to
interpret the virtual program. An interpreter dispatchesrual instruction bodyto emulate
each virtual instruction in turn. A more complicated, bugté, approach deploys a dynamic,
or just in time (JIT), compiler to translate the virtual ingttions to machine instructions and
dispatch the resulting native codelixed-modesystems interpret some parts of a virtual pro-
gram and compile others. In general, compiled code will rwcihnmore quickly than virtual
instructions can be interpreted. By judiciously choosingohtparts of a virtual program to

JIT compile, a mixed-mode system can run much more quicldy the fastest interpreter.

Currently, although many popular languages depend on Virtaahines, relatively few JIT
compilers have been deployed. Notable exceptions inclesearch languages like Self and

several Java Virtual Machines (JVM). Consequently, useimpbrtant computer languages,

including JavaScript, Python, and many others, do not eh@yperformance benefits of mixed-

mode execution.

The primary goal of our research is to make it easier to extanahterpreter with a JIT
compiler. To this end we describe a new architecture for guage VM that significantly
increases the performance of interpretation at the sane dsnt reduces the complexity of

deploying a mixed-mode system. Our technique has two mataffes.

First, our JIT identifies and compiles hot interproceduedhp, or traces. Traces are single
entry multiple exit regions that are easier to compile thaninlined method bodies compiled
by current systems. In addition, hot traces predict theimkgtsbn of virtual branches. This
means that even before traces are compiled they provide @esimay to improve the inter-

preted performance of virtual branches.

Second, we implement virtual instruction bodies as lighghe callable routines at the
same time as we closely integrate the JIT compiler and irdgp This gives JIT developers a
simple alternative to compiling each virtual instructid@ither a virtual instruction is translated
to native code, or instead, a call to the corresponding bedgnerated. The task of JIT devel-
opers is thereby simplified by making it possible to deploylby/ffunctional JIT compiler that
compiles only a subset of virtual instructions. In additioallable virtual instruction bodies
have a beneficial effect on interpreter performance bedhgyeenable a simple interpretation
technique, subroutine threading, that very efficientlycetes straight-line, or non-branching,
regions of a virtual program.

We prototype our ideas in Java because there exist manyduiglity Java interpreters and
JIT compilers with which to compare our results. We are ablddtermine that the perfor-
mance of our prototype compares favourably with statdiefart interpreters like JamVM and
SableVM. An obvious next step would be to apply our techrsggoeesnhance the performance

of languages that currently do not offer a JIT.

The discussion in the next few sections refers to many teahterms and techniques that

are described in detail in Chapter on page 11, which introsltioe basic concepts and related

RCS file : intro.lyz, v Revision : 1.28 2 July 22, 2007 16:43

CHAPTER 1. INTRODUCTION

work, and Chapter on page 33, which provides a tutorial-léscdiption of several interpreter

techniques.

1.1 Challenges of Evolving to a Mixed-Mode System

Today, the usual approach taken by mixed-mode systemsdemdify frequently executed, or
hot, methods. Hot methods are passed to the JIT compiler whitipibes them to native code.
Then, when the interpreter sees an invocation of a compiletthaal, it dispatches the native

code instead.

Up Front Effort This method-oriented approach has been followed for maaysydut re- todo: say
quires a large up-front investment in effort. Such a systammot improve the performance 0“1‘blg bang’
a method until it can compile every feature of the language appears in it. For significant
applications this requires the JIT to compile the whole laage, including complicated fea-

tures already implemented by high level virtual instructimodies, such as those for method

invocation, object creation, and exception handling.

Compiling Cold Code Just because a method is frequently executed does not negaailth
the instructions within it are frequently executed also.fdct, regions of a hot method may
be cold, that is, they may have never executed. Compiling cold codenfare implications
than simply wasting compile time. Except at the very highegtls of optimization, where
analyzing cold code may prove useful facts about hot regithese is little point compiling
code that never runs. A more serious issue is that cold canteares the complexity of dy-
namic compilation. We give three examples. First, for latelimg languages such as Java,
cold code likely contains references to program values whie not yet bound. In case the
cold code does eventually run, the generated code and thieneuthat supports it must deal
with the complexities of late binding [71]. Second, certdymamic optimizations are not pos-

sible without runtime profiling information. Foremost angshthese is the optimization of

RCS file : intro.lyxz, v Revision : 1.28 3 July 22, 2007 16:43

1.2. CHALLENGES OF EFFICIENT INTERPRETATION

virtual function calls. Since there is no profiling infornmat for cold code the JIT may have
to generate relatively slow, conservative code. This issegen more important for languages
like Python. Without runtime information a Python JIT mayt know whether the inputs of a
simple arithmetic operation such as addition are intedle@ts, or strings. Third, as execution
proceeds, some of the formerly cold regions in compiled oethmay become hot. The con-
servative assumptions made during the initial compilati@y now be a drag on performance.
The straightforward-sounding approach of recompilingrtieghod containing the cold code is
complicated by problems such as what to do about threadaratill executing in the method

or that will return to the method in the future.

1.2 Challenges of Efficient Interpretation

After a virtual program isoadedby an interpreter into memory it can be executedlispatch-

ing each virtual instruction body (or justody) in the order specified by the virtual program.
This is not a typical workload because the control transf@mfone body to the next is data
dependent on the sequence of instructions making up theal/ptogram. This makes the dis-
patch branches hard for a processor to predict. Ertl andgzsbgerved that the performance
of otherwise efficient interpretation is limited by pipadistalls and flushes due to extremely

poor branch prediction [26].

1.3 What We Need

These considerations suggest that the architecturgraicuallyextensible mixed-mode virtual

machine should have three important properties.

1. Virtual bodies should be callable. This allows JIT impéattors to compile only some
instructions, and fall back on the emulation functionabtyeady implemented by the

virtual instruction bodies for others.

RCS file : intro.lyxz, v Revision : 1.28 4 July 22, 2007 16:43

CHAPTER 1. INTRODUCTION

2. The unit of compilation must be dynamically determined a flexible shape. This

allows the JIT compiler to translate hot regions while airiccold code.

3. As new regions of hot code reveal themselves and are cedyml way is needed of

gracefully linking them on to previously compiled hot code.

Callable Virtual Instruction Bodies Packaging bodies as callable can also address the pre-
diction problems observed in interpreters. When a virtuajpem is loaded, every straight-line
sequence of virtual instructions can be translated to a siemple sequence of generated ma-
chine instructions. Corresponding to each virtual instaictve generate a single direct call
machine instruction which dispatches the correspondingali instruction body. Executing
the resulting generated code thus emulates each virtualati®n in the linear sequence in
turn. No branch mispredictions occur because the desimafieach direct call is explicit and

the return instruction ending each body is predicted p#yfdxy the return branch predictor

present in most modern processors.

Traces Our system compiles frequently executed, dynamicallytified interprocedural paths,todo: a
or traces. Traces contain no cold code, so our system ledvia® @omplexities of runningltlé?pe t:gclens-
cold code to the interpreter. Since traces are paths thrtneghirtual program they explicitly

predict the destination of each virtual branch. As a consege even a very simple imple-

mentation of traces can significantly improve performangcegolucing branch mispredictions

caused by dispatching virtual branches.

1.4 Overview of Our Solution

In this dissertation we describe a system that supportsmigneompilation units of varying
shapes. Just as a virtual instruction body implements aalirhstruction, aegion bodyim-

plements a region of the virtual program. Possible regiatigminclude single virtual instruc-

RCS file : intro.lyxz, v Revision : 1.28 5 July 22, 2007 16:43

1.4. OVERVIEW OF OUR SOLUTION

tions, basic blocks, methods, partial methods, inlinecho#nests, and traces (i.e., frequently-
executed paths through the virtual program). The key idéa p@ckage every region body as
callable, regardless of the size or shape of the region ofitheal program that it implements.
The interpreter can then execute the virtual program byadit$png each region body in se-

quence.

Region bodies corresponding to longer sequences of virtgalictions will run faster than
those compiled from short ones because fewer dispatchesagu&ed. In addition, larger
region bodies should offer more opportunities for optirtima However, larger region bodies
are more complicated and so we expect them to require momapewent effort to detect
and compile than short ones. This suggests that the penfmenaf a mixed-mode VM can
be gradually extended by incrementally increasing the scdpegion bodies it identifies and
compiles. Ultimately, the peak performance of the systeoukhbe at least as high as current
method-based JIT compilers since, with basically the samgeeering effort, inlined method

nests could be compiled to region bodies also.

The practicality of our scheme depends on the efficiency sfatching bodies by calling
them. Thus the first phase of our research, described in Gisaptand5, was to retrofit
SableVM, a Java virtual machine, aadani r un, an Ocaml interpreter [13], to a new hybrid
dispatch technique we catbntext threading We evaluated context threading on PowerPC
and Pentium 4 platforms by comparing branch predictor andinie performance of common
benchmarks to unmodified, direct threaded, versions of ttteal machines. We show that
callable bodies can be dispatched more efficiently thanatiisptechniques currently thought
to be very efficient. However, it proved difficult to cleanlgichtrace detection and profiling
instrumentation to our implementation of context thregdi@onsequently, to build our trace

based JIT we decided to start afresh.

In the second phase of this research, described in Chaptes B ave gradually extended
JamVM, a cleanly implemented and relatively high perforoeadava interpreter [51], with

a trace oriented JIT compiler. We built Yeti, (graduallY &msible Trace Interpreter) in five

RCS file : intro.lyxz, v Revision : 1.28 6 July 22, 2007 16:43

CHAPTER 1. INTRODUCTION

stages: First, we repackaged all virtual instruction bedie callable. Our initial implementa-
tion executed only single virtual instructions which weigpdtched via an indirect call from a
simple dispatch loop. This is slow compared to context tthregabut very easy to instrument.
Second, we identifietinear blocks or sequences of virtual instructions ending in branches.
Third, we extended our system to identify and dispdteles or sequences of linear blocks.
Traces are significantly more complex region bodies thagaliblocks because they must ac-
commodate virtual branch instructions. Fourth, we extdmule trace runtime system to link
traces together. In the fifth and final stage, we implementeaivze, non-optimizing compiler
to compile the traces. An interesting feature of our JIT & thperforms simple compilation
and register allocation for some virtual instructions lalisfback on calling virtual instruction
bodies for others. Our compiler currently generates Po@eax®de for about 50 integer and
object virtual instructions.

We chose traces because they have several attractive pespé€ they can extend across
the invocation and return of methods, and thus have an pnteredural view of the program,
(if) they contain only hot code, (iii) they are relativelyngple to compile as they arg@ngle-
entry multiple-exitregions of code, and (iv), it is straightforward to generadev traces and
link them onto existing ones as new hot paths reveal theraselv

Instrumentation built into our prototype shows that, onaherage, traces accurately predict
paths taken by the Java SPECjvm98 benchmark programs. marioe measurements show
that the overhead of trace identification is reasonablenBwth our naive compiler Yeti runs

about twice as fast as unmodified JamVM.

1.5 Thesis Statement

todo:
. _ . _ . touch upon
The implementation of a new High Level Language Virtual Maetshould be extensible to &,51ch
high performance mixed-mode system as the language maiureshieve this, an interpretepred'cuon

should be designed to dispatch virtual instructions byirgglthem. This achieves efficient

RCS file : intro.lyxz, v Revision : 1.28 7 July 22, 2007 16:43

1.6. CONTRIBUTIONS

dispatch, and hence high performance interpretation, byingat easy to eliminate branch
mispredictions caused by the dispatch of straight-lineigircode. Callable virtual instruction
bodies also facilitate extending the interpreter with adbmpiler because the bodies can be
called from generated code. The unit of compilation traesldy the JIT compiler should be
a dynamically identified region containing only hot code t khderprocedural paths, or traces,
are a good choice because they are simple to compile andyeititer. Since hot traces predict
the destination of virtual branch instructions they cao &ks used to improve the interpretation
performance of virtual branch instructions. Thus, a treasell interpreter performs better than

current interpreter techniques and also is more easilyndewith a JIT compiler.

1.6 Contributions

The contributions of this thesis are twofold:

1. We show that organizing an interpreter to call virtuatrinstion bodies is desirable on
modern processors because the additional cost of call &unthiie more than made up for
by improvements in branch prediction. We show that subneuthreading significantly
outperforms direct threading, for Java and Ocaml on PendnchPowerPC. We show
how with a few extensions a subroutine threaded interpcegterperform as well as or

better than the best reported interpretation techniques.

2. We propose an architecture for, and describe our implatien of, a trace-oriented JIT
compiler. We show how to extend our interpreter to identifierprocedural paths, or
traces through the program. We describe a novel design fon@es JIT compiler that

compiles only a subset of the virtual instructions in eaalker

RCS file : intro.lyxz, v Revision : 1.28 8 July 22, 2007 16:43

CHAPTER 1. INTRODUCTION

1.7 Outline of Thesis

We describe an architecture for a virtual machine integoréttat facilitates the gradual exten-
sion to a trace-based mixed-mode JIT compiler. We demdgstra feasibility of this approach
in a prototype, Yeti, and show that performance can be gigdugproved as larger program
regions are identified and compiled.

In Chapters 2 and 3 we present background and related workenpiaters and JIT com-
pilers. In Chapter 4 we describe the design and implementaficontext threading. Chapter
5 describes how we evaluated context threading. The designnaplementation of Yeti is
described in Chapter 6. We evaluate the benefits of this apiprioaChapter 7. Finally, we

discuss possible avenues for future work and conclusio@hapter 8.

RCS file : intro.lyxz, v Revision : 1.28 9 July 22, 2007 16:43

1.7. OUTLINE OF THESIS

RCS file : intro.lyxz, v Revision : 1.28 10 July 22, 2007 16:43

Chapter 2

Background

Researchers have investigated how virtual machines shaattlige high level language pro-
grams for many years. The research has been focused on a fevareas. First, innovative
virtual machine support can play a role in the deployment wli¢atively new and differ-
ent computer languages. Second, virtual machines provid#rmastructure by which ordinary
computer languages can be more easily deployed on manyediffieardware platforms. Third,
various technigues have been proposed that enable progpamsfaster than before.

This chapter will describe research which touches on afighesues. We will briefly dis-
cuss interpretation in preparation for a more in-depthttneat in Chapter 3. We will describe
how modern object-oriented languages depend on the vimaahine to efficiently invoke
methods by following the evolution of this support from tlaelg efforts to modern speculative
inlining techniques. Finally, we will briefly describe tebased binary optimization to set the

scene for Chapter 6.

2.1 High Level Language Virtual Machine

A static compiler is probably the best solution when perfance is paramount, portability is
not a great concern, destinations of calls are known at dertipie and programs bind to ex-

ternal symbols before running. Thus, most third generdéaguages like C and FORTRAN

11

2.1. HIGH LEVEL LANGUAGE VIRTUAL MACHINE

are implemented this way. However, if the language is obpeiennted, binds to external refer-
ences late and must run on several platforms, it may be aalyaots to implement a compiler

that targets a fictitioukigh level language virtual machir(éiLL VM) instead.

In Smith’s taxonomy, an HLL VM is a system that provides a psxwith an execution
environment that does not correspond to any particulanenel platform [63]. The interface
offered to the high level language application process imllg designed to hide differences
between the platforms to which the VM will eventually be okt For instance, UCSD Pascal
p-code [77, 16] and Java bytecode [50] both express virtsdtuctions as stack operations
that take no register arguments. Gosling, one of the desgii¢he Java virtual machine, has
said that he based the design of the JVM on the p-code maghirt&nalltalk [34], Self [72]
and many other systems have taken a similar approach. Tlkiesiaeasier to port the VM
between hardware platforms that have variously sized texgfides. A VM may also provide
virtual instructions that support peculiar or challengiaegtures of the language. For instance,
a Java virtual machine has specialized virtual instrustiomvokevi r t ual , etc) in support
of virtual method invocation. This allows the compiler tongeate a single, relatively high level

virtual instruction instead of a complex machine and ABI defent sequence of instructions.

This approach has benefits for the users as well. For instapgaications can be dis-
tributed in a platform neutral format. In the case of the Jaeas libraries or UCSD Pascal
programs the amount of virtual software far exceeds theditee VM. The advantage is that
the relatively small amount of effort required to port the \fd/la new platform enables a large

body of virtual applications to run on the new platform also.

There are various approaches a HLL VM can take to actuallgugren virtual program. An
interpreter fetches, decodes, then emulates each vinstaliction in turn. Hence, interpreters
are slow but can be very portable. Faster, but less portaldgnamic compiler can translate
to native code and dispatch regions of the virtual applicatA dynamic compiler can exploit
runtime knowledge of program values so it can sometimes detterjob of optimizing the

program than a static compiler [66].

RCS file : background.lyx, v Revision : 1.27 12 July 22, 2007 16:43

CHAPTER 2. BACKGROUND

Java Source Java Bytecode

int f (boolean) ;
iload a
int £(){ iload b
c=a+b+ 1; javac compiler iconst 1
} iadd
iadd
istore c

Figure 2.1: Example Java Virtual Program showing sourcetlteneft) and Java virtual in-
structions, or bytecodes, on the right.

2.1.1 Overview of a Virtual Program
todo: make

A virtual program, as shown in Figure 2.1, is a sequence afiairnstructions and relatecg?ne;::r ex
meta-data. The figure introduces an example program we ggllas a running example, so
we will briefly describe it here. First, a compilgravac in the example, createsdass file
describing part of a virtual program in a standardized fdarn(&/e show only one method,
but any real Java example would define a whole class.) Ourgearonsists of just one Java
expressioq c=a+b+1} which adds the values of two Java local variables and a coinstel
stores the result in a third. The compiler has translatedtththe sequence of virtual instruc-
tions shown on the right. The actual semantics of the vinugttuctions are not important to
our example other than to note that none are virtual brarsthuctions.

The distinction between a virtual instruction and iastanceof a virtual instruction is
conceptually simple but sometimes hard to clearly distisigin prose. We will always refer
to a specific use of a virtual instruction as an “instance’r &le, the first instruction in
our example program is an instance éfoad. On the other hand, we might also use the term
virtual instruction to refer to a kind of operation, for explethat the | oad virtual instruction
takes one parameter.

Java virtual instructions may take implicit arguments i@ passed on a run time stack.

For instance, in Figure 2.1, theadd instruction pops the top two slots of the run time stack

and pushes their sum. This style of instruction set is vergparct because there is no need to

RCS file : background.lyx, v Revision : 1.27 13 July 22, 2007 16:43

todo:
move
bodies
here?

2.1. HIGH LEVEL LANGUAGE VIRTUAL MACHINE

explicitly list parameters of most virtual instructions. rid@quently many virtual instructions,
like i add, consist of only the opcode. Since there are fewer than 2&6\udual instructions,
the opcode fits in a byte, and so Java virtual instruction®ties referred to abytecode

In addition to arguments passed implicitly on the stackiatewirtual instructions take im-
mediate operands. In our example, tleonst virtual instruction takes an immediate operand
of 1. Immediate operands are also required by virtual bramsthuctions (the offset of the des-
tination) and by various instructions used to access data.

The bytecode in the figure depends on a stack frame orgamzatt distinguishes between
local variables and the operand stackcal variable arrayslots, orlva slots, are used to store
local variables and parameters. The simple function showthe fiture needs only four local
variable slots. The first slot, lva[0], stores a hidden patam the object handi¢o the invoked
upon object and is not used in this example. Subsequeni slats], Iva[2] and Iva[3] store,

b andc respectively. Th®perand stacks used to maintain the expression stack used for all
calculations and parameter passing. In general “load” foytecodes push values in Iva slots
onto the operand stack. Bytecodes with “store” in their mnaimtypically pop the value on

top of the operand stack and store it in a named Iva slot.

2.1.2 Interpretation

An interpreter is the simplest way for an HLL VM to execute &sgfwirtual program. Whereas
the persistent format of a virtual program conforms to sorteraal specification, when it is
read by an interpreter the structure ofldaded representatiois chosen by the designers of the
interpreter. For instance, designers may prefer a repias@mthat word-aligns all immediate
parameters regardless of their size. This would be less acinput faster to access, than the
original byte code on most architectures.

An abstraction implemented by most interpreters is theonatf avirtual program counter

or vPC. It points into the loaded representation of the programsamdes two main purposes.

Llva[0] stores the local variable known &ki s to Java (and C++) programmers.

RCS file : background.lyx, v Revision : 1.27 14 July 22, 2007 16:43

CHAPTER 2. BACKGROUND

First, thevPCis used by dispatch code to indicate where in the virtual nogexecution has
reached and hence which virtual instruction to emulate.ri&tond, the PCis conventionally

referred to by virtual instruction bodies to access immiedigerands.

Interpretation is not efficient

We do not expect interpretation to be efficient compared &xreting compiled native code.
Consider Java’s add virtual instruction. On a typical processor an integer add be per-
formed in one instruction. To emulate a virtual additiontinstion requires three or more
additional instructions to load the inputs from and stoeeréfsult to the operand stack.
However, it is not just the path length of emulation that esuperformance problems.
Also important is the latency of the branch instructionsdusetransfer control to the virtual
instruction body. To optimize dispatch researchers haspgsed varioudispatchtechniques
to efficiently branch from body to body. Recently, Ertl showbdt on modern processors
branch mispredictions caused by dispatch branches armasdrain on performance [26, 27].
When emulated by most current high level language virtualhimas, the branching pat-
terns of the virtual program are hidden from the branch gtexh resources of the underlying
real processor. This is despite the fact that a typical &intiachine defines roughly the same
sorts of branch instructions as does a real processor — ahd tlunning virtual program ex-
hibits similar patterns of virtual branch behaviour as daemtive program running on a real
CPU. In Section 3.5 we discuss in detail how our approach featti deals with this issue,

which we have dubbed thmntext problem.

2.1.3 Early Justin Time Compilers

A faster way of executing a guest virtual program is to comtd virtual instructions to native
code before it is executed. This approach long predates pextaaps first appearing for APL
for the HP3000 [46] as early as 1979. Deutsch and Schiffmahiailt an early Just in Time

(JIT) compiler for Smalltalk that obtained a speedup of dltno relative to interpretation.

RCS file : background.lyx, v Revision : 1.27 15 July 22, 2007 16:43

2.2. CHALLENGES TO HLL VM PERFORMANCE

Early systems were highly memory constrained by moderrdsias. It was of great con-
cern, therefore, when translated native code was found tbbat four times larger than the
originating bytecode Lacking virtual memory, Deutsch and Schiffman took thewthat dy-
namic translation of bytecode was a space time trade-offpdce was tight then native code
(space) could be released at the expense of re-translétioe) (Nevertheless, their approach
was to execute only native code. Each method had to be fefobvada native code cache or
else re-translated before execution. Today a similaudgiprevails except that it has also been
recognized that some code is so infrequently executedtthaed not be translated in the first
place. The bytecode of methods that are not hot can simplytbgpreted.

A JIT can improve the performance of a JVM substantially. Redty early Java JIT
compilers from Sum Microsystems, as reported by the dewedop team in 1997, improved
the performance of the Javaayt r ace application by a factor of 2.2 andonpr ess by
6.8[17F. More recent JIT compilers have increased the performamtbei[2, 4, 68]. For
instance, on a modern personal computer Sun’s Hotspotrséyymamic compiler currently
runs the entire SPECjvm98 suite more than 4 times faster tiafastest interpreter. Some
experts suggest that in the not too distant future, systessdon dynamic compilers will run

fasterthan the code generated by static compilers [65, slide 28].

2.2 Challenges to HLL VM Performance

Modern languages offer users powerful features that ahgdlé/M implementors. In this sec-
tion we will discuss the impact of object-oriented methogbization and late binding of ex-
ternal references. There are many other issues that affeatperformance which we discuss

only briefly. The most important amongst them are memory mameent and thread synchro-

2This is less than one might fear given that on a RISC machiedypical arithmetic bytecode will be naively
translated into two loads (pops) from the operand stack,register-to-register arithmetic instruction to do the
real work and a store (push) back to the new top of the opeltaicl.s

3These benchmarks are singled out because they eventuatyasepted by the SPEC consortium to be part
of the SPECjvm98 [64] benchmark suite.

RCS file : background.lyx, v Revision : 1.27 16 July 22, 2007 16:43

CHAPTER 2. BACKGROUND

nization.

Garbage collectiorrefers to a set of techniques used to manage memory in Java (as
Smalltalk and Self). In general the idea is that unused merfuarbage) is detected automat-
ically by the system. As a result the programmer is relievieany responsibility for freeing
memory that he or she has allocated. Garbage collectiomitpods are somewhat indepen-
dent of dynamic compilation techniques. The primary intgoa requires that threads can
be stopped in a well-defined state prior to garbage collecti®o-calledsafe pointanust be
defined at which a thread periodically saves its state to mgn@mde generated by a JIT com-
piler must ensure that safe points occur frequently enoogigarbage collection is not unduly
delayed. Typically this means that each transit of a looptrooistain at least one safe point.

Java provides explicit, built-in support for thread$iread synchronizatiorefers mostly to
the functionality that allows only one thread to enter dartagions of code at a time. Thread
synchronization must be implemented at various points laadschniques for implementing it

must be supported by code generated by the JIT compiler.

2.2.1 Polymorphism and the Implications of Object Oriented Program-
ming

Over the last few decades object oriented development grew ¥ision, to an industry trend,

to a standard programming tool. Object oriented technigtressed development systems in

many ways, but the one we need to examine in detail here ishhiéenge of polymorphic

method invocation.

The destination of a callsite in an object-oriented languegnot determined solely by
the signature of a method, as in C or FORTRAN. Instead, it isrd@ahed at runtime by a
combination of the method signature and the class of theketvaipon object. Thus callsites
are said to bgolymorphicas the invoked upon object may turn out to be one of potewntiall

many classes.

Most object-oriented languages categorize objects interatthy ofclasses Each object

RCS file : background.lyx, v Revision : 1.27 17 July 22, 2007 16:43

2.2. CHALLENGES TO HLL VM PERFORMANCE

voi d sanpl e(Obj ect[] otab){
for(int i=0; i<otab.length; i++){
otab[i].toString(); //polynorphic callsite
}

Figure 2.2: Example of Java method containing a polymorpaiisite

is aninstanceof a class which means that the methods and data fields defyrtbdtxclass are
available for the object. Each class, except the root chessasuper-clasor base-clasgrom
which itinheritsfields and methods.

Each class may override a method and so at runtime the systistrdmpatch the definition
of the method corresponding to the class of the invoked upfpect In many cases it is not
possible to deduce the exact type of the object at compile.tim

A simple example will make the above description concrete.ekVihis time to debug a
program almost all programmers rely on facilities to viewesttial description of their data.
In an object-oriented environment this suggests that ehftcbshould define a method that
returns a string description of itself. This need was recghby the designers of Java and

consequently they defined a method in the root cdgsect :
public String toString()

to serve this purpose. TheSt ri ng* method can be invoked on every Java object. Consider
an array of objects in Java. Suppose we code a loop thateseoaer the array and invokes the
t oSt r i ng method on each element as in Figure 2.2.

There are literally hundreds of definitions b6St ri ng in a Java system and in most
cases the compiler cannot discern which one will be the misdin of the callsite. Since it is
not possible to determine the destination of the callsioatpile time it must be done when
the program executes. Determining the destination taxdsrpgance in two main ways. First,

locating the method to dispatch at run-time requires coatprt. This will be discussed in

4t is the text returned by toString that appears in varioesvsi of an interactive debugger

RCS file : background.lyx, v Revision : 1.27 18 July 22, 2007 16:43

CHAPTER 2. BACKGROUND

Section 2.4.1. Second, the inability to predict the detitneof a callsite at compile time re-
duces the efficacy of inter-procedural optimizations ang tlesults in relatively slow systems.

This is discussed below.

Impact of Polymorphism on Optimization

Inter-procedural optimization can be stymied by polymaeptallsites. At compile time, an
optimizer cannot determine the destination of a call, saaisty the target cannot be inlined.
In fact, standard inter-procedural optimization as cdraet by an optimizing C or FORTRAN
compiler is simply not possible[53].

In the absence of inter-procedural information, an optancannot guess what calculations
are made by a polymorphic callee. Knowledge of the destinaif the callsite would permit
a more precise inter-procedural analysis of the values fieddby the call. For instance, with
runtime information, the optimizer may know that only onedfic version of the method
exists and that this definition simply returns a constaniezaCode compiled speculatively un-
der the assumption that the callsite remains monomorphild@mnstant propagate the return
value forward and hence be much better than code compilesl timel conservative assumption

that other definitions of the method may be called.

Given the tendency of modern object-oriented software tdabtored into many small
methods which are called throughout a program, even in fitsrimost loops, these optimiza-
tion barriers can significantly degrade the quality of codsdpced. A typical example might
be that common subexpression elimination cannot combiaetichl memory accesses sep-
arated by a polymorphic callsite because it cannot proveath@ossible callees do not kill
the memory location. To achieve performance comparabledcepural compiled languages,
inter-procedural optimization techniques must somehoapdied to regions laced with poly-

morphic callsites.

Section 2.4 describes various solutions to these issues.

RCS file : background.lyx, v Revision : 1.27 19 July 22, 2007 16:43

2.2. CHALLENGES TO HLL VM PERFORMANCE

2.2.2 Late binding

A basic design issue for any language is when external mefeseare resolved. Java binds
references very late in order to support flexible packagirgeneral and downloadable code in
particular. (This contrasts with traditional languagé&s IC, which rely on a link-editor to bind

to external symbols before they start to run.) The geneea id that a Java program may start
running before all the classes that it needs are locallyasei. In Java, binding is postponed
until the last possible moment, when the virtual instructiosaking the reference executes for
the first time. Then, during the first execution, the refeeeisceither resolved or a software
exception is raised. This means that the references a pnogftempts to resolve depends on

the path of execution through the code.

This approach is convenient for users and challenging faydage implementors. When-
ever Java code is executed for the first time the system mysipared to handle unresolved
external references. An obvious, but slow, approach iswplsicheck whether an external ref-
erence is resolved each time the virtual instruction execufor good performance, only the
first execution should be burdened with any binding overh€&tke way to achieve this is for
the virtual program to rewrite itself when an external refere is resolved. For instance, sup-
pose a virtual instructionjop, takes an immediate parameter that names an unresolved clas
or method. When the virtual instruction is first executed thiemal name is resolved and
an internal VM data structure describing it is created. Tasled representation of the virtual
instruction is then rewritten, say mp_r esol ved, which takes the address of the data struc-
ture as an immediate parameter. The implementatioropf r esol ved can safely assume
that the external reference has been resolved succesSfubbgequentlyop_r esol ved will

execute in place of op with no binding overhead.

The process of virtual instruction rewriting is relativedynple to carry out when instruc-

tions are being interpreted. For instance, it is possiblaltdack on standard thread support

5This roughly describes how JamVM and SableVM, and perhaper aterpreters handle late binding.

RCS file : background.lyx, v Revision : 1.27 20 July 22, 2007 16:43

CHAPTER 2. BACKGROUND

libraries to protect overwriting from multiple threads irag to rewrite the instruction. It is
more challenging if the resolution is being carried out byalyically compiled native code

[71].

2.3 Early Dynamic Optimization

Early efforts to build dynamic optimizers were embeddedpplizations or C or FORTRAN

run time systems.

2.3.1 Manual Dynamic Optimization

Early experiments with dynamic optimization indicatedttlamge performance pay backs are
possible. Typical early systems were application-speci®ather than compile a language,
they dynamically generated machine code to calculate thei@o to a problem described by
application specific data. Later, researchers built sartoraatic dynamic systems that would
re-optimize regions of C programs at run-time [49, 5, 32,38,

Although the semi-automatic systems did not enable drampatiformance improvements
across the board, this may be a consequence of the perfoerbaseline to which they com-
pared themselves. The prevalent programming languagée ¢ihhe were supported by static
compilation and so it was natural to use the performancedgiflhioptimized binaries as the
baseline. The situation for modern languages like Javansesat different. Dynamic tech-
niques that do not pay off relative to statically optimizedddle may be beneficial when applied
to code naively generated by a JIT. Consequently, a shortipigsc of a few early systems

seems worthwhile.

2.3.2 Application specific dynamic compilation

In 1968 Ken Thompson built a dynamic compiler which acce@dedxtual description of a

regular expression and dynamically translated it into rreecbode for an IBM 7094 computer

RCS file : background.lyx, v Revision : 1.27 21 July 22, 2007 16:43

2.3. EARLY DYNAMIC OPTIMIZATION

[47]. The resulting code was dispatched to find matches fuick

In 1985 Pike et al. invented an often-cited technique to ggaegood code for quickly
copying, or bitblt'ing, regions of pixels onto a display [53hey observed that there was a be-
wildering number of special cases (caused by various akgmsof pixels in display memory)
to consider when writing a good general purpose bitblitireutinstead they wrote a dynamic
code generator that could produce a good (near optimal)f seachine instructions for each
specific blit. At worst their system executed only about 48ructions to generate code for a

bitblit.

2.3.3 Dynamic Compilation of Manually Identified Static Regions

In the mid-1990’s Lee and Leone [49] built FABIUS, a dynamidimgzation system for the
research language ML [32]. FABIUS depends on a particulantisarried functions Curried
functions take one or more functions as parameters andratuew function that is a composi-
tion of the parameters. FABIUS interprets the call of a fumctieturned by a curried function
as a clue from the programmer that dynamic re-optimizatieyukl be carried out. Their re-
sults, which they describe as preliminary, indicate thalsmapecial purpose applications such
as sparse matrix multiply or a network packet filter may beriiefim their technique but the
time and memory costs of re-optimization are difficult toaeg in general purpose code.

More recently it has been suggested that C and FORTRAN pragam benefit from
dynamic optimization. Auslander et al[5], Grant et al [36] &nd others have built semi-
automatic systems to investigate this. Initially theseéesys required the user to identify re-
gions of the program that should be dynamically re-optihias well as the variables that are
run-time constant. Later systems allowed the user to ifyeatily the program variables that
are run-time constants and could automatically identifyclwimegions should be re-optimized
at run-time.

In either case the general idea is that the user indicatésnegf the program that may

be beneficial to dynamically compile at run time. The dynanegion is precompiled into

RCS file : background.lyx, v Revision : 1.27 22 July 22, 2007 16:43

CHAPTER 2. BACKGROUND

template code. Then, at run time, the values of run-time teons can be substituted into the
template and the dynamic region re-optimized. Auslandsistem worked only on relatively
small kernels like matrix multiply and quicksort. A good waylook at the results was in
terms ofbreak even pointln this view, the kernels reported by Auslander had to eteefrom
about one thousand to a few tens of thousand of times befergrprovement in execution
time obtained by the dynamic optimization outweighed tieetispent re-compiling and re-
optimizing.

Subsequent work by Grant et al. created the DyC system [36D8% simplified the pro-
cess of identifying regions and applied more elaboratarpéitions at run time. This system
can handle real programs, although even the streamlineggsaf manually designating only
run-time constants is reported to be time consuming. Thethodology allowed them to eval-
uate the impact of different optimizations independeritigluding complete loop unrolling,
dynamic zero and copy propagation, dynamic reduction ehgjth and dynamic dead assign-
ment elimination to name a few. Their results showed thag mdp unrolling had sufficient
impact to speed up real programs and in fact without loopllingathere would have been no

overall speedup at all.

2.4 Dynamic Object-oriented optimization

2.4.1 Finding the destination of a polymorphic callsite

Locating the definition of a method for a given object at rangtis a search problem. To search
for a method definition corresponding to a given object thetesy must search the classes in
the hierarchy. The search starts at the class of the objecteeds to its super class, to its super
class, and so on, until the root of the class hierarchy ishedc If each method invocation
requires the search to be repeated, the process will be ificagih tax on overall performance.
Nevertheless, this is exactly what occurs in a naive impigaton of Smalltalk, Self , Java,

JavaScript or Python.

RCS file : background.lyx, v Revision : 1.27 23 July 22, 2007 16:43

2.4. DYNAMIC OBJECT-ORIENTED OPTIMIZATION

If the language permits early binding, the search may beeroed to a table lookup at
compile-time. For instance, in C++, all the possible desitims of a callsite are known when
the program is loaded. As a result a C++ virtual callsite camii@emented as an indirect
branch via a virtual table specific to the class of the objeatked on. This reduces the cost
to little more than a function pointer call in C. The constroigtand performance of virtual
function tables has been heavily studied, for instance bgden [23].

Real programs tend to have l@ffective polymorphisnThis means that the average call-
site has very few actual destinations. If fact, most casdreeffectively monomorphjenean-
ing they always call the same method. Note that low effegtiviymorphism does not imply
that a smart compiler should have been able to deduce theatest of the call. Rather, itis
a statistical observation that real programs typically eniglss use of polymorphism than they

might.

Inlined Caching and Polymorphic Inlined Caching

For late-binding languages it is seldom possible to geaesfficient code for a callsite at
compile time. In response, various researchers have igaést how it might be done at run-
time. In general, it pays to cache the destination of a tallshen the callsite is commonly
executed and its effective polymorphism is low. Tihdine cache as invented by Deutsch and
Schiffman [22] for Smalltalk more than 20 years ago, repabe polymorphic callsite with
the native instruction to call the cached method. The pratogf all methods is extended with
fix-up code in case the cached destination is not correcttdok@nd Shiffman reported hitting
the in-line cache about 95% of the time for a set of Smalltatigpams.

Holzle[41] extended the in-line cache to bpaymorphic in-line cach@IC) by generating
code that successively compares the class of the invokedttaioj a few possible destination
types. The implementation is more difficult than an in-lireclte because the dynamically
generated native code sequence must sequentially compareoaditionally branch against

several possible destinations. A PIC extends the perfoce@enefits of an in-line cache to

RCS file : background.lyx, v Revision : 1.27 24 July 22, 2007 16:43

CHAPTER 2. BACKGROUND

effectively polymorphic callsites. For example, on a SPAR@Gsh-2 Hélzle's lookup would
cost only 8 + 2n cycles, where n is the actual polymorphisnhefallsite. A PIC lookup costs
little more than an in-line cache for effectively monomarpballsites and is much faster for

callsites that are effectively polymorphic.

2.4.2 Smalltalk and Self

Smalltalk, an early object oriented language, adopted tis@ipn that essentially every soft-
ware entity should be represented as an object. A fascqaigcussion of the qualitative
benefits anticipated from this approach appears in Goldbkeopk [33].

The designers of Self took an even more extreme positiony Tie&l that even control
flow should be expressed using object oriented concéftsey understood that this approach
would require them to invent new ways to efficiently optimmessage invocation if the perfor-
mance of their system was to be reasonable. Their reseavghgpn was extremely ambitious
and they explicitly compared the performance of their syste optimized C code executing
the same algorithms.

In addition, the Self system aimed to support the most iotem programming environ-
ment possible. Self supports debugging, editing and redmgpnethods while a program
is running with no need to restart. This requires very latedinig. The combination of the
radically pure object-oriented approach and the ambitgneds regarding development envi-
ronment made Self a sort of trial-by-fire for object-orightlynamic compilation techniques.

Ungar, Chambers and Hdlzle have published several paperd2141, 43] that describe
how the performance of Self was increased from more thanaar of magnitude slower than
compiled C to only twice as slow. A readable summary of tharteques are given by Ungar
et al [72]. A thumbnail summary would be that effective momophism can be exploited

by a combination of type-checking guard code (to ensure shate object’s type really is

6In Self, two blocks of code are passed as parameters to dseiffi@essage sent to a boolean object. If the
object is true the first block is evaluated, otherwise th@sdc

RCS file : background.lyx, v Revision : 1.27 25 July 22, 2007 16:43

2.4. DYNAMIC OBJECT-ORIENTED OPTIMIZATION

known) and static inlining (to expose the guarded code teriptocedural optimization). To
give the flavor of this work we will briefly describe two speciGptimizations: customization

and splitting.

Customization

Customization is a relatively old object-oriented optinti@a introduced by Craig Chambers
in his dissertation [14] in 1988. The general idea is thatlgirporphic callsite can be turned
into a static callsite (or inlined code) when the type of abjgn which the method is invoked
is known. The approach taken by a customizing compiler iepdicate methods with type
specialized copies so as to produce callsites where typdsiamn.

Ungar et al. give a simple, convincing example in [72]. InfSeils usual to write generic
code, for instance algorithms that can be shared by integefl@ating point code. An example
is a method to calculate minimum. Then method is defined by a class callgdgni t ude.
All concrete number classes, likeit eger andFl oat, thus inheritthem n method. A cus-
tomizing compiler will arrange that customized definitiaisn n are compiled fot nt eger
andFl oat . Inlining the customized methods replaces the polymorpalf to < within the
original mi n method by the appropriate arithmetic compare instructiomgach of the cus-

tomized versions of integer and flaat n.

Method Splitting

Oftentimes, customized code can be inlined only when ptetelby a type guard. The guard
code is essentially an if-then-else construct where tlig€gts the type of an object, the “then”
inlines the customized code and the “else” performs thermalgolymorphic method invoca-

tion of the method. Chambers [14] noted that the predicatéeim@nted by the guard estab-

lishes the type of the invoked object for one leg of the ifretse, but following the merge

’In Self even integer comparison requires a message send.
8j.e. the integer customized versionmifn can issue an arithmetic integer compare and the float cuztion
can issue a float comparison instruction.

RCS file : background.lyx, v Revision : 1.27 26 July 22, 2007 16:43

CHAPTER 2. BACKGROUND

point, this knowledge is lost. Hence, he suggested thaivialg code be “split” into paths
for which knowledge of types is retained. This suggestsitisiead of allowing control flow
to merge after the guard, a splitting compiler can replidatlewing code to preserve type
knowledge.

Incautious splitting could potentially cause exponert@le size expansion. This implies
that the technique is one that should only be applied toivelgtsmall regions where it is

known that polymorphic dispatch is hurting performance.

2.4.3 Java JIT as Dynamic Optimizer

The first Java JIT compilers translated methods into natisguctions and improved polymor-
phic method dispatch by deploying techniques inventeddiscpreviously for Smalltalk. New
innovations in garbage collection and thread synchroioizahot discussed in this review, were
also made. Despite all this effort, Java implementationse\séll slow. More aggressive op-
timizations had to be developed to accommodate the perfurenehallenges posed by Java’s
object-oriented features, particularly the polymorphipdtch of small methods. The writers

of Sun’s Hotspot compiler white paper note:

In the Java language, most method invocationsvataal (potentially poly-
morphic), and are more frequently used than in C++. This meah®nly that
method invocation performance is more dominant, but alab skatic compiler
optimizations (especially global optimizations such dsing) are much harder
to perform for method invocations. Many traditional optnations are most effec-
tive between calls, and the decreased distance betwesnrcétie Java language
can significantly reduce the effectiveness of such optitiing, since they have
smaller sections of code to work with.[2, pp 17]

Observations similar to the above led Java researchersrformespeculative optimizations
to transform the program in ways that are correct at somet,poirt may be invalidated by
legal computations made by the program. For instance, Bleaingki and Sarkar speculatively
generate code for a method with only one loaded definitionabsumes it will never be over-

ridden. Later, if the loader loads a class that providesharadefinition of the method, the

RCS file : background.lyx, v Revision : 1.27 27 July 22, 2007 16:43

2.4. DYNAMIC OBJECT-ORIENTED OPTIMIZATION

speculative code may be incorrect and must not run againhisrcase, the entire enclosing
method (or inlined method nest) must be recompiled undeemealistic assumptions and the
original compilation discarded [54].

In principle, a similar approach can be taken if the spemdatode is correct but turns out
to be slower than it could be.

The infrastructure to replace a method is complex, but isnaldmental requirement of
speculative optimization in a method-oriented dynamic jgiben It consists of roughly two
parts. First, meta data must be produced when a method miapt that allows local variables
in the stack frame and registers of a running method to beatddrto a recompiled version.
This is somewhat similar to the problem of debugging optedizode [42]. Later, at run time,
the meta data is used to convert the stack frame of the ingali@ to that of the recompiled
code. Fink and Qian describe a technique called on stackaepient (OSR) [29] that shows
how to restrict optimization so that recompilation is alwgyossible. The key idea is that
values that may be dead under traditional optimization reesemust be kept alive so that a

less aggressively optimized replacement method can aantin

2.4.4 JIT Compiling Partial Methods

The dynamic compilers described thus far compile entirdnogs or inlined method nests. The
problem with this approach is that even a hot method may cootdd code. The cold code
may never be executed or perhaps will later become hot otdy bé&ing compiled.

Compiling cold code that never executes can have only ind#féects such as allowing the
optimizer to prove facts about the portions of the methotlahahot. This can have a positive
impact on performance, by enabling the optimizer to proegsfabout hot regions that enable
faster code to be produced. Also, it can have a negative ithasat¢he cold code may contain
code that forces the optimizer to generate more conseevaiiower code for the hot regions.

Whaley described a prototype that compiled partial methsldpping cold code. He mod-

ified the compiler to generate glue code stubs in the placeldf @de. The glue code had

RCS file : background.lyx, v Revision : 1.27 28 July 22, 2007 16:43

CHAPTER 2. BACKGROUND

two purposes. First, to the optimizer at compile time, theegtode included annotations so
that it appeared to use the same variables as the cold codse@antly the optimizer has a
true model of variables used in the cold regions and so gextecarrect code for the hot ones.
Second, when run, the glue code interacted with the run tysies to exit the code cache and
resume interpretation. Hence, if a cold region was enteoatral would simply revert to the

interpreter. His results showed a large compile time sayiteading to modest speed ups for

certain benchmarks [76].

Suganuma et al. [69] investigated this issue further by fgod) a method-based JIT to
speculatively optimize hot inlined method nests. Theihtegue inlines only hot regions,
replacing cold code with guard code. The technique is spéealbecause conservative as-
sumptions in the cold code are ignored. When execution trgggeard code it exposes the
speculation as wrong and hence is a signal that continuexligae of the inlined method nest
may be incorrect. On stack replacement and recompilatiae weed to recover. They also
measured a significant reduction in compile time. Howewelyy @ modest speedup was mea-
sured, suggesting either that conservative assumptiengising from the cold code are not a

serious concern or their recovery mechanism is too costly.

2.5 Traces

HP Dynamo [7, 24, 6] is a same-ISA binary optimizer. Dynami@alty interprets a binary
executable program, detecting interprocedural pathisaoes through the program as it runs.
These traces are then optimized and loaded irtta@ cache Subsequently, when the inter-
preter encounters a program location for which a trace gxists dispatched from the trace
cache. If execution diverges from the path taken when theetveas generated thentrace
exit occurs, execution leaves the trace cache and interpretasumes. If the program fol-
lows the same path repeatedly, it will be faster to executke generated for the trace rather

than the original code. Dynamo successfully reduced theutixa time of many important

RCS file : background.lyx, v Revision : 1.27 29 July 22, 2007 16:43

2.5. TRACES

benchmarks. Several binary optimization systems, inoydynamoRIO [12], Mojo [15],
Transmeta’s CMS [21], and others, have since used traces.

Dynamo uses a simple heuristic, called Next Executing NHT), to identify traces. NET
starts generating a trace from the destination of a hotseugnanch, since this location is likely
to be the head of a loop, and hence a hot region of the progrékelig to follow. If a given
trace exit becomes hot, a new trace is generated startingifsaestination. Recently, Hiniker

et al. [39] described improvements to NET that reduce rapba and handle loops better.

Software trace caches are efficient structures for dynamien@ation. Bruening and
Duesterwald [9] compare execution time coverage and caaefer three dynamic optimiza-
tion units: method bodies, loop bodies, and traces. Thewghat method bodies require
significantly more code size to capture an equivalent amotisixecution time than either
traces or loop bodies. This result, together with the prilggeputlined in Section 1.4, suggest

that traces may be a good choice for a unit of compilation.

DynamoRIO Bruening describes a new version of Dynamo which runs on tted 86 ar-
chitecture. The current focus of this work is to provide dicient environment to instrument
real world programs for various purposes such as to improgesécurity of legacy applica-
tions [12, 11].

One interesting application of DynamoRIO was by Sullivanl¢7@]. They ran their own
tiny interpreter on top of DynamoRIO in the hope that it woudddile to dynamically optimize
away a significant proportion of interpretation overhealley did not initially see the results
they were hoping for because the indirect dispatch branatr@®unded Dynamo’s trace selec-
tion. They responded by creating a small interface by whiehinterpreter could programat-
ically give DynamoRIO hints about the relationship betwdsa tirtual pc and the hardware
pc. This was their way around what we have described as thextgeroblem (Section 3.5).
Whereas interpretation slowed down by almost a factor of tsioguiregular DynamoRIO, af-

ter they had inserted calls to the hint API, they saw speedfipbout 20% on a set of small

RCS file : background.lyx, v Revision : 1.27 30 July 22, 2007 16:43

CHAPTER 2. BACKGROUND

benchmarks. Baron [8] reports similar performance resutising a similarly modified Kaffe

JVM [78].

Last Executed Iteration (LEI)

Hiniker, Hazelwood and Smith performed a simulation studgl@ating enhancements to the
basic Dynamo trace selection heuristics [39]. They obsetwe® main problems with Dy-
namo’s NET heuristic. The first problem, “trace separatioccurs when traces that turn out to
often execute sequentially happen to be placed far apdreitrédce cache, hurting the locality
of reference of code in the instruction cache. LEI maintariganch history mechanism as
part of its trace collection system that allows it to do adxgttb handling loop nests, requiring
fewer traces to span the nest. The second problem, “exeessile duplication”, occurs when
many different paths become hot through a region of code pftigdem is caused when a trace
exit becomes hot and a new trace is generated that diveedlfie preexisting trace for only
one or a few blocks before rejoining its path. As a consegeiéime new trace replicates blocks
of the old trace from the place they rejoin to their common.gdmbining several such “ob-
served traces” together forms a region with multiple patitlass duplication. A simulation
study suggests that using their heuristics, fewer, smaéécted traces will account for the

same proportion of execution time.

2.6 Hotpath

Gal, Probst and Franz describe the Hotpath project. Hotexttnds JamVM (one of the
interpreters we use for our experiments) to be a trace @demixed-mode system [31]. They
focus on traces starting at loop headers and do not compitegrother than those in loops.
Thus, they do not attempt trace linking as described by Dynédmt rather “merge” traces
that originate from side exits leading back to loop head&lss technique allows Hotpath to

compile loop nests. They describe an interesting way of tmagiéraces using Single Static

RCS file : background.lyx, v Revision : 1.27 31 July 22, 2007 16:43

2.7. CHAPTER SUMMARY

Assignment (SSA) [20] that exploits the constrained flowanftcol present in traces. This both
simplifies their construction of SSA and allows very efficieptimization. Their experimental
results show excellent speedup, within a factor of two of SHetSpot, for scientific style loop
nests like those in the LU, SOR and Linpack benchmarks, armé modest speedup, around
a factor of two over interpretation, for FFT. No results aneeg for tests in the SPECjvm98
suite, perhaps because their system does not yet sup@me ftrerging across (inlined) method
invocations” [31, page 151]. The optimization techniquesytdescribe seem complimentary

to the overall architecture we propose in Chapter 6.

2.7 Chapter Summary

In this chapter we briefly traced the development of highllsrgguage virtual machines from
interpreters to dynamic optimizing compilers. We saw timérpreter designs may perform
poorly on modern, highly pipelined processors, becauseentidispatch mechanisms cause
too many branch mispredictions. This will be discussed imentetail in Section 3.5. Later, in
Chapter 4, we describe our solution to the problem.

Currently JIT compilers compile entire methods or inlinedimoe nests. Since hot methods
may contain cold code this forces the JIT compiler and ruatiystem to support late binding.
Should the cold code later become hot a method-based JIT necstnpile the containing
method or inlined method nest to optimize the newly hot cddhese issues add complexity to
a method oriented system that could be avoided if compilelé contained no cold code. The
HP Dynamo binary optimizer project defines a suitable caatdifbr a dynamically identified
unit of compilation, namely the hot interprocedural pathirace.. In Chapter 6 we describe

how a virtual machine can compile traces to incrementalipmite code as it becomes hot.

RCS file : background.lyx, v Revision : 1.27 32 July 22, 2007 16:43

Chapter 3

Dispatch Techniques

In this chapter we expand on our discussion of interpretaiyp examining several dispatch
techniques in detail. In Chapter 2 we defined dispatch as tlohanéesm used by a high level
virtual machine to transfer control from the code to emutate virtual instruction to the next.
This chapter has the flavor of a tutorial as we trace the eeolutf dispatch techniques from

the simplest to the highest performing.

Although in most cases we will give a small C language exartipldustrate the way the
interpreter is structured, this should not be understoaséan that all interpreters are hand
written C programs. Precisely because so many dispatchaneshs exist, some researchers
argue that the interpreter portion of a virtual machine #hde generated from some more

generic representation [28, 67].

Section 3.1 describes switch dispatch, the simplest dibp@ichnique. Section 3.2 in-
troduces call threading, which figures prominently in ourkvoSection 3.3 describes direct
threading, a common technique that suffers from branchnedsgtion problems. Section 3.4
briefly describes branch prediction resources in moderongasors. Section 3.5 defines the
context problemour term for the challenge to branch prediction posed brpretation. Sub-
routine threading is introduced in Section 3.6.Finallyct®s 3.7 describes related work that

eliminates dispatch overhead by inlining or replicatingual instruction bodies.

33

todo:
detail
bodies

add
to

3.1. SWITCH DISPATCH

3.1 Switch Dispatch

Switch dispatch, perhaps the simplest dispatch mechamssitiystrated by Figure 3.1. Al-
though the persistent representation of a Java class idastisidefined, the representation of
a loaded virtual program is up to the VM designer. In this caseshow how an interpreter
might choose a representation that is less compact tharmbfeoésr simplicity and speed of
interpretation. In the figure, the loaded representatigreags on the bottom left. Each virtual
opcode is represented as a full word token even though a byaédvguffice. Arguments, for
those virtual instructions that take them, are also stanefdill words following the opcode.
This avoids any alignment issues on machines that penalakgued loads and stores.

Figure 3.1 illustrates the situation just before the stat@im=a+b+1 is executed. The box
on the right of the figure represents the C implementatiomefinterpreter. ThePC points
to the word in the loaded representation correspondingeditht instance of | oad. The
interpreter works by executing one iteration of the dispdéop for each virtual instruction
it executes, switching on the token corresponding to thedp®f each virtual instruction.
Each virtual instruction body is implemented byase in theswi t ch statement. Virtual
instruction bodies are simply the compiler-generated dodeach case.

Every instance of a virtual instruction consumes at leastwaord in the internal represen-
tation, namely the word occupied by the virtual opcode.0dfinstructions that take operands
are longer. This motivates the strategy used to maintairvB@ The dispatch loop always
bumps thevPC to account for the opcode and bodies that consume operanas thev PC
further, one word per operand.

Although no virtual branch instructions are illustratedhe figure, they operate by assign-
ing a new value to the PC for taken branches.

A switch interpreter is relatively slow due to the overheddhe dispatch loop and the
switch. Despite this, switch interpreters are commonhgus@roduction (e.g. in the JavaScript
and Python interpreters). Presumably this is becauselsdigpatch can be implemented in

ANSI standard C and so it is very portable.

RCS file : background — related.lyx, v Revision : 1.37 34 July 22, 2007 16:43

CHAPTER 3. DISPATCH TECHNIQUES

Java
source

Java
Bytecode

Loaded
representation
of virtual
program

Virtual operations
are identified by
tokens.

c=a+b+1;

A 4

iload a
ilocad b
iconst 1
iadd
iadd
istore c

l

ILOAD

a

ILOAD

b

ICONST

1

IADD

IADD

ISTORE

C

interp () {
int *vPC;

while (1) {
switch (*vPC++) {

case ICONST:
//fetch immed arg and
//move vPC to next opcode
int ¢ = *VPC++;
//push c
break;

case IADD:
//pop 2 inputs, add
//push result
break;

"v----» case ILOAD: //push local var..

case ISTORE: //pop, store to local

}
}
}

Figure 3.1: A switch interpreter loads each virtual instiwrt as a virtual opcode, or token,
corresponding to the case of the switch statement that mmaiés it. Virtual instructions that
take immediate operands, likeeonst , must fetch them from the PC and adjust thes PC
past the operand. Virtual instructions which do not needamis, likei add, do not need to

adjust thevPC.

RCS file : background — related.lyxz, v Revision : 1.37 35 July 22, 2007 16:43

3.2. DIRECT CALL THREADING

3.2 Direct Call Threading

Another portable way to organize an interpreter is to wrdehevirtual instruction as a func-
tion and dispatch it via a function pointer. Figure 3.2 sh@ash virtual instruction body
implemented as a C function. While the loaded representased by the switch interpreter
represents the opcode of each virtual instruction as a talesct call threading represents each
virtual opcode as the address of the function that implesiénthus, by treating thePCas a
function pointer, a direct call threaded interpreter cagcee each instruction in turn.

In the figure, thevPCis a static variable which means that er p function as shown is
not re-entrant. Our example aims only to convey the flavoradiftoreading. In Chapter 6 we
will show how a more complex approach to direct call thregdian perform about as well as
switch threading.

A variation of this technique is described by Ertl [25]. Fostbrical reasons the name
“direct” is given to interpreters which store theldressof the virtual instruction bodies in the
loaded representation. Presumably this is because theldrantly” obtain the address of a
body, rather than using a mapping table (or switch stateneibnvert a virtual opcode to the
address of the body. However, the name can be confusing astha machine instructions
used for dispatch are indirect branches. (In this casedirect call).

Next we will describe direct threading, perhaps the most kwedwn “high performance”

dispatch technique.

3.3 Direct Threading

Like in direct call threading, a virtual program is loadetbima direct-threaded interpreter as a
list of body addresses and operands. We will refer to thetigheDirect Threading Tablgor
DTT, and refer to locations in the DTT afots.

Interpretation begins by initializing thePC to the first slot in the DTT, and then jumping

to the address stored there. A direct threaded interpretes dot need a dispatch loop like

RCS file : background — related.lyx, v Revision : 1.37 36 July 22, 2007 16:43

CHAPTER 3. DISPATCH TECHNIQUES

vPC
int * vPC;
/7? void iload() { .. }
Loaded representation iload void iconst(){ .. }
of virtual program a L
{load void iadd() { .. }
b / o
void istore(){ .. }
Virtual operations iconst /
are identified by 1 VPC = &det (0]
addresses of functions iadd .
.) interp () {
implementing each iadd
virtual instruction body , while (1) {
istore (*vPC++) () ;
c }
}

Figure 3.2: A direct call threaded interpreter packageb @atual instruction body as a func-
tion. The shaded box highlights the dispatch loop showing tiotual instructions are dis-
patched through a function pointer. Direct call threadieguires the loaded representation of
the program to point to theddressof the function implementing each virtual instruction.

Java source _ _ .
Virtual Instruction Bodies
{ il vPe interp(){
c=a+b+1;) I
i &&i | oad = i | oad:
a [/ push var..
l w &&i | oad got 0 *VPC++;
Javac ?D’ b
Compiler 8 &&i const i const :
l ® 1 /I push const ant
o :
iload a %— &&l add ~ goto *VPCt++;
il1oad b = || &&i add _k
iconst 1 j &&i store 4 ﬁi add://add 2 slots
i add -
istore c i store://pop, store
}

Java Bytecode

Figure 3.3: Direct Threaded Interpreter showing how Java&ocode compiled to Java byte-
code is loaded into the Direct Threading Table (DTT). Thaagrinstruction bodies are written
in a single C function, each identified by a separate labet dduble-ampersand&) shown

in the DTT is gcc syntax for the address of a label.

RCS file : background — related.lyxz, v Revision : 1.37 37 July 22, 2007 16:43

3.4. DYNAMIC HARDWARE BRANCH PREDICTION

nmov Y%eax = (% Xx) ; rxisvPC | Iwz r2 = 0(rx)
addl 4, % x ntctr r2
jnp (Yeax) addi rx,rx, 4
bectr
(a) Pentium IV assembly (b) Power PC assembly

Figure 3.4: Machine instructions used for direct dispat€n both platforms assume that
some general purpose registex,, has been dedicated for tk€C. Note that on the PowerPC
indirect branches are two part instructions that first |¢ett r register and then branch to its
contents.

direct call threading or switch dispatch. Instead, as casele® in Figure 3.3, each body ends
with got o * vPC++, which transfers control to the next instruction.

In C, bodies are identified by a label. Common C language extesgiermit the address
of this label to be taken, which is used when initializing tI€T. GNU’s gcc, as well as C
compilers produced by Intel, IBM and Sun Microsystems allpsrpthe label as address and
computed goto extensions, making direct threading quiteapte.

Direct threading requires fewer instructions and is fatsten direct call threading or switch
dispatch. Assembler for the dispatch sequence is shownguré&i3.4. When executing the
indirect branch in Figure 3.4(a) the Pentium IV will spec¢wialy dispatch instructions using a
predicted target address. The PowerPC uses a differetggstri@r indirect branches, as shown
in Figure 3.4(b). First the target address is loaded int@sster, and then a branch is executed
to this register address. Rather than speculate, the Powste€ until the target address is

known, although other instructions may be scheduled betweeload and the branch (like the

addi in Figure 3.4) to reduce or eliminate these stalls.

3.4 Dynamic Hardware Branch Prediction

There is a rich body of research on branch prediction, sinmedhes are otherwise very costly
on pipelined architectures. In this thesis we care only atemhniques adopted by real micro-
processors.

The primary mechanism used to predict indirect branches odemm computers is the

RCS file : background — related.lyx, v Revision : 1.37 38 July 22, 2007 16:43

CHAPTER 3. DISPATCH TECHNIQUES

branch target buffe(BTB). The BTB is a hardware table in the CPU that associates tie de
nation of a small set of branches with their address [38]. i@lka is to simply remember the
previous destination of each branch. This is the same asasgihat the destination of each
indirect branch is correlated with the address in memoryefaranch instruction itself.

The Pentium IV implements a 4K entry BTB [40]. (There is no nambf a BTB in the
PowerPC 970 programmers manual [44].) Direct threadingozords the BTB because all
instances of a given virtual instruction compete for the s&WMB slot.

Another kind of dynamic branch predictor is used for comai#il branch instructions. Con-
ditional branches are relative, or direct, branches scethez only two possible destinations.
The challenge lies in predicting whether the branch willddeet or fall through. For this pur-
pose modern processors implemebtanch history tableThe PowerPC 7410, as an example,
deploys a 2048 entry 2 bit branch history table [52]. Dirbcgading also confounds the branch
history table as all the instances of each conditional brasmtual instruction compete for the
same branch history table entry. Note that this time the twapdedict branch is not an explicit
dispatch branch but rather the result ofign statement in a virtual branch instruction body.
This will be discussed in more detail in Section 4.3.

Return instructions can be predicted perfectly using a sthaddresses pushed by call
instructions. The Pentium IV has a 16 enteturn address stacld0] whereas the PPC970

uses a similar structure called tlek stack[44].

3.5 The Context Problem

Mispredicted branches pose a serious challenge to modecessors because they threaten to
starve the processor of instructions. The problem is thiireéhe destination of the branch
is known the execution of the pipeline may run dry. To perfanfull speed, modern CPU’s
need to keep their pipelines full by correctly predictingiteh targets.

Ertl points out that the assumptions underlying the desfgndirect branch predictors are

RCS file : background — related.lyx, v Revision : 1.37 39 July 22, 2007 16:43

3.6. SUBROUTINE THREADING

usually wrong for direct threaded interpreters [26, 27].aldirect-threaded interpreter, there
is only oneindirect jump instruction per virtual instruction. For emple, in the fragment of
virtual code illustrated in Figure 2.1, there are two ins&s10fi | oad followed by an instance
of i const . The indirect dispatch branch at the end of tHeoad body will execute twice.
The first time, in the context of the first instanceidfoad, it will branch back to the entry
point of the thei | oad body, whereas in the context of the secarldbad it will branch
toi const. Thus, the hardware will likely mispredict the second execuof the dispatch
branch.

The performance impact of this can be hard to predict. Fdaite, if a tight loop in a
virtual program happens to contain a sequence of uniqueavimstructions, the BTB may
successfully predict each one. On the other hand, if theesemgucontains duplicate virtual
instructions, the BTB may mispredict all of them.

We note that this problem is even worse for direct call thimgdnd switch dispatch. For
these techniques there is only one dispatch branch and dspédltches share the same BTB
entry. Direct call threading will mispredict all dispatchexcept when the same virtual instruc-
tion body is dispatched multiple times consecutively.

To the hardware the destination of the indirect dispatchdiras unpredictable because its
destination is not correlated with the hardwpre Instead, its destination is correlated/eC.
We refer to this lack of correlation between the hardwaseandv PC as thecontext problem
We choose the termontextfollowing its use incontext sensitive inlining37] because the
problem is caused when a virtual instruction body executéisa context of multiple instances

of a virtual instruction.

3.6 Subroutine Threading

Forth is organized as a collection of callable bodies of cmalledwords Words can be user

defined or built into the system. Meaningful Forth words asmposed of built-in and user-

RCS file : background — related.lyx, v Revision : 1.37 40 July 22, 2007 16:43

CHAPTER 3. DISPATCH TECHNIQUES

defined words and execute by dispatching their constituendsvin turn. A Forth implemen-
tation is said to besubroutine threadedf a word is compiled to a sequence oétive call
instructions,one call for each constituent word. Since a built-in Forthrdvis loosely anal-
ogous to a callable virtual instruction body we could conakly use subroutine threading in
any high level language virtual machine that implementsiglrinstruction bodies as callable.
In such a system the loaded representation of a virtual detfould include a sequence of

native call instructions, one to dispatch each virtualringion in the virtual method.

Curley [19, 18] describes a subroutine-threaded Forth ®68000 CPU. He improves the
resulting code by inlining small opcode bodies, and cosvertual branch opcodes to single
native branch instructions. He credits Charles Moore, theritor of Forth, with discovering
these ideas much earlier. Outside of Forth, there is litiwdugh literature on subroutine
threading. In particular, few authors address the problemhere to store virtual instruction
operands. In Section 4.2, we document how operands areduhimdbur implementation of

subroutine threading.

The choice of optimal dispatch technique depends on thenzaedplatform, because dis-
patch is highly dependent on micro-architectural featutgsearlier hardwaresall andreturn
were both expensive and hence subroutine threading relquiecostly branches, versus one
in the case of direct threading. Rodriguez [60] presents #uetoffs for various dispatch types
on several 8 and 16-bit CPUs. For example, he finds directdhvgas faster than subrou-
tine threading on a 6809 CPU, becausejtse andr et instruction require extra cycles to
push and pop the return address stack. On the other handyGouled subroutine thread-
ing faster on the 68000 [18]. On modern hardware the costeofdturn is much lower, due
to return branch prediction hardware, while the cost ofditbreading has increased due to

misprediction. In Chapter 5 we quantify this effect on a fewderm CPUSs.

RCS file : background — related.lyx, v Revision : 1.37 41 July 22, 2007 16:43

3.7. OPTIMIZING DISPATCH

3.7 Optimizing Dispatch

Much of the work on interpreters has focused on how to oprdigpatch. Kogge [48] remains
a definitive description of many threaded code dispatchigcies. These can be divided into
two broad classes: those which refine the dispatch itselftflazse which alter the bodies so that
they are more efficient or simply require fewer dispatchegtc® dispatch and direct threading
belong to the first class, as does subroutine threading., Mextvill discuss superinstruction

formation and replication, which are in the second class.

3.7.1 Superinstructions

Superinstructionseduce the number of dispatches. Consider the code to addtnbmteger
to a variable. This may require loading the variable ontastaek, loading the constant, adding,
and storing back to the variable. VM designers can insteéehexthe virtual instruction set
with a single superinstruction that performs the work ofalir virtual instructions. This tech-
nique is limited, however, because the virtual instruceanoding (often one byte per opcode)
may allow only a limited number of instructions, and the nemdf desirable superinstructions
grows large in the number of subsumed atomic instructionghErmore, the optimal superin-
struction set may change based on the workload. One appusashprofile-feedback to select

and create the superinstructions statically (when thepnééer is compiled [28]).

3.7.2 Selective Inlining

Piumarta [58] presentselective inlining Selective inlining constructs superinstructions when
the virtual program is loaded. They are created in a relgtipertable way, bymentpy’ing

the compiled code in the bodies, again using GNU C labelaages. The idea is to construct
(new) super instruction bodies by concatenating the Mitbodies of the virtual instructions
that make them up. This works only when the code in the vittodies is position independent,

meaning that the destination of any relative branch in a bedyain in that body. Typically

RCS file : background — related.lyx, v Revision : 1.37 42 July 22, 2007 16:43

CHAPTER 3. DISPATCH TECHNIQUES

this excludes bodies making C function calls. This techanyas first documented earlier [62],
but Piumarta’s independent discovery inspired many oth@gepts to exploit selective inlining.

Like us, he applied his optimization to OCaml, and reportsificant speedup on several micro
benchmarks. As we discuss in Section 5.5, our techniqueparate from, but supports and

indeed facilitates, inlining optimizations.

Languages, like Java, that require run-time binding cooapd the implementation of se-
lective inlining significantly because at load time litteknown about the arguments of many
virtual instructions. When a Java method is first loaded somenaents are left unresolved.
For instance, the argument of anvokevi r t ual instruction will initially point to a string
naming the callee. The argument will be re-written the firsietthe virtual instruction exe-
cutes to point to a descriptor of the now resolved calleeh@tsiame time, the virtual opcode is
rewritten so that subsequently a “quick” form of the virtusdtruction body will be dispatched.
In Java, if resolution fails, the instruction throws an eptgen and is not rewritten. The pro-
cess of rewriting the arguments, and especially the needitd a new virtual instruction
body, complicates superinstruction formation. Gagnorcidess a technique that deals with

this additional complexity which he implemented in SableY30].

Selective inlining requires that the superinstructiomtstat a virtual basic block, and ends
at or before the end of the block. Ertllynamic superinstruction27] also usarentpy, but
are applied to effect a simple native compilation by inlgivodies for nearly every virtual in-
struction. Ertl shows how to avoid the basic block constgiso dispatch to interpreter code is
only required for virtual branches and unrelocatable mdiétale and Abdelrahman describe
a technique called catenation, which patches Sparc naitke o that all implementations can
be moved, specializes operands, and converts virtual besno native, thereby eliminating

the virtual program counter [74].

RCS file : background — related.lyx, v Revision : 1.37 43 July 22, 2007 16:43

3.8. CHAPTER SUMMARY

3.7.3 Replication

Replication— creating multiple copies of the opcode body—decreasesuhwer of contexts

in which it is executed, and hence increases the chancesoéssfully predicting the succes-
sor [27]. Replication combined with inlining opcode bodieduices the number of dispatches,
and therefore, the average dispatch overhead [58]. In tinereg, one could create a copy for
each instruction, eliminating misprediction entirely.iFkechnique results in significant code

growth, which may [74] or may not [27] cause cache misses.

3.8 Chapter Summary

In summary, branch mispredictions caused by the contexti@molimit the performance of a
direct threaded interpreter on a modern processor. We hesailed several recent dispatch
optimization techniques. Some of the techniques improveopaance of each dispatch by
reducing the number of contexts in which a body is executetthei® reduce the number of
dispatches, possibly to zero.

In the next chapter we will describe a new technique for priegation that deals with the
context problem. Our technique, context threading, peréowell compared to the interpreta-

tion techniques we have described in this chapter.

RCS file : background — related.lyx, v Revision : 1.37 44 July 22, 2007 16:43

Chapter 4

Design and Implementation of Efficient

Interpretation

This chapter will describe how to efficiently implement ateipreter that calls its virtual in-
struction bodies. This investigation was motivated by thggestion we made in the intro-
duction, Chapter 1, namely that such an interpreter will Isteedo extend with a JIT than an
interpreter that is direct threaded or uses switch dispaB#fore tackling the design of our

mixed-mode system we need to ensure that the interpret#icieset.

An obvious, but slow, way to use callable virtual instruntimodies is to build a direct call
threaded (DCT) interpreter. (See Section 3.2 for a detadsgmption of the technique.) In a
DCT interpreter all bodies are dispatched by the sardigect call instruction. The destination
of the indirect call is data driven (i.e. by the sequence diri instructions that make up the
virtual program) and thus impossible for the hardware taljote As a result a DCT interpreter

suffers a branch misprediction for almost every dispatch.

The main realization driving our approach is that to callrebody without misprediction
dispatch branches must beect call instructions. Since these cannot be generated for us by
a compiler, we generate them ourselves. At load time, eaelgbt-line section of virtual

instructions is translated to a sequence of direct calfuctibns, each dispatching the corre-

45

sponding virtual instruction body. The loaded program is by jumping to the beginning
of the generated sequence of native code, which then eraulaerirtual program by calling
each virtual instruction body in turn. This approach is veiryilar to a Forth compile-time

technique called subroutine threading, described in Ge&i6.

Subroutine threading dispatches straight-line sequeotestual instructions very effi-
ciently because no branch mispredictions occur. The gtedarect calls pose no prediction
challenge because each has only one explicit destinatioe d€stination of the return ending
each body is perfectly predicted by the return branch ptedatack implemented by modern
processors. In the next chapter we present data showingubabutine threading runs the

SPECjvm98 suite about 20% faster than direct threading.

Subroutine threading handles straight-line virtual coifieiently, but does nothing to im-
prove the dispatch of virtual branch instructions. We idtroe context threadingwhich by
generating more sophisticated code for virtual branchruesibns eliminates the branch mis-
predictions caused by the dispatch of virtual branch isimas as well. Context threading im-
proves the performance of the SPECjvm98 suite by about an%ever subroutine thread-
ing.

Generating and dispatching native code obviously makesmulementation of subroutine
threading less portable than many dispatch techniques.el#mwsince subroutine threading
requires the generation of only one type of machine instracta direct call, its hardware
dependency is isolated to a few lines of code. Context thngadiquires much more machine
dependent code generation.

In Chapter 6 we will describe another way of handling virtuarzhes that requires less
complex, less machine dependent code generation but escaadiditional run time infrastruc-
ture to identify hot run time interprocedural paths, or ¢sc

Although direct-threaded interpreters are known to hava poanch prediction properties
they are also known to have a small instruction cache fautfgil]. Since both branch mispre-

dictions and instruction cache misses are major pipelizardis, we would like to retain the

RCS file : ef ficient — interpretation.lyx, v Revision : 1.32 46 July 22, 2007 16:43

CHAPTER 4. DESIGN AND IMPLEMENTATION OF EFFICIENT INTERPRETAQON

good cache behavior of direct-threaded interpreters viibeoving the branch behavior. Sub-

routine threading minimally affects code size. This is imtcast to techniques like selective

inlining, described in Section 3.7. These techniques ivgitoranch prediction by replicating

entire bodies, in effect trading instruction cache sizelfetter branch prediction. In Chapter

7 we will report data showing that subroutine threading eaugry few additional stall cycles

caused by instruction cache misses as compared to direeidimg. todo:livio
In Section 4.2 we show how to replace straight-line dispatith subroutine threading. Indata

Section 4.3 we show how to inline conditional and indireatps and in Section 4.4 we discuss

handling virtual calls and returns with native calls andines.

4.1 Understanding Branches

Before describing our design, we start with two observatiofsst, a virtual program will
typically contain several types of control flow: conditibaad unconditional branches, indirect
branches, and calls and returns. We must also consider spatdh of straight-line virtual
instructions. For direct-threaded interpreters, strialigle execution is just as expensive as
handling virtual branches, sined virtual instructions are dispatched with an indirect branc
Second, the dynamic execution path of the virtual prograthoentain patterns (loops, for
example) that are similar in nature to the patterns foundnndecuting native code. These
control flow patterns originate in the algorithm that thewal program implements.

As described in Section 3.4 modern microprocessors hav&ademable resources devoted
to identifying these patterns in native code, and explgitimem to predict branches. Direct
threading uses only indirect branches for dispatch and{altre context problem, the patterns
that exist in the virtual program are largely hidden from thieroprocessor.

The spirit of our approach is to expose these virtual coritoal patterns to the hardware,
such that the physical execution path matches the virtiedwdion path. To achieve this goal,

we generate dispatch code at load time that enables theethiffgypes of hardware prediction

RCS file : ef ficient — interpretation.lyx, v Revision : 1.32 47 July 22, 2007 16:43

4.2. HANDLING LINEAR DISPATCH

DTT interp () {
&ctt [0] ~ vPC CTT | void iload() {
a et //push var..
Sctt[1] - call iload |7 VPC++;
; | ——} call iload RE }
sctt 2] |—— 1 call iconst -peceeceeoee 4§ void iconmst () {
. call iadd - //push constant
- / VPC++;
N 11 1 1 . ;
&ctt [3] // ca %add |
sctt[4a] - . call istore "
/ . e :::,> void 1add(){
&ctt[5] 7 //add 2 slots
c }
loaded data generated code bl void istore () (
//store var
}
j

Figure 4.1: Subroutine Threaded Interpreter showing havG@R'T contains one generated
direct call instruction for each virtual instruction andvhthe first entry in the DTT corre-
sponding to each virtual instruction points to generatetbdo dispatch it. Callable bodies are
shown here as nested functions for illustration only.

resources to predict the different types of virtual contimlv transfers. We strive to maintain
the property that the virtual program counter is preciselyelated with the physical program
counter and in fact, with when all our techniques are contbthere is a one-to-one mapping

between them at most control flow points.

4.2 Handling Linear Dispatch

The dispatch of straight-line virtual instructions is tlaegest single source of branches when
executing an interpreter. Any technique that hopes to ingbwanch prediction accuracy must
address straight-line dispatch. An obvious solution iging, as it eliminates the dispatch
entirely for straight-line sequences of virtual instroas. However, as mentioned inSection
3.7, the increase in code size caused by aggressive inl@aghe potential to overwhelm the

benefits with the cost of increased instruction cache migggds

RCS file : ef ficient — interpretation.lyx, v Revision : 1.32 48 July 22, 2007 16:43

CHAPTER 4. DESIGN AND IMPLEMENTATION OF EFFICIENT INTERPRETAQON

interp(){

i | oad:
// push | ocal var

asm ("ret");
goto *VPC++;

i const:
/I push const ant

asm ("ret");
got o *vPCH+;

}

Figure 4.2: Direct threaded bodies retrofitted as callamlgimes by inserting inline assembler
return instructions. This example is for Pentium 4 and hesrods each body with aet
instruction. Theasmstatement is an extension to the C language, inline asserpbbeided
by gcc and many other compilers.

Rather than eliminate dispatch, we propose an alternaty&naation for the interpreter
in which native call and return instructions are used. Conedly, this approach is elegant
because the subroutine is a natural unit of abstractiongoess the implementation of virtual

instruction bodies.

Figure 4.1 illustrates our implementation of subroutine#iding, using the same example
program as Figure 3.3. In this case, we show the state of theaVmachineafter the first vir-
tual instruction has been executed. We add a new structtine toterpreter architecture, called
theContext Threading TabligETT), which contains a sequence of native call instructi@ach
native call dispatches the body for its virtual instruction

Although Figure 4.1 shows each body as a nested functiomdinvwe implement this by
ending each non-branching opcode body with a native retistruction as shown in Figure 4.2.
The direct threading table (DTT) is still necessary to siom@ediate operands, and to correctly
resolve virtual control transfer instructions. In direbtdading, entries in the DTT point to

virtual instruction bodies, whereas in subroutine thregdhey refer to call sites in the CTT.

The handling of immediate arguments to virtual instructisperhaps the biggest differ-

RCS file : ef ficient — interpretation.lyx, v Revision : 1.32 49 July 22, 2007 16:43

4.3. HANDLING VIRTUAL BRANCHES

ence between our implementation of subroutine threadimth@ approach used by Forth.
Forth words pop all their arguments from the run time stack ker€ is no concept of an im-
mediate operand. Thus, there is no need for a structurel&B®TT. The virtual instruction set
defined by a Java virtual machine includes many instructrdmsh take immediate operands.
Hence, in Java, we need both the DTT and the CTT.

It may seem counterintuitive to improve dispatch perforogdoy calling each body because
the latency of a call and return may be greater than an intdwew. This is not the real issue.
What the data presented in the next chapter will show is thahodern microprocessors the
extra cost of the call (if any) is far outweighed by the bengfieliminating a large source of

unpredictable branches.

4.3 Handling Virtual Branches

Subroutine threading handles the branches that implerherdispatch of straight-line virtual
instructions; however, the control flow of the virtual pragris still hidden from the hardware.
That is, bodies that perform virtual branches still have oitext. There are two problems, the
first relating to shared indirect branch prediction resesyand the second relating to a lack of
history context for conditional branch prediction res@as.c

Figure 4.3 introduces a new Java example, this time inctudinirtual branch. Consider
the implementation of f eq, shaded in the figure. Prediction of the indirect branch a}™(
may be problematic, becaua# instances of f eq instructions in the virtual program share
the same indirect branch instruction (and hence have aesprgtliction context).

Figure 4.4 illustrate®ranch replication a simple solution to the first of these problems.
The idea is to generate an indirect branch instruction inGfi@& immediately following the
dispatch of the virtual branch. Virtual branch bodies hagerbmodified to end with a native
return instruction and the only result of dispatching a bhabody is the side effect of setting

the vPC to the destination (BranchReplicationis an appropriate term because the indirect

RCS file : ef ficient — interpretation.lyx, v Revision : 1.32 50 July 22, 2007 16:43

CHAPTER 4. DESIGN AND IMPLEMENTATION OF EFFICIENT INTERPRETAQON

Java source

boolean notZero(int p1)
if ((pl!=0){

return true;

lelse

return false;

boolean notZero (int) ;
Code:
0: iload 1
> 1: ifeq 6
’ 4: iconst 1

5: ireturn
6: iconst 0
7: ireturn interp () {
Java Bytecode .- iload_1:
s //push local 1
DTT . vPC++;
// asm ("ret")
0:\| &ctt[0] o CTT
/s -p ifeq:
1: &Ctt[l] \\ - /, /',— if *sp)
- \ call iload 1 -- ’x," vPC = *vPC;
3:| &ctt[2] T call ifeg - else
4:| sctt[3] | call iconst_l-.~~~ ZPC:+;C e
T call ireturn -. | ™ goto TVELAti a
5:| &ctt[4] \\\\\\\\\ﬂ . .~
6:| &ctt[5] ‘\\\\\\\\\ﬂ call lCOHSt_D-nﬁ}%_ ““t-} iconst 1: //push 1|
call ireturn --f " "77]°t iconst 0 //push 0|
s ireturn:
//vPC = return
goto *vPC;
}
loaded data generated code virtual instruction bodies

Figure 4.3: Subroutine Threading does not not address brastructions. Unlike straight
line virtual instructions virtual branch bodies end withiadirect branch destination (just like
direct threading).

RCS file : ef ficient — interpretation.lyz, v Revision : 1.32 51 July 22, 2007 16:43

4.3. HANDLING VIRTUAL BRANCHES

interp () {
.- iload 1:
. //push local 1
DTT /' VPC++,‘
asm ("ret")
&ctt [0] o CTT .
s&ctt[1] \ . P ifeq:
Scall iload 1 A .7 if (*sp)
6 — vPC = *VPC;
I~ 1 L -
sctt [2] 3 call ifeq - else
j % PC++;
sctt [3] \ Jnp_(#vEC) e (et
Py \\»call %const_l 1
&ctt [5] ~call ireturn + iconst 1: //push 1|
jmp (%vPC) T iconst 0 //push O|
~Scall iconst 0)
. lreturn:
call ireturn //vPC = return
Jjmp ($VvPC) asm("ret") ;
}
loaded data generated code virtual instruction bodies

Figure 4.4. Context threading with branch replication titaing the “replicated” indirect
branch (a) in the CTT. The fact that the indirect branch cpads to only one virtual in-
struction gives it better prediction context. The heavywarfrom (a) to (b) is followed when
the virtual branch is taken.

branch ending the branch body has been copied to potemntnaltyy places in the CTT.) The

result is that each virtual branch instruction has its owtirectt branch predictor entry.

Branch replication is attractive because it is simple andipces the desired context with
a minimum of new generated instructions. However, it hasralber of drawbacks. First, for
branching opcodes, we execute three hardware controfféran@ call to the body, a return,
and the replicated indirect branch), which is an unnecgssarhead. Second, we still use
the overly general indirect branch instruction, even iresdi&kegot o where we would prefer
a simpler direct native branch. Third, by only replicatimg tdispatch part of the virtual in-
struction, we do not take full advantage of the conditiommahich predictor resources provided

by the hardware. Due to these limitations, we only use braeplication for indirect virtual

RCS file : ef ficient — interpretation.lyz, v Revision : 1.32 52 July 22, 2007 16:43

CHAPTER 4. DESIGN AND IMPLEMENTATION OF EFFICIENT INTERPRETAQON

branches and exceptions

Branch inlining illustrated by Figure 4.5 on page 54, is a technique thag¢iggas code for
the bodies of virtual branch instructions into the CTT. In tigeire we show how our system
inlines thei f eq instruction. The generated native code, shaded in the figumements the
same if-then-else logic as the original direct threadetualrinstruction body. The inlined
conditional branch instruction (e, “(a)” in the figure) is thus fully exposed to the Pentium’s
conditional branch prediction hardware.

On the Pentium branch inlining reduces pressure on the bitaken buffer, or BTB, since
conditional branches use the conditional branch predidgtmstead. The virtual conditional
branches now appear as real conditional branches to thevligrd The dispatch of the body
has been entirely eliminated.

The primary cost of branch inlining is increased code size tfis is modest because, at
least for languages like Java and Ocaml, virtual branchuosbns are simple and have small
bodies. For instance, on the Pentium IV, most branch instmng can be inlined with no more
than 10 words, at worst a few additional i-cache lines.

The obvious challenge of branch inlining is that the gemetatode is not portable and

assumes detailed knowledge of the virtual bodies it mustaperate with.

4.4 Handling Virtual Call and Return

The only significant source of control transfers that remaithe virtual program is virtual

method invocation and return. For successful branch piedicthe real problem is not the
virtual call, which has only a few possible destinationst taiher the virtual return, which
potentially has many destinations, one for each callsitthhefmethod. As noted previously,
the hardware already has an elegant solution to this probiehe form of the return address

stack. We need only to deploy this resource to predict Viretarns.

tOcaml defines explicit exception virtual instructions

RCS file : ef ficient — interpretation.lyx, v Revision : 1.32 53 July 22, 2007 16:43

4.4. HANDLING VIRTUAL CALL AND RETURN

vPC
CTT
DTT —call iload_1
&ctt [0] - L,subl $4, %edi
N &ctt [1] movl (%edi), %eax interp () {
6 <.:mp1 S0, %eax g Toad 1.
&ctt [2] jne nt e, . (@) //push local 1
&ctt [3] movl (%esi), %esi s VPC++;
&ctt [4] jmp cttdest asm ("ret")
sctt [5] ™nt: addl $4, %esi® b iconst 1. |
“call iconst 1 :
call ireturn ..-f1?_iconst 0 |
Z-:IOtO *vPC Ti® ireturn:
¢all iconst 0 -~ //vPC = return
call ireturn asm("ret");
goto *vPC }
loaded data generated code virtual instruction bodies

Figure 4.5: Context Threaded VM Interpreter: Branch InliniAthe dashed arrow (a) illus-
trates the inlined conditional branch instruction, nowyfldxposed to the branch prediction
hardware, and the heavy arrow (b) illustrates a direct biramplementing the not taken path.
The generated code (shaded) assumesg®@&s in registeresi and the Java expression stack
pointer is in registeedi . (In reality, we dedicate registers in the way shown for 84 on
the PowerPC only. On the Pentium4, due to lack of registees;PC is actually stored on the
stack.)

We describe our solution with reference to Figure 4.6. Thiei&l method invocation body,
Java’s nvokest at i ¢ in the figure, must transfer control to the first virtual instion of the
callee. Our goal is to generate dispatch code so that thespynding virtual return instruction

makes use of the hardware’s return branch predictors.

We begin at the virtual call instruction (just before lab@)® in the figure). The nvokest ati c
body creates a new frame for the callee, etc, and then setsP@eo the entry point of the
callee (“(b)” in the figure) before returning back to the CTim#ar to branch replication, we
insert a new nativeall indirectinstruction following “(a)” in the CTT to transfer control tbe
start of the callee, shown as a solid arrow from “(a)” to “(s)'the figure. The call indirect has

the desired side effect of pushing CTT location (a) onto thellare’s return address stack.

RCS file : ef ficient — interpretation.lyz, v Revision : 1.32 54 July 22, 2007 16:43

CHAPTER 4. DESIGN AND IMPLEMENTATION OF EFFICIENT INTERPRETAQON

vPC CTT

l,call invokestatic|

.. interp () {
call (*vPC) (a) ..

DTT

S ["1--» invokestatic:

&ctt [0] ASLLLLLPN) //build frame
" vPC = *VPC;

asm ("ret")

5 J-4--»> return:
callee « (b)'-‘ //pop frame
K PC = return
&ctt[calleel | 2 [v
- pJmp return -~ (c) [T asm("ret");
}
loaded data generated code virtual instruction bodies

Figure 4.6: Context Threading Apply-Return Inlining on Penti The generated codmlls
thei nvokest ati ¢ virtual instruction body bufjumps(instruction at (c) is g np) to the
return body.

The first instruction of the callee is then dispatched. Atehd of the callee, we modify the
virtual return instruction as follows. In the CTT, at “(c)”,eremit a native diregump, an x86

j mp in the figure, to dispatch the body of the virtual return. Tdirect branch avoids perturb-
ing the return address stack. The body of the virtual retom returns all the way back to the
instruction following the original virtual call. This is slwvn as the dotted arrow from “(b)” to
following “(a)”. We refer to this technique agply/return inlining-.

With this final step, we have a complete technique that alahgirtual program control
flow with the corresponding native flow. There are howevemearactical challenges to
implementing our design for apply/return inlining. Firsipe must take care to match the
hardware stack against the virtual program stack. Formestan OCaml, exceptions unwind
the virtual machine stack; the hardware stack must be unevaua corresponding manner.
Second, some run-time environments are extremely semsitivardware stack manipulations,

since they use or modify the machine stack pointer for the&m purposes (such as handling

2«apply” is the name of the (generalized) function call opead OCaml where we first implemented the
technique.

RCS file : ef ficient — interpretation.lyx, v Revision : 1.32 55 July 22, 2007 16:43

4.5. CHAPTER SUMMARY

signals). In such cases, it is possible to create a sepaaategructure and swap between the
two at virtual call and return points. This approach woultladuce significant overhead, and

is only justified if apply/return inlining provides a subst@l performance benefit.

4.5 Chapter Summary

The code generation described in this chapter is carriedioeh each virtual method is loaded.
The idea is to generate relatively simple code that expdeedispatch branch instructions to
the hardware branch predictors of the processor.

In the next chapter we present data showing that our appiieadfective in the sense that
branch mispredictions are reduced and performance is wagdroSubroutine threading is by
far the most effective, especially when its relatively sicity and small amount of machine
dependent code are taken into account. Branch inlining isrtbst complicated and least
portable.

Our implementation of context threading has at least tweml problems. First, effort
is expended at load time for regions of code that may nevecutge This could penalize
performance when large amounts of cold code are presemin8gis it awkward to interpose
profiling instrumentation around the virtual instructioodies dispatched from the CTT. Much
code rewriting is required and problems are hard to debup [79

In Chapter 6 we describe a different approach to efficientpnétation that addresses these
two problems. There, we describe a different approach #a¢igates simple code for hot inter-
procedural paths, or traces. This allows us to exploit theagly and simplicity of subroutine
threading for straight-line code at the same time as elitaitfae mispredictions caused by

virtual branch instructions.

RCS file : ef ficient — interpretation.lyx, v Revision : 1.32 56 July 22, 2007 16:43

Chapter 5

Evaluation of Context Threading

In this chapter we evaluate context threading by compatsgdarformance to direct threading
and direct-threaded selective inlining. We evaluate theaich of each of our techniques on
Pentium 4 and PowerPC by measuring the performance of Skbla\dava virtual machine

and ocamlrun, an OCaml interpreter. We explore the diffe¥srietween context threading
and SableVM'’s selective inlining further by measuring agerextension of context threading
we call tiny inlining. Finally, we investigate the limitats of our techniques by comparing the

performance of subroutine threaded TCL to subroutine tle@&taml on Sparc.

The overall results show that dispatching virtual insmuasi by calling virtual instructions
bodies is very effective for Java and Ocaml on Pentium IV aodd?PC platforms. In fact,
subroutine threading outperforms direct threading by dtineanargin of about 20%. Context
threading is almost as fast as selective inlining as impigateby SableVM. When a TCL
interpreter is modified to run subroutine threading, on a&Spebcessor, performance increases

much less than Ocaml on the same machine, only about 5%.

We begin by describing our experimental setup in Section Sektion 5.2 describes how
measuments are made on the Pentium IV and Section 5.3, oowePC. We investigate how
effectively our techniques address pipeline branch hazar8ection 5.4.1, and the overall ef-

fect on execution time in Section 5.4.2. Section 5.5 denmatest that context threading is com-

57

5.1. VIRTUAL MACHINES, BENCHMARKS AND PLATFORMS

Table 5.1: Description of OCaml benchmarks. Raw elapsed tmdebaanch hazard data for

direct threaded runs.

Pentium IV PowerPC 7410 PPC970| Lines
Branch Branch Elapsed of
Time Mispredicts Time Stalls Time Source

Benchmark | Description (Tsc*108) (MPT*108) | (Cycles*108) (Cycles*109) (sec) Code
boyer Boyer theorem prover 3.34 7.21 1.8 43.9 0.18 903
fft Fast Fourier transform 31.9 52.0 18.1 506 1.43 187
fib Fibonacci by recursion 2.12 3.03 2.0 64.7 0.19 23
genlex A lexer generator 1.90 3.62 1.6 27.1 0.11 2682
kb A knowledge base program 17.9 42.9 9.5 283 0.96 611
nucleic nucleic acid’s structure 14.3 19.9 95.2 2660 6.24 3231
quicksort Quicksort 9.94 20.1 7.2 264 0.70 91
sieve Sieve of Eratosthenes 3.04 1.90 2.7 39.0 0.16 55
soli A classic peg game 7.00 16.2 4.0 158 0.47 110
takc Takeuchi function (curried) 4.25 7.66 3.3 114 0.33 22
taku Takeuchi function (tuplified) 7.24 15.7 5.1 183 0.52 21

Table 5.2: Description of SpecJVM Java benchmarks. Raw etapsie and branch hazard

data for direct threaded runs.

Pentium IV PowerPC 7410 PPC970

Branch Branch Elapsed
Time Mispredicts Time Stalls Time
Benchmark | Description (Tsc*10'') (MPT*10%) | (Cycles*10'9) (Cycles*108) (sec)
compress Modified Lempel-Ziv compression 4.48 7.13 17.0 493 127.7
db performs multiple database functions 1.96 2.05 7.5 240 65.1
jack A Java parser generator 0.71 0.65 2.7 67 18.9
javac the Java compiler from the JDK 1.0.2 1.59 1.43 6.1 160 44.7
jess Java Expert Shell System 1.04 1.12 4.2 110 29.8
mpegaudio | decompresses MPEG Layer-3 audio files 3.72 5.70 14.0 460 106.0
mtrt two thread variant of raytrace 1.06 1.04 5.3 120 26.8
raytrace a raytracer rendering 1.00 1.03 5.2 120 31.2
scimark performs FFT SOR and LU, 'large’ 4.40 6.32 18.0 690 118.1
soot java bytecode to bytecode optimizer 1.09 1.05 2.7 71 35.5

plementary to inlining and results in performance complaré SableVM’s implementation
of selective inlining. Finally,Section 5.6 discusses a téthe limitations of context threading

by comparing the speedup obtained, on Sparc, of Vitale'ssitine threaded TCL[75, Figure

1] vs Ocaml.

5.1 Virtual Machines, Benchmarks and Platforms

We evaluated our techniques by modifying interpreters &aknd Ocaml to run on Pentium

IV, PowerPC 7410 and PPC970.

RCS file : eval — ef ficient — interpretation.lyx, v Revision : 1.9 58

July 22, 2007 16:43

CHAPTER 5. EVALUATION OF CONTEXT THREADING

5.1.1 OCaml

We chose OCaml as representative of a class of efficient, -biaa#d interpreters that use
direct-threaded dispatch. The bytecode bodies of thepretar, in C, have been hand-tuned
extensively, to the point of using gcc inline assembler msitans to hand-allocate important
variables to dedicated registers. The implementation ef@Caml interpreter is clean and

easy to modify[13, 1].

5.1.2 SablevVM

SableVM is a Java Virtual Machine built for quick interprda, implementing lazy method
loading and a novel bi-directional virtual function looktgble. Hardware signals are used to
handle exceptions. Most importantly for our purposes, &4kl implements multiple dispatch
mechanisms, including switch, direct threading, and sekemlining (which SableVM calls
inline threading[30]). The support for multiple dispatch mechanisms féatiéd our work to

add context threading.

5.1.3 OCaml Benchmarks

The benchmarks in Table 5.1 make up the standard OCaml benclsmiée. Boyer , kb,
gui cksort andsi eve do mostly integer processing, whiteicl ei ¢ andf ft are mostly
floating point benchmarksSol i is an exhaustive search algorithm that solves a solitaige pe
game. Fi b, t aku, andt akc are tiny, highly-recursive programs which calculate ieteg
values.

Fi b, t aku, andt akc are unusual because they contain very few distinct virtusthiic-
tions, and may use only one instance of each. This has twortaqgoconsequences. First,
the indirect branch in direct-threaded dispatch is reddyipredictable. Second, even minor

changes can have dramatic effects (both positive and neydtecause so few instructions

Ytp://ftp.inria.fr/INR A Projects/cristal/Xavier.Leroy/ benchmarks/objcanl.tar.gz

RC S file : eval — ef ficient — interpretation.lyx, v Revision : 1.9 59 July 22, 2007 16:43

5.2. PENTIUM IV MEASUREMENTS

contribute to the behavior.

5.1.4 SableVM Benchmarks

SableVM experiments were run on the complete SPECjvm98 [64é¢ fconpr ess, db,
npegaudi o,raytrace,ntrt,j ack,j ess andj avac), one large object oriented appli-
cation oot [73]) and one scientific applicatios ¢i mar k [59]). Table 5.2 summarizes the

key characteristics of these benchmarks.

5.2 Pentium IV Measurements

The Pentium IV (P4) processor speculatively dispatchdsuatsons based on branch predic-
tions. As discussed in Section 3.5, the indirect branched tm direct-threaded dispatch are
often mispredicted due to the lack of context. Ideally, weldaneasure the cycles the proces-
sor stalls due to mispredictions of these branches, but4hdoBs not provide a performance
counter for this purpose. Instead, we count the numbetigpredicted taken branch@sIPT)

to show how effectively our techniques improve branch ptgal. \WWe measure time on the

P4 with the cycle-accuratitme stamp countefTSC) register. We count both MPT and TSC
events using our own Linux kernel module, which collects ptate data for the multithreaded

Java benchmarks

5.3 PowerPC Measurements

We need to characterize the cost of branches differenthherPowerPC than on the P4, as
the PPC does not speculate on indirect branches. Insteadyrggmches are used (as shown

in Figure 3.4(b)) and the PPC stalls until the branch destinas known. Hence, we would

2MPT events are counted with performance counter 8 by settimg4 CCCR to 0x0003b000 and the ESCR
to value 0xc001004 [45]

RCS file : eval — ef ficient — interpretation.lyx, v Revision : 1.9 60 July 22, 2007 16:43

CHAPTER 5. EVALUATION OF CONTEXT THREADING

like to count the number of cycles stalled due to link and ¢oagister dependencies. Unfor-
tunately, PPC970 chips do not provide a performance couotdhis purpose; however, the
older PPC7410 CPU has a counter (counter 15, “stall on LR/CTRrdigpey”) that provides

exactly the information we need [52]. On the PPC7410, we adedlie hardware counters to
obtain overall execution times in terms of clock cycles. \Weezt that the branch stall penalty
should be larger on more deeply-pipelined CPUs like the PPQ#X0@ever, we cannot directly

verify this. Instead, we report only elapsed execution tiarehe PPC970.

5.4 Interpreting the data

In presenting our results, we normalize all experimentsiéodirect threading case, since it is
considered a state-of-the art dispatch technique. (Thesalistributions of both Ocaml and
SableVM configure for direct threading.) We give the absoéxecution times and branch haz-
ard statistics for each benchmark and platform using dilgetiding in Tables 5.1 and 5.2. Bar
graphs in the following sections show the contributions aflecomponent of our technique:
subroutine threading only (labeled SUB); subroutine thireadlus branch inlining and branch
replication for exceptions and indirect branches (lab&88ANCH); and our complete con-
text threading implementation which includes apply/retiniining (labeled CONTEXT. We
include bars for selective inlining in SableVM (label8&LECT) and our own simple inlining
technique (labele@INY) to facilitate comparisons, although inlining results mo¢ discussed
until Section 5.5. We do not show a bar for direct threadingalige it would, by definition,

have height 1.0. See Table 5.3

RC S file : eval — ef ficient — interpretation.lyz, v Revision : 1.9 61 July 22, 2007 16:43

5.4. INTERPRETING THE DATA

7 M ueawosb ||| e _cmm_\,_owm
7777 ? A
= 7 T & =
5o m nxe) 3 m !
z B [| >
om Z > m < 2
> M o Z S m z
n»mOF O oo+
I — < oxel 777k Q axel
Xl % 7/ X
(%)
2
Ijos S Ios
c
©
IN -
_Ié anals 0 anals
iz K4 an |7
S X
S g
H nosyoinbgs H uosyaInb
|z m o O
g 2
o 9 B
JIBNU — O Jlg[onu
- E O
a —
o o
NN o .2
IR
<
£
xa|uabh 3 xa|uab
7 e 7
()
o [N
m quy ~—~ qly
) =
[N _//////_/ _ _
u u
m J1afoq 1ahog
Z
[[1 [[1
o @ © < N o o @ © < N o
— o o o o o — o o o o o
100110 01 aAlR[al 1dIN 100110 01 8AIR[9Y S9|2AD |[e1S H1D/d1

July 22, 2007 16:43

OCaml benchmark

(b) PPC 7410 Ir-ctr stall cycles
Figure 5.1: Ocaml Pipeline Hazards Relative to Direct Thirggad

RC S file : eval — ef ficient — interpretation.lyx,v Revision : 1.9 62

CHAPTER 5. EVALUATION OF CONTEXT THREADING

-
@]
L
-
L
n

CONTEXT

| R

I
O
pd
o =z
[V i) |t
J N
N
OO INIIIIIINNNN
[ZZ77777777777777777777777777777777 4
[N
[
|77
mm
Y
S © © < N o
— o o o o o

193410 01 8AIR|a) 1 dIN

uea|Noab

100S

srewios

el

mnw

Hadw

ssaf

Java benchmark

(a) Pentium 4 Mispredicted Taken Branches

oene|

soel

ap

ssaidwod

uea|Noab
&
o o
] Z B Joos
o< Z2Z
woOxoZ
n nomo
R N
P Z ylewlds
R R R R R R R R RRRRRR @0enfel
[P 7Z777777777727777772777777772777
Sttt IR ~
2 7 7 2 T 72 7 mw
S
<
(&)
fadw £
()
o]
S
©
ssal -
oenel
soel
ap
222777777 777,
B ssaidwod
77777777
Q @ @ < N Q
- o o o o o

193110 01 8AlR|9Y S8]2A2 [[B1s H1D/d1

(b) PPC7410 - Ir/ctr stall cycles

Figure 5.2:Java Pipeline Hazards Relative to Direct Threading

July 22, 2007 16:43

RC S file : eval — ef ficient — interpretation.lyx, v Revision : 1.9 63

5.4. INTERPRETING THE DATA

Table 5.3: (a) Guide to Technique description.

| Technique | Key | Description
Subroutine Threading SUB Section 4.2
Branch Inlining BRANCH Section 4.3
Context Threading CONTEXT Section 4.4
Tiny Inlining TINY Section 5.5
Selective Inlining (sablevm) SELECT Section 3.7

(b) Guide to performance data figures.

Interpreter Hazards P4/PPC7410 PPC970 time
Performance

. . Figure 5.5 (a)
Figure 5.1 on| Figure 5.3 on

on page 68
Ocaml page 62 page 66 Pag
Figure 5.2 on . ,
Java (SableVM) | the previous Figure 54 on | Figure 5.5 (b)

page 67 on page 68

page

5.4.1 Effect on Pipeline Branch Hazards

Context threading was designed to align virtual programestath physical machine state to
improve branch prediction and reduce pipeline branch lizzawe begin our evaluation by
examining how well we have met this goal.

Figure 5.1 reports the extent to which context threadingiced pipeline branch hazards
for the OCaml benchmarks, while Figure 5.2 reports thesdtsefar the Java benchmarks
on SableVM. On the top of each Figure, the graph labeled @ggmts the results on the P4,
where we count mispredicted taken branches (MPT). On botjoaphs labeled (b) present the
effect on LR/CTR stall cycles on the PPC7410. The last clusteaoh bar graph reports the
geometric mean across all benchmarks.

Context threading eliminates most of the mispredicted tdlkanches (MPT) on the Pen-
tium IV and LR/CTR stall cycles on the PPC7410, with similar afeeffects for both inter-
preters. Examining Figures 5.1 and 5.2 reveals that submotitreading has the single greatest

impact, reducing MPT by an average of 75% for OCaml and 85%édbte/M on the P4, and

RCS file : eval — ef ficient — interpretation.lyx, v Revision : 1.9 64 July 22, 2007 16:43

CHAPTER 5. EVALUATION OF CONTEXT THREADING

reducing LR/CTR stalls by 60% and 75% on average for the PPC7iiresult matches our
expectations because subroutine threading addressesdbstlsingle source of unpredictable
branches—the dispatch used for straight-line sequencegwdl instructions. Branch inlining
has the next largest effect, again as expected, since amalibranches are the most signifi-
cant remaining pipeline hazard after applying subroutmeading. On the P4, branch inlining
cuts the remaining MPTs by about 60%. On the PPC7410 brariomghas a smaller, though
still important effect, eliminating about 25% of the remamLR/CTR stall cycles. A notable
exception to the MPT trend occurs for the OCaml micro-benche¥fa b, t akc andt aku.
These tiny recursive micro benchmarks contain few dumieatual instructions and so the
Pentium’s BTB mostly predicts correctly. Hence, inlininge tbonditional branches cannot
help.

Interestingly, the same three OCaml micro benchm&ilis, t akc andt aku that chal-
lenge branch inlining on the P4 also reap the greatest bdrafit apply/return inlining, as
shown in Figure 5.1(a). (This appears as the significantorgment of CONTEXT relative to
BRANCH.) Due to the recursive nature of these benchmarks, peeformance is dominated
by the behavior of virtual calls and returns. Thus, we expeetlicting the returns to have
significant impact.

For SableVM on the P4, however, our implementation of apetyfn inlining is restricted
by the fact that gcc generated code touches the processqrsegister. Rather than implement
a complicated stack switching technique as discussed itioBet 4, we allow the virtual and
machine stacks to become misaligned when SableVM mangautiieesp directly. This
increases the overhead of our apply/return inlining im@etation presumably by reducing the
effectiveness of the return address stack predictor. ORB©7410, the effect of apply/return
inlining on LR/CTR stalls is very small for SableVM.

Having shown that our techniques can significantly redupelpie branch hazards, we now

examine the impact of these reductions on overall exectitiog

RC S file : eval — ef ficient — interpretation.lyx,v Revision : 1.9 65 July 22, 2007 16:43

INTERPRETING THE DATA

5.4.

R RN

1.4

B
[
S SR SRR
E
L L
B SUOMMAAANANNANANAN
Il
N
=
Z
L L L
[N
[ST |
/|
_ _ [[T T T 1
N o @ © < N S
— — o o o o o
198410 01 8AIR|3 DS 1

uea|N0ab

nye;

el

BRANCH
| | CONTEXT

uea|Noab

ljos

anaIs

mark

Hosxainb

a1goNu

Ocaml bench
(a) Pentium 4

Qo
X

xa|uab

ay

e s IR

el

0S

R

anals

ANNNNN SN

Hosyainb

R RRRRRRRIIRN

a18[oNU

OCaml benchmark

P

(b) PPC7410

e] <011°D

DNSNNNNNNNNN SN

ay

1.0

1

] 19Aoq
A
|
Q
o

0.8

2911Q 01 8AlR|aY S9|24D

ing

ive to Direct Threadi

Relat

ime

OCaml Elapsed T

Figure 5.3

July 22, 2007 16:43

RC S file : eval — ef ficient — interpretation.lyx, v Revision : 1.9 66

CHAPTER 5. EVALUATION OF CONTEXT THREADING

-
]
L
-
L
n

CONTEXT

RRRRRRIARIRRRIREIRRIRRRARIRRRREZRRRR KRR IR

SRR R R R IR R AR

- B R R R R R R SRR SR SRR SR SR SRR IR IR

V277777777777 7777772/ 777772777777/ 777777

1.0

@ ©
o o

10311Q 01 8ANR|9Y OSL

<
o

0.2
0.0

uea\odh

100s

-
]
L
—
]
n

S}ewios

CONTEXT

el

Java benchmark

(a) Pentium IV

ssaidwod

R R R R R R R R R SR o0 S R SRR SRR R R

(7777777777777 7777777777777 777777777724 7777777707722772727

T OO0 Ta T O T OO O T OO IO TOTO T OTOTO T OTOTOTTOTOTOTOTOTATOTOTOTATOTOTOTOTOTOTOTATOTOTOTATOTITOTOTS
(77 77/777777}

T e e e e e e e e e Y e e e e e P e 2 e e e e % e e e

V22 7 7 a7 2 7 2

T e T T e T e T e T T e T e T e e T e e e T e e T e e e e T e T e e e e e e e e e e e e e e e e e e

[[7777777777777777777./777777 777777/ 777772777777/777777]
e @ © < N o
— o o o o o

10011Q 01 8AIR|9Y S8]2AD

ueaoab

l00s

Slewios

aoeufel

umuw

BHadw

Java benchmark

(b) PPC 7410

ssal

oenel

noel

ap

ssaidwod

Figure 5.4: SableVM Elapsed Time Relative to Direct Thregdin

July 22, 2007 16:43

RCS file : eval — ef ficient — interpretation.lyz, v Revision : 1.9 67

5.4. INTERPRETING THE DATA

~ RN
5 i ueapoah
Z E
<z [l I
Sx0oZ s
maooOF
7R T AT I T Tt ats ne}
[3 ==
P T T llos
[4
S
[aNdIS @
<
3}
c
uosyoinbg
o
lsponu ©
BIETRLY] m
o
R R R R R R R R R R R R RR R x8|uab
[I
qay
S N A)
[N
. W
Z
19Aoq
o © © < o~ o
— o o o o o

10911 01 9AIR|9Y awil] pasde|]

(a) OCaml PPC970 elapsed (real) seconds

[N N |

-
O
L
—
L
(%))

CONTEXT

777777 77777777777777777777777777/777777 777777777777

e e T e e e T e e T e e e e e e e T e e e e e e T T e e e Ta e Y0 Y e e %e e %

R R R R R IR IR

10911 01 9AlR|9Y Bwl] pasde|]

uea|\0ab

lo0s

S}rewios

Ael

mnw

Badw

ssal

Java benchmark

(b) SableVM PPC970 elapsed (real) seconds

oene|

>oel

ap

ssaidwod

Figure 5.5:PPC970 Elapsed Time Relative to Direct Threading

July 22, 2007 16:43

RC S file : eval — ef ficient — interpretation.lyx, v Revision : 1.9 68

CHAPTER 5. EVALUATION OF CONTEXT THREADING

5.4.2 Performance

Context threading improves branch prediction, resultingatter use of the pipelines on both
the P4 and the PPC. However, using a natigé/return pair for each dispatch increases in-
struction overhead. In this section, we examine the nettreSthese two effects on overall
execution time. As before, all data is reported relativeitead threading.

Figures 5.3 and 5.4 show results for the OCaml and SableVMHhearks respectively.
They are organized in the same way as the previous sectitnP#iresults on the top, labeled
(a), and PPC7410 results on bottom, labeled (b). Figure pdrtethe performance of OCami
and SableVM on the PPC970 CPU. The geometric means (rightrhussen) in Figures 5.3,
5.4 and 5.5 show that context threading significantly odigpers direct threading on both
virtual machines and on all three architectures. The gedeneiean execution time of the
Ocaml VM is about 19% lower for context threading than ditceading on P4, 9% lower
on PPC7410, and 39% lower on the PPC970. For SableVM, contesddimg, compared with
direct threading, runs about 17% faster on the PPC7410 andfa2&#r on both the P4 and
PPC970. Although we cannot measure the cost of LR/CTR stalls@RPC970, the greater
reductions in execution time are consistent with its moreptiepipelined design (23 stages
vs. 7 for the PPC7410).

Across interpreters and architectures, the effect of ochrtjues is clear. Subroutine
threading has the single largest impact on elapsed time.cBriaatining has the next largest
impact eliminating an additional 3—7% of the elapsed tinmegéneral, the reductions in exe-
cution time track the reductions in branch hazards seergur€s 5.1 and 5.2. The longer path
length of our dispatch technique are most evident in the OGamthmarks i b andt akc
on the P4 where the improvements in branch prediction (vela direct threading) are mi-
nor. These tiny benchmarks often compile into unique ircarof a few virtual instructions.

This means that there is little or no sharing of BTB slots betwmstances and hence fewer

RCS file : eval — ef ficient — interpretation.lyz, v Revision : 1.9 69 July 22, 2007 16:43

5.5. INLINING

mispredictions.

The effect of apply/return inlining on execution time is mmal overall, changing the geo-
metric mean by only-1% with no discernible pattern. Given the limited performaibenefit
and added complexity, a general deployment of apply/reiming does not seem worth-
while. ldeally, one would like to detect heavy recursionoaudtically, and only perform ap-
ply/return inlining when needed. We conclude that, for gahasage, subroutine threading
plus branch inlining provides the best trade-off.

We now demonstrate that context-threaded dispatch is @ngitary to inlining tech-

niques.

5.5 Inlining

Inlining techniques address the context problem by reffigebytecode bodies and removing
dispatch code. This reduces both instructions executegiaetine hazards. In this section we
show that, although both selective inlining and our conties¢ading technique reduce pipeline
hazards, context threading is slower due to the overhead ekira dispatch instructions. We
investigate this issue by comparing our otimy inlining technique with selective inlining.

In Figures 5.2, 5.4 and 5.5(b) the black bar labeled SELECWslour measurements of
Gagnon’s selective inlining implementation for SableVM]3 From these Figures, we see
that selective inlining reduces both MPT and LR/CTR stallgigicantly as compared to direct
threading, but it is not as effective in this regard as sutimeuthreading alone. The larger
reductions in pipeline hazards for context threading, hanedo not necessarily translate into
better performance over selective inlining. Figure 5.4l(a¥trates that SableVM’s selective
inlining beats context threading on the P4 by roughly 5%, nee on the PPC7410 and the
PPC970, both techniques have roughly the same execution aéisnghown in Figure 5.4(b)
and Figure 5.5(a), respectively. These results show tlatcieg pipeline hazards caused by

dispatch is not sufficient to match the performance of seteatlining. By eliminating some

RC S file : eval — ef ficient — interpretation.lyx, v Revision : 1.9 70 July 22, 2007 16:43

CHAPTER 5. EVALUATION OF CONTEXT THREADING

Table 5.4: Detailed comparison of selective inlining vs ttembination of context+tiny
(SableVM). Numbers are elapsed time relative to directathirg for SableVM.A(S — C)
is the the difference between selective inlining and cdntiepeading. A(S — T') is the dif-
ference between selective inlining and the combinatiorootext threading and tiny inlining.

Context Selective Tiny A A
Arch (©) (S) (M (s-C) (s
P4 0.762 0.721| 0.731| -0.041| -0.010

PPC7410] 0.863 0.914| 0.839| 0.051| 0.075
PPC970| 0.753 0.739| 0.691| -0.014| 0.048

dispatch code, selective inlining can do the same real watkfewer instructions than context
threading.

Context threading is a dispatch technique, and can be easilgioed with an inlining strat-
egy. To investigate the impact of dispatch instruction bead and to demonstrate that context
threading is complementary to inlining, we implement@aly Inlining, a simple heuristic that
inlines all bodies with a length less than four times the tengf our dispatch code. This
eliminates the dispatch overhead for the smallest bodigsamcalls in the CTT are replaced
with comparably-sized bodies, tiny inlining ensures tiat total code growth is minimal. In
fact, the smallest inlined OCaml bodies on P4 wamllerthan the length of a relative call
instruction (five bytes). Table 5.4 summarizes the effe¢igfinlining. On the P4, we come
within 1% of SableVM’s sophisticated selective inliningptementation. On PowerPC, we

outperform SableVM by 7.8% for the PPC7410 and 4.8% for the FBC9

5.6 Limitations of Context Threading

The techniques described in this chapter address dispaticheance have greater impact as the
frequency of dispatch increases relative to the real wornkezhout. A key design decision for
any virtual machine is the specific mix of virtual instruect®o A computation may be carried
out by many lightweight virtual instructions or fewer heasgight ones. Figure 5.6 shows how

a Tcl interpreter typically executes an order of magnituaearcycles per dispatched virtual

RCS file : eval — ef ficient — interpretation.lyx, v Revision : 1.9 71 July 22, 2007 16:43

5.6. LIMITATIONS OF CONTEXT THREADING

10° F
i Y e Tcl
r 4 Ocaml 1
10 F 3
- L °]
] °
© i o 1
g 0 . ¢
a i - ® S]
[[° «n °]
& e Nl X o« &
2 100N % T et
g £ [] .. ~
[&] [] [)
>
o ‘E N 4 A A A A R]
101 ? A ?
100

Tcl or Ocaml Benchmark

Figure 5.6: Reproduction of [75, Figure 1] showing cycles pam virtual instructions dis-
patched for various Tcl and Ocaml benchmarks .

instruction than Ocaml. Another perspective is that Ocaxelcates more dispatch because
its work is carved up into smaller virtual instructions. hetfigure we see that many Ocaml
benchmarks average only tens of cycles per dispatchediatisin. Thus, the time Ocaml
spends executing a typical body is of the same order of madmis the branch misprediction
penalty of a modern CPU. On the other hand most Tcl benchmaecsite hundreds of cycles
per dispatch, many times the misprediction penalty. Thues,expect subroutine threading
to speed up Tcl much less than Ocaml. In fact, the geometrannoé 500 Tcl benchmarks
speeds up only 5.4 % on a UltraSPARC IlI. As shown in Figure Gbf@utine threading alone

improved our Ocaml benchmark much more.

Another issue raised by the Tcl implementation was that abh@% of the 500 program
benchmark suite slowed down. Very few of these dispatcherkrtian 10,000 virtual in-
structions. Most were tiny programs that executed as ke few dozen dispatches. This
suggests that for programs that execute only a small nunfbértoal instructions the load

time overhead of generating code in the CTT is an issue.

RC S file : eval — ef ficient — interpretation.lyx, v Revision : 1.9 72 July 22, 2007 16:43

CHAPTER 5. EVALUATION OF CONTEXT THREADING

UltraSPARC IlI

1.0 - 0.97 0.96
0.8 H 0.78 [
0.6 |

0.4 R

Elapsed Time Relative to Direct

0.0

fe)
£ .

boyer
genlex
nucleic
uicksort
sieve

soli

takc

taku
geomean

Ocaml Benghmark

Figure 5.7: Elapsed time of subroutine threading relativelitect threading for Ocaml on
UltraSPARC IlI.

5.7 Chapter Summary

Our experimentation with subroutine threading has esthéd that calling virtual instruction
bodies is an efficient way of dispatching virtual instrun8o Subroutine threading is partic-
ulary effective at eliminating branch mispredictions aidy the dispatch of straight-line
regions of virtual instructions. Branch inlining, thouglbda intestive to implement, eliminat-
ing the branch mispredictions caused by most virtual brascnce the pipelines are full, the
latency of dispatch instructions becomes significant. Aafle technique for addressing this
overhead is inlining, and we have shown that context threpdi compatible with our “tiny”
inlining heuristic. With this simple approach, contextadhding achieves performance roughly
equivalent to, and occasionally better than, selectivaing.

These results also contain some warnings. First, our atsetmfinesse the implementation
of virtual branch instructions using branch replicatioe¢&on 4.3) and apply/return inlining
(Section 4.4) were not successful. It was only when we redaid the much less portable

branch inlining that we improved the performance of virthednches significantly. Second,

RCS file : eval — ef ficient — interpretation.lyx, v Revision : 1.9 73 July 22, 2007 16:43

5.7. CHAPTER SUMMARY

the slowdown observed amongst a few TCL benchmarks (thaattised very few virtual
instructions) raises the concern that even the load timegheeel of subroutine threading may be
too high. This suggests that we should investigate lazycgubres so we can delay generating
code until it is needed.

These results inform our design of a gradually extensilikrjometer, to be presented next,
in one principal way. We suggested, in Chapter 1, that a JITpdemwvould be simpler to build
if its code generator has the option of falling back on cgllirtual instruction bodies. The fall
back code would be essentially identical to subroutinestthireg. But we have seen that linear
regions of the program can be efficiently interpreted usuigeutine threading. This suggests
that there would be little or no performance penalty, reéato interpretation, when a JIT falls

back on calling virtual instructions that it chooses notampile.

RCS file : eval — ef ficient — interpretation.lyx,v Revision : 1.9 74 July 22, 2007 16:43

Chapter 6

Design and Implementation of YETI

Early on we realized that organizing virtual bodies as liggight routines would make it pos-
sible to call them from generated code and that this has pakémsimplify bringing up a JIT.
At the same time, we realized that we could expand our useedDTl to dispatch execution
units of any size, including basic blocks and traces, antdtbg&would allow us to gradually
extend our system to more ambitious execution units. We khevit was necessary to in-
terpose instrumentation between the virtual instructimutswve could not see a simple way of
doing it. We went ahead regardless and built an instrumentatfrastructure centered around
code generation. The general idea was to initially gengratepolines, which we called inter-
posers, that would call instrumentation before and aftedibpatch of each virtual instruction.
The infrastructure was very efficient (probably more effitihan the system we will describe
in this chapter) but quite difficult to debug. We extended system until it could identify
basic blocks and traces [79]. Its main drawback was that afleiork was required to build
a profiling system that ran no faster than direct threadinbis,Twe felt, was not “gradual”

enough. Fortunately, a better idea came to mind.

Instead of loading the program as described for contexathing, Yeti runs a program by
initially dispatching single virtual instruction bodiem an instrumented dispatch loop rem-

iniscent of direct call threading. Instrumentation addethe dispatch loop detects execution

75

6.1. INSTRUMENTATION

units, initially basic blocks, then traces, then linkecc&s. As execution units are generated
their address is installed into the DTT. Consequently théesyspeeds up as more time is

spent in execution units and less time on dispatch.

6.1 Instrumentation

In Yeti, as in subroutine threading, tk€C points into the DTT where each virtual instruction
is represented as one or more contiguous slots. The loageesentation of the program has
been elaborated significantly — now the first DTT slot of eaxdtruction points to an instance
of adispatcherstructure. The dispatcher structure contains four keydi€ldhe execution unit
to be dispatched (initially a virtual instruction body, lserthe name) is stored in thedyfield.
The preworkerandpostworkerfields store the addresses of the instrumentation routibe t
called before and after the dispatch of the execution umlly, the dispatcher haspayload
field, which is a chunk of profiling or other data that the instentation needs to associate with
an execution unit. Payload structures are used to desartib@ahMnstructions, basic blocks, or
traces.

Despite being slow, a dispatch loop is very attractive bsediumakes it easy to instrument
the execution of a virtual program. Figure 6.1 shows howrumséntation can be interposed
before and after the dispatch of each virtual instructiohe Tigure illustrates a generic form
of dispatch loop (the shaded rectangle in the lower rightgnehthe actual instrumentation
routines to be called are implemented as function pointescessible via the PC . In addition
we pass a payload to each instrumentation call. The dissalyarf this approach is that the
dispatch of the instrumentation is burdened by the overbéadall through a function pointer.
This is not a problem because Yeti actually deploys seveeatialized dispatch loops and the
generic version illustrated in Figure 6.1 only executes alspnoportion of the time.

Our strategy for identifying regions of a virtual prograngu@es every thread to execute

in one of several execution “modes”. For instance, when igeiimg) a trace, a thread will be in

RCS file : implementation — yeti.lyx, v Revision : 1.14 76 July 22, 2007 16:43

CHAPTER 6. DESIGN AND IMPLEMENTATION OF YETI

trace generation moddézach thread has associated withtiheead context structur@cs) which
includes various mode bits as well as thistory list which is used to accumulate regions of

the virtual program.

6.2 Loading

When a method is first loaded we don’t know which parts of it Wil executed. As each
instruction is loaded it is initialized to a shared dispatcstructure. There is one shared dis-
patcher for each kind of virtual instruction. One instarseshared for ali | oad instructions,
another instance for alladd instructions, and so on. Thus, minimal work is done at loawkti
for instructions that never run. On the other hand, a shasgtther cannot be used to profile
instructions that do execute. Hence, the shared dispaisheplaced by a new, non-shared,
instance of dlock discovery dispatchevhen the postworker of the shared dispatcher runs for

the first time. The job of the block discovery dispatcher iglentify new basic blocks.

6.3 Basic Block Detection

When the preworker of a block discovery dispatcher execotdbé first time, and the thread is
not currently recording a region, the program is about to ent&sac block that has never run
before. When this occurs we switch the thread biiteck recording modey setting a bit in the
thread context structure. Figure 6.1 illustrates the disgoof the basic block of our running
example. The postworker called following the executionaxdleinstruction has appended the
instruction’s payload to the thread’s history list. When artwh instruction is encountered by
a thread in block recording mode, the end of the current bdasitk has been reached, so the
history list is used to generate an execution unit for thectaleck. Figure 6.2 illustrates the
situation just after the collection of the basic block hassfied. The dispatcher at the entry

point of the basic block has been replaced by a hasic block dispatchewith a new payload

RCS file : implementation — yeti.lyx, v Revision : 1.14 77 July 22, 2007 16:43

6.4. TRACE SELECTION

interp () {

N post

pay = d->payload;
(*d->pre) (VvPC, pay, &tcs) ;
(*d->body) () ;

(*d->post) (vPC, pay, &tcs) ;

}

block discovery dispatcher Instruction *vPC;
v payload thread context struct \
» bo e .
N {oad Toag mode bb_record | iload: //push var
payloado— 1loa \ history list | VPCH+;
DTT pre ! asm volatile("ret") ;
post h
Z / .
§2§¥Oad — iload E \ iconst:
a pgst / \ iadd:
A istore:
pagfoaa iconst /
b ggst s
. k//////// t thread context tcs;
Ae—
L / E%g%ad iadd
7 ost Z vPC = &dtt [O] 7
h while (1) { //dispatch loop
giimd iadd d = vPC->dipatcher;

bod¥ .
pay oad ———_ istore
Eost

p8¥¥oac goto }

Figure 6.1: Shows a region of the DTT during block recordingfien The body of each block
discovery dispatcher points to the corresponding virtastiuction body (Only the body for the
first iload is shown). The dispatcher’s payload field pointgtances of instruction payload.
The thread context struct is shown as tcs.

created from the history list. The body field of the basic kldspatcher points to a subroutine

threading style execution unit that has been generatetédvdsic block. The job of the basic

block dispatcher will be to search for traces.

6.4 Trace Selection

The postworker of a basic block dispatcher is called aftefdhbt virtual instruction of the block
has been dispatched. Since basic blocks end with brandbersexecuting the last instruction
the vPC points to one of the successors of the basic block. IMRE of the destination is
lessthan thev PC of the virtual branch instruction, this is a reverse branehlikely candidate
for the latch of a loop. According to the heuristics develbjpg Dynamo (see Section 2.5),
hot reverse branches are good places to start the searcbtfoodie. Accordingly, when our

system detects a reverse branch that has executed 100 tiemésrstrace recording modeln

RCS file : implementation — yeti.lyx, v Revision : 1.14 78 July 22, 2007 16:43

CHAPTER 6. DESIGN AND IMPLEMENTATION OF YETI

DTT basic block dispatcher

” bod
7 payl{oad—_‘/abbipayloa 7] generated code
= pre call iload
post call iload
2 call iconst
1 call iadd
call iadd
call istore
call goto
c ‘ return
gégoad —_ | goto ‘/

Figure 6.2: Shows a region of the DTT just after block reaagdinode has finished.

trace recording mode, much like in basic block recording eptite postworker adds each basic
block to a history list. The situation is very similar to thifastrated in Figure 6.1, except the
history list describes basic blocks. Our system, like Dyoaends a trace (i) when it reaches
a reverse branch, (ii) when it finds a cycle, or (iii) when ihtains too many (currently 100)
basic blocks. When trace generation ends, atnaee dispatchers created and installed. This
is quite similar to Figure 6.2 except that a trace dispatcharstalled and the generated code
is complicated by the need to support trace exits. The pdydba trace dispatcher includes a
table oftrace exit descriptorsone for each basic block in the trace. Although code could be
generated for the trace at this point, we postpone code ggmeuntil the trace has run a few
times, currently five, in trace training mode. Trace tragnmode uses a specialized dispatch
loop that calls instrumentation before and after dispatgleiach virtual instruction in the trace.
In principle, almost any detail of the virtual machine’stetaould be recorded. Currently, we
record the class of every Java object upon which a virtuahotets invoked. When training is
complete, code is generated for the trace as illustratedduyé6.3. Before we discuss code
generation, we need to describe the runtime of the tracemsyahd especially the operation of

trace exits.

RCS file : implementation — yeti.lyx, v Revision : 1.14 79 July 22, 2007 16:43

6.5. TRACE EXIT RUNTIME

6.5 Trace Exit Runtime

The runtime of traces is complicated by the need to suppacetexits, which occur when
execution diverges from the path collected during traceegaion, in other words, when the
destination of a virtual branch instruction in the traceifedent than during trace generation.
Generated guard code in the trace detects the divergendaamches to #race exit handler

Generated code in the trace exit handler records which e=itéas occurred in the thread’s
context structure and then returns to the dispatch loopsminimediately calls the postworker
corresponding to the trace. The postworker determineshitrace exit occurred by examining

the thread context structure. Conceptually, the postwdr&sronly a few things it can do:

1. If the trace exit is still cold, increment the counter i ttorresponding trace exit de-

scriptor.
2. Notice that the counter has crossed the hot thresholdrasuige to generate a new trace.

3. Notice that a trace already exists at the destinationiakdHe trace exit handler to the

new trace.

Regular conditional branches, like Javiafs i cnp, are quite simple. The branch has only two
destinations, one on the trace and the other off. When the &t becomes hot a new trace
is generated starting with the off-trace destination. Thiea next time the trace exit occurs,
the postworker links the trace exit handler to the new traceelvriting the tail of the trace
exit handler to jump directly to the destination trace iastef returning to the dispatch loop.
Subsequently execution stays in the trace cache for bolis pathe program.

Multiple destination branches, like method invocation egtdrn, are more complex. When
a trace exit originating from a multi-way branch occurs we &aced with two additional
challenges. First, profiling multiple destinations is merpensive than just maintaining one
counter. Second, when one or more of the possible destirsatice also traces, the trace exit

handler needs some mechanism to jump to the right one.

RCS file : implementation — yeti.lyx, v Revision : 1.14 80 July 22, 2007 16:43

CHAPTER 6. DESIGN AND IMPLEMENTATION OF YETI

trace dispatchef generated code

for straight line . . .
= portion of bbo Virtual Instruction Bodies
Toxtt out-of-line interp () {
exit0 handler0 Iracte void iload () {
exi
bbO { % har;d\ers //push var. .
Trace or C++
rm, L] e
bb1 { exit table % exits }
in-line trace
0 seonst 0
DTT handler trace exit handler volid 1icons
at end of trace //push constant
VPCH+;
}

void iadd() {
add 2 slots
void istore()
//pop, store var

}

Ccode

Figure 6.3: Schematic of a trace

The first challenge we essentially punt on. We use a simplateowand trace generate
all destinations of a hot trace exit that arise. The danger &f gtrategy is that we could
trace generate superfluous cold destinations and waste dgeeration time and trace cache

memory.

The second challenge concerns the efficient selection osSandéion trace to which to
link, and the mechanics used to branch there. To choose iaaést, we follow the heuristic
developed by Dynamo for regular branches — that is, we lirdketinations in the order they
are encountered. At link time, we rewrite the code in thedrexit handler with code that
checks the value of thePC. If it equals thevPC of a linked trace, we branch directly to that
trace, otherwise we return to the dispatch loop. Because we kime specific values thePC
could have, we can hard-wire the comparand in the generatdel dn fact, we can generate
a sequence of compares checking for two or more destinatiorentually, a sufficiently long
cascade would perform no better than a trip around the disdabp. Currently we limit
ourselves to two linked destinations per trace exit. Thislmaism is similar to a PIC, used to

dispatch polymorphic methods, as discussed in Se@tfon

RCS file : implementation — yeti.lyx, v Revision : 1.14 81 July 22, 2007 16:43

6.6. GENERATING CODE FOR TRACES

6.6 Generating code for traces

Generating a trace is made up of two main tasks, generatingca exit handler for each
trace exit and generating the main body of the trace. Tranergéon starts with the list of
basic blocks that were selected. We will use these to ackesasrtual instructions making up
the trace. After a few training runs we have also have fin@agthprofiling information on
the precise values that occur during the execution of treetrdhese values will be used to

devirtualize selected virtual method invocations.

6.6.1 Trace Exits and Trace Exit Handlers

The virtual branch instruction ending each block is contpilgo a trace exit. We follow two
different strategies for trace exits. The first case, regobaditional branch virtual instruc-
tions, are compiled by our JIT into code that performs a compellowed by a conditional
branch. PowerPC code for this case appears in Figure 6.4sélifse of the conditional branch
is adjusted so that the branch is always not-taken for theawe path. More complex virtual
branch instructions, and especially those with multiplstidations, are handled differently.
Instead of generating inlined code for the branch we geeeratll to the virtual branch body
instead. This will have the side effect of setting tHeC to the destination of the branch. Since
only one destination can be on-trace, and since we know taetefC value corresponding
to it, we then generate a compare immediate ofuR€ to the hardwired constant value of
the on-trace destination. Following the compare we geaerabnditional branch to the corre-
sponding trace exit handler. The result is that executiands the trace if the PC set by the
dispatched body was different from th€C observed during trace generation. Polymorphic
method dispatch is handled this way if it cannot be optimiedescribed in Section 6.6.3.
Trace exit handlers have three further roles not mentiooners First, since traces may
contain compiled code, it may be necessary to flush valuekihekgisters back to the Java

expression stack before returning to regular interpr@tatCode is generated to do this in each

RCS file : implementation — yeti.lyx, v Revision : 1.14 82 July 22, 2007 16:43

CHAPTER 6. DESIGN AND IMPLEMENTATION OF YETI

DTT

OPC ILOAD 3 lwz ¥3,12(r27)
b4

OPC_ILOAD_2 lwz r4,8 (r27) }* ________
Y -
OPC_IF ICMPGE +izif—o CWPW r3,rd | EE—

) bge teh ¢
teh0:addi r26,r26,112«¢

e 11 r0,0

JIT compiled from iloads

trace exit JIT compiled from if_icmpge

vPC adjusted upon leaving JIT compiled region

teh stores trace exit number (0) and

i stw r0,916 (r30) .
trace exit : hardwired address of trace payload
handler JIT 1is r0,1090 into thread context struct
compiled for ori r0,r0,11488
trace exit stw r0,912(r30)

b 0x10cf0 <« unlinked trace branches back to dispatch loop

if this trace exit becomes hot, trace linking overwrites
this instruction with branch to destination trace

Figure 6.4: PowerPC code for a trace exit and trace exit lean@ihe generated code assumes
that thevPChas been assigne@6, base of the local variable®7 and the Java method frame
pointerr 30.

trace exit handler. Second, some interpreter state may tbave updated. For instance, in
Figure 6.4, the trace exit handler adjusts¥RE. Third, trace linking is achieved by overwrit-
ing code in a trace exit handler. (This is the only situatiomvhich we rewrite code.) To link
traces, the tail of the trace exit handler is rewritten tabhato the destination trace rather than

return to the dispatch loop.

6.6.2 Code Generation

The body of a trace is made up of straight-line sections oécodrresponding to the body of
each basic block, interspersed with trace exits generadeathe virtual branches ending each
basic block. The JIT therefore has three types of infornmatibostart with. First, there is a list

of virtual instructions making up each basic block in the¢raEnough information is cached
in the trace payload to determine the virtual opcode andaliddress of each instruction in
the trace. Second, there is a trace exit corresponding tbrreh ending each basic block.

The trace exit stores information like théC of the off-trace destination of the trace. Third,

RC S file : implementation — yeti.lyx, v Revision : 1.14 83 July 22, 2007 16:43

6.6. GENERATING CODE FOR TRACES

there may be profiling information that was cached when thestran in training mode.

At this phase of our research we have not invested any effgenerating optimized code
for the straight-line portions of a trace. Instead, we impated a simple one pass JIT com-
piler. The goals of our JIT are modest. First, it should penf@a similar function as branch
inlining (Section 4.3) to ensure that code generated faretraxits exposes the conditional
branch logic of the virtual program to the underlying hardeveonditional branch predictors.
Second, it should reduce the redundant memory traffic badk@mth to the interpreter's ex-
pression stack by holding temporary results in registersnygossible. Third, it should support

a few simple speculative optimizations.

Our JIT does not build any internal representation of a ttber that what is described
in Section 6.4. Instead, it performs a single pass through &ace allocating registers and
generating code. Register allocation is very simple. As warere each virtual instruction
we maintain ashadow stackvhich associates registers, temporary values and exprestsick
slots. Whenever a virtual instruction needs to pop an inputisecheck if there already is a
register for that value in the corresponding shadow staatk $1 there is we use the register
instead of generating any code to pop the stack. Similathgema virtual instruction would
push a new value onto the expression stack we assign a nesteretp the value and push
this on the shadow stack but forgo generating any code to fhestialue. Thus, every value
assigned to a register always habamne locatioron the expression stack. If we run out of
registers we simply spill the register whose home locasareiepest on the shadow stack as all

the shallower values will be needed sooner [57].

Since traces contain no control merge points there is ndiaddl complexity at trace exits
other than the generation of the trace exit handler. As desttin Section 6.6.1 trace exit
handlers include generated code that flushes all the vaiuegjisters to the expression stack
in preparation for execution returning to the interpreféhnis is done by walking the shadow
stack and storing each slot that is not already spilled istbome location. Consequently, the

values stay in registers if execution remains on-traceatbriflushed when a trace exit occurs.

RCS file : implementation — yeti.lyx, v Revision : 1.14 84 July 22, 2007 16:43

CHAPTER 6. DESIGN AND IMPLEMENTATION OF YETI

Linked trace exits result in potentially redundant staelfic as values are flushed by the trace
exit handler only to be reloaded by the destination trace.

Similar to a trace exit handler, when an unfamiliar virtugdtruction is encountered, code
is generated to flush any temporary values held in registerk to the Java expression stack.
Then, a sequence of calls is generated to dispatch the bofdiee uncompilable virtual in-
structions. Compilation resumes, with an empty shadow staith any compilable virtual
instructions that follow. This means that generated codst ipe able to load and store values
to the same Java expression stack referred to by the C codlenmapting the virtual instruction
bodies. Our current PowerPC implementation side-stepdglifficulty by dedicating hardware
registers for values that are shared between generatechoddmodies. Currently we dedicate
registers for thesPC, the top of the Java expression stack and the pointer to thedigbe
local variables. Code is generated to adjust the value of ¢édecdted registers as part of the
flush sequence described above for trace exit handlers.

The actual machine code generation is performed using thEs6¢ run-time assembler.

6.6.3 Trace Optimization

We describe two optimizations here: how loops are handledhamw the training data can be

used to optimize method invocation.

Inner Loops One property of the trace selection heuristic is that inmetioops of a pro-
gram are often selected into a single trace with the reveeseh at the end. (This is so because
trace generation starts at the target of reverse brancllesrals whenever it reaches a reverse
branch. Note that there may be many branches, including aalll returns, along the way.)
Thus, when the trace is generated the loop will be obvioualdmexthe trace will end with a
virtual branch back to its beginning. This seems an obviqiszation opportunity that, so
far, we have not exploited other than to compile the lasetegdt as a conditional branch back

to the head of the trace.

RCS file : implementation — yeti.lyx, v Revision : 1.14 85 July 22, 2007 16:43

6.7. POLYMORPHIC BYTECODES

Virtual Method Invocation When a trace executes, if the class of the invoked-upon object
is different than when the trace was generated, a trace exsit accur. At trace generation time
we know the on-trace destination of each call and from thaitrg profile know the class of
each invoked-upon object. Thus, we can easily genendgtéual invoke guardhat branches to
the trace exit handler if the class of the object on top of Hwadun time stack is not the same
as recorded during training. Then, we can generate codertorpea faster, stripped down
version of method invocation. The savings are primarilywloek associated with looking up
the destination given the class of the receiver. The virgualrd is an example of a trace exit

that guards a speculative optimization [31].

Inlining The final optimization we will describe is a simple form ofimhg. Traces are ag-
nostic towards method invocation and return, treating thieerany other multiple-destination
virtual branch instructions. However, when a return cqroesls to an invoke in the same trace
the trace generator can sometimes remove almost all metirodation overhead. Consider
when the code between a method invocation and the matchimgris relatively simple, for
instance, it does not touch the callee’s stack frame (ottear the expression stack) and it can-
not throw. Then, no invoke is necessary and the only methaztation overhead that remains
is the virtual invoke guard. If the inlined method body cansaany trace exits the situation is
slightly more complex. In this case, in order to prepare foetarn somewhere off-trace, the
trace exit handlers for the trace exits in the inlined codstmodify the run time stack exactly

as the (optimized away) invoke would have done

6.7 Polymorphic bytecodes

So far we have implemented our ideas in a Java virtual machiogever, we expect that many
of the techniques will be useful in other virtual machinesvadi. For instance, languages like
Tcl or JavaScript define polymorphic virtual arithmetictmstions. An example would be

ADD, which adds the two values on the top of the expressiarkstaach time it is dispatched

RCS file : implementation — yeti.lyx, v Revision : 1.14 86 July 22, 2007 16:43

CHAPTER 6. DESIGN AND IMPLEMENTATION OF YETI

ADD must check the type of its inputs, which could be inteflest or even string values, and
perform the correct type of arithmetic. This is similar tdypoorphic method invocation.

We believe the same profiling infrastructure that we use tomepe monomorphic callsites
in Java can be used to improve polymorphic arithmetic bytesoWhereas the destination of
a Java method invocation depends only upon the type of tie@a/upon object, the operation
carried out by a polymorphic virtual instruction may dep@&mdthe type ofeachinput. Now,
suppose that an ADD in Tcl is effectively monomorphic. Thee,would generate two virtual
guards, one for each input. Each would check that the typeeafiput is the same as observed
during training and trace exit if it differs. Then, we woulgplatch a type-specialized version
of the instruction (integer ADD, float ADD, string ADD, etchd/or generate specialized code

for common cases.

6.8 Other implementation details

Our use of a dispatch loop similar to Figure 6.1 in conjurrctiath ending virtual bodies with
inlined assembler return instructions results in a coritog¥ graph that is not apparent to the
compiler. This is because the optimizer cannot know thatrobfiows from the inlined return
instruction back to the dispatch loop. Similarly, the opzien cannot know that control can
flow from the function pointer call in the dispatch loop to dgdy. We insert computed goto
statements that are never actually executed to simulateigsng edges. If the bodies were

packaged as nested functions like in Figure 4.1 these preeould not occur.

6.9 Packaging and portability

A obvious packaging strategy for a portable language imptgation based on our work would
be to differentiate platforms into “primary” targets, (tleose supported by our trace-oriented

JIT) and “secondary” targets supported only by direct ttirag

RCS file : implementation — yeti.lyx, v Revision : 1.14 87 July 22, 2007 16:43

6.9. PACKAGING AND PORTABILITY

Another approach would be to package the bodies as for stibedtireading (i.e. as illus-
trated by Figure 4.2) and use direct call threading on atf@las. In Section 7.2 we show that
although direct call threading is much slower than direptdkling it is about the same speed
as switch dispatch. Many useful systems run switch dispatchresumably its performance is
acceptable under at least some circumstances. This wous@ ¢the performance gap between
primary and secondary platforms to be larger than if seagnplatforms used direct threaded
dispatch.

Bodies could be very cleanly packaged as nested functionsen€Bly this should be
almost as portable as the computed goto extensions dimeetdimng depends upon. However
nested functions do not yet appear to be in mainstream usalgoaeven gcc support may be
unreliable. For instance, a recent version of gcc, versiorl4or Apple OSX 10.4, shipped

with nested function support disabled.

RCS file : implementation — yeti.lyx, v Revision : 1.14 88 July 22, 2007 16:43

Chapter 7

Evaluation of Yeti

In this chapter we show how Yeti gradually improves in parfance as we extend the size
of execution units. We prototyped Yeti in a Java VM (ratheartra language which does
not have a JIT) to allow comparisons of well-known benchrea@ainst other high-quality

implementations.

In order to evaluate the effectiveness of our system we reeegadmine performance from
three perspectives. First, we show that almost all execwiones from the trace cache. Sec-
ond, to evaluate the overhead of trace selection, we me#seigerformance of our system
with the JITturned off We compare elapsed time against SableVM and a version ofNam
modified to use subroutine threading. Third, to evaluatetiesall performance of our modest
trace-oriented JIT compiler we compare elapsed time fdn éaachmark to Sun’s optimizing

HotSpofM Java virtual machine.

Table 7.1 briefly describes each SpecJVM98 benchmark [64¢. al&0 report data for
sci mar k, a typical scientific program. Below we report performandatiee to the perfor-
mance of either unmodified JamVM 1.3.3 or Sun’s Java Hotdgosd the raw elapsed time

for each benchmark appears in Table 7.1 also.

All our data was collected on a dual CPU 2 GHz PPC970 processioib5d?2 MB of mem-

ory running Apple OSX 10.4. Performance is reported as tleea@e of three measurements

89

7.1. EFFECT OF REGION SHAPE ON REGION DISPATCH COUNT

Table 7.1: SPECjvm98 benchmarks including elapsed timeroradified JamVM 1.3.3 and
Sun Java Hotspot 1.05.0 6 _64

Elapsed Time

Benchmark| Description (seconds)

JamVM | HotspotM
compress | Lempel-Ziv compression 98 8.0
db Database functions 56 23
jack Parser generator 22 5.4
javac Java compiler JDK 1.0.2 33 9.9
jess Expert shell System 29 4.4
mpeg decompresses MPEG-3 87 4.6
mtrt Two thread raytracer 30 2.1
raytrace raytracer 29 2.3
scimark FFT, SOR and LU, 'large’ 145 16

of elapsed time, as printed by the me command.

Java Interpreters We present data obtained by running various modification¥ataVM
version 1.3.3 built with gcc 4.0.1. SableVM is a JVM built fquick interpretation. It imple-
ments a variation of selective inlining calledine threading[30]. SableVM version 1.1.8 has

not yet been ported to gcc 4 so we compiled it with gcc 3.3 atkte

7.1 Effect of region shape on region dispatch count

For a JIT to be effective, execution must spend most of ite imcompiled code. Fgrack,
traces account for 99.3% of virtual instructions executeak all the remaining benchmarks,
traces account for 99.9% or more. A remaining concern is hftencexecution enters and
leaves the trace cache. In our system, regions of generadiedeee called from dispatch loops
like those illustrated by Figures 3.2 and 6.1. In this sextwe report how many iterations of
the dispatch loops occur during the execution of each beadhrigure 7.1 shows how direct
call threading (DCT) compares to basic blocks (BB), traces withinking (TR) and linked
traces (TR-LINK). Note the y-axis has a logarithmic scale.

DCT dispatches each virtual instruction independently, @ DRCT bars on Figure 7.1

RCS file : experiments.lyx, v Revision : 1.9 90 July 22, 2007 16:43

CHAPTER 7. EVALUATION OF YETI

X
<
=
x
T

L R R R R R R R XXX

“““““““““ RTINS

0‘
OO O O T T AT T -===== 01 ===_== I

POOODDOODKIXIHIHIHIHIHIHIHIHIHIHIIHIHI XXX HXHIHX IR NXNIX

%% R R o S e o o0 S o S o S o S o0 A o o o o o oo S A A SR ok

B3R R R BB

R R XXX IR I XXX IR XX XXX XXX X XA IR XXX XX

1fa%0%0%0 %020 %0 %020 %2

. 000. 0.
.
I ==== HiL; ==_ OO A G __

OO Lo OO OO OO OO OO OO0 TOIOT0T0TOT8

20202 % % % %% %%

[ROOOIXHXIHXAIHXIXHXAIXHXIXHXIXHXIXHXNIHN DTOTST

OO X
=_====== HIIm

HI i

o [ce} (o} <t N o
— () o () (<)))
m i i i i i

1unod yoledsip 60|

ueawoab
1S219S
Kel
uuw
Badw
ssaf
oenel
yoel
ap

ssaidwod

Spec JVM98 Benchmarks

hap

(0] S5

tches executed vs regi

ispa

Log number of di

Figure 7.1

July 22, 2007 16:43

91

: 1.9

periments.lyx, v Revision

x

RCS file :

7.1. EFFECT OF REGION SHAPE ON REGION DISPATCH COUNT

report how many virtual instructions were executed. Conmggithe geometric mean across all
benchmarks, we see that BB reduces the number of dispatdatsaéo DCT by about a factor
of 6.3. For each benchmark, the ratio of DCT to BB shows the dynarerage basic block
length. As expected, the scientific benchmarks have longsictblocks. For instance, the
dynamic average basic block &ti t est has about 20 virtual instructions whergasvac,

| ess andj ack average about 4 instructions in length.

Even without trace linking, the average dispatch of a tramgses about 10 times more
virtual instructions to be executed than the dispatch of a BBis(can be read off Figure 7.1
by dividing the height of the TR geomean bar into the BB geontigau) This shows that traces
do predict the path taken through the program. The improneoan be dramatic. For instance,
while running TRj avac executes about 22 virtual instructions per trace dispaiclayerage.

This is much longer than its dynamic average basic blocktteafy4 virtual instructions.

TR-LINK makes the greatest contribution, reducing the nunadbéimes execution leaves
the trace cache by between one and &ders of magnitude The reason TR-LINK is so

effective is that it links traces together around loop nests

Although these data show that execution is overwhelmingdynfthe trace cache it gives
no indication of how effectively code cache memory is beisgdiby the traces. A thorough
treatment of this, like the one done by Bruening and Duestdrit®], remains future work.
Nevertheless, we can relate a few anecdotes based on datath@ofiling system collects.
For instance, we observe that for an entire run ofdl@pr ess benchmark all generated
traces contain only 60% of the virtual instructions corgdim all loaded methods. This is a
good result for traces, suggesting that a trace-based &dsrte compile fewer virtual instruc-
tions than a method-based JIT. On the other handj, &wac we find that the traces bloat —
almost eightimesas many virtual instructions appear in traces than are owdan the loaded
methods. Improvements to our trace selection heuristitygps adopting the suggestions of

Hiniker et al [39], are future work.

RCS file : experiments.lyx, v Revision : 1.9 92 July 22, 2007 16:43

CHAPTER 7. EVALUATION OF YETI

7.2 Effect of region shape on performance

Figure 7.2 shows how performance varies as differently stiapgions of the virtual program
are identified, loaded and dispatched. The figure showsesdajse relative to the elapsed time
of the unmodified JamVM distribution, which uses directetmted dispatch. Our compiler
is turned off, so in a sense this section reports the dispatchprofiling overhead of Yeti
by comparing to the performance of other high-performamnd¢erpretation techniques. The
four bars in each cluster represent, from left to right, subne threading (SUB), direct call
threading (DCT), basic blocks (BB), unlinked traces (TR), ankdd traces (TR-LINK).

The simplest technique, direct call threading, or DCT, digpas single virtual instruction
bodies from a dispatch loop as in Figure 3.2. As expected, BGIoiver than direct threading
by about 50%. Not shown in the figure is switch dispatch, foicwhithe geometric mean
elapsed time across all the benchmarks is within 1% of DCT. DQIT'SB are baselines, in
the sense that the former burdens the execution of everyavirtstruction with the overhead
of the dispatch loop, whereas for the latter, all overheasliweurred at load time. The results
show that SUB is a very efficient dispatch technique [9]. Onteriest here is to assess the
overhead of BB and TR-LINK by comparing them with SUB. BB discevand generates
code at runtime that is very similar to what SUB generate®ad ltime, so the difference
between them is the overhead of our profiling system. Comgaini& geometric means across
benchmarks we see that BB is about 43% slower than SUB. On tkelwdd, it is difficult to
move forward from SUB dispatch, primarily because it is htarddd and remove the profiling
needed for dynamic region selection.

Execution of TR-LINK is faster than BB primarily because trdickking so effectively
reduces dispatch loop overhead, as described in SectiohWe have not yet investigated the
micro-architectural reasons for the speedup of TR-LINK cared to SUB. Presumably it is
caused by the same factors that make context threading thate SUB [9], namely helping
the hardware to better predict the destination of virtuahish instructions. Regardless of the

precise cause, TR-LINK more than makes up for the profilingload required to identify and

RCS file : experiments.lyx, v Revision : 1.9 93 July 22, 2007 16:43

212 fSoU

T uo0s1a9Y a ‘rhi) sjuswrsadra

6'T

v6

€1:9T 2002 ‘22 AInC

"€'¢’T UOISIBA

IAWeL papealy) 1931Ip paljipouun 0} SAIE[2IP3IdesIP 1IFOA JO awi pasde|3 :z'2 ainbi4

Sy lewyouag 86INAC 29ds

Elapsed time relative to jam-distro

compress

db

jack

javac

jess

mpeg

mtrt

ray

scitest

geomean

puaba

FONVYINHO4H3d NO 3dVHS NOIO3H 40 103443 ¢/

CHAPTER 7. EVALUATION OF YETI

generate traces. In fact, even before we started work ol Buur profiling system already ran
faster than SUB. Looking forward to Figure 7.3, we see that TRKLoutperforms selective
inlining as implemented by SableVM 1.1.8 as well.

For all benchmarks, performance improves as executios beitome longer, that is, BB
performs better than DCT, TR performs better than BB, etc. Oprageh is indeed allowing

us to gradually improve performance by gradually invesimigetter region selection.

7.2.1 JIT Compiled traces

Figure 7.3 compares the performance of our best-perforrengjon of Yeti (JIT), to SableVM
(SABVM). Performance is reported relative to the Java Hot3hdIT. In addition, we show
the TR-LINK condition from Figure 7.2 again to relate our mpeeter and JIT performance.
In most cases TR-LINK, our profiling system alone (i.e withthe JIT), does as well or better
than SableVM.Sci t est andnpeg are exceptions, where SableVM’s implementation of
selective inlining works well on very long basic blocks.

Not surprisingly, the optimizing HotSpdtJIT generates much faster code than our naive
compiler. This is particularly evident for mathematicatlameavily looping codes like com-
press, mpeg, the raytracers and scitest. Neverthelegstedsapporting only 50 integer and
object virtual instructions, our trace JIT improves thefpenance of integer programs like
conpr ess significantly. Our most ambitious optimization, of virtuakethod invocation, im-
proved the performance ofayt r ace by about 32%.Rayt r ace is written in an object-
oriented style with many small methods invoked to accessoblfields. Hence, even though it
is a floating point benchmark, it is greatly improved by dmatizing and inlining the acces-
sor methods. Comparing geometric means, we see that ourdrigeged JIT is roughly 24%

faster than just linked traces.

RCS file : experiments.lyx, v Revision : 1.9 95 July 22, 2007 16:43

6'1 : uorsraay a ‘xhip squawraadea : 211 f §OY

96

€1:9T £00Z ‘22 AInC

‘Bululul SAOBIS UM 8'T'T INASIGES SA ‘I3A JO UOIS

-J9A pajgeua-L|C JN0 ‘I |C Saoedy 9 0°SO’T BARL UNS 0] aAlR[al awi pasde|3 g/ ainbiq

Sylewyouag 86INAC 29ds

compress
db
jack
javac
jess
mpeg
mtrt
ray
scitest

geomean

Elapsed time relative to hotspot

4.07
3.45

4.31

5.94
5.69

1ic
MANIT-HL

NAGVS

puaban

FONVYINHO4H3d NO 3dVHS NOIO3H 40 103443 ¢/

Chapter 8

Conclusions and Future Work

We described an architecture for a virtual machine intéegpréhat facilitates its gradual ex-
tension to a trace-based mixed-mode JIT compiler. We syatdhing a step back from high-
performance dispatch techniques to direct call threadiveypackage all execution units (from
single instruction bodies up to linked traces) as callablgines that are dispatched via a func-
tion pointer in an old-fashioned dispatch loop. The firstdfgns that existing bodies can be
reused by generated code, so that compiler support foravimgtructions can be added one
by one. The second benefit is that it is easy to add instrurhentallowing us to discover
hot regions of the program and to install new execution wastshey reveal themselves. The
cost of this flexibility is increased dispatch overhead. \&feeshown that by generating larger
execution units, the frequency of dispatch is reduced fogmtly. Dispatching basic blocks
nearly breaks even, losing to direct threading by only 15%mK&iaing basic blocks into traces
and linking traces together, however, wins by 17% and 25%ew#/ely. Investing the ad-
ditional effort to generate non-optimized code for roughty integer and object bytecodes
within traces gains an additional 18%, now running nearlicéwas fast as direct threading.
This demonstrates that it is indeed possible to achieveugtatiut significant, performance

gains through gradual development of a JIT.

Substantial additional performance gains are possiblextsnding the JIT to handle more

97

types of instructions such as the floating point bytecoded by applying classical optimiza-
tions such as common subexpression elimination. Moredstegrg, however, is the opportu-
nity to apply dynamic and speculative optimizations basethe profiling data that we already
collect. The technique we describe for optimizing virtuadpatch in Section 6.6.3 could be
applied to guard various speculations. In particular, ththnique could be used in languages
like Python or JavaScript to optimize virtual instructidhat must accept arguments of varying
type. Finally, just as basic blocks are collected into tsase traces can be collected into larger
units for optimization.
The techniques we applied in Yeti are not specific to Java. Bgtimg the up-front devel-

opment effort required, a system based on our architecangadually bring the benefits of

mixed-mode JIT compilation to other interpreted languages

RCS file : concl.lyz, v Revision : 1.6 98 July 22, 2007 16:43

Chapter 9

Remaining Work

We believe that our research is mostly complete and that we $tzown that our efficient inter-
pretation technique is effective and supports a graduahsitn to mixed-mode interpretation.
By modestly extending our system and collecting more dataamengore fully report on the
strenghts and weaknesses of our approach. Hence, duringritex of 2007 we propose to
extend the functionality and performance instrumentatibour JIT compiler. These exten-
sions and related data collection and writing-up shoul@ctepted by the committee, allow

the dissertation to be finished by late spring or early sunoh2007.

The remaining sections of this chapter describe work wenahte pursue.

9.1 Compile Basic Blocks

In the push to compile traces we skipped the obvious step mpdimg basic blocks alone.
The basic block region data presented in Chapter 7 is for d&-bgsic blocks with no branch
inlining. It would be interesting to compare the performamd basic blocks compiled with
our JIT to traces. Especially on loop nest dominated prograiith long basic blocks, like
scimark, compiled basic blocks might perform well enougtetmup the time spent compiling

cold blocks.

99

9.2. INSTRUMENT COMPILE TIME

9.2 Instrument Compile Time

Our infrastructure does not currently make any attemptdongtime spent compiling. Since
compiling short traces will take much less time than the Itggm of the Unix clock some
machine dependent tinkering may be required. Knowing tlegtmad of compilation would

help characterize the overhead of our technique.

9.3 Another Register Class

Adding support for float registers would make our perfornearesults for float programs like
scimark more directly comparible to high performance Jifinpders like HotSpot. Extending
our simple JIT to handle another register class would sh@aw dbr design is not somehow
limited to one register class. Compiler support would neede@xtended by about another

dozen floating point virtual instructions in order to test dasign.

9.4 Measure Dynamic Proportion of JIT Compiled Instruc-
tions

As the JIT is extended to support for more virtual instruasiat would be useful to measure

the proportion of all executed virtual instructions madeoylIT compiled instructions.

RC S file : matzDissertation.lyx, v Revision : 1.8 100 July 22, 2007 16:43

Bibliography

[1]

[2]

[3]

[4]

[5]

Ocaml. http://www.ocaml.org.

The Java hotspot virtual machine, v1.4.1, technicalkevpaper. 2002.

Eric Allman. A conversation with james goslingCM Queue Magazin&(5), July/Au-

gust 2004.

Bowen Alpern, Dick Attanasio, John Barton, Michael Burkerf Cheng, Jong-Deok
Choi, Anthony Cocchi, Stephen Fink, David Grove, Michael Hi&dsan Flynn Hummel,
Derek Lieber, Vassily Litvinov, Ton Ngo, Mark Mergen, Viv8arkar, Mauricio Serrano,
Janice Shepherd, Stephen Smith, VC Sreedhar, Harini &sain, and John Whaley. The

Jalapeno virtual machine. IBM Systems Journals, Java Performance IsQ0€0.

Joel Auslander, Matthai Philipose, Craig Chambers, SukaBggers, and Brian N.
Bershad. Fast, effective dynamic compilation. StGPLAN Conference on Program-
ming Language Design and Implementatiggages 149-159, 1996. Available from:

http://citeseer.nj.nec. conf ausl ander96fast. htm .

[6] Vasanth Bala, Evelyn Duesterwald, and Sanjeev Banerjisandparent dynamic op-

timization: The design and implementation of Dynamo. Techinreport, Hewlett
Packard, 1999. Available from:htt p://wwv. hpl . hp. conft echreports/
1999/ HPL- 1999- 78. ht i .

101

BIBLIOGRAPHY

[7] Vasanth Bala, Evelyn Duesterwald, and Sanjeev Banerjignano: A transparent dy-

[8]

[9]

[10]

[11]

[12]

[13]

namic optimization system. Rroc. of the ACM SIGPLAN 2000 Conf. on Prog. Language
Design and Imp].pages 1-12, Jun. 2000.

Iris Baron. Dynamic Optimization of Interpreters using DynamoRIOPhD the-
sis, MIT, 2003. Available from: http://ww. cag.csail.mt.edu/rio/

iris-smthesis. pdf.

Marc Berndl, Benjamin Vitale, Mathew Zaleski, and Angelarbke Brown. Context
threading: A flexible and efficient dispatch technique fotual machine interpreters. In
Proc. of the 3rd Intl. Symp. on Code Generation and Optimiragpages 15-26, Mar.
2005.

Derek Bruening and Evelyn Duesterwald. Exploring ogtitompilation unit shapes for
an embedded just-in-time compiler. Rroc. of the 3rd ACM Workshop on Feedback-
Directed and Dynamic Optimization (FDDO-3pec. 2000. Available fromht t p:

/ I wwww. eecs. harvar d. edu/ f ddo/ paper s/ 108. ps.

Derek Bruening, Evelyn Duesterwald, and Saman Amaga&n Design and implemen-
tation of a dynamic optimization framework for windows.Rroc. of the 4th ACM Work-

shop on Feedback-Directed and Dynamic Optimization (FDO@ec. 2000.

Derek Bruening, Timothy Garnett, and Saman Amarasingmeinfrastructure for adap-
tive dynamic optimization. IfProc. of the 1st Intl. Symp. on Code Generation and Opti-
mization pages 265-275, Mar. 2003. Available froht:t p: / / ww. cag. |l cs. mt.
edu/ dynanori o/ CG003. pdf.

Emmanuel Chailloux, Pascal Manoury, and Bruno PagBeveloping Applications With

Objective Caml O’Reilly France, 2000.

RCS file : matzDissertation.lyx, v Revision : 1.8 102 July 22, 2007 16:43

BIBLIOGRAPHY

[14] Craig Chambers.The Design and Implementation of the Self Compiler, an Opingi
Compiler for Object-Oriented Programming LanguagP&D thesis, Stanford University,
1988.

[15] Wen-Ke Chen, Sorin Lerner, Ronnie Chaiken, and David &lli Mojo: A dynamic
optimization system. IProc. of the 3rd ACM Workshop on Feedback-Directed and
Dynamic Optimization (FDDO-3)Dec. 2000. Available from:htt p: //ww. cs.

washi ngt on. edu/ hones/ | er ns/ noj o. pdf .

[16] Randy Clark and Stephen Koehl&he UCSD Pascal HandbooRrentice-Hall, 1982.

[17] Timothy Cramer, Richard Friedman, Terrence Miller, RBSeberger, Robert Wilson, and
Mario Wolczko. Compiling Java just in timéEEE Micro, 17(3):36—43, 1997. Available
from:http://ieeexplore.ieee.org/iell/ 40/ 12908/ 00591653. pdf.

[18] Charles Curley. Life in the FastForth lanBorth Dimensions14(4), January-February
1993.

[19] Charles Curley. Optimizing in a BSR/JSR threaded fortharth Dimensions 14(5),
March-April 1993.

[20] Ron Cytron, Jean Ferrante, B. K. Rosen, M. N Wegman, and Fade&k. Efficiently
computing static single assignment form and the controéddpnce graphACM Trans-

actions on Programming Languages and Systetr@8§t):451-490, 1991.

[21] James C. Dehnert, Brian K. Grant, John P. Banning, Richandstm, Thomas Kistler,
Alexander Klaiber, and Jim Mattson. The Transmeta code hgpsoftware: Using
speculation, recovery, and adaptive retranslation toesddreal-life challenges. Froc.

of the 1st Intl. Symp. on Code Generation and Optimizapages 15-24, Mar. 2003.

RCS file : matzDissertation.lyx, v Revision : 1.8 103 July 22, 2007 16:43

BIBLIOGRAPHY

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

Peter L. Deutsch and A. M. Schiffman. Efficient implerteion of the Smalltalk-80
system. InConference Record of the Eleventh Annual ACM Symposium ooiplesa of

Programming Languagegpages 297-302, Salt Lake City, Utah, Jan. 1984.

Karel Driesen.Efficient Polymorphic CallsKlumer Academic Publishers, 2001.

Evelyn Duesterwald and Vasanth Bala. Software profiforghot path prediction: less is

more. ACM SIGPLAN Notices35(11):202-211, 2000.

M. Anton Ertl. Stack caching for interpreters. Rroc. of the ACM SIGPLAN 1995
Conf. on Prog. Language Design and Implages 315-327, June 1995. Available from:

http://ww. conpl ang. t uwi en. ac. at/ papers/ertl 95pl di . ps. gz.

M. Anton Ertl and David Gregg. The behavior of efficiemtual machine interpreters on

modern architectured.ecture Notes in Computer Scien2450, 2001.

M. Anton Ertl and David Gregg. Optimizing indirect br@mnprediction accuracy in virtual
machine interpreters. IRroc. of the ACM SIGPLAN 2003 Conf. on Prog. Language

Design and Imp|.pages 278-288, June 2003.

M. Anton Ertl, David Gregg, Andreas Krall, and Bernd Parys VMgen — a generator
of efficient virtual machine interpreterSoftware Practice and Experiencg2:265-294,

2002.

S. Fink and F. Qian. Design, implementation, and euauaof adaptive recompilation
with on-stack replacement. lim Proceedings of the First Annual IEEE/ACM Interna-
tional Symposium on Code Generation and Optimization (C@@Yych 2003. Avail-
able from: http://ww.research.ibm com peopl e/ s/ sfi nk/ papers/

cgo03. ps. gz.

RCS file : matzDissertation.lyx, v Revision : 1.8 104 July 22, 2007 16:43

BIBLIOGRAPHY

[30] Etienne Gagnon and Laurie Hendren. Effective inline#ding of Java bytecode using
preparation sequences.Pnoc. of the 12th Intl. Conf. on Compiler Constructimolume

2622 ofLecture Notes in Computer Scienpages 170-184. Springer, Apr. 2003.

[31] Andreas Gal, Christian W. Probst, and Michael Franz.pdtitvm: an effective jit com-
piler for resource-constrained devicesPioc. of the 2nd Intl. Conf. on Virtual Execution

Environmentspages 144-153, 2006.

[32] Stephen Gilmore. Programming in standard ML '97: A twgbintroduction. 1997.

Available from:ht t p: / / ww. dcs. ed. ac. uk/ hone/ st g.

[33] A. Goldberg.Smalltalk-80: The Interactive Programming Environmekddison-Wesley,
1984.

[34] Adele Goldberg and David Robso@imalltalk-80: The Language and its implementation
Addison-Wesley, 1983.

[35] Brian Grant, Markus Mock, Matthai Philipose, Craig Chamsheand Susan J. Eggers.
DyC: an expressive annotation-directed dynamic compileCioTheoretical Computer

Science248(1-2):147-199, 2000.

[36] Brian Grant, Matthai Philipose, Markus Mock, Craig Chamsheand Susan.J. Eg-
gers. An evaluation of staged run-time optimizations in Dycln Conference
on Programming Language Design and Implementatidvlay 1999. Available
from: http://ww. cs.washi ngt on. edu/ r esear ch/ proj ect s/ uni sw

DynConp/ ww Paper s% pl di 99. pdf .

[37] David Grove and Craig Chambers. A framework for call graphstruction algorithms.

ACM Transactions on Programming Languages and Systiims 2001.

[38] J. L. Hennessy and D. A. Patterso@omputer Architecture: A Quantitative Approach
Morgan Kaufmann Publishers, 1990.

RCS file : matzDissertation.lyx, v Revision : 1.8 105 July 22, 2007 16:43

BIBLIOGRAPHY

[39] David Hiniker, Kim Hazelwood, and Michael D. Smith. Imgving region selection in
dynamic optimization systems. Froc. of the 38th Intl. Symp. on Microarchitecture

pages 141-154, Nov. 2005.

[40] Glenn Hinton, Dave Sagar, Mike Upton, Darrell Boggs, Ddbarmean, Alan Kyker,
and Patrice Roussel. The microarchitecture of the Pentiumodepsor.Intel Technol-
ogy Journa) Q1, 2001. Available fromhtt p: // www. i nt el . coni t echnol ogy/

i tj/ql2001. htm

[41] Urs Holzle. Adaptive Optimization For Self:Reconciling High Performca With Ex-
ploratory Programming PhD thesis, Stanford University, 1994.

[42] Urs Hoélzle, C. Chambers, and D. Ungar. Debugging optichizede with dynamic deop-
timization. InConference on Programming Language Design and Implementdi992.
Available from:htt p: / / ww. cs. ucsb. edu/ | abs/ oocsb/ paper s/ pl di 92.

pdf .

[43] Urs Holzle and David Ungar. A third-generation Self igymentation: Reconciling re-
sponsiveness with performance. Proceedings of the OOPSLA '94 conference on Ob-
ject Oriented Programming Systems Languages and Appitatl994. Available from:

http://research. sun. conf sel f/ papers/third-generation. htm .
[44] 1BM Corporation.IBM PowerPC 970FX RISC Microprocessor, version.122605.

[45] Intel CorporationlA-32 Intel Architecture Software Developer’'s Manual Vol Sys-

tem Programming Guide2004.

[46] Ronald L. Johnston. The dynamic incremental compileapf3000. InProceedings
of the international conference on APL: part fpages 82-87, 1979. Available from:

http://doi.acm org/10. 1145/ 800136. 804442.
[47] Thompson K. Regular expression search algorit@ACM, June 1968.

RCS file : matzDissertation.lyx, v Revision : 1.8 106 July 22, 2007 16:43

BIBLIOGRAPHY

[48] Peter M. Kogge. An architectural trail to threaded- esgstemsIEEE Computer15(3),
March 1982.

[49] Peter Lee and Mark Leone. Optimizing ML with run-timedeogeneration. I8IG-
PLAN Conference on Programming Language Design and Impletien pages 137—
148, 1996.

[50] Tim Lindholm and Frank Yellin. The Java Virtual Machine SpecificationAddison-
Wesley, 1996.

[51] Robert Lougher. JamVM [online]. Available frorht t p: / / j amvm sour cef or ge.

net/ .

[52] Motorola CorporationMPC7410/MPC7400 RISC Microprocessor User's Manual, Rev.
1. 2002.

[53] Steven S Muchnick Advanced Compiler Design and Constructiaddorgan Kaufman,

1997.

[54] Igor Pechtchanski and Vivek Sarkar. Dynamic optingistiterprocedural analysis: A
framework and an application. IRroc. of the 16th ACM SIGPLAN Conf. on Object-
Oriented Programming, Systems, Languages, and Applitatioages 195-210, Oct.
2001. Available fromht t p: / / www. cs. nyu. edu/ phd_st udent s/ pecht cha/

pubs/ oopsl a0l. pdf.

[55] Rob Pike, Bart Locanthi, and John Reiser. Hardware/soéveade-offs for bitmap
graphics on the blitSoftware - Practice and ExperiencEs(2):131-151, 1985. Available
from: http://citeseer.nj.nec.conl 324101. htm .

[56] lan Piumarta. Ccg: A tool for writing dynamic code gerniera. INnOOPSLA'99 Work-
shop on simplicity, performance and portability in virtualchine designNov. 1999.

Available from:htt p: // pi umart a. com ccg.

RCS file : matzDissertation.lyx, v Revision : 1.8 107 July 22, 2007 16:43

BIBLIOGRAPHY

[57] lan Piumarta. The virtual processor: Fast, architecteutral dynamic code generation.

In 2004 USENIX Java Virtual Machine Symposji04.

[58] lan Piumarta and Fabio Riccardi. Optimizing directelled code by selective inlining.
In Proc. of the ACM SIGPLAN 1998 Conf. on Prog. Language Designlaupd, pages
291-300, June 1998.

[59] R. Pozo and B. Miller.SciMark: a numerical benchmark for Java and C/C+#998.

Available from:ht t p: / / ww. mat h. ni st. gov/ Sci Mar k.

[60] Brad Rodriguez. Benchmarks and case studies of forth leerfiee Computer Journal

60, 1993.

[61] Theodore H. Romer, Dennis Lee, Geoffrey M. Voelker, Algalman, Wayne A. Wong,
Jean-Loup Baer, Brian N. Bershad, and Henry M. Levy. The streauod performance

of interpreters. IrProc. ASPLOS ,pages 150-159, October 1996.

[62] Markku Rossi and Kengatharan Sivalingam. A survey dfrugion dispatch techniques
for byte-code interpreters. Technical Report TKO-C79, hidisUniversity Faculty of
Information Technology, May 1996.

[63] James E. Smith and Ravi Nair. The architecture of vintmathineslEEE-COMPUTER
38(5):32-38, May 2005.

[64] SPECjvm98 benchmarks [online]. 1998. Available framb:t p: / / www. spec. or g/
osg/jvnb8/ .

[65] Kevin Stoodley. Productivity and performance: Futwleections in compilers
[online]. 2006. Available from: http://ww. cgo. or g/ cgo2006/ ht m /

St oodl eyKeynot e. ppt .

RCS file : matzDissertation.lyx, v Revision : 1.8 108 July 22, 2007 16:43

BIBLIOGRAPHY

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

Mark Stoodley, Kennth Ma, and Marius Lut. Real-time jayaart 2: Comparing
compilation techniques [online]. 2007. Available frohtt p: //ww. i bm conf

devel operworks/javal/library/j-rtj2/index.htm .

Dan Sugalski. Implementing an interpreter [online]lvafable from: ht t p: / / www.
si dhe. or g/ %WEdan/ pr esent ati ons/ Parr ot %201 npl enent ati on. ppt.

Notes for slide 21.

Toshio Suganuma, Takeshi Ogasawara, Mikio TakeucbghiBki Yasue, Motohiro
Kawabhito, Kazuaki Ishizaki, Hideaki Komatsu, and Toshick&tani. Overview of the
IBM Java just-in-time compilerIBM Systems Journals, Java Performance Is89€1),

Feb. 2000.

Toshio Suganuma, Toshiaki Yasue, and Toshio Nakaté&nregion-based compilation
technique for dynamic compilersACM Trans. Program. Lang. Sys28(1):134-174,
2006.

Gregory T. Sullivan, Derek L. Bruening, Iris Baron, TirhgtGarnett, and Saman Ama-
rasinghe. Dynamic native optimization of interpreters. Pioc. of the Workshop on

Interpreters, Virtual Machines and Emulatoz003.

V. Sundaresan, D. Maier, P Ramarao, and M Stoodley. Eapess with multi-threading
and dynamic class loading in a Java just-in-time compilePrbc. of the 4th Intl. Symp.

on Code Generation and Optimizatigmages 87-97, Mar. 2006.

David Ungar, Randall B. Smith, Craig Chambers, and Urs l0l@bject, message, and
performance: how they coexist in SElIEEE-COMPUTER25(10):53—-64, Oct. 1992.

Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendpatrick Lam, and Vijay
Sundaresan. Soot - a java bytecode optimization framewnorRroceedings of the 1999
conference of the Centre for Advanced Studies on Collaberatisearchpage 13. IBM

Press, 1999.

RCS file : matzDissertation.lyx, v Revision : 1.8 109 July 22, 2007 16:43

BIBLIOGRAPHY

[74] Benjamin Vitale and Tarek S. Abdelrahman. Catenation @wetand specialization for

Tcl VM performance. IrProc. 2nd IVME pages 42-50, 2004.

[75] Benjamin Vitale and Mathew Zaleski. Alternative disgatechniques for the Tcl vm
interpreter. InProceeedings of Tcl'2005: The 12th Annual Tcl/Tk Confergre-
tober 2005. Available from:htt p: // ww. cs. t or ont 0. edu/ sysl ab/ pubs/
tcl 2005- vi t al e- zal eski . pdf.

[76] John Whaley. Partial method compilation using dynannafife information. InProc. of
the 16th ACM SIGPLAN Conf. on Object-Oriented Programmingiedys, Languages,
and Applicationspages 166—179, Oct. 2001.

[77] Wikipedia. Ucsd p-system — wikipedia, the free encpadia, 2007. [Online; accessed
15-May-2007]. Available from:htt p: //en. w ki pedi a. or g/ w i ndex. php?
title=UCSD p- System&ol di d=117632578%

[78] Tom Wilkinson. The Kaffe java virtual machine [onlineAvailable from: htt p: //

www, kaf fe.org/.

[79] Mathew Zaleski, Marc Berndl, and Angela Demke Brown. Mixaode execution with
context threading. "CASCON ’'05: Proceedings of the 2005 conference of the Centre

for Advanced Studies on Collaborative reseal&M Press, 2005.

RC S file : matzDissertation.lyx, v Revision : 1.8 110 July 22, 2007 16:43

